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1. Introduction

Structural models of individual choice behavior typically assume that latent preference

parameters are deterministic at the individual level and do not vary randomly within an individual over

different decision tasks. To account for unexplained variation in individual choice behavior, the

deterministic preference index function is subsequently combined with an additive error term that

varies randomly over decision tasks. Recent theoretical developments have generated renewed

interest in the random preference (RP) model of choice under risk (Becker, DeGroot and Marschak

[1963]) by establishing its axiomatic foundations (Gul and Pesendorfer [2006]) and stochastic

monotonicity with respect to the degree of risk aversion (Wilcox [2011]; Apesteguia, Ballester and

Lu [2017]; Apesteguia and Ballester [2018]). The RP model excludes the additive error term and

treats the preference parameters per se as stochastic variables that vary randomly within an individual

over different decision tasks. From an empirical perspective, the RP model is known to be an

unwieldy model to estimate except in a few special cases because the preference index function is

not additively separable from the source of stochastic variation. One may apply a general purpose

simulator based on the simple frequency logic to approximate the choice probabilities with relative

ease, but the simulated likelihood function becomes a step function which does not lend itself to

gradient-based optimization.1

We propose a general approach to estimating the RP model of choice under risk which can

be applied to any empirical specification regardless of the underlying decision model and

experimental design. The crux of our approach is the use of McFadden’s [1989] perturbation

strategy to construct a kernel-smoothed simulator of choice probabilities, which enables us to re-

formulate the likelihood maximization problem in a way that the usual apparatus of maximum

simulated likelihood (MSL) estimation can be applied to. McFadden’s work was focused on the

multinomial probit model, but we demonstrate that the same strategy can be fruitfully exploited in

estimation of the RP model as well. The kernel-smoothed simulator replaces indicator functions in

the simple frequency simulator with smoothing kernels such as logistic distribution functions. The

1 Global search methods, such as differential evolution and particle swarm optimization algorithms
(e.g., Hole and Yoo [2017]), may help one maximize a step function but do not address problems with point
identification of parameter values.
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subsequent simulated likelihood function is a smooth function of preference parameters, which can

be maximized by applying standard optimization techniques. Using smoothing kernels instead of

indicator functions does not entail any constraints on the RP model itself or the data. This flexibility

makes our approach applicable to a general class of RP models. The likelihood evaluator can be

coded with relative ease and generalized to accommodate multidimensional risk preference

parameters, as well as unobserved interpersonal heterogeneity, in a tractable fashion. 

Existing approaches to estimating the RP model focus on restricted cases that enable one to

derive analytic choice probabilities. These cases are based either on Expected Utility Theory (EUT)

with a one-parameter utility function, thereby precluding non-EUT models as well as EUT with

more flexible utility functions; or on restrictive types of decision tasks with lotteries over a universal

set of at most four outcomes, thereby precluding experimental designs with more variation in

outcomes. The only existing study that estimates a RP model with more than one random risk

preference parameter is Wilcox [2008; §4.5].2 It is also one of two existing studies that estimate RP

models of non-EUT preferences.3 He considers Rank-Dependent Utility Theory (RDU) which

extends EUT by adding a probability weighting function (PWF) that complements the utility

function (Quiggin [1982]). Wilcox places a partial RP structure on RDU by adopting a flexible utility

function with two RP parameters, while maintaining a non-random PWF for each individual. 

His statistical approach is specifically designed for this partial RP-RDU framework. Additionally, it

necessitates the use of a bivariate gamma distribution, and of data from an experiment that features

the restrictive types of decision tasks mentioned above. Our general approach can accommodate any

2 The same case study is also reported in Wilcox [2011; pp.101-102]. Ironically, the main aim of this
case study is to explain why it is difficult to generalize RP models to multi-parameter and non-EUT settings.

3 Loomes, Moffatt, and Sugden [2002] estimate a Rank-Dependent Utility model akin to that in
Wilcox [2008]. However, their RP model features only a single RP parameter within the utility function and
employs a deterministic probability weighting function. Apesteguia, Ballester, and Gutierrez-Daza [2023] and
Jagelka [2023] estimate RP adaptations of the discounted expected utility model. This includes one RP
parameter measuring risk aversion under EUT and another measuring delay aversion under exponential
discounting. As the model's risk preference specification adheres to a one-parameter EUT framework, it
avoids the complexities in specifying non-EUT models with multiple RP parameters, a challenge highlighted
by Wilcox [2008] and which we will discuss further in Section 3.
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decision model, any number of random parameters, any distributional assumption, and any set of

decision tasks that allows one to identify the model specification of interest.4

McFadden’s perturbation strategy has only been used in the estimation of multinomial

probit. In fact, it has not even seen wider use in this area of application, except as an inspiration for

the normal-error component logit-mixture model (Walker, Ben-Akiva and Bolduc [2007]),

presumably because it is far more general than required for the task at hand. In multinomial probit

models, random variations in individual choice behavior are attributed to alternative-specific error

terms which follow a multivariate normal distribution. Leveraging this assumption of multivariate

normality, the GHK simulator offers a practical method for constructing simulated choice

probabilities which are inherently smooth with respect to model parameters.5 This has made the

GHK simulator the standard tool for estimating multinomial probit models. By contrast,

McFadden’s kernel-smoothed simulator can be applied to any distribution—be it normal or non-

normal—but necessitates a subjective choice by the user regarding the degree of kernel smoothing.

The RP model, compared to the multinomial probit, is better positioned to benefit from this

tradeoff between generality and automated implementation. Depending on which preference

parameters enter the embedded decision models and the logical constraints that they must satisfy,

different RP model specifications may require the use of different distributional assumptions.

To illustrate the feasibility and practical application of kernel smoothing for the estimation

of RP models, we use data from two existing experiments to estimate EUT and RDU preferences.

We also examine extensions to a hybrid choice model, which incorporates a trembling mechanism to

permit violations of stochastic dominance, and a model of population heterogeneity that addresses

random taste variations both between and within individuals. The small number of restricted cases

of EUT and RDU, which yield analytic RP choice probabilities, provide particularly interesting test

4 In Online Appendix A, we complement our general estimation approach by a simple, convenient
approach to estimating one-parameter EUT models that satisfies the single-crossing condition for a given
data set. In this setup the RP-EUT model has a dual representation as a standard binary response model. The
duality allows one to use standard commands in software packages (e.g. -logit- and -xtlogit, re- in Stata) in the
estimation of the one-parameter RP-EUT model.

5 A Cholesky factorization of multivariate normal errors lead to a linear combination of independent
univariate normal errors. The GHK simulator exploits this property to approximate multinomial probit
probabilities by using a series of univariate normal distribution functions. Train [2009; §5.6.3] provides an
accessible summary along with references to independent contributions by Geweke, Hajivassiliou, and Keane. 
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beds for our general approach albeit our general approach might be seen as an overkill for such

cases. Since these cases can be estimated by the standard method of maximum likelihood (ML) as

well as our general approach, we can directly compare the two sets of the results to gauge

approximation noise introduced by the use of the perturbation strategy in authentic empirical

settings.  

In our empirical case studies, we also aim to offer practical guidance on the selection of the

smoothing factor that determines the extent of kernel smoothing. One immediate complication is

that the effect of a given value of the smoothing factor depends on the overall scale of utility, which

does not have a natural unit of measurement. We find it useful to scale the index function of the RP

model by the utility of the best available outcome in a given application, which enables us to think of

the value of the smoothing factor in terms of percentage of the maximum utility level. A follow-up

issue is to actually find an appropriate value of the smoothing factor. Our empirical results suggest

that a value close to 1% of the maximum utility level provides a good default configuration. With this

configuration, the kernel-smoothed MSL estimates are practically indistinguishable from the standard

ML estimates where both sets of the results are available. This similarly suggests that with an

appropriate setting the kernel-smoothed simulator can indeed provide reliable approximation to the

underlying RP likelihood function.

We stress that the RP model does not refer to the usual random coefficient model that has

been widely used in applied microeconomics. The two models serve quite different purposes, and

one can combine the RP model with the fixed coefficient model (e.g., Apesteguia and Ballester

[2018]) or with the random coefficient model (e.g., Wilcox [2008][2011]). The RP model uses a

statistical distribution to describe variation in preference parameters within an individual over decision

tasks, whereas the random coefficient model uses a statistical distribution to describe variation in

preference parameters between individuals.6 Our general estimation approach can be applied to both

fixed and random coefficient versions of the RP model.

6 The use of the term random coefficient to describe this approach to modeling interpersonal
heterogeneity is well-established in all branches of applied microeconomics: See, for example, Revelt and
Train [1998], Cohen and Einav [2007], Blass, Lach and Manski [2010], and Harrison, Lau and Yoo [2020].
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2. One-dimensional Random Preference Models

We begin by introducing our general estimation approach to RP models in a simple setting

with a single risk preference parameter. Expected Utility Theory (EUT) with a constant absolute risk

aversion (CARA) or a constant relative risk aversion (CRRA) utility function, as well as one-

parameter formulations of Yaari’s [1987] Dual Theory, fall into this class of decision models. Even in

this simple setting the likelihood function of the RP model does not have an analytic solution unless

specific constraints are imposed on the decision tasks in the experimental design. Moreover, the

standard frequency-based simulator of the likelihood function generates a step function that is not

amenable to numerical optimization.7 To tackle these computational challenges, we apply the kernel-

smoothed frequency simulator that McFadden [1989] developed to address similar issues in the

estimation of multinomial probit models.

A. Perturbation to EUT with CRRA Utility

Consider data from an experiment where subjects choose between two lotteries, A and B, in

each decision task. Assume for now that every subject has the same “urn of random risk preference

parameters,” a metaphor to be clarified shortly. We use n 0{1, 2, þ, N} to index subjects, and t 0{1,

2, þ, T} to index decision tasks. Lottery L 0{A, B} in subject n’s decision task t is a probability

distribution over K prizes which pays prize mLknt with probability pLknt, where k 0{1, 2, þ, K}. All

prizes and probabilities are known to the subjects before they make their decisions. Finally, let mmax

denote the maximum possible prize in all decision tasks.

We use EUT with CRRA utility to illustrate our kernel smoothing approach to estimate one-

dimensional RP models. The utility of prize M is 

U(M|ù) = (M(1!ù) ! 1)/(1 ! ù), (1)

7 Simulation is often required when additive error models are combined with random coefficients. As
Revelt and Train [1998] explain the frequency-based simulator is not necessarily a step function in those
cases: When the additive error term follows a parametric distribution which produces a smooth link function
(e.g., logit), the simulated likelihood function is a smooth function of the parameters to be estimated.
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where ù 0 (!4, 4) is the coefficient of relative risk aversion. Without loss of generality, we assume

that prizes are scaled such that mmax > 1, hence U(mmax|ù) > 0 for all ù. The expected utility of

lottery L 0 {A, B} is given by 

EULnt(ù) = 3k pLknt × U(mLknt|ù) (2)

and an EU-maximizing subject will choose lottery B if EUBnt(ù) > EUAnt(ù) and lottery A if the sign

of this inequality is reversed.  

Structural econometric models usually account for unexplained variation in individual choice

behavior by including idiosyncratic error terms which are distributed independently of the subject’s

preferences. By contrast, the RP model accommodates stochastic choice behavior by treating the

relative risk aversion parameter as a random variable, ùnt, that varies across subjects and, more

importantly, over decision tasks within a subject. Suppose that the random risk parameter ùnt  is logistically

distributed with mean ìù and scale óù, and let f(ùnt|ìù, óù) denote the density function. One can

interpret the density function as an “urn” that contains different values of ùnt (Wilcox [2008; p.213]),

and ìù and óù as the mean and dispersion of the urn’s contents. In each task, the subject makes a new

draw from the urn, with replacement, and the outcome of that draw determines her degree of relative

risk aversion in that task. The probability that subject n chooses lottery B in task t is then

Lnt(ìù, óù) = II[ÄEUnt(ùnt) > 0]f(ùnt|ìù, óù)dùnt (3)

where I[.] denotes an indicator function and ÄEUnt(ùnt) refers to a scaled EU difference between the

two lotteries

ÄEUnt(ùnt) = (EUBnt(ùnt) ! EUAnt(ùnt)) / U(mmax|ùnt). (4)

The choice probability in equation (3) is invariant to any increasing transformation of the EU

difference in the numerator of equation (4).

The lack of separability between the index function ÄEUnt(.) and the stochastic component

ùnt in the RP model makes it difficult to obtain analytic choice probabilities without further

assumptions, such as the single-crossing property that we will discuss in Section 2.C. Given some

candidate values of ìù and óù, one may think of applying a standard frequency simulator to perform

Monte Carlo integration and compute a simulated analogue to equation (3) as follows

   Snt(ìù, óù) = (1/R) 3r I[ÄEUnt(ùntr) > 0] (5)
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by using R pseudo-random draws from f(ùnt|ìù, óù), where ùntr refers to the rth draw of ùnt and r 0

{1, 2, þ, R}. However, this approach is not amenable to maximum simulated likelihood (MSL)

estimation of the unknown parameters ìù and óù. Given a finite number of pseudo-random draws,

the simulated choice probability in equation (5) may be equal to 0, and more importantly it is a step

function which implies that different candidate values of ìù and óù may return the same value of

Snt(ìù, óù). The former issue implies that the sample log-likelihood value may be undefined, and the

latter issue precludes the use of gradient-based maximization algorithms to compute ìù and óù.
8

We use the perturbation strategy by McFadden [1989; p.1001] to construct a kernel-smoothed

frequency simulator that lends itself more easily to numerical maximization. The key idea is to

perturb the inequality inside the indicator function by adding a contaminating disturbance term so

I[ÄEUnt(ùnt) > 0] is replaced with I[ÄEUnt(ùnt) + ê × vnt > 0], where ê is a smoothing factor to be

selected by the researcher prior to estimation and vnt is a standard logistic variate. The disturbance

term is contaminating since it does not form part of the assumed stochastic choice process; it

represents an intentional specification error that is added to generate a perturbed model which is

easier to simulate than the assumed model. Given a suitably small value of ê, the perturbed model

can approximate the assumed model to a desired degree of accuracy.9 Potential bias due to the

contaminating disturbance disappears asymptotically if ê is seen as an element of a sequence that

decreases at a sufficiently fast rate as the sample size grows. This result supports the use of usual

asymptotic inferential procedures along with the perturbation strategy.10

Using the law of iterative expectations, a perturbed version of the RP model in equation (3)

can be written as

Lnt(ìù, óù) = IË(ÄEUnt(ùnt) / ê)f(ùnt|ìù, óù)dùnt (6)

8 Thus, one cannot use standard algorithms, such as Newton-Raphson (NR) and Broyden-Fletcher-
Goldfarb-Shanno (BFGS), to maximize the simulated log-likelihood function. The use of gradient-free
algorithms may help locate a maximum, but will not fix the failure of identification.

9 McFadden and Train [2000; p.451] provide a theorem which formally illustrates this intuition.
10 The asymptotic bias disappears if ê tends to zero at a rate faster than the square root of the sample

size. This result is reminiscent of a similar result supporting simulation-assisted estimation, which states that
simulation bias vanishes asymptotically if the number of simulated draws grows at a sufficiently fast rate
relative to the sample size. Both types of results establish the sense in which the use of perturbation or
simulation does not interfere with asymptotic inferences, though they do not help one select the value of ê or
the number of simulated draws in empirical applications where the sample size is fixed.
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where Ë(z) = exp(z) / (1 + exp(z)) is the standard logistic distribution function that results from

integrating out the contaminating disturbance. The kernel-smoothed frequency simulator of the RP

model is a simulated analogue to the perturbed model in equation (6): 

   Snt(ìù, óù) = (1/R) 3r Ë(ÄEUnt(ùntr) / ê)     (7)

where ùntr is the rth draw of ùnt from f(ùnt|ìù, óù) as defined earlier. From a computational angle, the

logistic distribution function Ë in equation (7) can be seen as a smoothing kernel for the indicator

function in equation (5) rather than an expectation over the contaminating disturbance, hence the

name of the simulator. Since the kernel-smoothed simulator is a finite sum of logistic distribution

functions, it returns algebraically positive probabilities and is twice continuously differentiable in ùntr.

We can thus construct a sample likelihood function, which can be maximized by using conventional

gradient-based algorithms to obtain MSL estimates of the unknown parameters ìù and óù that

characterize the RP urn.

In the literature on semi-parametric estimation of discrete choice models, the smoothing

factor ê is often set at a value proportional to 1/(N × T)0.2 to smooth the maximum score estimator

(e.g., Horowitz [1992] and Yan and Yoo [2019]), where N × T is the total number of choice

observations. In our empirical applications we collate results from multiple estimation runs with ê =

# /(N × T)0.2 using multiplicative factors # 0 {0.01, 0.05, 0.1, 0.25, 0.5, 1, 2}. We find that values of

ê close to 0.01 work best in terms of convergence, as well as approximation to maximum likelihood

(ML) estimates for analytic likelihood functions in those special cases where such ML estimates are

available. Scaling the EU difference by the maximum utility in all decision tasks is equivalent to

normalizing maximum utility to unity. Our results thus suggest that setting the smoothing factor to a

value close to 1% of maximum utility provides a useful default configuration in implementations of

the kernel smoothing approach.

B. General Approach to Estimating One-Dimensional RP Models

We can generalize the estimation procedure to other decision models with a single random

preference parameter. Let ÄVnt(ánt) denote an index that represents the subject’s relative valuation of

two options as a function of the parameter ánt, where the exact form of the index may vary across

theory and data. Suppose that ÄVnt(ánt) > 0 corresponds to the choice of option B, and let æ(ánt|è)

8



denote the density of ánt which is characterized by the distributional parameters in è. The probability

that subject n chooses option B in task t, Lnt(è) = II[ÄVnt(ánt) > 0]æ(ánt|è)dánt, is simulated by

Snt(è) = (1/R) 3r Ë(ÄVnt(ántr) / ê) (8)

where ántr refers to the rth draw of ánt from æ(ánt|è). 

Given the simulated choice probability, the likelihood of subject n’s choice in task t is

hnt(è) = Snt(è)ynt × [1 ! Snt(è)](1 ! ynt) (9)

where ynt is a binary indicator that is equal to 1 if the observed choice is option B and equal to 0 if it

is option A. The joint likelihood of all T choices by subject n is

Hn(è) = Jt hnt(è) (10)

where t 0{1, 2, þ, T}.11 The MSL estimates of è can be computed by maximizing the sample log-

likelihood function, H(è) = 3n ln(Hn(è)), where n 0 {1, 2, þ, N}.

From a programming perspective, the likelihood evaluator for the RP model can be coded by

adapting the likelihood evaluator for the pooled logit model. The sample log-likelihood function,

H(è) = 3n ln(Hn(è)), has the same algebraic structure as the pooled logit likelihood, except that the

simulated choice probability with R draws in equation (8) replaces the standard logit probability.

Train [2009; §9] provides an accessible guide to drawing from alternative density functions. Our

implementation makes draws based on a Halton sequence (Train [2009; §9.3.3]) as follows.

1. Prior to estimation, make N × T × R draws from a Halton sequence and allocate R

distinct draws to each of the N × T choice observations. These draws are held constant

throughout model estimation. Each Halton draw is a number in the unit interval (0, 1).

Suppose that the data set is stored in the usual long form structure with N × T rows, where

each row refers to a distinct choice observation subscripted by “nt” in our notation, and the

columns refer to different variables (e.g., the choice indicator and lottery characteristics). This

step is then equivalent to adding R new variables to the data set, where each new variable

stores a set of Halton draws allocated to N × T observations. 

11 To accommodate panel correlations across repeated choice observations on the same subject, one
can combine this RP model of intrapersonal heterogeneity with a random coefficient model of interpersonal
heterogeneity. We present this extension in Section 4. 
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2. At each iteration of model estimation, convert the Halton draws into draws of ánt

from æ(ánt|è), where è is set to their most recent estimates. This conversion is achieved by

inverting each Halton draw using the inverse cumulative distribution function associated with

æ(ánt|è). To avoid draws from the far right or left tail of æ(ánt|è) that can induce numerical

problems, we truncate the Halton draws on (0.005, 0.995) prior to applying the inversion.12 In

the context of our EUT example in equation (5), this step entails applying the inverse logistic

distribution function separately to each truncated Halton draw. From a data management

perspective, this step is akin to generating R new variables which are non-linear

transformations of the R variables generated in Step 1.

3. At each iteration of model estimation, re-evaluate the kernel-smoothed simulator in

equation (8) at the draws of ánt obtained in Step 2. Finally, use the results to re-evaluate the

likelihood function in equation (10).

Once the likelihood evaluator has been coded, model estimation can proceed by applying a

numerical optimization technique to update the estimates of è between iterations. We use the BFGS

technique which is known to work well in maximizing simulated likelihood functions.  

C. Application: EUT with CRRA Utility

To estimate the EUT model with CRRA utility, we use data from Andersen, Harrison, Lau

and Rutström [2014]. The data set includes 413 subjects from the general adult population in

Denmark, and each subject in the experiment was asked to make choices from 40 distinct pairs of

lotteries A and B. Each lottery pair can be written as A = {(mA1, (1 ! p2)), (mA2, p2)} and B = {(mB1,

(1 ! p2)), (mB2, p2)} where mB1 < mA1 < mA2 < mB2. For each set of prizes [mA1, mA2, mB1, mB2], the

probability p2 varied from 0.1 to 1 in increments of 0.1. For now, we exclude lottery pairs with

dominant choices (i.e., with p2 = 1) which do not contribute to the identification of risk preferences

12 The truncated draw is a weighted average of the two endpoints of the truncated interval, where the
weight is the un-truncated draw. Let dnt denote a Halton draw allocated to observation nt; a truncated draw is
then equal to 0.995dnt + 0.005(1 !dnt). In the context of estimating Generalized Multinomial Logit models,
Keane, Fiebig, Louviere and Wasi [2010; §3] recommend truncation on (0.023, 0.977). Our experience
suggests that a more conservative truncation on (0.005, 0.995) suffices for RP model specifications.
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in the RP model.13 There were four prize sets in the design, Set1 = [1600, 2000, 100, 3850], Set2 =

[750, 1125, 250, 2000], Set3 = [875, 1000, 75, 2000] and Set4 = [1000, 2250, 50, 4500], where the

amounts are in Danish kroner.14 At the end of the experiment, one of the subject’s 40 choices was

randomly selected for payment, and each subject had a 10% chance of receiving the payment.

The lottery pairs follow the same algebraic structure as popular multiple price lists, which

have been designed to make the EUT model with CRRA utility conform to the single-crossing

property. Thus, in each decision task without dominant choices (i.e., p2nt < 1), there exists a unique

and pre-determined value of wnt that solves ÄEUnt(wnt) = 0, where ÄEUnt(.) refers to the scaled EU

difference in equation (4).15 In relation to the RP model, the single-crossing property implies that the

subject chooses lottery A (ÄEUnt(ùnt) < 0) if the person is more risk-averse than the indifference

point, i.e. ùnt > wnt, and lottery B (ÄEUnt(ùnt) > 0) if ùnt < wnt. Since Pr(ÄEUnt(ùnt) > 0) is now equal

to Pr(ùnt < wnt), there is an analytic expression for equation (3) that specifies the probability of

subject n choosing lottery B in task t, namely Lnt(ìù, óù) = Ë((wnt ! ìù)/óù).
16 

By using this analytic expression to construct a sample log-likelihood function, one can apply

the standard ML procedure to estimate ìù and óù without relying on kernel-smoothed simulation.

These analytic ML estimates provide a useful benchmark for the empirical performance of our

approach. The analytic choice probability, Ë((wnt !ìù)/óù), is what our kernel-smoothed simulator is

intended to approximate. Given a small approximation error, the kernel-smoothed MSL estimates of

ìù and óù should be numerically similar to the corresponding analytic ML estimates.

Figure 1 shows that we can obtain MSL estimates that are practically indistinguishable from

the analytic ML estimates if the smoothing factor ê is close to 1% of the utility of the highest prize in

all decision tasks (ê . 0.010).17 The four RP urns in Figure 1 display logistic density functions,

f(ùnt|ìù, óù), that are estimated by the analytic ML approach along with three kernel-smoothed MSL

13 Loomes, Moffatt and Sugden [2002; p.104] estimate a hybrid model that combines the RP model
with a stochastic choice process known as trembles, which can accommodate violations of dominance. We
use our kernel smoothing approach to estimate this hybrid choice model in Section 4.1.   

14 At the time of the experiment, the exchange rate was close to 5 kroner per US dollar.
15 We report the indifference point for each lottery pair in Online Appendix A. 
16 The standard logistic distribution function Ë(.) in this context represents the distributional

assumption on ùnt, and is not a smoothing kernel.
17 Detailed results are reported in Online Appendix B, Table B1.
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estimates based on ê 0 {0.037, 0.015, 0.007} and R = 100 Halton draws.18 The four sets of estimates

for ìù and óù have p-values < 0.001. Further tightening or loosening of the smoothing factor tends to

provide poorer approximation to the analytic ML estimates than the results reported in Figure 1. The

logistic RP urn estimated by the analytic ML approach has a mean (ìù) of 0.535 and a scale (óù) of

0.575. By comparison, the kernel-smoothed MSL estimates are ìù = 0.528 and óù = 0.565 for ê =

0.007.19 If the mean is seen as a core risk aversion parameter and the scale as a behavioral noise

parameter, an interpretation adopted by Apesteguia and Ballester [2018], then the average agent can

be classified as risk-averse. Random fluctuations in risk preferences, however, implies that the agent

occasionally makes choices that one expects of risk seeking decision makers. Both ML and MSL

imply that this inconsistency occurs in about 28% of choice occasions, which is based on the formula

Pr(ùnt < 0) = Ë(!ìù/óù).
20

3. Multidimensional Random Preference Models

We next extend our kernel-smoothed estimation approach to RP models with more than one

random risk preference parameter. These models naturally arise when one is interested in studying

EUT with a multi-parameter utility function (Gul and Pesendorfer [2006]) or non-EUT preferences

that allow for multiple sources of risk aversion. Popular examples of the latter include RDU that

attribute risk aversion to utility curvature and probability weighting, and Cumulative Prospect Theory

18 These three values are based on ê = #/(N × T)0.2 where # 0 {0.25, 0.10, 0.05} and N × T =
14,868. Bhat [2001] finds that 100 Halton draws provide approximately the same level of accuracy as 2,000
pseudo-random draws in a Monte Carlo study of discrete choice models. The difference is attributed to the
deliberate construction of Halton draws to provide good coverage of the parametric space.

19 The two other sets of the MSL estimates are ìù = 0.523 and óù = 0.546 for ê = 0.015; and ìù =
0.506 and óù = 0.463 for ê = 0.037.

20 Figure B1 in Online Appendix B displays ML and MSL estimates of ìù and óù from a Monte Carlo
experiment with 1,000 simulated data sets. The data generating process (DGP) for the Monte Carlo
experiment assumes that the decision maker’s RP urn is equivalent to the analytic ML estimates, i.e. f(ùnt|ìù

= 0.535, óù = 0.575), and we generate 1,000 simulated data sets of the same size (14,868 choice observations)
as the original sample. We use the original set of lottery pairs in each simulated data set, but replace actual
choices made by each subject with simulated choices based on draws of ùnt from the DGP. Two sets of
estimates for ìù and óù are then computed per simulated data set by analytic ML and kernel-smoothed MSL
with ê = 0.007. The ML and MSL estimates are almost perfectly correlated, which suggests that the similar
results in the empirical application are not a coincidence. The Monte Carlo experiment also suggests that the
use of kernel smoothing per se does not have detrimental effects on the finite sample behavior of
asymptotically justified inferential procedures.
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(Tversky and Kahneman [1992]) which includes a loss aversion parameter along with reference-

dependent utility curvature and probability weighting parameters. 

A. Current Progress in Estimating Non-EUT Preferences 

Before we present our general approach to estimating multi-dimensional RP models, it is

useful to review Wilcox’s approach to estimating a two-dimensional RP model since it illustrates the

econometric challenges that have precluded wider use of RP models. He focuses on an experimental

design with four distinct prizes, m1 < m2 < m3 < m4. In a given decision task the subject chooses

between two lotteries over the same three-element subset of the four prizes but with different

probability distributions. Let M!1 = {m2, m3, m4}, M!2 = {m1, m3, m4}, M!3 = {m1, m2, m4} and M!4 =

{m1, m2, m3} denote the four prize sets in the experiment, and let pLknt denote the probability of prize

mLknt in lottery L of task t to subject n. 

The analytic ML approach by Wilcox is focused on RDU preferences that combine a non-

parametric utility specification over the four prizes with a one-parameter PWF proposed by Prelec

[1998]. The utility level of each prize, U(mk) = uk, is treated as a distinct parameter. We follow the

original normalization by setting u1 = 0 and u2 = 1 for identification, and retaining u3 and u4 as free

parameters with 1 < u3 < u4 < 4 to ensure monotonicity. The PWF is specified by

ð(P|ö) = exp{!(!ln(P))ö} (11)

where ð(0|ö) / 0, and ö 0 (0, 4) is a parameter that determines whether the shape of the PWF is

regular S (ö > 1) or inverse-S (0 < ö < 1). Subject n’s evaluation of lottery L in task t is then given by

RDULnt(u3, u4, ö) = 3k (ð(PLknt|ö) ! ð(PL(k+1)nt|ö)) × uknt (12)

              = 3k dLknt × uknt

where ÑLknt = 3j$k pLjnt is the cumulative probability of receiving mk or a higher prize in lottery L, with

PL5nt / 0. In the special case where ö = 1, the PWF is linear and RDU is equivalent to EUT.

Wilcox estimates a partial RP-RDU model that places a RP structure on the utility function,

but not on the PWF. The two utility levels {u3, u4} are specified as RP parameters {u3nt, u4nt} that vary

randomly within a subject across decision tasks, whereas the PWF parameter ö is non-random for
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analytic simplicity and does not carry an nt subscript. We specify the scaled difference in the subject’s

evaluation of the two lotteries as21

ÄRDUnt(u3nt, u4nt, ö) = (RDUBnt(u3nt, u4nt, ö) ! RDUAnt(u3nt, u4nt, ö)) / u4nt (13)

and denote the difference in decision weights between the two lotteries by

Ädknt = (dBknt ! dAknt). (14)

Since each decision task involves three distinct prizes, the probability that subject n chooses lottery B

in task t can be enumerated for the four distinct prize sets as   

Pr(ÄRDUnt(u3nt, u4nt, ö) > 0) = Pr((u4nt ! u3nt)/(u3nt ! 1) > Äd2nt/Äd4nt) for M!1 (15)

        = Pr((u4nt ! u3nt)/(u3nt) > Äd1nt/Äd4nt)             for M!2 

        = Pr((u4nt ! 1) > Äd1nt/Äd4nt) for M!3

        = Pr((u3nt ! 1) > Äd1nt/Äd3nt) for M!4 

where each set-specific inequality collates all RP components of the model on the left-hand side and

all non-random components on the right-hand side. 

There is no joint distribution of u3nt and u4nt that translates all four types of choice

probabilities in (15) into likelihood functions that can be used in ML estimation. When viewed in

isolation, finding tractable marginal distributions of (u4nt ! 1) for M!3 and (u3nt ! 1) for M!4 is

straightforward as one may choose from any distribution with support on (0, 4). Loomes, Moffatt and

Sugden [2002] estimate the partial RP-RDU model without difficulty because all lotteries in their

decision tasks contained the same set of three prizes. Complications arise in a four-prize setting

because any joint distribution of (u3nt ! 1) and (u4nt ! 1) gives an intractable marginal distribution of

the ratio (u4nt ! u3nt)/(u3nt ! 1) for M!1, as well as (u4nt ! u3nt)/(u3nt) for M!2. 

The solution by Wilcox excludes all observations on M!2 from consideration. This constraint

on the sample allows one to use McKay’s [1934] bivariate gamma distribution that provides tractable

marginal distributions for the remaining three prize sets: (u3nt ! 1) and (u4nt ! 1) follow univariate

gamma distributions, whereas (u4nt ! u3nt)/(u3nt ! 1) follows a “beta-prime” distribution that is related

to an F-distribution. Let Pr(X # x) = F(x; a1, a2) denote the distribution function of an F-distributed

random variate X, where a1 and a2 are numerator and denominator degrees of freedom, respectively.

21 Wilcox did not scale the raw RDU difference by the highest attainable utility, u4, but we introduce
the scaled difference in equation (13) in anticipation of the kernel smoothing procedure. 
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Similarly, let Pr(X # x) = G(x; a3, a4) denote the distribution function of a gamma-distributed random

variable X with shape parameter a3 and scale parameter a4. Under the bivariate gamma distribution of

(u3nt ! 1) and (u4nt ! 1), an analytic solution to equation (15) is given by

Lnt(á3, á4, ã, ö) = 1 ! F(á3/á4 × Äd1nt/Äd4nt; 2á4, 2á3)             for M!1 (16)

= 1 ! G(Äd1nt/Äd4nt; á3 + á4, ã) for M!3             

= 1 ! G(Äd1nt/Äd3nt; á3, ã) for M!4 

where Lnt(á3, á4, ã, ö) = Pr(ÄRDUnt(u3nt, u4nt, ö) > 0) is the probability that subject n chooses lottery B

in decision task t. One can thus use equation (16) to construct the sample likelihood function and

compute ML estimates of the non-random probability weighting parameter ö and the distributional

parameters á3, á4 and ã that describe the RP urn for u3nt and u4nt.
22 

The restrictions imposed by this solution on the prize sets and the distributional assumptions

also apply to the RP-EUT model with a non-parametric utility specification. Hence, despite the

prominence of RP-EUT models with non-parametric utility in theoretic formulations such as Gul and

Pesendorfer [2006], there is until now no available approach to estimate this structural model in a

more general data environment and with alternative classes of RP urns.

B. General Approach to Estimating Multi-Dimensional RP Models

We can easily adapt the kernel-smoothed simulator of the one-dimensional RP-EUT model in

equation (7) to the partial RP-RDU model with two RP parameters. Let g(v3nt, v4nt|á3, á4, ã) denote

the bivariate gamma density of the two RP parameters in the partial RP-RDU model, where v3nt /

(u3nt ! 1) and v4nt / (u4nt ! 1). The probability that subject n chooses lottery B in task t is 

Lnt(á3, á4, ã, ö) = III[ÄRDUnt(u3nt, u4nt, ö) > 0]g(v3nt, v4nt|á3, á4, ã)dv3ntdv4nt (17)

where ÄRDUnt(u3nt, u4nt, ö) is the scaled RDU difference in equation (13), u3nt = (v3nt + 1) and u4nt =

(v4nt + 1). Let v3ntr and v4ntr denote the rth draw of v3nt and v4nt from the bivariate density function,

where r 0 {1, 2, þ, R}. The required kernel-smoothed simulator can then be constructed as

Snt(á1, á2, ã, ö) =  (1/R) 3r Ë(ÄRDUnt(u3ntr, u4ntr, ö) / ê) (18)

22 The sample likelihood function has a similar algebraic form as the usual pooled logit model. The
only difference is that the standard logit probability of choice B (choice A) is replaced with the RP probability
of choice B (choice A). The RP probability of choice A is equal to 1 ! Lnt(á3, á4, ê, ö).
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where ê is a smoothing factor selected prior to estimation, and the standard logistic distribution

function Ë(.) is the smoothing kernel. The MSL estimates of á3, á4, ã and ö can be computed by using

Snt(á3, á4, ã, ö) instead of the analytic choice probabilities in equation (16) when one specifies the

sample likelihood function for the three prize sets M!1, M!3 and M!4.

Of course, with the kernel smoothing approach it is not necessary to restrict the estimation

sample to those three prize sets unless one is interested in obtaining MSL estimates that are directly

comparable to Wilcox’s analytic ML estimates. The choice probability in (17) and the simulator in (18)

can accommodate M!2 as easily as the three other prize sets. We can also replace the bivariate gamma

distribution with other bivariate distributions since the algebraic structure of our simulator remains

the same regardless of which distribution u3ntr and u4ntr are drawn from.

The kernel-smoothed simulator can be also adapted to estimate the full RP-RDU model with

RP structures on both the utility function and the PWF. Suppose that we augment the partial RP-

RDU model by specifying a log-normally distributed random parameter önt in addition to the two

random utility parameters. The choice probability in equation (17) is then changed to

Lnt(á3, á4, ã, ìö, óö) = IIII[ÄRDUnt(u3nt, u4nt, önt) > 0]g(v3nt, v4nt|á3, á4, ã) × (19)

î(ln(önt)|mö, sö)dv3ntdv4ntdönt

where î(ln(önt)|mö, sö) is a normal density function for ln(önt). The full RP-RDU model with three

random parameters can be simulated by 

Snt(á1, á2, ã, ìö, óö) =  (1/R) 3r Ë(ÄRDUnt(u3ntr, u4ntr, öntr) / ê) (20)

where öntr is the rth draw of önt from the log-normal density, and otherwise equation (20) is identical to

(18) for the partial RP-RDU model.

More generally, our estimation approach can be adapted to any preference index ÄVnt(ánt) that

represents the subject’s relative valuation of two lotteries as a function of a multidimensional vector

of RP parameters ánt, where the exact form of the index may vary across theory and data. Suppose

that ÄVnt(ánt) > 0 corresponds to the choice of lottery B, and let æ(ánt|è) denote the joint density of

ánt which is characterized by the distributional parameters in è. The probability that subject n chooses

lottery B in task t is simulated by

Snt(è) = (1/R) 3r Ë(ÄVnt(ántr) / ê), (21)

16



where ántr is the rth draw of ánt from æ(ánt|è). The MSL estimates of è can be computed by maximizing

the sample log-likelihood function H(è) = 3n ln(Hn(è)), where the subject-level joint likelihood

function Hn(è) is identical to equation (10) except that the underlying preference index is now a

function of multidimensional ántr instead of unidimensional ántr. The likelihood evaluator can be

programmed in substantively the same three steps as the unidimensional RP model. With emphasis on

aspects related to the multi-dimensionality of ántr, these steps are:

1. Prior to estimation, make N × T × R draws from each of kRP distinct Halton

sequences, where kRP is equal to the dimension of ántr. For example, kRP = 2 for the partial RP-

RDU model in equation (17) and kRP = 3 for the full model in equation (19). Allocate R × kRP

distinct draws to each of the N × T choice observations.   

2. At each iteration of model estimation, convert the Halton draws into draws of ánt

from æ(ánt|è), where è are set to their most recent estimates. For example, consider the partial

RP-RDU model in equation (17) and let G!1(x; á, ã) denote the inverse distribution function

of a univariate gamma variable with the location parameter á and the scale parameter ã. The

utility parameter u3nt can be simulated by applying G!1(x; á3, ã) to draws from one of the two

Halton sequences, and adding the inverted Halton draws v3ntr to unity: u3ntr = 1 + v3ntr.

Similarly, the utility parameter u4nt can be simulated by applying G!1(x; á4, ã) to draws from the

other Halton sequence, and adding the inverted Halton draws v*
4ntr to u3ntr: u4ntr = 1 + (v3ntr +

v*
4ntr). The sum in the parentheses makes up draw v4ntr which display correlation with v3ntr that

is consistent with the bivariate gamma density of v3nt and v4nt.

3. At each iteration of model estimation, re-evaluate the kernel-smoothed simulator in

equation (21) at the draws of ánt obtained in Step 2, and use the results to re-evaluate the

likelihood function. 

In our empirical illustration, we use R = 100 sets of Halton draws per choice observation to

simulate the sample log-likelihood function, and find MSL estimates by applying the BFGS technique

for numerical maximization.

C. Application: RDU with Non-Parametric Utility
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To estimate RDU with non-parametric utility, we use data from Harrison and Rutström [2008;

§2.6]. The experiment was conducted with a sample of 63 students at the University of Central

Florida, who made choices from 60 pairs of lotteries, A and B. The two lotteries in each pair had the

same set of three prizes [m1, m2, m3] but different probability distributions: A = {(m1, pA1)), (m2, pA2),

(m3, pA3)} and B = {(m1, pB1)), (m2, pB2), (m3, pB3)}. Each lottery pair can thus be seen as two points in

the Marschak-Machina (MM) triangle. Each probability pLknt took a value of 0, 0.13, 0.25, 0.37, 0.5,

0.62, 0.75 or 0.87. The three probabilities in each lottery summed to one, and none of the lottery pairs

had a stochastically dominated choice. The three prizes m1nt, m2nt and m3nt were selected from one of

four prize sets denominated in US dollars, M!1 = [5, 10, 15],  M!2 = [0, 10, 15], M!3 = [0, 5, 15] and

M!4 = [0, 5, 10]. At the end of the experiment, three of the subject’s 60 choices were randomly

selected for payment.23

The experiment replicates the data environment in Wilcox [2008; §4.5][2011]. We thus have

an opportunity to compare our kernel-smoothed MSL estimates with analytic ML estimates for two

random preference parameters. Once the prize set M!2 is excluded from the sample, we can use

Wilcox’s solution to the partial RP-RDU model in equation (16) and derive the sample likelihood

function analytically. We can also use the same bivariate gamma density distribution and the same

subset of data when we construct our kernel-smoothed simulator in equation (18). This will allow us

to directly compare the two estimation approaches.

Figure 2 illustrates that our MSL estimates are almost identical to the analytic ML estimates of

the partial RP-RDU model when we set the smoothing factor ê to 0.01. The results thus reinforce our

earlier observation based on EUT that ê . 0.01 is an appropriate default configuration for kernel

smoothing. The structural model includes two RP parameters for the utility function, u3nt 0 (1, 4) and

u4nt 0 (u3nt, 4), along with a non-random parameter ö 0 (0, 4) for the PWF. The two RP parameters

measure the utility of $10 and $15 after normalizing utility of $0 (u1nt = 0) and $5 (u2nt = 1). The upper

23 Harrison and Rutström [2008] paid for three of the subject’s 60 choices to ensure comparability of
rewards with other experiments in which subjects made 40 or 20 choices over pairwise lotteries, and where
two decision tasks or one decision task, respectively, was selected at random for payment. This so-called
Random Lottery Incentive Method is common in these types of experiments, and it assumes that subjects
isolate each pairwise lottery choice within the series from each other. One can alternatively pay subjects for
all their decisions, but it opens up for hedging opportunities and portfolio effects, as well as wealth effects
depending on information and payment procedures.    
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panel in Figure 2 displays the marginal gamma density of u3nt, which is characterized by the shape

parameter á3 and scale parameter ã; and the lower panel displays the same density of u4nt, which is

characterized by the shape parameter (á3 + á4) and scale parameter ã. The four pairs of RP urns in the

two panels are estimated by applying analytic ML estimation along with kernel-smoothed MSL

estimation at ê 0 {0.020, 0.010, 0.002} and R = 100 Halton draws.24 All four sets of estimates for á3,

á4, ã and ö have p-values < 0.001.  

The analytic ML estimates of the three parameters characterizing the bivariate gamma RP urns

are equal to {á3, á4, ã} = {0.702, 0.830, 0.791}. Multiplying the shape and scale parameters of a

gamma distribution produces its mean, and dividing the mean by the square root of the shape

parameter produces its standard deviation. We thus obtain E[u3nt] = 1.556 with SD[u3nt] = 0.663, and

E[u4nt] = 2.212 with SD[u4nt] = 0.979, where E[.] and SD[.] denote the mean and standard deviation of

the RP parameter in the argument. Given the normalized utility levels of u1nt = 0 and u2nt = 1, the

utility function is linear when u3nt = 2 and u4nt = 3. Should E[u3nt] and E[u4nt] be viewed as the core

preference parameters, the results would suggest that the decision maker has a concave utility

function. Also, the RP urns suggest that the possible realizations of utility functions generally are

concave despite random fluctuations, with Pr(u3nt < 2) = 0.824, Pr(u4nt < 3) = 0.826, and Pr(u3nt < 2,

u4nt < 3) = 0.642. The non-random parameter ö in the PWF is equal to 1.011, with a 95% confidence

interval of (0.949, 1.072), and we cannot reject the null hypothesis of a linear PWF at the 5%

significance level.

The MSL estimates with a smoothing factor of ê = 0.010 generate RP urns which lead to

substantively the same inferences as the analytic ML estimates. The parameters characterizing the

bivariate gamma distribution are estimated at {á3, á4, ã} = {0.795, 0.953, 0.663}, implying E[u3nt] =

1.527 with SD[u3nt] = 0.591, and E[u4nt] = 2.158 with SD[u4nt] = 0.876. The utility function is again

generally concave with Pr(u3nt < 2) = 0.841, Pr(u4nt < 3) = 0.850 and Pr(u3nt < 2, u4nt < 3) = 0.667.

Moreover, we cannot reject the null hypothesis that the PWF is linear since the non-random ö

24 The smoothing factor values are obtained by setting ê = #/(N × T)0.2 where # 0 {0.10, 0.05,
0.01} and N × T = 2,985.
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parameter is equal to 1.002 with a 95% confidence interval of (0.942, 1.062). The MSL estimates at

the other two values of ê lead to similar conclusions.25

4. Two Other Types of Heterogeneity

Our general estimation approach can be also applied to other variants of the RP model that

incorporate different aspects of individual heterogeneity in choice behavior. We consider two

applications. The first application is a finite mixture model that combines the RP model with another

stochastic choice process known as trembles (Loomes, Moffatt and Sugden [2002]). If the embedded

decision model satisfies stochastic dominance, the RP model is inconsistent with any instance of

stochastically dominated choices. The finite mixture model helps explain such instances without

discarding the RP modeling framework entirely. The second application accounts for preference

heterogeneity across individuals by specifying a model that allows each subject to have a personal RP

urn. This model has a hierarchical structure that uses the random coefficient model to represent

interpersonal heterogeneity and the RP model to represent intrapersonal heterogeneity. Once our general

estimation approach has been applied to evaluate RP choice probabilities, the sample log-likelihood

function can be simulated in the same manner as mixed logit models (Train [2009; §6]) which are

widely used in applied microeconomics.

A. Mixture of Random Preferences and Trembles

Subjects in experiments are occasionally presented with decision tasks where one choice

dominates the other. The experiment by Andersen, Harrison, Lau and Rutström [2014], for example,

provides a simple example, in which 4 out of 40 tasks present choices between two degenerate

lotteries where option B offers a higher amount than option A. So far we have excluded decision

tasks with dominant choices to focus squarely on estimating the RP model. We now consider a hybrid

model that combines random preferences with trembles (Loomes, Moffatt and Sugden [2002]; Wilcox

[2008; §2.1]), which allows one to include dominated choice tasks in the sample. 

25 Detailed results are reported in Online Appendix B, Table B3. 
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Suppose that lottery B dominates lottery A. Since the embedded decision criterion always

favors lottery B regardless of the preference parameter values that the subject happens to draw from

the RP urn, the RP model predicts that the subject always chooses lottery B. If the subject’s observed

choice is indeed B, this data point contributes ln(1) = 0 to the sample log-likelihood function, adding

no information to the estimation of the RP model. If the observed choice instead is A, this data point

precludes ML or MSL estimation since its log-likelihood contribution is ln(0), thereby rendering the

value of the sample log-likelihood function undefined. 

To accommodate dominated choices without discarding the RP framework entirely, one must

combine the RP model with a secondary stochastic model that allows for violations of stochastic

dominance. Loomes, Moffatt and Sugden [2002; p.114] introduce a hybrid model where a simple

process known as trembles takes this secondary role. Suppose that the RP component of the hybrid

model is based on a general preference index ÄVnt(ánt), where ánt is a vector of RP parameters with

density function æ(ánt|è). The tremble mechanism suggests that the subject metaphorically has a

trembling hand that can lead to unintentional choices. In the hybrid model, the probability that

subject n chooses lottery B in task t is equal to a weighted average of choice probabilities under the

two components 

Lnt(è, ô) = (1 ! ô) II[ÄVnt(ánt) > 0]æ(ánt|è)dánt + ô 0.5 (22)

where ô 0 (0, 1) is the probability of trembling. The RP integral in (22) is identical to equation (3)

except that we have generalized the notation to accommodate multiple RP parameters. With no

trembling (ô = 0), the probability of selecting either lottery is predicted by the RP integral. When ô =

1, the RP integral is redundant and the subject is equally likely to choose either lottery.

The hybrid model has an analytic expression only if the RP integral has one, and it inherits all

computational challenges from the RP model otherwise. It is, however, straightforward to apply our

kernel smoothing procedure to simulate the hybrid model in equation (22) as

   Snt(è, ô) = (1 ! ô) (1/R) 3r Ë(ÄVnt(ántr) / ê) + ô 0.5     (23)

where ê is a pre-selected smoothing factor, and ántr is the rth draw of ánt from æ(ánt|è). The MSL

estimates of the parameters è that describe the subject’s RP urn and tremble parameter ô can be

obtained by maximizing a sample log-likelihood function which uses equation (23) instead of Snt(è) in

equation (9).
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To study the empirical performance of our kernel smoothing procedure in this context, we

return to the RP-EUT application in Section 2.C and estimate the hybrid EUT model with trembles.

We use the same data from Andersen, Harrison, Lau and Rutström [2014], but now add observations

from the dominated choice tasks which were excluded from the RP-EUT model. Since the one-

dimensional RP-EUT model for the non-dominant tasks has an analytic log-likelihood, the hybrid

EUT model for the full sample of 16,520 choice observations also has an analytic log-likelihood

function. We can thus compare our kernel-smoothed MSL results to the analytic ML benchmark.

Figure 3 displays estimated logistic density functions of the risk preference parameter f(ùnt|ìù,

óù) using the analytic ML approach and the kernel-smoothed MSL approach with ê 0 {0.036, 0.014,

0.007}. The estimated RP urn with the analytic ML approach is f(ùnt|0.523, 0.337) and the estimated

tremble parameter is 0.162. We obtain practically the same results with the MSL approach for ê =

0.007 and ê = 0.014, whereas the estimated RP urn for ê = 0.036 is somewhat different from the

analytic benchmark.26 In both ML and MSL cases, compared to the RP-EUT estimates in Figure 1, we

thus find practically the same mean but less dispersion for the RP urn since stochastic choice behavior

is now attributed to both the dispersion of the RP urn and trembling.

B. Random Preferences with Interpersonal Heterogeneity

The RP models considered so far assume that all subjects draw their RP parameters from the

same urn. Loomes, Moffatt and Sugden [2002] and Wilcox [2008][2011] show that it is possible to

specify a more flexible model that allows each subject to have a personal RP urn by combining the RP

model of intrapersonal heterogeneity with the random coefficient model of interpersonal heterogeneity.

Their statistical models, however, are specifically designed for partial RP-RDU specifications that lead

to analytic choice probabilities conditional on specific draws of the random coefficients.

We can extend our estimation approach based on kernel smoothing and apply it to any class

of RP models with interpersonal preference heterogeneity. Consider first the one-dimensional RP-

EUT model in equation (3), but now suppose that the logistic density function is characterized by

subject-specific mean and scale parameters ìùn and óùn. That is, while the risk aversion parameter ùnt

26 When ê = 0.007, the RP urn is f(ùnt|0.524, 0.341) and ô is 0.158; when ê = 0.014, the RP urn is
f(ùnt|0.522, 0.332) and ô is 0.156; and when ê = 0.037, the RP urn is f(ùnt|0.517, 0.281) and ô is 0.144.
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is logistically distributed within each subject and across the decision tasks, the mean and dispersion of

this logistic distribution varies from subject to subject. The random coefficient model accommodates

interpersonal heterogeneity by assuming that the subject-specific parameters ìùn and óùn are randomly

distributed between different subjects in the population. To complete the random coefficient

specification, one must put further structure on this population distribution. Suppose that the mean

and log-scale parameters are jointly normally distributed between subjects, [ìùn, ln(óùn)]’ - MVN(bEUT,

VEUT). Each subject n thus has a distinct pair of values ìùn and ln(óùn), and the distribution of these

bivariate parameters has between-subject mean bEUT and covariance matrix VEUT. Model estimation is

now concerned with these between-subject parameters which constitute the primitive parameters of

the assumed statistical structure.

More generally, we can consider a preference index function ÄVnt(ánt) of a RP vector ánt. Let

æ(ánt|èn) denote the assumed joint density of ánt as a function of parameters èn, which are now

assumed to vary between different subjects n 0 {1, 2, þ, N}. Suppose that èn is distributed as per the

joint density function ö(èn|Ø), where hyper-parameters Ø characterize the between-subject

distribution of èn. The statistical model thus has a hierarchical structure. At the upper level, each

subject’s RP urn is seen as a draw from ö(èn|Ø) in the same way as interpersonal heterogeneity is

captured in the random coefficient model. At the lower level, the subject is assumed to make a new

draw of RP parameters from her personal RP urn æ(ánt|èn) in each decision task t, in the same way as

stochastic choice behavior is captured in the RP model. 

The likelihood function of T choice observations on subject n, say Jn(Ø), can be derived by

integrating out èn from the corresponding likelihood function under the RP model. That is, Jn(Ø) =

E(Hn(èn)) = IHn(èn)ö(èn|Ø)dèn, where Hn(èn) is the RP likelihood function conditional on particular

èn from the population distribution. Once Hn(èn) has been simulated using the kernel smoothing

approach as in equation (9), Hn(èn) becomes a smooth function of èn, which enables us to

approximate this expectation by applying the standard frequency simulator. Simulation of Jn(Ø) can

proceed in a hierarchical fashion by sequentially generating draws from ö(èn|Ø) and æ(ánt|èn) at each

iteration as follows: 
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1. Prior to estimation, make N × T × R draws from each of kRP distinct Halton

sequences, where kRP is the dimension of ánt. Allocate R × kRP distinct draws to each of the N

× T choice observations, and call these choice-level draws. 

2. Prior to estimation, make N × Q draws from each of kRC distinct Halton sequences,

where kRC is the dimension of èn. Allocate Q × kRC distinct draws to each of the N subjects,

and call these subject-level draws. From a data management perspective, the choice-level

allocation in step 1 is equivalent to generating R × kRP new variables whose values vary from

row to row in the data set. The subject-level allocation in step 2 is equivalent to generating R

× kRC new variables whose values are repeated within blocks of T data rows for the same

subject but vary between those blocks.  

3. At each iteration of model estimation, convert the subject-level Halton draws into

draws of èn from ö(èn|Ø), where Ø is set to their most recent estimates, and let ènq denote

the qth draw of èn. Like the RP examples earlier, this conversion is achieved by applying an

inverse cumulative distribution function associated with ö(èn|Ø) to the Halton draws.  

4. At each iteration of model estimation, convert the choice-level Halton draws into

draws of ánt from æ(ánt|ènq) by applying an inverse cumulative distribution function associated

with æ(ánt|ènq), where ènq has been generated in step 3. Let ántrq denote the rth draw of ánt; this

draw is subscripted by both r and q since the underlying RP urn is conditioned on ènq.  

5. At each iteration of model estimation, re-evaluate the RP choice probabilities in

equation (21) at each draw ántrq from step 4 to calculate Snt(ènq), and use the results to re-

evaluate the subject-level RP likelihood in equation (9), Hn(ènq).

6. At each iteration of model estimation, re-evaluate a simulated analogue to the

subject-level likelihood Jn(Ø) by averaging Hn(ènq) across Q draws of ènq: Jn(Ø) = (1/Q) 3q

Hn(ènq). The sum of ln(Jn(Ø)) across N subjects gives us the sample log-likelihood function,

which is maximized to obtain the MSL estimates of Ø.

Model estimation can proceed by using any numerical optimization technique to update the

estimates of Ø between iterations. Our own implementation uses R = Q = 100 Halton draws to

simulate each level of the hierarchical structure, and the BFGS technique for numerical maximization
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of the sample log-likelihood function. For numerical stability we again truncate each Halton draw on

(0.005, 0.995) prior to applying the inverse distribution functions.

We now turn to applying this approach to estimate a RP-RDU model with interpersonal

heterogeneity. We use the same data from Andersen, Harrison, Lau and Rutström [2014] without the

dominated choice tasks to focus on the RP model, although our approach also can be adapted to

estimate a hybrid model with trembles. Given the algebraic structure of the decision tasks, where each

lottery pair can be written as A = {(mA1, (1 ! p2)), (mA2, p2)} and B = {(mB1, (1 ! p2)), (mB2, p2)} and

mB1 < mA1 < mA2 < mB2, we can specify subject n’s evaluation of lottery L 0 {A, B} as

RDULnt(ùnt, önt) = (1!ð(p2nt|önt))U(mL1nt|ùnt) + ð(p2nt|önt)U(mL2nt|ùnt) (24)

where U(.|ùnt) is the CRRA utility function in equation (1) and ð(.|önt) is the PWF in equation (11).

The preference index function ÄVnt(ánt) then refers to the scaled RDU difference

ÄRDULnt(ùnt, önt) = (RDUBnt(ùnt, önt) ! RDUAnt(ùnt, önt)) / U(mmax|ùnt) (25)

where mmax is the highest prize in all decision tasks. We assume that the utility urn has logistic density

f(ùnt|ìùn, óùn) and the PWF urn has log-normal density î(ln(önt)|mön, sön). We model the subject-

specific parameters ìùn, óùn, mön and sön as independent random coefficients. The between-subject

distributions of ìùn and mön are specified as normals since these mean parameters do not have

theoretical bounds, and the distributions of scale parameters óùn and sön as folded normals to satisfy

positivity constraints. This specification gives a total of 8 hyper-parameters to be estimated in Ø,

namely one location parameter and one scale parameter for each of the four between-subject

distributions. For normally distributed ìùn and mön, the location (scale) parameter can be interpreted

as the averages (standard deviations) of ìùn and mön in the subject population.

Figure 4 reports the estimated between-subject distributions of ìùn and mön at ê 0 {0.037,

0.015, 0.007}. If the within-subject mean of each personal RP urn is seen as the core risk preference

parameter, the results in Figure 4 can be interpreted as population distributions of risk preferences

under the RDU model. We will focus on the configuration with ê = 0.007 since the other two

configurations produce similar results. The utility parameter, ìùn, is normally distributed with

population mean E[ìùn] = 0.558 and standard deviation SD[ìùn] = 0.765, and both coefficients are

significantly different from 0 (p-values < 0.001). The results imply that the average decision maker,

along with 76.7% of the decision makers, has a concave utility function. The log shape parameter in
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the PWF, mön, is normally distributed with E[mön] = 0.038 (p-value = 0.665) and SD[mön] = 1.164 (p-

value < 0.001) and we cannot reject the hypothesis that the population is equally divided between

those with inverse-S and S shaped PWFs (p-value = 0.665). Nevertheless, given the estimated

between-subject mean and standard deviation of mön, the implied population mean of the shape

parameter önt is equal to 2.044, which is significantly greater than unity (p-value < 0.001) and suggests

that the average decision maker has an S-shaped PWF.

The results can be compared to alternative model estimates reported by Harrison, Lau and

Yoo [2020] for the same data set.27 They combine RDU with Fechnerian and Contextual Utility

models (Wilcox [2008][2011]), two alternative stochastic choice models that attribute unexplained

variations in choice behavior to additive error terms. Using random coefficient specifications that

adopt a normal distribution of the utility curvature parameter ùn and a log-normal distribution of the

PWF parameter ön, they estimate the population mean of the former at 0.553 (Fechner) and 0.605

(Contextual) and the latter at 2.401 (Fechner) and 3.293 (Contextual).28 In comparison, we estimate

the former and the latter at 0.558 and 2.044 in the RP framework.

5. Conclusion

The RP model provides an integral framework for modeling within-individual heterogeneity in

choice behavior, by attributing this heterogeneity to preference parameters in the underlying theory of

risk attitudes instead of an additive error term that is external to the theory. However, most empirical

studies in structural estimation of risk attitudes turn to additive error specifications because the RP

likelihood function is computationally unattractive. We propose a general approach to estimating the

RP model that facilitates empirical applications in this alternative modeling framework. Our

27 Since neither the RP-RDU model nor the random coefficient model has analytic expressions, we
do not have an analytic ML benchmark that can be compared to the MSL results. As usual with random
coefficient choice models, the required computer run time is non-trivial, making it impractical to implement a
Monte Carlo experiment.

28 The two random coefficients are only subscripted by n because the Fechner and Contextual Utility
models assume that the preference parameters are constant within an individual. Harrison, Lau and Yoo
[2020] estimate these random coefficient RDU specifications for two different waves of a longitudinal
experiment. We cite estimates for the first wave of the experiment, which coincides with the data that we use
in our empirical illustration. They generalize the model specifications further by adding statistical correction
for endogenous sample selection and panel attrition. We cite their pre-correction estimates because we do
not make these corrections.
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estimation approach illustrates that the RP model is just as flexible as other stochastic choice models.

By applying a kernel smoothing procedure, we can construct a versatile likelihood evaluator of the RP

model that can accommodate any decision theory, types of lottery pairs, and parametric distribution

of unobserved heterogeneity.

Our approach helps advance the boundaries in structural estimation of choice under risk by

making the RP model accessible to decision theories with multiple parameters. The empirical

applications presented in this paper do not exhaust the analytic opportunities that our versatile

approach opens up. One may also apply our approach to other non-EUT models such as Prospect

Theory; to decision tasks with more than two options by using multinomial or rank-ordered logit link

functions as smoothing kernels; and to other domains of preferences such as non-exponential

discounting functions with multi-dimensional time preference parameters.
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Online Appendix A: Dual Estimation of RP-EUT with CRRA Utility

In Section 2.C of the main text, we estimate the RP-EUT model with CRRA utility using data
from Andersen, Harrison, Lau and Rutström [2014]. Since the binary choice tasks in this experiment
are based on the same logic as the multiple price lists in Holt and Laury [2002], the scaled EU
difference in equation (4) has a single crossing point (e.g., Gans and Smart [1996], Athey [2001] and
Quah and Strulovici [2012]). That is, in each decision task without a dominated choice, there exists a
unique indifference point wnt that solves ÄEUnt(wnt) = 0 such that the subject chooses lottery B (i.e.,
ÄEUnt(ùnt) > 0) if her risk aversion parameter ùnt < wnt and lottery A (i.e., ÄEUnt(ùnt) < 0) if ùnt >
wnt.

29 Table A1 reports the indifference point for each non-dominated decision task in the data set.
  

In this appendix, we introduce a convenient approach to estimating the RP-EUT model with
CRRA utility that takes advantage of the single crossing property. Viewing ùnt as a latent dependent
variable and wnt as a known threshold allows us to recast the RP-EUT model as a linear index model
with an additive error term, just like a standard discrete choice model. One can thus use logit and
probit regression commands for the dual standard model to estimate the primal RP-EUT model.
Discrete choice models for panel data, such as random effects (RE) logit and mixed logit, provide
accessible avenues to incorporate interpersonal heterogeneity by making the distribution of the
random preference parameter individual-specific. We are not aware of any existing study that applies
standard regression commands in structural estimation of risk attitudes, be it in the stochastic
framework of the RP model or the additive error model.

The dual pooled logit model below explains how one may obtain the analytic ML estimates of
the logistic RP urn that are reported in Figure 1. We expect that the dual RE logit and mixed logit
models will be useful toolkits for studies on socio-economic determinants of risk preferences that
consider an individual’s risk attitude as a one-dimensional trait (e.g., Dohmen, Falk, Huffman and
Sunde [2010], Filippin and Crosetto [2016], Guiso, Sapienza and Zingales [2018] and Hryshko,
Luengo-Prado and Sørensen [2011]). With our dual approach, the RP-EUT model with CRRA utility
becomes an attractive alternative to reduced-form regression models which are widely used. Both
types of models can be estimated using standard regression commands in software packages, but the
RP model has a more solid theoretical foundation that allows one to distinguish interpersonal
preference heterogeneity from behavioral noise. Large household surveys, such as the Panel Study of
Income Dynamics in the USA, Socio-Economic Panel in Germany and the UK Household
Longitudinal Study, include binary choice tasks under risk for which one-parameter formulations of
EUT display the single crossing property, thereby increasing the appeal of our dual approach.30 

A. Homogeneous Risk Aversion and Noise
Consider a data environment where the scaled EU difference displays the single crossing

property, and let wnt be the indifference point where the difference in expected utility is equal to zero.

29 We stress that single crossing is a joint property of theory and data. For example, EUT with CRRA
utility has a unique indifference point in each binary choice task following the logic in multiple price lists, as
reported in Table A1. The same decision model has two indifference points in a third-order risk
apportionment task in the style of Deck and Schlesinger [2010], namely one at ùnt = 0 and the other at ùnt =
!1, thereby violating the single crossing property.

30 Combining the RP model with the single crossing property also plays an important analytic role in
Barseghyan, Molinari, and Thirkettle [2021], who develop a semi-nonparametric estimator of risk aversion in
market settings where the analyst does not fully observe the decision maker’s choice sets and relevant
product attributes.
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The indifference point wnt is a function of the prizes and probabilities in each pair of lotteries and is
therefore an observed characteristic of the decision task. Suppose that ùnt > wnt implies ÄEUnt(ùnt) <
0, and ùnt < wnt implies ÄEUnt(ùnt) > 0. For example, subject n chooses lottery A (B) in task t if she is
more (less) risk averse than wnt. Let ynt denote a choice indicator that is equal to 1 if her choice is B
and equal to 0 if it is A.

The RP-EUT model in equation (3) specifies the distribution of ùnt as logistic with mean ìù

and scale óù. We assume for now that every subject has the same “RP urn” and refer to ìù and óù as
the risk aversion parameter and the noise parameter, respectively. We can exploit the single crossing
property of ùnt and show that an analytic solution to equation (3) is given by

Lnt(ìù, óù) = II[ÄEUnt(ùnt) > 0]f(ùnt|ìù, óù)dùnt = Ë((wnt ! ìù)/óù), (A1)

where Ë(.) is the standard logistic distribution function. We can also show that this specification is
equivalent to the pooled logit model

Lnt(â0, â1) = Ë(â0 + â1wnt), (A2)

which can be estimated by running a logit regression of the choice indicator ynt on the independent
variable wnt over all subjects n and decision tasks t. The steps involved in moving from the RP-EUT
model in equation (A1) to the pooled logit model in equation (A2) are straightforward, at least with
hindsight, but the dual link has not been identified in the empirical literature on choice under risk. 

The probability that subject n chooses lottery B in task t, Lnt(ìù, óù), is equal to Pr(ÄEUnt(ùnt)
> 0). Given the single crossing condition, Pr(ÄEUnt(ùnt) > 0) is equal to the probability that subject n
in task t is less risk averse than the indifference point wnt, Pr(ùnt < wnt). It is useful to write out the
“core risk aversion plus random fluctuations” interpretation of ùnt explicitly

ùnt = ìù + óù × ent, (A3)

where ent is a standard logistic random variable. It follows that Pr(ùnt < wnt) = Pr(ìù + óù × ent < wnt)
= Pr(ent < (wnt ! ìù)/óù). Hence, the probability that subject n chooses lottery B in task t is the
cumulative probability that the random variable ent is smaller than the standardized difference
between the indifference point and risk aversion parameter (wnt ! ìù)/óù. One can evaluate these
choice probabilities using the standard logistic distribution function Ë(.) in (A1).

The RP-EUT model in (A1) can be indirectly estimated as the pooled logit model in (A2),
since the latter is equivalent to the former with â0 = !ìù/óù and â1 = 1/óù. One can thus obtain
maximum likelihood estimates (MLEs) of â0 and â1 in the pooled logit model, and use the results to
infer the risk aversion parameter ìù = !â0/â1 and noise parameter óù = 1/â1. The invariance property
of MLE implies that the transformed parameter estimates from the pooled logit model are equivalent
to the direct ML estimates of ìù and óù, which can be obtained by a user-written likelihood evaluator.
As usual, standard errors of the transformed parameters can be obtained by the delta method.

B. Heterogeneous Risk Aversion and Homogeneous Noise
Since the RP-EUT model in equation (A1) is dual to the pooled logit model in equation (A2),

the two models share the same fundamental limitations. First, neither model accounts for panel
correlation across repeated choice observations on the same subject. Each choice is modeled as an
independent observation, even though it forms part of a set of choices by the same subject. Second,
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neither model accounts for unobserved heterogeneity in choice behavior across subjects. In the RP
model, this translates into the assumption that every subject has the same urn of random risk aversion
parameters.

The random effects (RE) logit model for panel data addresses these two limitations of the
pooled logit model, and it is dual to an EUT model that captures between-subject heterogeneity by
replacing the fixed coefficient ìù with a random coefficient ìùn. Suppose that the random risk
aversion parameter ùnt is logistically distributed within subject n with density f(ùnt|ìùn, óù). That is, if
one compares the RP urns of two subjects, the contents of the two urns have different means but the
same standard deviation. Suppose further that the risk aversion parameter ìùn is normally distributed
between different subjects, ìùn-N(E[ìùn], SD[ìùn]

2), i.e. each subject n in the population has her own
value of ìùn, and the between-subject mean and standard deviation of those values in the population
are equal to E[ìùn] and SD[ìùn], respectively. One can interpret N(E[ìùn], SD[ìùn]

2) as the population
distribution of risk attitudes in this model.

Conditional on a particular ìùn from the population distribution, the probability that subject n
chooses lottery B in task t is specified as

Lnt(ìùn, óù) = II[ÄEUnt(ùnt) > 0]f(ùnt|ìùn, óù)dùnt (A4)
= Ë((wnt ! ìùn)/óù) with ìùn-N(E[ìùn], SD[ìùn]

2),

where E[ìùn], SD[ìùn] and óù are parameters to be estimated.31 This model is equivalent to the RE
logit model that augments the pooled logit model in equation (A2) with a normally distributed error
component õn. Conditional on a particular õn from the population distribution, the probability that
subject n chooses lottery B in task t in the RE logit model is

Lnt(â0, â1, õn) = Ë(â0 + â1wnt + õn) with õn-N(0, ó0
2), (A5)

where â0, â1 and ó0 are parameters to be estimated. This model has a homogeneous slope coefficient
â1 and a heterogeneous intercept, án = (â0 + õn), which is normally distributed between subjects,
án-N(â0, ó0

2). The error component õn captures between-subject heterogeneity around the mean
intercept â0, and the standard deviation ó0 measures the extent of that heterogeneity.

When the RE logit model in equation (A5) is interpreted as a random intercept model, the
dual link to the EUT model in equation (A4) with between-subject heterogeneity in risk aversion
becomes apparent. The slope coefficient â1 is equivalent to 1/óù, and the random intercept án = (â0 +
õn) is equivalent to !ìùn/óù. Thus, one can use the RE logit estimates of â0, â1 and ó0 to compute óù =
1/â1, E[ìù] = !â0/â1 and SD[ìù] = ó0/â1, and apply the delta method to obtain standard errors of the
transformed parameters.

It is useful to clarify the meaning of “random” since the term has been used to describe two
different kinds of random variations. The term “random” in the RP model refers to the random
variable ùnt with density f(ùnt|ìùn, óù) that describes the seemingly unstable risk attitude of subject n
over decision tasks. It captures within-subject variation that vanishes as the noise parameter óù tends to
zero. The term “random” in the random coefficient and RE models refers to the use of random

31 As Train [2009; §6] and Wooldridge [2010; p.613] explain, the sample log-likelihood function can
be specified in terms of E[ìùn], SD[ìùn] and óì by “integrating out” ìùn.
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variables ìùn and án to describe interpersonal heterogeneity in the underlying population. It captures
between-subject variation which is present even if every subject makes deterministic choices according to
the non-stochastic version of EUT. The model specification in equation (A4) includes both kinds of
random variations.

C. Heterogeneous Risk Aversion and Noise
The RP-EUT model in equation (A4) allows for between-subject heterogeneity in the risk

aversion parameter, ìùn, but not in the noise parameter, óù. We can capture between-subject
heterogeneity in the noise parameter by introducing a second random coefficient, óùn, that replaces
the fixed coefficient óù. Assume that the random risk aversion parameter ùnt is logistically distributed
within subject n with density f(ùnt|ìùn, óùn). The subject now has an individual-specific risk aversion
parameter, ìùn, and an individual-specific noise parameter, óùn. Assume further that the risk aversion
and log-noise parameters, ìùn and ln(óùn), are jointly normally distributed between subjects, [ìùn, ln(óùn)]’
-MVN(bEUT, VEUT). Each subject n thus has a distinct pair of values ìùn and ln(óùn), and the
distribution of these bivariate parameters has between-subject mean bEUT and covariance matrix VEUT.
Conditional on particular ìùn and óùn from the population distribution, the probability that subject n
chooses lottery B in task t is

Lnt(ìùn, óùn) = II[ÄEUnt(ùnt) > 0]f(ùnt|ìùn, óùn)dùnt (A6)
= Ë((wnt ! ìùn)/óùn) with [ìùn, ln(óùn)]’ -MVN(bEUT, VEUT),

where the mean vector bEUT and covariance matrix VEUT are parameters to be estimated.

The more general RP-EUT model in (A6) is dual to the mixed logit model in the willingness-
to-pay (WTP) space (Train and Weeks [2005]). Although less known compared to pooled logit and
RE logit models, the WTP space model is a standard econometric model that one can readily estimate
in popular statistical packages.32 In the WTP space model, conditional on particular án and ën from the
population distribution, the probability that subject n chooses lottery B in task t is

Lnt(án, ën) = exp((án + wnt) × ën) / [exp(0) + exp((án + wnt) × ën)] (A7)
= Ë((án + wnt) × ën) with [án, ln(ën)]’ - MVN(bWTP, VWTP)

where the mean vector bWTP and the covariance matrix VWTP are parameters to be estimated. The first
equality in equation (A7) is algebraically redundant but conveys useful operating advice. Since the
WTP space model is primarily intended for multinomial choice applications, the available programs
evaluate a separate index function for each alternative in a choice set. In our dual approach, one can
set the index functions for lottery A to 0 and lottery B to (án + wnt) × ën.

To express the dual link between the RP-EUT model in equation (A6) and the WTP space
model in equation (A7) more explicitly, the former may be arranged as 

Lnt(ìùn, óùn) = Ë((!ìùn + wnt) × (1/óùn)) with [ìùn, ln(óùn)]’ - MVN(bEUT, VEUT). (A6')

32 The GMNL model of Fiebig, Keane, Louviere and Wasi [2010] is also a dual model since it
algebraically nests the WTP space model (Greene and Hensher [2010; p.416]). Estimation programs for the
GMNL model are also widely available in different software packages.  
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Comparing the primal representation in equation (A6') to the dual representation in equation (A7)
shows that án = !ìùn and ën = 1/óùn. Moreover, taking the natural log of both sides in ën = 1/óùn

shows that ln(ën) = !ln(óùn). Since [!ìùn, !ln(óùn)] = [án, ln(ën)], it follows that bEUT = !bWTP and VEUT

= VWTP. We can thus multiply the estimates of bWTP by !1 to compute the estimates of bEUT, and use
VWTP directly in place of VEUT. 

This dual link is computationally very convenient. The use of random coefficients to capture
interpersonal preference heterogeneity has become a well-established practice in environmental
economics, health economics, marketing science and transportation research because standard
estimation programs for the family of mixed logit models enable one to estimate the structural models
of interest in those fields. By contrast, the structural models of risk preferences, seemingly, do not fit
in with the mixed logit structure and the empirical analysis of those models typically relies on fixed
coefficient specifications. The dual link that we have identified provides convenient means to apply
recent advances in discrete choice methods to behavioral research.

 We stress that this dual link does not make any use of the subject’s WTP for a lottery under
EUT.33 Nor does it assume that the indifferent point wnt in (A7) is measured in terms of WTP: wnt still
refers to the indifference point measured in terms of the coefficient of RRA. The potentially
confusing term WTP space has no behavioral content in relation to the subject’s risk attitude; it is
simply an inherited label which describes the standard discrete choice model that we use in dual
estimation, much as pooled and RE in our earlier examples. 

To discuss why the WTP space model has been dubbed as it is, we must address its origin in
the non-market valuation literature. Typically non-market valuation studies specify the consumption
utility in a particular choice situation as a linear combination of available product attributes. Suppose
now that the attribute taking place of wnt in equation (A7) is equal to the price of product A minus the
price of product B. Then, if the consumer has a constant marginal utility of money that is
proportional to the precision parameter ën, the random intercept án can be seen as the consumer’s
WTP for acquiring product B rather than product A. Train and Weeks [2005] have named this type of
model specification the “WTP space model” to distinguish it from the “preference space model”
which would substitute (â0n + â1n wnt) for (án + wnt) × ën.

34 The slope parameter â1n = 1/ën in the
preference space measures the consumer’s marginal utility of money given the linear utility function,
and the intercept â0n = 1/án expresses the consumer’s preference for product B relative to A in terms
of utils rather than monetary units. Train and Weeks [2005], Scarpa, Thiene and Train [2008], and
Oviedo and Yoo [2017] provide further comparisons of parameters in the two different spaces. This
way of interpreting the WTP space model parameters is peculiar to the non-market valuation studies,
and is irrelevant to our usage of the WTP space model which is entirely motivated by its algebraic
structure rather than behavioral content.

D. Empirical Illustration of Dual Estimation: Baseline Models
We illustrate dual estimation of the RP-EUT model with CRRA utility using data from the

field experiment reported in Andersen, Harrison, Lau and Rutström [2014]. The sample excludes

33 We thank an anonymous reviewer for alerting us to the importance of clarifying this potential
point of confusion.

34 The WTP in this sense is sometimes called implicit prices or equivalent prices (Hausman and Ruud
[1987]) instead. 
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lottery pairs with dominated choices which do not contribute to the identification of risk preferences
in the RP framework.  

Panel A in Table A2 reports the estimation results for the RP-EUT model in equation (A1),
which assumes that every subject carries the same urn of RP parameters with logistic density f(ùnt|ìù,
óù). We estimate the dual pooled logit model in equation (A2) by using the logit command in Stata to
regress the choice indicator ynt on the indifference point wnt. The estimated intercept (â0) and
coefficient on wnt (â1) are equal to !0.932 and 1.740, respectively. Unless stated otherwise, all
estimated coefficients and transformed parameters have p-values < 0.001. We can use the estimated
coefficients to derive the relative risk aversion parameter ìù = !â0/â1 = 0.535 and noise parameter óù

= 1/â1 = 0.575. We thus find that the representative agent generally is risk averse with significant
variation in choice behavior. These estimates of ìù and óù are identical to the analytic ML estimates
reported in Figure 1. 

Panel B in Table A2 reports the results for the RP-EUT model in (A4) which accommodates
between-subject heterogeneity in risk aversion. The RP urn of subject n is f(ùnt|ìùn, óù) where the risk
aversion parameter ìùn is now subject-specific and assumed to be normally distributed between
subjects, with population mean E[ìùn] and standard deviation SD[ìùn]. Since this model is dual to the
RE logit model, we regress ynt on wnt using the xtlogit, re command in Stata, which applies a
Gauss-Hermite quadrature to integrate out the normal error component õn in equation (A5). The
random intercept is normally distributed with an estimated population mean (â0) of !1.327 and a
standard deviation (ó0) of 1.778, while the estimated coefficient â1 on wnt is equal to 2.411. The
transformed parameters E[ìùn] = !â0/â1, SD[ìùn] = ó0/â1 and óù = 1/â1 are equal to 0.550, 0.737 and
0.415, respectively. Hence, the coefficient of RRA is estimated to be 0.550 on average, with significant
between- and within-subject variation, and we find that 77.2% of the population are risk averse.35

Panel C in Table A2 reports the results for the RP-EUT model in equation (A6) which
accommodates between-subject heterogeneity in both risk aversion and noise. The RP urn of subject
n is f(ùnt|ìùn, óùn), where both risk aversion (ìùn) and noise (óùn) parameters are subject-specific. The
model assumes that ìùn and ln(óùn) are jointly normally distributed between subjects. We estimate the
dual mixed logit model in WTP space and use the mixlogitwtp command in Stata by Hole [2015], which
applies simulation to integrate out the joint normal random coefficients án and ln(ën) in (A7). Our
simulated integrals are based on 100 Halton draws per subject. The estimated intercept án is normally
distributed between subjects with a mean (â0) of !0.519 and a standard deviation (ó0) of 0.846. The
log-precision parameter ln(ën) is normally distributed between subjects with a mean (ô) of 1.304 and a
standard deviation (óô) of 0.997. We can use these estimates to evaluate the between-subject
distribution of the risk aversion parameter ìùn and log-noise parameter ln(óùn) in the population. The
results suggest that E[ìùn] = !â0 = 0.519 and SD[ìùn] = ó0 = 0.846, while E[ln óùn] = !ô = !1.304
and SD[ln óùn] = ó0 = 0.997.36 Hence, the estimated population mean of relative risk aversion is equal
to 0.519, and we find that 73% of the population are risk averse.37

35 Since the between-subject distribution of ìùn is normal, the population share of risk averse
subjects is equal to Pr(ìùn > 0) = 1!Ö(!E[ìùn]/SD[ìùn]), where Ö(.) is the standard normal distribution
function. The estimated share is significantly greater than 0.50 or 50% (one-sided p-value < 0.001).

36 Using the analytic properties of the log-normal distribution, we can also evaluate the population
moments of óùn. We find that E[óùn] = 0.446, SD[óùn] = 0.582, and ñ(ìùn, óùn) = !0.042 (p-value = 0.570).

37 The between-subject correlation coefficient for án and ln(ën), ñô0, is equal to !0.055 with p-value =
0.564. Since the correlation coefficient for ìùn and ln(óùn), ñ[ìùn, ln óùn], is identical to ñô0, we do not find that
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E. Empirical Illustration: Incorporating Observed Heterogeneity
We can extend the dual estimation approach to incorporate observed heterogeneity in risk

preferences by adding relevant independent variables to the dual logit models in the usual manner. To
facilitate discussion, let femalen denote a binary indicator variable that is equal to one if subject n is
female and zero otherwise. Suppose now that we add this variable to the dual pooled logit model as
follows

Lnt(b0, b1, â1) = Ë(b0 + b1femalen + â1wnt), (A8)

which can be seen as a specification that replaces a constant intercept â0 in equation (A2) with a
demographic intercept (b0 + b1femalen). Just as the constant specification in equation (A2) is dual to
the RP-EUT model with the risk aversion parameter ìù = !â0/â1 and the noise parameter óù = 1/â1,
the demographic specification (A8) is dual to the logistic EUT model with the risk aversion parameter
(m0 + m1femalen) = (!b0/â1 !  b1/â1) and the noise parameter óù = 1/â1. This insight extends directly
to the RE logit in equation (A5) and the mixed logit model in the WTP space in equation (A7); in the
latter model, we can also replace a constant intercept ô in the log-precision parameter, ln(ën) - N(ô,
óô

2), with a demographic intercept, thereby inducing observed heteroskedasticity in the log-noise
parameter of the primal model. 

Table A3 reports the demographic extension of each dual logit model in Table A2. To make
the link between the two tables clearer, we use â0:base and â0:female to denote b0 and b1, and likewise
we use ìù:base and ìù:female to denote m0 and m1. Other parameter labels with base and female
suffixes can be similarly associated with the baseline intercept and the demographic slope coefficient.
As with the preceding subsection, we use the logit and xtlogit, re commands in Stata to estimate the
pooled and RE logit models. Hole’s [2016] mixlogitwtp command does not allow one to include
observed heterogeneity in the log-precision parameter of the WTP space model. We therefore use the
gmnl command by Gu, Knox and Hole [2013] and estimate the WTP space model as a special case of
the GMNL-II model (Fiebig, Keane, Louviere, and Wasi [2010]), an approach inspired by Greene and
Hensher [2010; p.416].38

 
The pooled logit model reported in the top panel of Table A3 suggests that while both men

and women are risk averse, women tend to be more risk averse than men. The coefficient of relative
risk aversion is equal to 0.416 for men (ìù:base) and 0.664 (ìù:base + ìù:female) for women; the
female-male difference of 0.248 (ìù:female) is significantly greater than zero (p-value < 0.001). We
draw qualitatively similar conclusions from the RE logit model in the middle panel and the WTP
space model in the bottom panel, which account for unobserved between-subject heterogeneity in
risk aversion on top of the observed heterogeneity. The WTP space model also includes an extra
parameter E[ln óùn]:female, which captures whether women’s risk preferences tend to show greater or
smaller random fluctuations than men’s. We do not find evidence of such demographic
heteroskedasticity: The point estimate of 0.176 is small in magnitude compared to the overall intercept
(E[ln óùn]:base = !1.139) and is not significantly different from zero at the 5% significance level (p-
value = 0.076).

more risk averse subjects have more or less variation in risk preferences.
38 We thank Arne Risa Hole for alerting us to this reference.
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Table A1: Indifference Points for EUT Model with CRRA Utility
in Experiment by Andersen, Harrison, Lau and Rutström [2014]

Lottery A Lottery B     Indifference Point
10% of 2000 and 90% of 1600 10% of 3850 and 90% of 100 w = !1.713
20% of 2000 and 80% of 1600 20% of 3850 and 80% of 100 w = !0.947
30% of 2000 and 70% of 1600 30% of 3850 and 70% of 100 w = !0.487
40% of 2000 and 60% of 1600 40% of 3850 and 60% of 100 w = !0.143
50% of 2000 and 50% of 1600 50% of 3850 and 50% of 100 w = 0.146
60% of 2000 and 40% of 1600 60% of 3850 and 40% of 100 w = 0.412
70% of 2000 and 30% of 1600 70% of 3850 and 30% of 100 w = 0.676
80% of 2000 and 20% of 1600 80% of 3850 and 20% of 100 w = 0.971
90% of 2000 and 10% of 1600 90% of 3850 and 10% of 100 w = 1.368

10% of 1125 and 90% of 750 10% of 2000 and 90% of 250 w = !1.454
20% of 1125 and 80% of 750 20% of 2000 and 80% of 250 w = !0.720
30% of 1125 and 70% of 750 30% of 2000 and 70% of 250 w = !0.247
40% of 1125 and 60% of 750 40% of 2000 and 60% of 250 w = 0.131
50% of 1125 and 50% of 750 50% of 2000 and 50% of 250 w = 0.471
60% of 1125 and 40% of 750 60% of 2000 and 40% of 250 w = 0.805
70% of 1125 and 30% of 750 70% of 2000 and 30% of 250 w = 1.161
80% of 1125 and 20% of 750 80% of 2000 and 20% of 250 w = 1.585
90% of 1125 and 10% of 750 90% of 2000 and 10% of 250 w = 2.206

10% of 1000 and 90% of 875 10% of 2000 and 90% of 75 w = !1.839 
20% of 1000 and 80% of 875 20% of 2000 and 80% of 75 w = !1.013
30% of 1000 and 70% of 875 30% of 2000 and 70% of 75 w = !0.516
40% of 1000 and 60% of 875 40% of 2000 and 60% of 75 w = !0.144
50% of 1000 and 50% of 875 50% of 2000 and 50% of 75 w = 0.169
60% of 1000 and 40% of 875 60% of 2000 and 40% of 75 w = 0.457
70% of 1000 and 30% of 875 70% of 2000 and 30% of 75 w = 0.747
80% of 1000 and 20% of 875 80% of 2000 and 20% of 75 w = 1.070
90% of 1000 and 10% of 875 90% of 2000 and 10% of 75 w = 1.511

10% of 2250 and 90% of 1000 10% of 4500 and 90% of 50 w = !0.701
20% of 2250 and 80% of 1000 20% of 4500 and 80% of 50 w = !0.264
30% of 2250 and 70% of 1000 30% of 4500 and 70% of 50 w = 0.007
40% of 2250 and 60% of 1000 40% of 4500 and 60% of 50 w = 0.218
50% of 2250 and 50% of 1000 50% of 4500 and 50% of 50 w = 0.403
60% of 2250 and 40% of 1000 60% of 4500 and 40% of 50 w = 0.578
70% of 2250 and 30% of 1000 70% of 4500 and 30% of 50 w = 0.760
80% of 2250 and 20% of 1000 80% of 4500 and 20% of 50 w = 0.971
90% of 2250 and 10% of 1000 90% of 4500 and 10% of 50 w = 1.267
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Table A2: RP-EUT with CRRA Utility - Dual Estimates

Standard
Parameter   Estimate Error p-value 95% Confidence Interval

A. Pooled Logit
(Log-likelihood = !7501.476)

â0     !0.932 0.069 <0.001 !1.068 !0.795
â1       1.740 0.088 <0.001   1.567   1.913

ìù = !â0/â1       0.535 0.033 <0.001   0.470   0.601
óù = 1/â1       0.575 0.029 <0.001   0.518   0.632

B. Random Effects Logit
(Log-likelihood = !6143.673)

â0     !1.327 0.114 <0.001 !1.550 !1.104
â1       2.411 0.133 <0.001   2.150   2.672
ó0       1.778 0.143 <0.001   1.498   2.058

E[ìùn] = !â0/â1
      0.550 0.038 <0.001   0.475   0.625

SD[ìùn] = ó0/â1       0.737 0.056 <0.001   0.628   0.847
óù = 1/â1       0.415 0.023 <0.001   0.370   0.460

C. Mixed Logit in WTP Space
(Log-likelihood = !5374.130)

â0     !0.519 0.022 <0.001 !0.562 !0.475
ô       1.304 0.074 <0.001   1.158   1.450
ó0       0.846 0.026 <0.001   0.794   0.898
óô       0.997 0.070 <0.001   0.859   1.135   
ñ0ô     !0.055 0.095   0.564 !0.242   0.132 

E[ìùn] = !â0       0.519 0.022 <0.001   0.475   0.562
E[ln óùn] = !ô     !1.304 0.074 <0.001 !1.450 !1.158
SD[ìùn] = ó0       0.846 0.026 <0.001   0.794   0.898
SD[ln óùn] = óô       0.997 0.070 <0.001   0.859   1.135   
ñ[ìùn, ln óùn] = ñ0ô   !0.055 0.095   0.564 !0.242   0.132 
Notes: All models have been estimated using the Andersen, Harrison, Lau and Rutström [2014] data set.
Standard errors have been adjusted for clustering at the subject level, except in panel C. The mixlogitwtp
(version 1.1.0) command in Stata does not support clustered standard errors. The coefficient ñ0ô is the
correlation coefficient between the random intercept and the random log-precision parameter. 
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Table A3: RP-EUT with CRRA Utility and Observed Heterogeneity - Dual Estimates

Standard
Parameter   Estimate Error p-value 95% Confidence Interval

A. Pooled Logit with Observed Heterogeneity in Risk Aversion
(Log-likelihood = !7442.767)

â0:base         !0.730 0.089 <0.001 !0.904 !0.556
â0:female     !0.436 0.113 <0.001 !0.658 !0.213
â1       1.756 0.089 <0.001   1.582   1.930

ìù:base         0.416 0.046 <0.001   0.326   0.505
ìù:female       0.248 0.065 <0.001   0.120   0.376
óù = 1/â1       0.569 0.029 <0.001   0.513   0.626

B. Random Effects Logit with Observed Heterogeneity in Risk Aversion
(Log-likelihood = !6137.296)

â0:base     !1.015 0.140 <0.001 !1.290 !0.740
â0:female     !0.645 0.182 <0.001 !1.001 !0.289
â1       2.411 0.133 <0.001   2.150   2.672
ó0       1.746 0.140 <0.001   1.471   2.021

E[ìùn]:base       0.421 0.053 <0.001   0.317   0.525
E[ìùn]:female       0.268 0.075 <0.001   0.120   0.415
SD[ìùn] = ó0/â1     0.724 0.055 <0.001   0.616   0.832
óù = 1/â1       0.415 0.023 <0.001   0.370   0.460

C. Mixed Logit in WTP Space with Observed Heterogeneity in Risk Aversion & Noise
(Log-likelihood = !5395.158)

â0:base     !0.366 0.038 <0.001 !0.440 !0.291
â0:female     !0.357 0.047 <0.001 !0.450 !0.264
ô:base       1.139 0.029 <0.001   1.011   1.267
ô:female     !0.176 0.099   0.076 !0.370   0.018
ó0       0.885 0.026 <0.001   0.828   0.943
óô       1.108 0.046 <0.001   1.018   1.197   

E[ìùn]:base       0.366 0.038 <0.001   0.291   0.440
E[ìùn]:female       0.357 0.047 <0.001   0.264   0.450
E[ln óùn]:base     !1.139 0.029 <0.001 !1.267 !1.011
E[ln óùn]:female      0.176 0.099   0.076   0.018   0.370
SD[ìùn] = ó0       0.724 0.055 <0.001   0.616   0.832
SD[ln óùn] = óô       0.415 0.023 <0.001   0.370   0.460
Notes: All models have been estimated using the Andersen, Harrison, Lau and Rutström [2014] data
set. Standard errors have been adjusted for clustering at the subject level, except in panel C. The gmnl
(version 1.1.0) command in Stata does not support clustered standard errors.
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Online Appendix B: Supporting Results

Appendix B collates detailed estimation results that support our discussion in the main text,
along with additional results from Monte Carlo experiments. The results for models with CRRA
utility are based on data reported in Andersen, Harrison, Lau and Rutström [2014], and the results for
models with non-parametric utility are based on data reported in Harrison and Rutström [2008; §2.6]. 

A. EUT with CRRA Utility
Tables B1 and B2 relate to the RP-EUT model with CRRA utility in equation (3), which is

reproduced here

Lnt(ìù, óù) = II[ÄEUnt(ùnt) > 0]f(ùnt|ìù, óù)dùnt. (B1)

Table B1 reports the empirical estimates of ìù and óù that generate the RP urns in Figure 1. Table B2
reports the finite sample properties of alternative estimators based on the Monte Carlo experiment
that is summarized in Figure B1. 

Figure B1 displays the ML and MSL estimates of ìù and óù across the 1,000 simulated data
sets. In each panel the data sets are re-numbered based on the ML estimate of the relevant parameter
so that data set 1 has the smallest estimate and data set 1,000 has the largest. In the upper panel we
observe that the two curves tracing the ML and MSL estimates of ìù are adjacent. The two sets of
estimates are almost perfectly correlated (0.997), and their absolute difference is 0.007 on average and
never exceeds 0.010. The lower panel displays the ML and MSL estimates of óù across the same
simulated data sets, and we again observe that the two curves are adjacent with a high degree of
correlation (0.984). The absolute difference in the estimate of óù is 0.004 on average and not greater
than 0.012. The results thus suggest that the kernel smoothing approach approximates the analytic
ML benchmark well in all simulated data sets.

The finite sample properties of the two procedures reported in Table B2 do not indicate that
either procedure is distinctively better than the other. The MSL estimates show slightly larger, but still
negligible, bias (!0.002 in ìù and 0.004 in óù) compared to the ML estimates (< 0.001 in magnitude).
At the asymptotic significance level of 5%, inferences based on the MSL estimates are correctly sized
for ìù (5%) and slightly over-reject the true null hypothesis for óù (7%). The ML estimates are slightly
over-sized for both parameters (6%).

B. Partial RDU with Non-Parametric Utility
Tables B3 and B4 relate to the partial RP-RDU model with NP utility in equation (17), which

is reproduced here

Lnt(á3, á4, ã, ö) = III[ÄRDUnt(u3nt, u4nt, ö) > 0]g(v3nt, v4nt|á3, á4, ã)dv3ntdv4nt. (B2)

To compare the results from our kernel smoothing approach with those from Wilcox’s [2008][2011]
analytic ML approach, we restrict the sample to three prize sets that his approach allows one to retain. 

Table B3 reports the empirical estimates of á3, á4 and ã that generate the RP urns in Figure 2,
along with the empirical estimates of the deterministic parameter ö. Table B4 reports the finite sample
properties of alternative estimators based on the Monte Carlo experiment that is summarized in
Figure B2.
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Figure B2 shows that the MSL estimates at ê = 0.010 are similar to the analytic ML estimates
in a Monte Carlo experiment with 1,000 simulated data sets of the same size as the original data (2,985
choice observations). The DGP assumes that the decision maker evaluates each lottery according to
the analytic ML estimates of the partial RP-RDU model. The original set of pairwise lotteries is
retained in each simulated data set, but actual choices are replaced with simulated choices from the
DGP. We compute two sets of results for á3, á4, ã and ö from each simulated data set using analytic
ML and kernel-smoothed MSL estimation. Each panel in Figure B2 displays ML and MSL estimates
of a particular parameter, with á3 in the top left, á4 in the top right, ã in the lower left, and ö in the
lower right. The ML and MSL estimates of each parameter show a high degree of correlation, which
is evident from the curves tracing the two types of estimates in each panel: the correlation coefficients
are equal to {0.984, 0.970, 0.978, 0.985} for {á3, á4, ã, ö}. As discussed in relation to Figure 2, the two
sets of estimates lead to substantively the same inferences about the RP urns in the original data set,
where the absolute differences between the ML and MSL estimates of {á3, á4, ã, ö} are equal to
{0.093, 0.123, 0.128, 0.009}.39 Across all simulated data sets, these ML-MSL differences are equal to
{0.037, 0.038, 0.078, 0.015} on average, and do not exceed {0.127, 0.136, 0.150, 0.027}. Wilcox’s
analytic ML approach and our kernel smoothed MSL approach thus estimate practically the same RP
urns in all simulated data sets.40 

The finite sample properties of the two estimation procedures are reported in Table B4, and
the results do not indicate that either procedure is distinctively better than the other. We do, however,
find that both procedures display inferior size properties compared to EUT with CRRA utility: at the
asymptotic significance level of 5%, the ML (MSL) estimator has sizes of 23%, 27%, 7%, and 7%
(9%, 13%, 3%, and 15%) for á3, á4, ã, and ö, respectively. One might expect the inferior results since
we are estimating twice as many parameters (4 instead of 2) and a more general preference structure
(RDU vs EUT) from a smaller sample (2,985 vs 14,868 observations). That we also observe the
inferior properties for the ML estimator indicates that the results stem from fundamental difficulties
in estimating the RDU specification from the present data sets, not from the use of kernel smoothing. 

Figures B3-B4 and Tables B5-B6 relate to the same partial RP-RDU model, but we now
exploit our kernel smoothing approach by retaining all four prize sets in the estimation sample. The
Monte Carlo experiment in this instance follows the same procedure as before, except that the DGP
uses kernel-smoothed MSL estimates from the full sample of 3,736 observations, which have been
computed by setting ê = 0.010. We obtain similar point estimates compared to the restricted sample
with three prize sets, but observe vastly improved size properties for the estimated parameters other
than á3: in the Monte Carlo experiment the MSL estimator has sizes of 26%, 5%, 5%, and 6% for á3,
á4, ã, and ö. This improvement in the size properties for parameters other than á3 makes intuitive
sense: All of the additional 751 observations (that is, the difference between the sample sizes of 3,736
and 2,985) pertain to lottery pairs over the prize set M!2 = {m1, m3, m4}, and therefore they do not
add direct information about á3 which concerns how large the utility level of prize m3 tends to be
relative to that of m2.  

39 As reported in Table B3, {á3, á4, ã, ö} are estimated at {0.702, 0.830, 0.791, 1.011} by ML, and
{0.795, 0.953, 0.663, 1.002} by MSL (ê = 0.010). The differences are computed between these two vectors. 

40 The same inferences apply when we consider estimated means and standard deviations of the two
RP parameters u3n and u4n. Across the 1,000 simulated choice sets, the correlation between the ML and MSL
estimates is 0.974 for E[u3nt], 0.982 for SD[u3nt], 0.976 for E[u4nt], and 0.979 for SD[u4nt]. The absolute
differences in estimated means and standard deviations with the ML and MSL approaches are on average
0.020 and 0.044 for E[u3nt] and SD[u3nt], and 0.050 and 0.067 for E[u4nt] and SD[u4nt].  
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C. Full RDU with Non-Parametric Utility
Figures B5-B6 and Tables B7-B8 relate to the full RP-RDU model with NP utility in equation

(19), which is reproduced here

Lnt(á3, á4, ã, ìö, óö) = IIII[ÄRDUnt(u3nt, u4nt, önt) > 0]g(v3nt, v4nt|á3, á4, ã) × (B3)
î(ln(önt)|mö, sö)dv3ntdv4ntdönt.

We use all prize sets in estimation of this model. Figure B5 displays RP urns for u3nt, u4nt and
önt evaluated at the empirical estimates of á3, á4, ã, mö and sö, and Table B7 reports these estimates.
Figure B6 summarizes the estimates of those parameters across 926 (out of 1,000) simulated data sets
in a Monte Carlo experiment, and Table B8 reports finite sample properties inferred therefrom. The
BFGS algorithm failed to find a solution to the likelihood maximization problem in the remaining 74
data sets, which suggests that empirical identification of this model is fragile relative to other models
that we report. The DGP uses kernel-smoothed MSL estimates at ê = 0.010 from the full sample.

Using all four prize sets, we observe that the expected values of u3nt and u4nt in the full RP-
RDU model are similar to the expected values of the same parameters in the partial RP-RDU model,
and the expected value of önt in the full model is similar to the point estimate of its deterministic
counterpart in the partial model. The main effects of accounting for the full RP structure show up in
reduced standard deviations of u3nt and u4nt since part of the random variation in preferences is now
attributed to the dispersion of önt. The Monte Carlo results, however, also show that the improvement
in size properties from a larger sample with four prize sets is reversed when we introduce önt as a third
RP parameter, which suggests that having three different sources of stochastic choice behavior is
perhaps too much to ask from a sample of this size. 

D. RDU with CRRA Utility
Figures B7-B8 and Tables B9-B10 relate to the RP-RDU model with CRRA utility, which is

specified as 

Lnt(ìù, óù, ìö, óö) = III[ÄRDUnt(ùnt, önt) > 0]f(ùnt|ìù, óù) × (B4)
î(ln(önt)|mö, sö)dùntdönt,

where ÄRDULnt(ùnt, önt) is the scaled RDU difference in equation (25); f(ùnt|ìù, óù) is a logistic density
function that represents the RP urn for the utility function; and î(ln(önt)|mö, sö) is a log-normal
density function that represents the RP urn for the PWF. In other words, this RP-RDU model
generalizes the RP-EUT model with CRRA utility in equation (B1) by augmenting it with a random
preference PWF that is used in equation (B3).

Figure B7 displays the RP urns for the utility function (top panel) and the PWF (bottom
panel), evaluated at the empirical estimates of ìù, óù, mö, and sö. Table B9 reports these estimates.
Figure B8 summarizes the estimates of the four primitive parameters across 1,000 simulated data sets
in a Monte Carlo experiment, and Table B10 reports finite sample properties inferred therefrom. The
simulated data sets are generated by the same procedure as before, except that the DGP uses kernel-
smoothed MSL estimates at ê = 0.007 since we cannot estimate this model using the standard ML.  

E. Random Preferences and Trembles
Tables B11 and B12 relate to the RP-Tremble-EUT model with CRRA utility, which is

specified by replacing the generic preference index ÄVnt(ánt) in equation (22) with the scaled EU
difference in equation (B1) as follows  
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Lnt(ìù, óù, ô) = (1!ô)II[ÄEUnt(ùnt) > 0]f(ùnt|ìù, óù)dùnt + ô0.5. (B5)

This model assumes a hybrid stochastic process which is a finite mixture of the RP model and the
constant error model (also known as “trembles”). We use all available choice tasks in the sample for
this model, which can accommodate violations of stochastic dominance by attributing dominated
choices to the tremble component. 

Table B11 reports the empirical estimates of ìù and óù that generate the RP urns in Figure 3,
along with the empirical estimates of ô. Table B12 reports the finite sample properties of alternative
estimators based on the Monte Carlo experiment summarized in Figure B9.

Figure B9 displays analytic ML and kernel-smoothed MSL estimates of ìù, óù and ô across
1,000 simulated data sets. The Monte Carlo simulations follow the same procedure as the earlier
examples, i.e. we use the analytic ML estimates for the original data set as true parameter values, and
generate each simulated data set by replacing observed choice indicators in the original data set with
choice indicators simulated from this DGP. The three panels in Figure B9 show a remarkable overlap
in parameter estimates between the analytic ML and kernel-smoothed estimation approaches: The
correlation coefficients for the point estimates of ìù, óù and ô are 0.994, 0.976 and 0.988. The absolute
difference between the ML and MSL estimates is less than 0.002 for each parameter, and either
approach has an empirical size of 6% for each parameter given an asymptotic significance level of 5%. 

F. Random Preferences and Interpersonal Heterogeneity
Finally, Table B13 reports the empirical estimation results for the random coefficient RP-

RDU model with CRRA utility that is summarized in Figure 4. This model accommodates between-
subject variation in preferences by combining the RP-RDU model in equation (B4) with a random
coefficient model of interpersonal heterogeneity. We replace the two representative RP urns in
equation (B4) with two subject-specific RP urns f(ùnt|ìùn, óùn) and î(ln(önt)|mön, sön); and complete
the random coefficient specification by assuming that the within-subject means (ìùn and mön) are
distributed as normals between subjects, whereas the within-subject scales (óùn and sön) are distributed
as folded-normals. The reported empirical estimates refer to the population means and standard
deviations of primitive normals for these four between-subject distributions. We exclude dominated
choice tasks from the estimation sample for this model because within-subject preference variations
are now modeled as the pure RP model instead of the hybrid RP-Tremble model.
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Table B1: RP-EUT with CRRA Utility - Empirical Estimates

Standard
Parameter Estimate Error p-value 95% Confidence Interval

A. Analytic ML
(Log-likelihood = !7501.476)

ìù  0.535 0.033    <0.001         0.470        0.601
óù  0.575 0.029 <0.001  0.518  0.632

B. ê = 0.037
(Log-likelihood = !7415.998)

ìù 0.506 0.031 <0.001  0.445  0.567
óù 0.463 0.029 <0.001  0.407  0.519

C. ê = 0.015
(Log-likelihood = !7465.641)

ìù 0.523 0.034 <0.001  0.457  0.589
óù 0.546 0.030 <0.001  0.488  0.604

D. ê = 0.007
(Log-likelihood = !7493.115)

ìù 0.528 0.037 <0.001  0.456  0.600
óù 0.565 0.031 <0.001  0.505  0.626
Notes: The estimation sample includes 14,868 observations (413 subjects making 36 choices) on non-
dominated choice tasks from the experiment reported by Andersen, Harrison, Lau and Rutström [2014]. All
standard errors have been adjusted for clustering at the subject level. The RP urn for the coefficient of RRA
ùnt is logistic density f(ùnt|ìù, óù) with the mean parameter ìù and the scale parameter óù.
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Table B2: RP-EUT with CRRA Utility - Monte Carlo Results

Parameter DGP Bias RMSE Size

A. Analytic ML

ìù  0.535       <0.001 0.011      0.058 
óù  0.575       <0.001      0.011      0.057

B. ê = 0.037

ìù  0.535 !0.022      0.025      0.466 
óù  0.575 !0.061      0.062      0.996

C. ê = 0.015

ìù 0.535     !0.007      0.014      0.080
óù 0.575     !0.004      0.012      0.087 

D. ê = 0.007

ìù 0.535     !0.002      0.012      0.053 
óù 0.575        0.004      0.012      0.074
Notes: The results in each panel are based on 1,000 simulated data sets of 14,868 observations. Each simulated
data set is identical to the empirical estimation sample in Table B1 except that actual choices made by subjects
are replaced with simulated choices from the data generating process (DGP). A bias of <0.001 refers to a value
in (0.000, 0.001). RMSE reports the root mean squared error of relevant parameter estimates. Size reports the
rejection frequency of the Wald test of the true null; the asymptotic significance level is 5% and the test
statistic is constructed using standard errors clustered at the subject level.  
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Table B3: Partial RP-RDU with Non-Parametric Utility - Empirical Estimates

Standard
Parameter Estimate Error p-value 95% Confidence Interval

A. Analytic ML
(Log-likelihood = !1866.702)

á4  0.830 0.139 <0.001  0.557  1.103
á3  0.702 0.111 <0.001  0.485  0.919
ã  0.791 0.130 <0.001  0.536  1.047
ö  1.011 0.031 <0.001  0.949  1.072

ì[u4nt]  2.212 0.104 <0.001  2.008  2.417
ó[u4nt]   0.979 0.103 <0.001  0.778  1.180
ì[u3nt]  1.556 0.044 <0.001  1.470  1.641
ó]u3nt]   0.663 0.068 <0.001  0.530  0.796

B. ê = 0.020
(Log-likelihood = !1872.674)

á4 1.123 0.244 <0.001  0.644  1.602
á3 0.910 0.187 <0.001  0.544  1.275
ã 0.535 0.112 <0.001  0.315  0.754
ö 0.983 0.031 <0.001  0.922  1.044

ì[u4nt] 2.087 0.092 <0.001  1.906  2.268
ó[u4nt] 0.763 0.093 <0.001  0.581  0.944
ì[u3nt] 1.486 0.039 <0.001  1.410  1.563
ó]u3nt] 0.510 0.062 <0.001  0.389  0.631

C. ê = 0.010
(Log-likelihood = !1880.838)

á4 0.953 0.180 <0.001 0.601 1.305
á3 0.795 0.140 <0.001 0.520 1.070
ã 0.663 0.116 <0.001 0.435 0.890
ö 1.002 0.030 <0.001 0.942 1.062

ì[u4nt] 2.158 0.093 <0.001 1.976 2.340
ó[u4nt] 0.876 0.090 <0.001 0.700 1.052
ì[u3nt] 1.527 0.040 <0.001 1.449 1.604
ó]u3nt] 0.591 0.060 <0.001 0.473 0.709

D. ê = 0.002
(Log-likelihood = !1893.346)

á4 0.917 0.174 <0.001 0.576 1.258
á3 0.778 0.154 <0.001 0.476 1.080
ã 0.697 0.108 <0.001 0.485 0.908
ö 1.022 0.024 <0.001 0.974 1.069
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ì[u4nt] 2.180 0.079 <0.001 2.026 2.335
ó[u4nt] 0.907 0.065 <0.001 0.780 1.034
ì[u3nt] 1.542 0.041 <0.001 1.462 1.621
ó]u3nt] 0.614 0.043 <0.001 0.529 0.699
Notes: The estimation sample includes 2,985 observations (63 subjects making 43 to 48 choices each) on three
prize sets (M!1, M!3 and M!4) from the experiment reported by Harrison and Rutström [2008]. All standard
errors have been adjusted for clustering at the subject level. The RP urn for utility levels u3nt and u4nt is based
on McKay’s [1934] bivariate gamma distribution. The assumed bivariate distribution implies that the marginal
distribution of (u3nt ! 1) is univariate gamma with the shape parameter á3 and the scale parameter ã, and that of
(u4nt ! 1) is univariate gamma with the shape parameter (á3 + á4) and the scale parameter ã. ì[.] and ó[.] report
the expected value and standard deviation of each utility level derived from the estimates of á3, á4 and ã.
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Table B4:  Partial RP-RDU with Non-Parametric Utility - Monte Carlo Results

Parameter DGP Bias RMSE Size

A. Analytic ML

á4  0.830 !0.095      0.123      0.270 
á3  0.702     !0.075      0.106      0.229 
ã  0.791       0.136      0.189      0.074 
ö  1.011     !0.002      0.023      0.065 

ì[u4nt]  2.212       0.031      0.064      0.052
ó[u4nt]   0.979      0.093      0.133      0.087 
ì[u3nt]  1.556       0.016      0.029      0.078 
ó]u3nt]   0.663       0.064      0.089      0.104 

B. ê = 0.020

á4  0.830  0.053      0.136      0.052
á3  0.702       0.036      0.121      0.053 
ã  0.791     !0.078     0.149      0.182
ö  1.011     !0.039      0.045      0.466 

ì[u4nt]  2.212     !0.085      0.100      0.396 
ó[u4nt]   0.979     !0.085      0.129      0.220 
ì[u3nt]  1.556     !0.043      0.049      0.499 
ó]u3nt]   0.663     !0.060      0.087      0.248 

C. ê = 0.010

á4  0.830     !0.060     0.114      0.129 
á3  0.702     !0.039     0.099      0.087 
ã  0.791      0.058      0.149      0.030 
ö  1.011     !0.017     0.028      0.148

ì[u4nt]  2.212     !0.019     0.058      0.106 
ó[u4nt]   0.979      0.025      0.103      0.041
ì[u3nt]  1.556     !0.004     0.024      0.075 
ó]u3nt]   0.663      0.020      0.068      0.040     

D. ê = 0.002

á4  0.830    !0.118     0.149      0.453
á3  0.702     !0.087     0.121      0.443 
ã  0.791      0.165      0.229      0.293 
ö  1.011     !0.004     0.024      0.098 

ì[u4nt]  2.212      0.031      0.068      0.120 
ó[u4nt]   0.979      0.109      0.156      0.250 
ì[u3nt]  1.556      0.020      0.033      0.146 
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ó]u3nt]   0.663      0.077      0.106      0.263 
Notes: The results in each panel are based on 1,000 simulated data sets of 2,985 observations. Each simulated
data set is identical to the empirical estimation sample in Table B3 except that actual choices made by subjects
are replaced with simulated choices from the data generating process (DGP). RMSE reports the root mean
squared error of relevant parameter estimates. Size reports the rejection frequency of the Wald test of the true
null; the asymptotic significance level is 5% and the test statistic is constructed using standard errors clustered
at the subject level.  
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Table B5: Partial RP-RDU with Non-Parametric Utility - Full Sample Empirical Estimates

Standard
Parameter Estimate Error p-value 95% Confidence Interval

B. ê = 0.019
(Log-likelihood = !2358.552)

á4  0.899 0.187 <0.001 0.534 1.265
á3  0.859 0.174 <0.001 0.518 1.201
ã  0.585 0.124 <0.001 0.342 0.827
ö  0.961 0.031 <0.001 0.900 1.023

ì[u4nt]  2.029 0.088 <0.001 1.857 2.200
ó[u4nt]  0.776 0.097 <0.001 0.585 0.966
ì[u3nt]  1.503 0.042 <0.001 1.420 1.585
ó]u3nt]  0.542 0.068 <0.001 0.409 0.675

C. ê = 0.010
(Log-likelihood = !2367.041)

á4 0.792 0.148 <0.001 0.503 1.082
á3 0.762 0.140 <0.001 0.488 1.035
ã 0.705 0.135 <0.001 0.442 0.969
ö 0.978 0.032 <0.001 0.916 1.040

ì[u4nt] 2.096 0.091 <0.001 1.917 2.275
ó[u4nt] 0.879 0.102 <0.001 0.680 1.078
ì[u3nt] 1.537 0.044 <0.001 1.451 1.623
ó]u3nt] 0.616 0.071 <0.001 0.477 0.754

D. ê = 0.002
(Log-likelihood = !2382.332)

á4 0.708 0.063 <0.001 0.584 0.833
á3 0.655 0.055 <0.001 0.546 0.763
ã 0.851 0.132 <0.001 0.591 1.110
ö 0.991 0.028 <0.001 0.936 1.047

ì[u4nt] 2.160 0.111 <0.001 1.941 2.378
ó[u4nt] 0.993 0.122 <0.001 0.754 1.232
ì[u3nt] 1.557 0.043 <0.001 1.472 1.642
ó]u3nt] 0.688 0.080 <0.001 0.532 0.844
Notes: The estimation sample includes 3,736 observations (63 subjects making 54 to 60 choices each) on all
four prize sets from the experiment reported by Harrison and Rutström [2008]. Otherwise this model
specification is identical to the partial RP-RDU model reported in Table B3. 
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Table B6:  Partial RP-RDU with Non-Parametric Utility - Full Sample Monte Carlo Results

Parameter DGP Bias RMSE Size

A. ê = 0.020

á4  0.792       0.112      0.153      0.143
á3  0.762     !0.027     0.103      0.079
ã  0.705     !0.019     0.108      0.098
ö  0.978     !0.011     0.021      0.110 

ì[u4nt]  2.096      0.008      0.045      0.049 
ó[u4nt]   0.879     !0.011     0.082      0.076  
ì[u3nt]  1.537     !0.043     0.048     0.595 
ó]u3nt]   0.616     !0.035     0.062      0.168 

B. ê = 0.010

á4  0.792      0.011      0.085      0.050 
á3  0.762     !0.091      0.123      0.256  
ã  0.705      0.100      0.152      0.053 
ö  0.978      0.007      0.020      0.056 

ì[u4nt]  2.096      0.073      0.087      0.284 
ó[u4nt]   0.879      0.090      0.123      0.096 
ì[u3nt]  1.537     !0.006     0.021      0.074 
ó]u3nt]   0.616      0.037      0.066      0.050        

C. ê = 0.002

á4  0.792     !0.040     0.090      0.210 
á3  0.762     !0.125     0.149      0.549 
ã  0.705      0.179      0.224      0.362  
ö  0.978      0.016      0.027      0.171 

ì[u4nt]  2.096      0.112      0.125      0.570  
ó[u4nt]   0.879      0.153      0.181      0.431 
ì[u3nt]  1.537      0.016      0.028      0.143  
ó]u3nt]   0.616      0.082      0.103      0.331    
Notes: The results in each panel are based on 1,000 simulated data sets of 3,736 observations. Each simulated
data set is identical to the empirical estimation sample in Table B5 except that actual choices made by subjects
are replaced with simulated choices from the data generating process (DGP). RMSE reports the root mean
squared error of relevant parameter estimates. Size reports the rejection frequency of the Wald test of the true
null; the asymptotic significance level is 5% and the test statistic is constructed using standard errors clustered
at the subject level.  
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Table B7: RP-RDU with Non-Parametric Utility - Empirical Estimates

Standard
Parameter Estimate Error p-value 95% Confidence Interval

A. ê = 0.019
(Log-likelihood = !2354.719)

á4  1.155 0.276 <0.001  0.614  1.697
á3  1.112 0.253 <0.001  0.616  1.608
ã  0.392 0.101 <0.001  0.194  0.590
mö !0.065 0.039  0.098 !0.143  0.012
sö  0.404 0.102 <0.001  0.203  0.605

ì[u4nt]  1.888 0.097 <0.001  1.697  2.079
ó[u4nt]  0.590 0.095 <0.001  0.404  0.776
ì[u3nt]  1.435 0.048 <0.001  1.341  1.530
ó]u3nt]  0.413 0.067 <0.001  0.281  0.545
ì[önt]  1.017 0.061 <0.001  0.897  1.136
ó[önt]  0.428 0.138 <0.001  0.157  0.699

B. ê = 0.010
(Log-likelihood = !2359.496)

á4  1.033 0.240 <0.001  0.563  1.503
á3  1.001 0.222 <0.001  0.566  1.435
ã  0.449 0.100 <0.001  0.253  0.644
mö !0.062 0.043  0.155 !0.146  0.023
sö  0.493 0.132 <0.001  0.235  0.751

ì[u4nt]  1.912 0.083 <0.001  1.750  2.074
ó[u4nt]  0.640 0.082 <0.001  0.479  0.800
ì[u3nt]  1.449 0.042 <0.001  1.367  1.531
ó]u3nt]  0.449 0.058 <0.001  0.334  0.563
ì[önt]  1.062 0.083 <0.001  0.899  1.224
ó[önt]  0.556 0.205 <0.001  0.155  0.958

C. ê = 0.002
(Log-likelihood = !2376.056)

á4  0.809 0.100 <0.001  0.614  1.004
á3  0.767 0.129 <0.001  0.515  1.019
ã  0.622 0.150 <0.001  0.327  0.917
mö !0.057 0.038  0.141 !0.132  0.019
sö  0.489 0.037 <0.001  0.415  0.562

ì[u4nt]  1.980 0.109 <0.001  1.767  2.193
ó[u4nt]  0.781 0.136 <0.001  0.514  1.047
ì[u3nt]  1.477 0.043 <0.001  1.393  1.561
ó]u3nt]  0.545 0.088 <0.001  0.372  0.718
ì[önt]  1.065 0.030 <0.001  1.005  1.125
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ó[önt]  0.553 0.045 <0.001  0.464  0.642
Notes: The estimation sample includes 3,736 observations (63 subjects making 54 to 60 choices each) on all
four prize sets from the experiment reported by Harrison and Rutström [2008]. All standard errors have been
adjusted for clustering at the subject level. The RP urn for utility levels u3nt and u4nt is based on McKay’s [1934]
bivariate gamma distribution. The assumed bivariate distribution implies that the marginal distribution of (u3nt

! 1) is univariate gamma with the shape parameter á3 and the scale parameter ã, and that of (u4nt ! 1) is
univariate gamma with the shape parameter (á3 + á4) and the scale parameter ã. The RP urn for the parameter
önt that determines the shape of the probability weighting function is a log-normal distribution: ln(önt) - N(mö,
sö

2). ì[.] and ó[.] report the expected value and standard deviation of each utility level derived from the
estimates of á3, á4 and ã, or those of the PWF parameter derived from the estimates of mö and sö.
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Table B8: RP-RDU with Non-Parametric Utility - Monte Carlo Results

Parameter DGP Bias RMSE Size

A. ê = 0.019
(Log-likelihood = !2354.719)

á4  1.033     !0.003      0.173      0.070 
á3  1.001     !0.100      0.200      0.171
ã  0.449      0.028      0.110      0.049 
mö !0.062    !0.020      0.037      0.074 
sö  0.493      0.070      0.158      0.065 

ì[u4nt]  1.912     !0.025      0.071      0.086 
ó[u4nt]  0.640      0.008      0.091      0.054 
ì[u3nt]  1.449     !0.036      0.047      0.234 
ó]u3nt]  0.449     !0.007      0.060      0.083 
ì[önt]  1.062      0.032      0.096      0.062 
ó[önt]  0.556      0.138      0.307      0.025 

B. ê = 0.010
(Log-likelihood = !2359.496)

á4  1.033     !0.154      0.205      0.238 
á3  1.001     !0.212      0.255      0.371 
ã  0.449      0.111      0.160      0.070 
mö !0.062     !0.026      0.044      0.099 
sö  0.493      0.211      0.261      0.286 

ì[u4nt]  1.912     !0.007      0.065      0.092 
ó[u4nt]  0.640      0.070      0.114      0.085 
ì[u3nt]  1.449     !0.022      0.037      0.144 
ó]u3nt]  0.449      0.038      0.070      0.071 
ì[önt]  1.062      0.133      0.183      0.058 
ó[önt]  0.556      0.449      0.596      0.090    

C. ê = 0.002
(Log-likelihood = !2376.056)

á4  1.033     !0.257      0.289      0.657 
á3  1.001     !0.293      0.324      0.714 
ã  0.449      0.224      0.275      0.524 
mö !0.062     !0.021      0.048      0.333 
sö  0.493       0.240      0.290      0.791 

ì[u4nt]  1.912      0.046      0.082      0.373 
ó[u4nt]  0.640      0.159      0.196      0.544 
ì[u3nt]  1.449      0.007      0.031      0.242 
ó]u3nt]  0.449      0.102      0.126      0.516 
ì[önt]  1.062      0.166      0.218      0.606 
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ó[önt]  0.556      0.538      0.699      0.746 
Notes: The results in each panel are based on 926 simulated data sets of 3,736 observations. Each simulated
data set is identical to the empirical estimation sample in Table B7 except that actual choices made by subjects
are replaced with simulated choices from the data generating process (DGP). RMSE reports the root mean
squared error of relevant parameter estimates. Size reports the rejection frequency of the Wald test of the true
null; the asymptotic significance level is 5% and the test statistic is constructed using standard errors clustered
at the subject level.  
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Table B9: RP-RDU with CRRA Utility - Empirical Estimates

Standard
Parameter Estimate Error p-value 95% Confidence Interval

A. ê = 0.037
(Log-likelihood = !7351.484)

ìù 0.702 0.067 <0.001  0.571  0.834
óù 0.585 0.064 <0.001  0.460  0.710
mö 0.409 0.106 <0.001  0.201  0.617
sö 0.701 0.062 <0.001  0.579  0.823

ì[önt] 1.925 0.197 <0.001  1.538  2.311
ó[önt] 1.533 0.248 <0.001  1.046  2.019

B. ê = 0.015
(Log-likelihood = !7383.696)

ìù 0.658 0.064 <0.001  0.532  0.784
óù 0.586 0.051 <0.001  0.486  0.686
mö 0.267 0.097  0.006  0.078  0.457
sö 0.871 0.054 <0.001  0.765  0.978

ì[önt] 1.910 0.210 <0.001  1.499  2.321
ó[önt] 2.036 0.348 <0.001  1.354  2.719

C. ê = 0.007
(Log-likelihood = !7397.092)

ìù 0.636 0.076 <0.001  0.487  0.784
óù 0.571 0.042 <0.001  0.490  0.653
mö 0.197 0.113  0.082 -0.025  0.418
sö 0.906 0.052 <0.001  0.805  1.008

ì[önt] 1.835 0.234 <0.001  1.376  2.295
ó[önt] 2.071 0.379 <0.001  1.328  2.814
Notes: The estimation sample includes 14,868 observations (413 subjects making 36 choices) on non-
dominated choice tasks from the experiment reported by Andersen, Harrison, Lau and Rutström [2014]. All
standard errors have been adjusted for clustering at the subject level. The RP urn for the coefficient of RRA
ùnt is logistic density f(ùnt|ìù, óù) with the mean parameter ìù and the scale parameter óù. The RP urn for the
parameter önt that determines the shape of the probability weighting function is a log-normal distribution:
ln(önt) - N(mö, sö

2). ì[.] and ó[.] report the expected value and standard deviation of the PWF parameter
derived from the estimates of mö and sö.
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Table B10: RP-RDU with CRRA Utility - Monte Carlo Results 

Parameter DGP Bias RMSE Size

A. ê = 0.037

ìù 0.658      0.052      0.065      0.248
óù 0.586      0.006      0.040      0.045 
mö 0.267      0.163      0.175      0.690 
sö 0.871     !0.139      0.164      0.386 

ì[önt] 1.910      0.116      0.199      0.057 
ó[önt] 2.036     !0.304      0.478      0.225 

B. ê = 0.015

ìù 0.658      0.025      0.062      0.058 
óù 0.586      0.030      0.066      0.076 
mö 0.267      0.063      0.114      0.094 
sö 0.871     !0.091     0.129      0.292 

ì[önt] 1.910     !0.006      0.182      0.058
ó[önt] 2.036     !0.270      0.462      0.237    

C. ê = 0.007

ìù 0.658       0.017      0.063      0.079 
óù 0.586      0.027      0.068      0.096 
mö 0.267      0.033      0.109      0.082 
sö 0.871     !0.068      0.117      0.420 

ì[önt] 1.910     !0.027      0.207      0.093 
ó[önt] 2.036     !0.216      0.469      0.299 
Notes: The results in each panel are based on 1,000 simulated data sets of 14,868 observations. Each simulated
data set is identical to the empirical estimation sample in Table B9 except that actual choices made by subjects
are replaced with simulated choices from the data generating process (DGP). RMSE reports the root mean
squared error of relevant parameter estimates. Size reports the rejection frequency of the Wald test of the true
null; the asymptotic significance level is 5% and the test statistic is constructed using standard errors clustered
at the subject level.  
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Table B11: RP-Tremble-EUT with CRRA Utility - Empirical Estimates

Standard
Parameter Estimate Error p-value 95% Confidence Interval

A. Analytic ML
(Log-likelihood = !7784.824)

ìù 0.523 0.029 <0.001 0.466 0.580
óù 0.337 0.016 <0.001 0.305 0.369
ô 0.162 0.016 <0.001 0.131 0.193

B. ê = 0.036
(Log-likelihood = !7777.816)

ìù 0.517 0.028 <0.001 0.462 0.572
óù 0.281 0.019 <0.001 0.245 0.318
ô 0.144 0.016 <0.001 0.112 0.176

C. ê = 0.014
(Log-likelihood = !7784.791)

ìù 0.522 0.029 <0.001 0.465 0.579
óù 0.332 0.017 <0.001 0.298 0.366
ô 0.156 0.016 <0.001 0.124 0.187

D. ê = 0.007
(Log-likelihood = !7785.653)

ìù 0.524 0.029 <0.001 0.467 0.581
óù 0.341 0.015 <0.001 0.312 0.370
ô 0.158 0.016 <0.001 0.127 0.189
Notes: The estimation sample includes 16,520 observations (413 subjects making 40 choices) on all choice tasks
from the experiment reported by Andersen, Harrison, Lau and Rutström [2014]. All standard errors have been
adjusted for clustering at the subject level. The RP urn for the coefficient of RRA, ùnt, is logistic density
f(ùnt|ìù, óù) with mean parameter ìù and scale parameter óù. The tremble parameter ô measures the probability
that the subject makes an arbitrary choice instead of applying RP-EUT decision criteria.
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Table B12: RP-Tremble-EUT with CRRA Utility - Monte Carlo Results

Parameter DGP Bias RMSE Size

A. Analytic ML

ìù 0.523     <|!0.001|      0.010      0.064 
óù 0.337     <0.001      0.012      0.058
ô 0.162     <|!0.001|      0.009      0.055 

B. ê = 0.036

ìù 0.523     !0.011      0.015      0.202 
óù 0.337     !0.038      0.040      0.832 
ô 0.162     !0.022      0.023      0.678

C. ê = 0.014

ìù 0.523     !0.004      0.011      0.069 
óù 0.337     !0.004      0.013      0.076 
ô 0.162    !0.006      0.011      0.106

D. ê = 0.007

ìù 0.523     !0.001      0.010      0.062 
óù 0.337     !0.000      0.012      0.059 
ô 0.162     !0.002      0.009      0.060    
Notes: The results in each panel are based on 1,000 simulated data sets of 16,520 observations. Each simulated
data set is identical to the empirical estimation sample in Table B11 except that actual choices made by subjects
are replaced with simulated choices from the data generating process (DGP). A bias of <0.001 refers to a value
in (0.000, 0.001), and that of <|!0.001| to a value in (!0.001, 0.000). RMSE reports the root mean squared
error of relevant parameter estimates. Size reports the rejection frequency of the Wald test of the true null; the
asymptotic significance level is 5% and the test statistic is constructed using standard errors clustered at the
subject level.  
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Table B13: Random Coefficient RP-RDU with CRRA Utility - Empirical Estimates

Standard
Parameter Estimate Error p-value 95% Confidence Interval

A. ê = 0.037
(Log-likelihood = !-5267.919)

E[ìùn]  0.565 0.040 <0.001  0.486  0.644
E[mön]  0.102 0.074  0.171 !0.044  0.247
E[óUN

ùn] !0.197 0.025  0.000 !0.246 !0.148
E[sUN

ön]  0.033 0.044  0.455 !0.053  0.119
SD[ìùn]  0.691 0.050 <0.001  0.593  0.788
SD[mön]  1.021 0.071 <0.001  0.882  1.159
SD[óUN

ùn]  0.250 0.026 <0.001  0.199  0.301
SD[sUN

ön]  0.061 0.073  0.406 !0.083  0.205

B. ê = 0.015
(Log-likelihood = !5228.946)

E[ìùn]   0.571 0.048 <0.001  0.476  0.665
E[mön]   0.026 0.088  0.768 !0.147  0.199
E[óUN

ùn]  !0.262 0.022 <0.001 !0.305 !0.219
E[sUN

ön]  !0.039 0.111  0.727 !0.256  0.179
SD[ìùn]   0.722 0.048 <0.001  0.628  0.816
SD[mön]   1.114 0.062 <0.001  0.992  1.236
SD[óUN

ùn]   0.311 0.036 <0.001  0.240  0.382
SD[sUN

ön]   0.261 0.036 <0.001  0.191  0.331

C. ê = 0.007
(Log-likelihood = !5235.721)

E[ìùn]  0.558 0.042 <0.001  0.476  0.640
E[mön]  0.038 0.087  0.665 !0.132  0.207
E[óUN

ùn]  !0.275 0.024 <0.001 !0.322 !0.227
E[sUN

ön]  0.080 0.044  0.069 !0.006  0.166
SD[ìùn]  0.765 0.063 <0.001  0.642  0.889
SD[mön]  1.164 0.063 <0.001  1.041  1.287
SD[óUN

ùn]  0.347 0.030 <0.001  0.288  0.406
SD[sUN

ön]  0.314 0.027 <0.001  0.261  0.367
Notes: The estimation sample includes 14,868 observations (413 subjects making 36 choices) on non-
dominated choice tasks from the experiment reported by Andersen, Harrison, Lau and Rutström [2014]. All
standard errors have been adjusted for clustering at the subject level. The RP urn for the coefficient of RRA
ùnt is logistic density f(ùnt|ìùn, óùn) with the mean parameter ìùn and the scale parameter óùn. The RP urn for
the parameter önt that determines the shape of the probability weighting function is a log-normal distribution:
ln(önt) - N(mön, sön

2). ì[.] and ó[.] report the expected value and standard deviation of the PWF parameter
derived from the estimates of mö and sö. In the random coefficient model ìùn and mön are assumed to follow
normal distributions with between-subject means E[ìùn] and E[mön] and standard deviations SD[ìùn] and
SD[mön]. óùn and sön are assumed to follow folded-normal distributions so that óùn = |óUN

ùn| and sön = |sUN
ön|,

where óUN
ùn - N(E[óUN

ùn], SD[óUN
ùn]

2 ) and sUN
ön - N(E[sUN

ön], SD[sUN
ön]

2 ).  
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