
Submitted to the Annals of Applied Probability

ON THE CONVERGENCE OF DISCRETE-TIME
STATIONARY REGULAR MULTIVARIATE MARKOV CHAINS

BY WYNN C. STIRLING1,a AND DON ROSS2,b

1Electrical and Computer Engineering Department, Brigham Young University, awynnstirling@gmail.com

2School of Society, Politics, and Ethics, University College Cork
School of Economics, University of Cape Town

Center for Economic Analysis of Risk, Georgia State University , bdon.ross931@gmail.com

This paper extends stationary Markov chain convergence theory to model
discrete-time regular multivariate Markov chains with joint-conditioning
transition probability functions that condition the future state of each pro-
cess on the present states of all processes considered jointly. This result is a
formal extension of currently modeled multivariate Markov chains discussed
in the literature, which employ marginal-conditioning transition probability
functions that condition the future state of each process separately on the
present state of each of the complementary processes considered individually.
The advantage of this generalization is that it accounts for interdependencies
among the members of the complementary sets. We also establish that it is
generally not possible to deduce equivalent marginal-conditioning transition
probability functions from joint-conditioning probability functions.

Our methodology is to establish the existence of a Markov equivalent
complementary graphical representation of a multivariate Markov process
with the complementary subset of the process as vertices and the edges com-
prising joint-conditioning/joint-conditioned transition probabilities, to which
the Markov chain convergence theorem may be directly applied. This gener-
alization is particularly applicable to scenarios where interrelationships be-
tween conditioning sources of causal or informational influence cannot be
modeled as individual conditioning functions, and potentially informs de-
signs for domains such as economic experiments, mobile robotics, and other
artificial intelligence applications.

1. Introduction. Multivariate Markov chain theory is an important tool of applied prob-
ability and statistics for the study of multivariate phenomena such as biologics [35], finance
[31], machine learning [13], robotic surveillance [8], and others, to represent correlations of
variables in sequentially ordered data sets, for purposes of modeling. We begin by reviewing
univariate Markov chain convergence theory. For a univariate finite-state first-order Markov
chain with time-indexed increments t“ t0,1,2, . . .u, the Markov Chain Convergence (MCC)
theorem establishes conditions for the existence of a limiting stationary, or steady-state, prob-
ability distribution, which we state for reference and to establish notation.1

THEOREM 1.1 (Markov Chain Convergence). Let T be a square matrix with nonnegative
entries such that each column sums to unity and T is regular, meaning that there exists an
integer m such that that all elements of Tm are strictly positive. Then there exists a unique
mass vector p such that

• Tp“ p, that is, p is the eigenvector corresponding to the unique unit eigenvalue of T ;
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Keywords and phrases: Markov chain convergence, Markov equivalent graphs, Network theory.
1This paper will be restricted to stationary Markov processes (i.e., the transition probabilities are time-

invariant).

1



2

• T “ limtÑ8 T
t “

“

p ¨ ¨ ¨ p
‰

; and
• p“ Tpp0q for every initial mass vector pp0q.

For a discussion and proof of this theorem, see, for example, [9, 18, 21]. The practical
significance of this theorem is that it provides a closed-form expression for the steady-state
mass vector p; namely, as the eigenvector corresponding to the unique unit eigenvalue of T .

The matrix T is termed the state transition matrix, whose elements are transition proba-
bility functions pi|jpa|a1q, which define the conditional probability that the process is in state
a at time t ` 1 given that it is in state a1 at time t. In matrix notation, this time iteration
assumes the form

(1) ppt` 1q “ Tpptq ,

where pptq is the unconditional probability vector for the process at time t. This model is
directly applicable to the MCC theorem, resulting in a unique steady-state probability vector
p“ limtÑ8 T

tpp0q that is independent of the initial conditions pp0q.
A general n-dimensional time-indexed multivariate Markov process comprises a set of

n Markov processes denoted tYiptq, i “ 1, . . . , n, t “ 0,1, . . .u, that are interconnected such
that the transition probability of the future state ai of each member Yipt` 1q is jointly con-
ditioned on the present states, a1j , j “ 1, . . . , n, of all members tYjptq, j “ 1, . . . , nu, con-
sidered simultaneously. To illustrate, consider the multivariate process tY1ptq, Y2ptq, Y3ptqu,
where each Yiptq corresponds to an agent who randomly chooses between two prizes, de-
noted Ai “ tyi1, yi2u, for i P t1,2,3u, at time t, such that Yipt` 1q’s probability of choosing
ai PAi is conditioned on tYjptq, Ykptqu jointly choosing pa1j , a

1
kq PAj ˆAk; that is, accord-

ing to the transition probability mass function pi|jkpai|a1j , a
1
kq for ai|a1j , a

1
k PAi|Aj ˆAk for

i|jk P t1|23,2|31,3|12u. Expressed in matrix notation, this becomes

(2) pipt` 1q “ Ti|jkpjkptq ,

where the transition matrix Ti|jk is populated by the transition functions pi|jk, and pjkptq is
the joint probability mass vector for tYjptq, Ykptqu.

Another example of a multivariate Markov chain is a stock market, where the probability
of the value of the shares of a given company at a future time is modeled as conditionally
dependent on the present values of the shares of several other companies. For such a scenario,
real-time tractability requires conditioning on the joint share values of the other companies
considered simultaneously, rather than attempting to determine the probability of a given
company’s state conditioned on the state of each influencing company considered in isolation.

These examples clearly satisfy the Markov condition in that the transition to the state of
a given process is conditioned only on the present state (of all processes and not on the past
states of any of the individual processes).

However, the iteration defined by (2) is not amenable to the direct application of the MCC
theorem, since the conditioning is between each individual process Yipt` 1q at time t` 1
and tYjptq, j ‰ iu, its complementary subset of processes, at time t.

Several researchers have studied the issue of convergence for multivariate Markov chains.
An example [17] from this literature discusses multivariate Markov chains convergence for
specific population genetics models, but not results for general processes. An approach to
modeling the conditional dependence of an individual process on its complementary set that
has gained traction in the literature by Ching and coauthors [5, 6, 31, 33, 36] is to express
the transition probabilities of each member as a convex combination of individual-process-
to-individual-process transition probabilities. (This approach is further discussed in Section
2.1).2 [4, 12] adopts this same approach to investigate stock exchanges.

2The approach draws its inspiration from [24] who developed a model for high-order Markov chains, termed
the Raftery mixture transition distribution model, by defining the probability of the future state of a process
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Since these models employ an individial-process-to-individual-process transition proba-
bility model, they are not as general as a multiple-process-to-individual-process transition
probability model. Our approach is to determine the steady-state of a general stationary reg-
ular multivariate Markov process using the more general multiple-procsss-to-individual pro-
cess model. To do so we invoke the mathematical machinery of network theory and graph
theory.

The concept of a network applies to a vast diversity of contexts and applications. A net-
work is interpreted as any collection of sources of influence that are interconnected and struc-
tured with respect to directions of influence and specifications of influence effects. Domains
of study which are commonly modeled as networks include social and economic [10, 14],
causal [23], probabilistic [7, 15, 16, 22], distributed control [20], multiagent systems [19, 30],
neural [2], and others. Networks are typically represented as graphs. A network graph com-
prises a set of vertices, depicted as nodes, and a set of directed edges which define the influ-
ence linkages between the vertices. In this paper we focus on networks whose vertices are
elements of a multivariate Markov chain and whose graphical representations identify the
edges linking these vertices with transition probability mass functions.

A key motivation for the paper is to facilitate applications in which sources of influence
are bi-directional. Such applications are particularly strongly motivated in economics and
social science. For example, experiments studying transmission of economic advice reported
in [29] are restricted to stylized settings in which no agent Yi who influences an agent Yj can
be reciprocally influenced by Yj . As emphasized by theorists of social influence [28, 34], this
is not the standard ecology of interaction among people, or social animals generally; such
influence typically involves mutually active convergence to dynamic equilibria.

2. Graphical Representations of Multivariate Markov Chains.

DEFINITION 2.1. • Let t P t0,1, . . .u denote time indexed in unit increments.
• Let

 

tYi, ptq, i“ 1, . . . , nu, t“ 0,1, . . .
(

denote a set of discrete finite-state Markov pro-
cesses with state spaces Ai “ tyi1, . . . , yiNi

u.
• Let Y´iptq “ tYi, ptq, i “ 1, . . . , nuzYiptq denote Yi’s complementary subset and let
A´i “

Ś

j‰iAj denote Yi’s complementary state space.
• Let ai PAi denote an arbitrary element of Ai and let a´i PA´i denote a vector of arbi-

trary elements of A´i. We use the “prime” superscript a1i for states at time t to distinguish
them from the “unprimed” notation ai for states at time t` 1.

• We term Y´i the subset of conditioning processes for Yi, which is termed the conditioned
process.

• Let pi|j : Ai|AiÑ r0,1s denote a transition probability mass function such that pi|jpai|a1jq
is the probability that Yipt` 1q is in state ai PAi at time t` 1 given that Yjptq is in state
a1j PAj at time t. The set

(3)
"

 

tYi, ptq, i“ 1, . . . , nu, t“ 0,1, . . .
(

, tpi|j , i, j “ 1, . . . , nu

*

is termed a marginal-conditioning multivariate Markov chain. We use the term “marginal”
in this context advisedly. The standard usage of such terminology applies to the condi-
tioned elements of a probability function; that is, the terms on the left side of the condi-
tioning symbol “|”, with the conditioning elements on the right side of the conditioning

conditioned on the present and a finite number of past states of the same process as a convex combination of the
marginal-conditioning transitoin functions for the future state given each of the present and past states considered
individually.
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symbol. By analogy with the conventional usage of the terms “joint” and “marginal”, we
say that the conditioning is “joint” if the conditioning side is populated by all members of
the complementary set, and it is “marginal” if the conditioning side is populated by only
one member of the complementary set at a t time.

• Let pi|´i: Ai|A´i Ñ r0,1s denote a transition probability mass function such that
pi|´ipai|a

1
´iq is the probability that Yipt ` 1q is in state ai P Ai at time t ` 1 given that

Y´iptq is in state a1´i PA´i at time t. The set

(4)
"

 

tYi, ptq, i“ 1, . . . , nu, t“ 0,1, . . .
(

, tpi|´i, i“ 1, . . . , nu

*

is termed a joint-conditioning non-self-influencing multivariate Markov chain.
• Let pi|i,´i: Ai|Ai ˆA´iÑ r0,1s denote a transition probability mass function such that
pi|i,´ipai|a

1
i, a

1
´iq is the probability that Yipt` 1q is in state ai PAi at time t` 1 given that

tYiptq, Y´iptqu is in state pa1i, a
1
´iq PAi ˆA´i at time t. The set

(5)
"

 

tYi, ptq, i“ 1, . . . , nu, t“ 0,1, . . .
(

, tpi|i,´i, i“ 1, . . . , nu

*

is termed a joint-conditioning self-influencing multivariate Markov chain.

Although the non-self-influencing model is a special case of the self-influencing model, it
is of sufficient practical importance to treat it separately, since it corresponds to the subclass
of multivariate Markov processes where each member of the multivariate Markov chain is
influenced by, and only by, other members.

A marginal-conditioning model is appropriate for scenarios where it is possible to iso-
late the probabilistic dependencies between each pair of processes Yi and Yj . The joint-
conditioning models are appropriate for scenarios where the probabilistic dependency of
each Yi is expressed as the combined influence of all members of its complementary set
Y´i. As we shall establish, it is generally not possible to decompose the joint-conditioning
transition probability functions pi|´i and pi|i,´i to generate a set of marginal-conditioning
transition probability functions tpi|j , i, j “ 1, . . . , nu. Thus, the joint-conditioning models
are more general.

Our usage of network theory and graph theory hinges on an important observation, namely,
that a graph of a network is not the network; rather, it is a representation of the network,
and representations are not unique. Our approach is to define a so-called Markov equivalent
representation (i.e., a representation that preserves the conditioning structure defined by the
transition probability functions) of a multivariate Markov chain that is amenable to the direct
application of the MCC theorem. For ease of presentation we initially restrict our attention
to non-self-influencing multivariate Markov chains, and we first consider the special case
where the chain may be represented by a ring graph with individual members of the mul-
tivariate chain as vertices. We then extend to the general fully connected (but self-influence
free) case by defining a Markov equivalent ring graph representation with the complementary
subsets as vertices. Finally, we extend the theory to scenarios involving self-influence. This
result provides a systematic methodology for determining the steady-state probability of an
arbitrary stationary regular multivariate Markov chain.

To facilitate our development we introduce two types of graphs for multivariate Markov
chains: transition graphs and network graphs. The following development applies to the non-
self-influencing case, but obvious modifications can be made for the self-influencing case.
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DEFINITION 2.2. Transition Graph: A (state) transition graph of a multivariate Markov
chain comprises a set of vertices

 

ty11, . . . , y1N1
u, . . . , tyn1, . . . ynNn

u
(

consisting of the
states that the members of the chain may assume, with edges as the transition probability
mass functions pi|jpai|a1jq that define the transition probability that Yipt` 1q is in state ai,
denoted Yipt` 1q |ù ai, given that Yjptq is in state a1i at time t, denoted Yjptq |ù a1j . The
symbol a1j ÝÑ ai indicates that probability propagates in only one direction — a directed
edge — from state a1j to state ai during the time increment from t to t` 1.

Network Graph: A network graph of a multivariate Markov chain is a graph with the mem-
ber processes tY1ptq, . . . , Ynptqu as vertices with the set of incoming edges to Yipt ` 1q
originating from Y´iptq collectively comprising the transition probability mass function
pi|´ipai|a

1
´iq that determines the transition probability of Yipt` 1q |ù ai given the joint-

conditioning process Y´iptq |ù a1´i. The symbol Yjptq ÝÑ Yipt`1qmeans that probability
propagates in only one direction — a directed edge — from Yjptq to Yipt` 1q.

• A path from Yjptq to Yipt` 1q is a sequence of directed edges from Yjptq to Yipt` 1q,
denoted Yjptq ÞÑ Yipt` 1q.

• A self-loop for Yiptq is an edge YiptqÑ Yipt` 1q.
• A fully connected network is a network such that there is an edge between tYiptq, Yjpt`
1qu, i, j “ 1, . . . , n (excluding self-loop edges for the non-self-influencing case).

For our treatment, all edges of both transition and network graphs are directed.

To keep our development as straightforward as possible, we initially do not allow self-
influence, that is, transition probability mass functions of the form pi|i,´i. Such a model
would correspond to situations where the future probability of each member of the multivari-
ate Markov chain would be modulated by its own present state as well as the present states
of other members of the multivariate chain. However, the model pi|´i introduces sufficient
complexity to identify and address the key issues with multivariate Markov chain conver-
gence, and is simpler to deal with. Once that theory is established, we go on to consider
self-influence.

To illustrate the distinction between a transition graph and a network graph, consider the
two graphs for a 3ˆ 2 network (i.e., a network comprising three members with each being in
one of two states):

yi1

xx {{ ����

yi2

vv xx �� ��
yk1

66 44

''((
yk2

<< 88

,, ))
yj1

RR NN

llii yj2gg hh

VV RR
Yi

�� ��
Yk

++

@@

Yjkk

SS

(6)

representing a multivariate Markov chain network with the transition graph on the left and
the network graph on the right (with time arguments suppressed).
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2.1. Transition Graphs. For a transition graph representation of a multivariate Markov
chain as in (6), the transition from state Yjptq |ù a1j to state Yipt ` 1q |ù ai and from state
Ykptq |ù a

1
k to state Yipt` 1q |ù ai is governed by marginal-conditioning transition probabil-

ity functions pi|jpai|a1jq, and pi|kpai|a1kq, respectively, as indicated by the transition graph
fragment

(7) a1j

pi|j ��

a1k

pi|k��
ai

.

Restricting attention to the non-self-influencing case, the transition probability that Yipt `
1q |ù ai is conditioned on two sources: Yjptq and Ykptq. To account for these multiple sources
of conditioning, the approach taken by Ching and coauthors (see [5, 6, 31, 33, 36]) is to model
pipai, t` 1q as a convex combination of the transitions from Yjptq and Ykptq to Yipt` 1q,
yielding

(8) pipai, t` 1q “ λij
ÿ

a1j

pi|jpai|a
1
jqpjpa

1
j , tq ` λik

ÿ

a1k

pi|kpai|a
1
kqpkpa

1
k, tq

with λij , λik ě 0 and λij ` λik “ 1. Expressed using matrix notation, this becomes

(9) pipt` 1q “ λijTi|jpjptq ` λikTi|kpkptq .

with

(10) Ti|j “

„

pi|jpyi1|yj1q pi|jpyi1|yj2q
pi|jpyi2|yj1q pi|jpyi2|yj2q



Ti|k “

„

pi|kpyi1|yk1q pi|kpyi1|yk2q

pi|kpyi2|yk1q pi|kpyi2|yk2q



.

Combining equations of the form (9) for the three members of a 3ˆ2 non-self-influencing
network yields

(11)

»

–

pipt` 1q
pjpt` 1q
pkpt` 1q

fi

fl

loooooomoooooon

P pt`1q

“

»

–

0 λijTi|j λikTi|k
λjiTj|i 0 λjkTj|k
λkiTk|i λkjTk|j 0

fi

fl

looooooooooooooomooooooooooooooon

T

»

–

piptq
pjptq
pkptq

fi

fl ,

loooomoooon

P ptq

and the iteration model

(12) P pt` 1q “TP ptq

is now amenable to the direct application of the MCC theorem. This approach provides a
solution for the steady-state probability of a multivariate Markov chain by approximating
the joint-conditioning transition probability of the chain with a convex combination of the
marginal-conditioning transition probabilities of each member of the chain.

2.2. Network Graphs. Section 2.1 provides a solution for multivariate Markov chain ap-
plications with transitions defined by marginal-conditioning functions but, as we claim in
Section 1, it is generally not possible to decompose a joint-conditioning transition probability
function pi|´i into a set of equivalent marginal-conditioning transition probability functions
tpi|j , j “ 1, . . . , nu. The simplist way to establish this claim is to offer a counterexample.

Consider a three-individual community comprising Isabel (I), John (J ), and Karl (K),
who are at a dance. John and Karl are strangers to each other, and we may assume that
their behaviors are independent. Both men wish to ask Isabel to dance, but they also wish
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to avoid conflict, so neither will ask her to dance if the other intends to do so. Their action
sets are AJ “ AK “ ta,nau, that is, to ask (a) or to not ask (na). Isabell’s action set is
AI “ tw,nwu, that is, to be willing pwq or not willing (nwq to accept an invitation to dance.
The objective of avoiding conflict between J and K is fixed by setting the joint-conditioning
function pJ |KIpa|a,wq “ 0. Now suppose it were also true that J and K are conditionally
independent, given I , which would mean that joint-conditioning function pJ |KIpa|a,wq “ 0
reduces to the marginal-conditioning function pJ |Ipa|wq “ 0. But this would mean that J
would never dance with I , which would defeat J ’s reason to attend the dance. Thus, we
may safely assume that pJ |Ipa|wq ą 0. which would then violate the assumption that J and
K are conditionally independent given I . The reason for this result is that the marginal-
conditioning model does not account for the existence of conflictual relationships between
the objectives of J and K . This counterexample establishes that it is generally not possible to
derive equivalent marginal-conditioning transition probability functions pi|j from the joint-
conditioning transition probability function pi|´i.

A joint-conditioning graphical representation of this scenario is

(13) YJptq
pI|JK

$$

YKptq

zz

YIpt` 1q

with marginal probability mass function

(14) pIpaI, t` 1q “
ÿ

a1Ja
1
K

pI|JKpaI|a
1
J
, a1

K
qpJpa

1
J
, tqpKpa

1
K
, tq ,

where pJpa
1
J
, tq and pKpa

1
K
, tq are marginal probability mass functions for J and K , respec-

tively.
Extending to the multivarite-conditioning case for a fully connected three-member Markov

chain with network graph illustrated in (6), a corresponding network fragment is

(15) Yjptq

pj|jk

�� ((

Ykptq

vv
pi|jk

��

Yjpt` 1q Yipt` 1q
.

Since it is not generally possible to decompose a joint-conditioning transition probability
function into an equivalent set of marginal-conditioning transition probability functions, we
cannot decouple the influence Yjptq exerts on Yjpt ` 1q and Yipt ` 1q from the influence
Ykptq exerts on Yjpt ` 1q and Yipt ` 1q, and so must consider the joint influence that the
subset tYjptq, Ykptqu exerts on the subset tYjpt` 1q, Yipt` 1qu. A natural way to do this is
to treat tYjptq, Ykptqu and tYipt` 1q, Yjpt` 1qu as dyadic vertices where we drop the braces
and the separating comma and express these subgroups of processes as units denoted YjYkptq
and YiYjpt` 1q, that canot be separated into their constituant parts as far as conditioning is
concerned. We thus re-express (15) as

(16) YjYkptq
pij|jk

// YiYjpt` 1q
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where pij|jk is a joint-conditioning/joint-conditioned transition function, yet to be defined,
that governs the transition to YiYjpt` 1q from YjYkptq. The corresponding marginal proba-
bility mass function for the dyad YiYjpt` 1q is

(17) pijpai, aj , t` 1q “
ÿ

a1j ,a
1
k

pij|jkpai, aj |a
1
j , a

1
kqpjkpa

1
j , a

1
k, tq .

We may express (17) using matrix notation by defining a complementary-state-to-complementary-
state transition matrix Tij|jk, whose entries are the transition probability mass functions
pij|jk, yielding

(18) pijpt` 1q “ Tij|jkpjkptq

with

(19) pijptq “

»

—

—

–

pijpyi1, yj1, tq
pijpyi1, yj2, tq
pijpyi2, yj1, tq
pijpyi2, yj2, tqq

fi

ffi

ffi

fl

pjkpt` 1q “

»

—

—

–

pjkpyj1, yk1, t` 1q
pjkpyj1, yk2, t` 1q
pjkpyj2, yk1, t` 1q
pjkpyj2, yk2, t` 1q

fi

ffi

ffi

fl

and
(20)

Tij|jk “

»

—

—

–

pij|jkpyi1yj1|yj1, yk1q pij|jkpyi1, yj1|yj1, yk2q pij|jkpyi1, yj1|yj2, yk1q pij|jkpyi1, yj1|yj2, yk2q

pij|jkpyi1yj2|yj1, yk1q pij|jkpyi1, yj2|yj1, yk2q pij|jkpyi1, yj2|yj2, yk1q pij|jkpyi1, yj2|yj2, yk2q

pij|jkpyi2yj1|yj1, yk1q pij|jkpyi2, yj1|yj1, yk2q pij|jkpyi2, yj1|yj2, yk1q pij|jkpyi2, yj1|yj2, yk2q

pij|jkpyi2yj2|yj1, yk1q pij|jkpyi2, yj2|yj1, yk2q pij|jkpyi2, yj2|yj2, yk1q pij|jkpyi2, yj2|yj2, yk2q

fi

ffi

ffi

fl

.

Our task is to define pij|jk in a way that preserves the conditioning struture. To do so, it is
convenient to first consider ring graphs and then extend to the full-connected case.

3. Graphical Topologies. Unlike the iteration model defined by (1), the model defined
by (18) is not in the form required for the direct application of the MCC theorem. As men-
tioned previously, our goal is to rectify this problem by defining a Markov equivalent repre-
sentation to which the MCC theorem does apply. We first consider a special case, where the
members of the chain form a ring, and then use those results to establish the fully connected
case where the probability of the future state of each member is conditioned on the present
states of all other members.

3.1. Ring Graph. A ring comprises an n-member multivariate Markov process tY1ptq,
. . . , Ynpt ` nδqu, that transitions from state Yipt ` iδq |ù a1i to the state Yi`1pt ` pi `
1qδq |ù ai`1 mod n, where δ “ 1

n is the fractional time increment to transition from one
state to another, that form the path

(21) Y1ptqÑ Y2pt` δqÑ Y3pt` 2δqÑ ¨ ¨ ¨ Ñ Ynpt` pn´ 1qδqÑ Y1pt` 1q,

yielding the network graph

(22)

Y1ptq
p2|1

// Y2pt` δq

p3|2

��

Ynpt` pn´ 1qδq

p1|n

OO

Y3pt` 2δqoo
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where the cycle is completed at time t ` 1 with Y1pt ` 1q replacing Y1ptq and the cycle
continues in a clockwise orientation (the results will also apply to a counterclockwise orien-
tating convention), where each member is influenced by only its predecessor according to the
transition probability mass functions pi|j for i|j P t2|1,3|2, . . . , n|n´ 1,1|nu.

Starting at time t “ 0 and considering the network fragment Y1p0q Ñ Y2pδq, where
Y1p0q |ù a

1
1

at time t “ 0 and Y2pδq |ù a2 at time t “ δ. The joint probability mass function
for tY1p0q, Y2pδqu |ù pa11, a2q is

(23) p12pa
1
1
, a2, δq “ p2|1pa2|a

1
1
qp1pa

1
1
,0q ,

where p1pa
1
1
,0q is the initial probability mass function for Y1p0q |ù a11. The marginal proba-

bility mass function for Y2pδq |ù a2 is

(24) p2pa2, δq “
ÿ

a11

p12pa
1
1
, a2, δq “

ÿ

a11

p2|1pa2|a
1
1
qp1pa

1
1
,0q .

Now considering the fragment Y2pδqÑ Y3p2δq, the joint probability mass function is

(25) p23pa
1
2
, a3,2δq “ p3|2pa3|a

1
2
qp2pa

1
2
, δq

with the probability mass function for Y3p2δq |ù a3 becoming

(26) p3pa3,2δq “
ÿ

a12

p23pa
1
2
, a3,2δq “

ÿ

a12

p3|2pa3|a
1
2
qp2pa

1
2
, δq .

Continuing this process, the joint mass function for the fragment YipiδqÑ Yi`1pi` 1qδq is

(27) pi i`1pa
1
i, ai`1, pi` 1qδq “ pi`1|ipai`1|a

1
iqpipa

1
i, iδqq

and the probability mass function function for Yi`1piδq becomes

(28) pi`1pai`1, pi` 1qδq “
ÿ

a1i

pi i`1pa
1
i, ai`1, pi` 1qδq “

ÿ

a1i

pi`1|ipai`1|a
1
iqpipa

1
i, iδq

for i“ 1,2, . . . , mod n. Expressed in matrix form, this becomes

(29) pi`1ppi` 1qδ
˘

“ Ti`1|ipi

`

iδ
˘

for i“ 0,1, . . . ,mod n, where

(30) pipiδq “

»

—

—

—

–

pi
`

yi1, iδ
˘

pi
`

yi2, iδq
˘

...
pi
`

yiNi
, iδ

˘

fi

ffi

ffi

ffi

fl

is the probability mass vector for Yipiδq and

(31) Ti`1|i “

»

—

–

pi`1|ipypi`1q1|yi1q ¨ ¨ ¨ pi`1|ipypi`1q1|yiNi
q

...
...

pi`1|ipypi`1qNi`1
|yi1q ¨ ¨ ¨ pi`1|ipypi`1qNi`1

|yiNi
q

fi

ffi

fl

is the network member-to-network member transition matrix. Expressing this cycle with the
linkages represented by the transition matrices yields

(32)

Y1
T2|1

// Y2

T3|2

��
Yn

T1|n

OO

Y3oo

.
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Now define the closed-loop transition matrices

(33) Ti “ Ti|i`n´1Ti`n´1|i`n´2 ¨ ¨ ¨Ti`2|i`1Ti`1|i mod n .

Thus, after one cycle, pip1q “ Tipip0q, after two cycles, pip2q “ Tipip1q, and so on. After t
cycles,

(34) pipt` 1q “ Tipiptq “ TiTipipt´ 1q “ ¨ ¨ ¨ “ T t`1

i pip0q .

We may now apply the Markov chain convergence theorem to generate the steady-state
probability vectors, denoted

(35) pi “ lim
tÑ8

piptq “ lim
tÑ8

T t
i pip0q ,

with

(36) pi “

»

—

—

—

–

pipyi1q
pipyi2q

...
pipyiNi

q

fi

ffi

ffi

ffi

fl

, i“ 1, . . . , n

as the eigenvectors corresponding to the unique unit eigenvalues of Ti, i“ 1, . . . , n.

3.2. Fully Connected Graphs.

3.2.1. Non-Self-Influence Network Graphs. We now extend to the fully connected graph
case without self-influence, where the probability of YiYjpt` 1q |ù pai, ajq is conditioned on
YjYkptq |ù pa

1
j , a

1
kq via

(37) pipai, aj , t` 1q “
ÿ

a1ja
1
k

pij|jkpai, aj |a
1
j , a

1
kqpjkpa

1
j , a

1
k, tq

which, expressed in matrix form, is

(38) pijpt` 1q “ Tij|jkpjkptq .

As stated earlier, this expression is not in the form as required for (35) and, therefore, the
Markov chain convergence theorem cannot be directly applied.

To proceed, we now invoke the critical observation that a graph of a network is only a rep-
resentation of the network, and representations are not unique. Our challenge is to identify
a representation of the network to which the MCC theorem applies. Based on our observa-
tion that the convergence of a multivariate Markov chain involves the convergence of the
probability of the complementary subset, we are motivated to create an alternative graphical
representation of a multivariate Markov process as a ring graph with the vertices comprising
the complementary subsets and edges as joint transition probability mass functions to be de-
fined in such a way that the transformed graph preserves the conditionality structure of the
original graph.

Consider the three-vertex network graph whose directed edges are transition probability
mass functions of the form pi|jk for i|jk P t1|23,2|31,3|12u, where j, k are ordered such that
i precedes j precedes k (which now precedes i) with a clockwise rotation, as time progresses,
yielding the network graph (termed the original graph)

(39) Yi

zz ��
Yk

::

,, Yjmm

ZZ
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and introduce another graph according to the following definition.

DEFINITION 3.1. Given a fully connected network graph with vertices tYi, i“ 1, . . . , nu
and edges tpi|´i, i “ 1, . . . , nu, the complementary network graph is a hub-spoke graph
with the hub comprising a ring with vertices tY´i, i “ 1, . . . , nu and edges p´i|´pi`1q, i “
1, . . . , nu termed the complementary transition probability mass functions, and spokes with
vertices Yi and edges tpi|´i, i“ 1, . . . , nu.

The complementary network graph corresponding to (39) is3

(40) Yi

YjYk
pij|jk

""

pi|jk

OO

YkYi

pjk|ki
<<

pj|ki

}}

YiYj
pk|ij

!!

pki|ij

oo

Yj Yk

for ij|jk P t12|23,23|31,31|12u, with the transitions assuming a clockwise orientation
YiYjptqÑ YkYipt` δqÑ YjYkpt` 2δqÑ YiYjpt` 1q (with δ “ 1

3 ).
We have now generated two network graphs (39) and (40). Analogous to the ring graph dis-

played by (22), the dyadic vertices of the complementary network graph (40) are connected
by complementary joint-conditioning/joint-conditioned transition probability mass functions
pij|jk, yet to be defined. To proceed, let us focus on the graph fragments (15) and (16), which
we repeat here, since this is a critical part of our development. The fragment from the original
graph is

(41) Yjptq

pj|jk

�� ((

Ykptq

vv
pi|jk

��

Yjpt` 1q Yipt` 1q

and the corresponding complementary graph fragment is

(42) YjYkptq
pij|jk

// YiYjpt` 1q .

Our goal is to define pij|jk such that the conditioning relationships for graph (42) are
equivalent to the relationships for the graph (41). Such an equivalence is referred to as Markov
equivalence [1, 3, 7, 13], meaning that the graphs have the same conditioning structure.

3In graph-theoretic parlance, a complementary graph or, more specifically, a complementary edge graph, is
a new graph with the same vertices as the original graph, where the edges are complementary, meaning that
edges between vertex pairs appear in the complementary graph if and only if there is no edge between the same
vertex pairs on the original graph. By contrast, a complementary vertex graph is a new graph whose vertices
are the complementary subsets Y´i, rather than Yi, as with the original graph. Markov equivalent networks and
complementary vertex graphs have been employed by [25–27, 32] for application of multiagent Markov chain
theory to social influence networks.
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To establish Markov equivalence, we proceed by applying the chain rule to obtain the
factorization

(43) pij|jkpai, aj |a
1
j , a

1
kq “ pj|jkipaj |a

1
j , a

1
k, aiqpi|jkpai|a

1
j , a

1
kq .

Now consider the probability mass function pj|jkipaj |a1j , a
1
k, aiq, which we must define. We

first stipulate that Yjpt` 1q must not depend on Yipt` 1q, which may be achieved by requir-
ing pj|jkipaj |a1j , a

1
k, aiq “ pj|jkpaj |a

1
j , a

1
kq. However, pj|jkpaj |a1j , a

1
kq still presents a problem

since it requires the existence of a self-loop edge Yjptq Ñ Yjpt` 1q such that Yjpt` 1 |ù aj
is influenced by Yjptq |ù a1j . But this model does not allow self-influence and, therefore, no
such self-loop edge can exist. A natural way to deal with this situation is to insert a degener-
ate self-loop edge Yjptq Ñ Yjpt` 1q into the network that has no net effect, which we may
achieve by defining pj|jk as a degenerate transition probability mass function that ascribes its
entire mass to aj “ a1j , yielding

(44) pj|jkpaj |a
1
j , a

1
kq “

#

1 if aj “ a1j
0 otherwise.

Substituting (44) into (43) yields

(45) pij|jkpai, aj |a
1
j , a

1
kq “

#

pi|jkpai|a
1
j , a

1
kq if aj “ a1j

0 otherwise,

which ensures that the conditionality structure is preserved and, therefore, the complementary
network representation is Markov equivalent.

The complementary transition matrix from the dyad YjYkptq to the dyad YiYjpt` 1q is

(46)

Tij|jk “

»

—

—

–

pij|jkpyi1, yj1|yj1, yk1q pij|jkpyi1, yj1|yj1, yk2q

pij|jkpyi1, yj2|yj1, yk1q pij|jkpyi1, yj2|yj1, yk2q

pij|jkpyi2, yj1|yj1, yk1q pij|jkpyi2, yj1|yj1, yk2q

pij|jkpyi2, yj2|yj1, yk1q pij|jkpyi2, yj2|yj1, yk2q

pij|jkpyi1, yj1|yj2, yk1q pij|jkpyi1, yj1|yj2, yk2q

pij|jkpyi1, yj2|yj2, yk1q pij|jkpyi1, yj2|yj2, yk2q

pij|jkpyi2, yj1|yj2, yk1q pij|jkpyi2, yj1|yj2, yk2q

pij|jkpyi2, yj2|yj2, yk1q pij|jkpyi2, yj2|yj2, yk2q

fi

ffi

ffi

fl

.

Substituting (44) into (65) yields

(47) Tij|jk “

»

—

—

–

pi|jkpyi1|yj1, yk1q pi|jkpyi1|yj1, yk2q 0 0
0 0 pi|jkpyi1|yj2, yk1q pi|jkpyi1|yj2, yk2q

pi|jkpyi2|yj1, yk1q pi|jkpyi2|yj1, yk2q 0 0
0 0 pi|jkpyi2|yj2, yk1q pi|jkpyi2|yj2, yk2q

fi

ffi

ffi

fl

.

The closed-loop complementary transition matrices are

(48) Tij “ Tij|jkTjk|kiTki|ij .

After t cycles,

(49) pijptq “ T
t
ijpijp0q .

Extending this development to the general fully connected case, (49) becomes

(50) p´iptq “ T
t
´ip´ip0q ,
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where

(51) T´i “ T´i|´pi`1qT´pi`1q|´pi`2q ¨ ¨ ¨T´pi´1q|´i mod n ,

which is now in the form required for the application of the MCC theorem to the ring with
vertices Y´i, yielding steady-state complementary probability mass functions

(52) p´i “

»

—

–

p´ipypi`1q1, . . . , ypi`nq1q
...

p´ipypi`1qNi`1
, . . . , ypi`nqNi`n

q

fi

ffi

fl

.

Finally, the steady-state probability mass functions are computed via (18), yielding

(53) pi “ Ti|´ip´i .

The following special cases illustrate the flexibility and power of the complementary net-
work representation.

Case I: Consider a three-member chain with graphical representation

(54) Y1

yy
Y2

p3|2

22

p1|2
99

Y3

p2|31

rr

yielding

T1|23 “

„

p1|2py11|y21q p1|2py11|y21q p1|2py11|y22q p1|2py11|y22q

p1|2py12|y21q, p1|2py12|y21q p1|2py11|y22q p1|2py22|y22q



T2|31 “

„

p2|31py21|y31, y11q p2|31py21|y31, y12q p2|31py21|y32, y11q p2|31py21|y32, y12q

p2|31py22|y31, y11q p2|31py22|y31, y12q p2|31py22|y32, y11q p2|32py21|y32, y12q



T3|12 “

„

p3|2py31|y21q p3|2py31|y21q p3|2py31|y22q p3|2py31|y22q

p3|2py32|y21q p3|2py32|y21q p3|2py31|y22q p3|2py32|y22q



(55)

and

T12|23 “

»

—

—

–

p1|2py11|y21q p1|2py11|y21q 0 0
0 0 p1|2py11|y22q p1|2py11|y22q

p1|2py12|y21q p1|2py12|y21q 0 0
0 0 p1|2py12|y22q p1|2py12|y22q

fi

ffi

ffi

fl

T23|31 “

»

—

—

–

p2|31py21|y31, y11q p2|31py21|y31, y12q 0 0
0 0 p2|31py21|y32, y11q p2|31py21|y32, y12q

p2|31py22|y31, y11q p2|31py22|y31, y12q 0 0
0 0 p2|31py22|y32, y11q p2|31py22|y32, y12q

fi

ffi

ffi

fl

T31|12 “

»

—

—

–

p3|2py31|y21q p3|21py31|y21q 0 0
0 0 p3|2py31|y22q p3|22py31|y22q

p3|2py32|y21q p3|2py32|y21q 0 0
0 0 p3|2py32|y22q p3|2py32|y22q

fi

ffi

ffi

fl

.

(56)
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Case II: Consider the three-member network with acyclic network graph

(57) Y1
p2|1

~~   
Y2

p3|12

// Y3

where Y1 is a root vertex governed by the unconditional probability mass function p1. Al-
though this network contains no cycles, we may still identify the complementary network
graph of the form (40) with transition matrices

T1|23 “

„

p1py11q p1py11q p1py11q p1py11q

p1py12q p1py12q p1py12q p1py12q



T2|31 “

„

p2|1py21|y11q p2|1py21|y12q p2|1py21, y11q p2|1py21|y12q

p2|1py22|y11q p2|1py22|y12q p2|1py22, y11q p2|1py22|y12q



T3|12 “

„

p3|12py31|y11, y21q p3|12py31|y11, y22q p3|12py31|y12, y21q p3|2py31|y12, y22q

p3|12py32|y11, y21q p3|12py32|y11, y22q p3|12py32|y12, y21q p3|2py32|y12, y22q



(58)

and

T12|23 “

»

—

—

–

p1py11q p1py11q 0 0
0 0 p1py11q p1py11q

p1py12q p1py12q 0 0
0 0 p1py12q p1py12q

fi

ffi

ffi

fl

T23|31 “

»

—

—

–

p2|1py21|y11q p2|1py21|y11q 0 0
0 0 p2|1py21|y12q p2|1py21|y12q

p2|1py22|y11q p2|1py22|y12q 0 0
0 0 p2|1py22|y12q p2|1py22|y12q

fi

ffi

ffi

fl

T31|12 “

»

—

—

–

p3|12py31|y11, y21q p3|12py31|y11, y22q 0 0
0 0 p3|12py31|y12, y21q p31|2py31|y12, y22q

p3|12py32|y11, y21q p3|12py32|y11, y22q 0 0
0 0 p3|12py32|y12, y21q p3|12py32|y12, y22q

fi

ffi

ffi

fl

.

(59)

This special case reveals an important feature of complementary network graphs,
namely, that the complementarity does not depend on the existence of cycles. Thus, even
an acyclic network can be represented with a complementary network graph with appro-
priately defined linkages.

Case III: Consider the three-agent transition graph in (6) (left graph) with marginal-condition-
ing transition probabilities pi|j for i|j P t1|2,1|3,2|1,2|3,3|1,3|2u rather than the joint-
conditioning transition probabilities pi|jk for i|jk P t1|23,2|31,3|12u. Of course, we can
certainly fall back on Ching’s approach as defined in Section 2.1, but a precise theoretical
justification for that methodology has not yet been produced. An alternative is to incorpo-
rate the marginal-conditioning functions into our more general methodology. The general
form for the time-updated marginal probability is

(60) pipai, t` 1q “
ÿ

a1ja
1
k

pi|jkpai|a
1
j , a

1
kqpjkpa

1
j , a

1
k, tq .

However, this is not the model we are given for this case. A possible way to deal with
this situation is to introduce the notion of conditioning independence, and to stipulate that
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Yj and Yk are conditioning independent with respect to Yi, which implies that the joint-
conditioning function pi|jkpai|a1j , a

1
kq can now be factored into the form

(61) pi|jkpai|a
1
j , a

1
kq “ pi|jpai|a

1
jqpi|kpai|a

1
kq .

Conditioning independence is the converse of the conventional notion of conditional inde-
pendence of Yj and Yk given Yi, which would yield pjk|ipaj , ak|aiq “ pj|ipaj |aiqpk|ipak|aiq.
The concept of conditioning independence is not found in conventional treatments of prob-
ability theory, but it enjoys an intuitive appeal similar to the intuitive appeal of conditional
independence, namely, that the conditional probability given a joint event is the product
of the conditional probabilities given the marginal events. The notion of conditioning in-
dependence of Yj and Yk with respect to Yi requires no assumptions regarding either the
independence of Yj and Yk or of the conditional independence of Yj and Yk given Yi.

Substituting (61) into (60) yields

(62) pipai, t` 1q “
ÿ

aj 1a1k

pi|jpai|a
1
jqpi|kpai|a

1
kqpjkpa

1
j , a

1
k, tq

which, in matrix notation, becomes

(63) pipt` 1q “ Ti|jkpjk ,

which is the same model as (2) with

(64)

Ti|jk “

„

pi|jpyi1|yj1qpi|kpyi1|yk1q pi|jpyi1|yj1qpi|kpyi1|yk2q

pi|jpyi2|yj1qpi|kpyi2|yk1q pi|jpyi2|yj1qpi|kpyi2|yk2q

pi|jpyi1|yj2qpi|kpyi1|yk1q pi|jpyi1|yj2qpi|kpyi1|yk2q

pi|jpyi2|yj2qpi|kpyi2|yk1q pi|jpyi2|yj2qpi|kpyi2|yk2q



.

The complementary transition matrix thus becomes

(65)

Tij|jk “

»

—

—

–

pi|jpyi1|yj1qpi|kpyi1|yk1q pi|jpyi1|yj1qpi|kpyi1|yk2q

0 0
pi|jpyi2|yj1qpi|kpyi2|yk1q pi|jpyi2|yj1qpi|kpyi2|yk2q

0 0

0 0
pi|jpyi1|yj2qpi|kpyi1|yk1q pi|jpyi1|yj2qpi|kpyi1|yk2q

0 0
pi|jpyi2|yj2qpi|kpyi2|yk1q pi|jpyi2|yj2qpi|kpyi2|yk2q

fi

ffi

ffi

fl

,

which conforms with (48). Thus, the MCC theorem can be applied to (49).

3.2.2. Self-Influencing Network Graphs. When self-influence exist, the transition prob-
ability mass functions are of the form pi|i,´ipai|a

1
i, a

1
´iq. The corresponding network graph

for a three-member network is

(66) Yi

zz ��

��

Yk

::

,,
II

Yjmm

ZZ

XX

.

With this model, the transition function for each Yipt ` 1q is conditioned on the states of
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all processes, including itself, at time t. To keep the discussion as simple as possible, we
continue to focus on a three-member fully connected (including self-influence) Markov chain
and extend the analysis by considering the hub-spoke ring network graph with the vertices
comprising the triads

(67) YiYjYkptqÑ YkYiYjpt` δqÑ YjYkYipt` 2δqÑ YiYjYkpt` 1q

and edges pijk|jki, pkji|ijk and pjki|kij , as illustrated by the following graph:

(68) Yi

YiYjYk
pkij|ijk

$$

pi|ijk

OO

YjYkYi

pijk|jki
::

pj|jki

||

YkYiYj
pk|kij

""

pjki|kij

oo

Yj Yk

.

We follow the non-self-influencing procedure by applying the chain rule to obtain

(69) pijk|jkipai, aj , ak|a
1
j , a

1
k, a

1
iq “ pk|jkiijpak|a

1
j , a

1
k, a

1
i, ai, ajqpij|jkipai, aj |a

1
j , a

1
k, a

1
iq .

A second application of the chain rule yields

(70) pij|jkipai, aj |a
1
j , a

1
k, a

1
iq “ pj|jkiipaj |a

1
j , a

1
k, a

1
i, aiqpi|jkipai|a

1
j , a

1
k, a

1
iq .

To achieve Markov equivalence we require Ykpt`1q |ù ak given tYjptq, Ykptq, Yiptqu |ù pa1j , a
1
k, a

1
iq

to be independent from tYipt` 1q, Ykpt` 1qu |ù pai, ajq, thereby yielding

(71) pk|jkiijpak|a
1
j , a

1
k, a

1
i, ai, ajq “ pk|jkipak|a

1
j , a

1
k, a

1
iq

and, by a similar argument,

(72) pj|jkiipaj |a
1
j , a

1
k, a

1
i, aiq “ pj|jkipaj |a

1
j , a

1
k, a

1
iq .

Thus, Markov equivalence is achieved by substituting (71) and (72) into (69), yielding
(73)
pijk|jkipai, aj , ak|a

1
j , a

1
k, a

1
iq “ pk|jkipak|a

1
j , a

1
k, a

1
iqpj|jkipaj |a

1
j , a

1
k, a

1
kqpi|j1k1i1pai|a

1
j , a

1
k, a

1
iq .

Let pijkptq denote the unconditional probability vector at time t for this scenario and
define the transition matrix
(74)

Tijk|jki “

»

—

–

pijk|jkipyi1, yj1, yk1|yj1, yk1, yi1q ¨ ¨ ¨ pijk|jkipyi1, yj1, yk1|yjNj
, ykNk

, yiNi
q

...
...

...
pijk|jkipyiNi

, yjNj
, ykNk

|yj1, yk1, yi1q ¨ ¨ ¨ pijk|jkipyiNi
, yjNj

, ykNk
|yjNj

, ykNk
, yiNi

q

fi

ffi

fl

.

for ijk|jki P t123|231,231|312,312|123u. Then

(75) pijkpt` 1q “ Tijk|jkiTjki|kijTkij|ijk
loooooooooooomoooooooooooon

Tijk

pijkptq “ Tijkpijkptq ,

where Tijk is the closed-loop transition matrix. We can now apply the MCC theorem to obtain

(76) pijk “ lim
tÑ8

T t
ijkpijkp0q ,
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from which we can deduce the steady-state individual probability vectors

(77) pi “ Ti|ijkpijk ,

where Ti|ijk is the transition matrix populated by pi|ijk. for i|ijk P t1|123,2|231,3|312u.

4. General Algorithm. The application of network theory to Markov chains requires
the creation of a complementary network graph to represent the network. The graph defined
by (40) illustrates the role of the complementary subsets, which form a ring to which the
Markov chain convergence theorem can be applied to generate steady-state complementary
probability mass functions, which can then be used to generate steady-state individual prob-
ability mass functions. This methodology for the non self-influence case is summarized by
theorem 4.1 below. The methodology for the self-influencing case can be established with
the appropriate modifications.

THEOREM 4.1 (Markov equivalence of complementary network representations). Con-
sider the multivariate Markov process tY1ptq, . . . , Ynptqu originally represented by a graph
with the Yiptq’s as vertices and the transition probability mass functions pi|´i as edges. Let
us define the complementary network graph with vertices comprising the complementary
subsets and edges defined as

(78) p´n|´1pa´n|a
1
´1
q “ p1:n´1|2:npa1, . . . , an´1|a

1
2
, . . . , a1nq “

#

p1|´1pa1|a
1
2
, . . . , a1nq if pa2, . . . , an´1q “ pa

1
2
, . . . , a1n´1

q

0 otherwise,

(79) p´1|´2pa´1|a
1
´2
q “ p2:n|3:1pa2, . . . , an|a

1
3
, . . . , a1n, a

1
1
q “

#

p2|´2pa2|a
1
3
, . . . , a1n, a

1
1
q if pa3, . . . , anq “ pa

1
3
, . . . , a1nq

0 otherwise,

continuing,

(80) p´pn´1q|´npa´pn´1q|a
1
´nq “ pn:pn´2q|1:pn´1qpan, a1, . . . , an´2|a

1
1
, . . . , a1n´2

, a1n´1
q “

#

pn|´npan|a
1
1
, . . . , a1n´1

q if pa1, . . . , an´2q “ pa
1
1
, . . . , a1n´2

q

0 otherwise,

where indexing is mod n; that is, 3 : pn` 1q mod n” 3 : 1 and so forth. Then the original
representation and the complementary representation are Markov equivalent.

The proof of this theorem is by construction. We begin by establishing the result for
p´n|´1 ” p1:n´1|2:n displayed in (78), with the results for p´1|´2 through p´pn´1q|´n es-
tablished similarly. We first factor the complementary transition probability mass function
p´n|´1 as

(81) p1:n´1|2:npa1, . . . , an´1|a
1
2
, . . . , a1n´1

, a1nq “

pn´1|1:n´2,2:npan´1|a1, . . . , an´2, a
1
2
, . . . , a1n´1

, a1nq

p1:n´2,2:npa1, . . . , an´2, a
1
2
, . . . , a1n´1

, a1nq
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and notice that pn´1|1:n´2,2:npan´1|a1, . . . , an´2, a
1
2
, . . . , a1n´1

, a1nq is a degenerate mass func-
tion, since it involves the conditioning component a1n´1

and the conditioned component an´1.
Thus,

(82) pn´1|1:n´2,2:npan´1|a1, . . . , an´2, a
1
2
, . . . , a1n´1

, a1nq “

#

1 if an´1 “ a
1
n´1

0 otherwise.

We next turn our attention to the complementary transition probability mass function
p1:n´2,2:n, which may be factored via the chain rule to yield

(83) p1:n´2,2:npa1, . . . , an´2, a
1
2
, . . . , a1nq “

pn´2|1:n´3,2:npan´2|a1, . . . , an´3, a
1
2
, . . . , a1nqp1:n´3,2:npa1, . . . , an´3, a

1
2
, . . . , a1nq ,

and we immediately observe that pn´2|1:n´3,2:npan´2|a1, . . . , an´3, a
1
2
, . . . , a1nq is degenerate

since it involves an´2 as a conditioned state and a1n´2
as a conditioning state, yielding

(84) pn´2|1:n´3,2:npan´2|a1, . . . , an´3, a
1
2
, . . . , a1nq “

#

1 if an´2 “ a
1
n´2

0 otherwise.

Continuing to the final factorization,

(85) p12pa1, a2|a
1
2
, . . . , a1nq “ p2|1:npa2|a1, a

1
2
. . . , a1nqp1|2:npa1|a

1
2
, . . . , a1nq ,

where p2|1:npa2|a1, a
1
2
. . . , a1nq is degenerate, yielding

(86) p2|1:npa2|a1, a
1
2
. . . , a1nq “

#

1 if a2 “ a
1
2

0 otherwise.

Combining all of these factors (omitting arguments),

(87) p1:n´1|2:n “ pn´1|1:n´2,2:n pn´2|1:n´3,2:n ¨ ¨ ¨p2|1:np1|2:n

becomes
(88)

p1:n´1|2:npa1, . . . , an´1|a
1
2
, . . . , a1nq “

#

p1|2:npa1|a
1
2
, . . . , a1nq if pa2, . . . , an´1q “ pa

1
2
, . . . , a1n´1

q

0 otherwise,

which establishes (78). Establishing (79) and (80) is obtained by similar arguments. The
complementary transition matrices are obtained via Theorem 4.1, yielding

(89)

T1:n´1|2:n “

»

—

—

—

–

p1:n´1|2:npy11, . . . , ypn´1q1|y21, . . . yn1q ¨ ¨ ¨

p1:n´1|2:npy11, . . . , ypn´1q2|y21, . . . yn1q ¨ ¨ ¨

...
p1:n´1|2:npy1N1 , . . . , ypn´1qNn´1

|y21, . . . yn1q ¨ ¨ ¨

p1:n´1|2:npy11, . . . , ypn´1q1|y2N2 , . . . ynNnq

p1:n´1|2:npy11, . . . , ypn´1q2|y2N2 , . . . ynNnq

...
p1:n´1|2:npy1N1 , . . . , ypn´1qNn´1

|y2N2 , . . . ynNnq

fi

ffi

ffi

ffi

fl

,

(90)

T2:n|3:1 “

»

—

—

—

–

p2:n|3:1py21, . . . , yn1|y31, . . . , y11q ¨ ¨ ¨ p2:n|3:1py21, . . . , yn1|y3N3 , . . . , y1N1q

p2:n|3:1py21, . . . , yn2|y31, . . . , y11q ¨ ¨ ¨ p2:n|3:1py21, . . . , yn2|y3N3 , . . . , y1N1q

...
...

p2:n|3:1py2N2 , . . . , ynNn |y31, . . . , y11q ¨ ¨ ¨ p2:n|3:1py2N2 , . . . , ynNn |y3N3 , . . . , y1N1q

fi

ffi

ffi

ffi

fl
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and, continuing,
(91)

Tn:pn´2q|1:pn´1q “

»

—

—

—

–

pn:pn´2q|1:pn´1qpyn1, . . . , ypn´2q1|y11, . . . , ypn´1q|1q ¨ ¨ ¨

pn:pn´2q|1:pn´1qpyn1, . . . , ypn´2q2|y11, . . . , ypn´1q|1q ¨ ¨ ¨

...
pn:pn´2q|1:pn´1qpynNn , . . . , ypn´2qNn´2

|y11, . . . , ypn´1q|1q ¨ ¨ ¨

pn:pn´2q|1:pn´1qpyn1, . . . , ypn´2q1|y1N1 , . . . , ypn´1qNn´1
q

pn:pn´2q|1:pn´1qpyn1, . . . , ypn´2q2|y1N1 , . . . , ypn´1qNn´1
q

...
pn:pn´2q|1:pn´1qpynNn , . . . , ypn´2qNn´2

|y1N1 , . . . , ypn´1qNn´1
q

fi

ffi

ffi

ffi

ffi

fl

.

The notation for these matrices is unavoidably complex, and the reader is invited to examine
the subsequently introduced four- and five-member networks as an aid for following the
generation of the general n-member network. The closed-loop transition matrices are

(92) T´i “ T´i|´pi`1qT´pi`1q|´pi`2q ¨ ¨ ¨T´pi´1q|´i mod n.

Thus, as time progresses, the complementary mass functions evolve as

(93) p´iptq “ T´ip´ipt´ 1q

and applying the Markov chain convergence theorem generates the steady-state complemen-
tary probability mass functions p´i as the eigenvectors corresponding to the unique unit
eigenvalues of T´i, denoted

(94) p´1
“

»

—

–

p´1
py21, . . . , yn1q

...
p´1
py2N2

, . . . , ynNn
q

fi

ffi

fl

(95) p´2
“

»

—

–

p´2
py31, . . . , y11q

...
p´2
py3N3

, . . . , y1N1
q

fi

ffi

fl

and, continuing,

(96) p´n “

»

—

–

p´npy11, . . . , ypn´1q1q
...

p´npy1N1
, . . . , ypn´1qNn´1

q

fi

ffi

fl

.

The steady-state utility mass functions are computed as

(97) pi “

»

—

–

pipyi1q
...

pipyiNi
q

fi

ffi

fl

“ Ti|´ip´i ,

with
(98)

Ti|´i “

»

—

—

—

–

pi|´ipyi1|ypi`1q1, . . . , ypi`nq1q ¨ ¨ ¨ pi|´ipyi1|ypi`1qNi`1
, . . . , ypi`nqNi`n

q

pi|´ipyi2|ypi`1q1, . . . , ypi`nq1q ¨ ¨ ¨ pi|´ipyi2|ypi`1qNi`1
, . . . , ypi`nqNi`n

q

...
...

pi|´ipyiNi
|ypi`1q1, . . . , ypi`nq1q ¨ ¨ ¨ pi|´ipyiNi

|ypi`1qNi`1
, . . . , ypi`nqNi`n

q

fi

ffi

ffi

ffi

fl

mod n.



20

4.1. Four-Member Networks. Consider a four-member network with original graphical
representation

(99)

Y1





**

��

Y2jj



yy
Y4

**

JJ 99

Y3jj

JJYY

where the transition probabilities are defined by p1|234, p2|341, p3|412, and p4|123.
The complementary network representation for the triads

(100)
 

YiptqYjptqYkptqu for pijkq P tp123q, p234q, p341q, p412qu
(

is

(101) Y4 Y3

Y1Y2Y3
T412|123

//

T4|123

OO

Y4Y1Y2

T341|412

��

T3|412

OO

Y2Y3Y4

T123|234

OO

T1|234

��

Y3Y4Y1
T234|341

oo

T2|341

��
Y1 Y2

.

Successively applying the chain rule yields (suppressing arguments)

pijk|jkl “ pk|ijjkl pij|jkl

“ pk|ijjkl pj|ijkl pi|jkl .
(102)

Eliminating redundant conditioning terms yields

(103) pijk|jklpai, aj , ak|a
1
j , a

1
k, a

1
lq “ pk|ijklpak|ai, a

1
j , a

1
k, a

1
lqpj|ijklpaj |ai, a

1
j , a

1
k, a

1
lq

pi|jklpai|a
1
j , a

1
k, a

1
lq ,

Thus, the transition mass functions pk|ijkl and pj|ijkl are degenerate, and must place all of
their mass on the conditioning states, yielding

(104) pk|ijklpak|ai, a
1
j , a

1
k, a

1
lq “

#

1 if ak “ a1k
0 otherwise

and

(105) pj|ijklpaj |ai, a
1
j , a

1
k, a

1
lq “

#

1 if aj “ a1j
0 otherwise,
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which ensures Markov equivalence. Thus,
(106)
Tijk|jkl “

»

—

—

—

—

—

—

—

—

—

—

–

pi|jklpyi1|yj1, yk1, yl1q pi|jklpyi1|yj1, yk1, yl2q 0 0

0 0 pi|jklpyi1|yj1, yk2, yl1q pi|jklpyi1|yj1, yk2, yl2q

0 0 0 0
0 0 0 0

pi|jklpyi2|yj1, yk2, yl1q pi|jklpyi2|yj1, yk2, yl2qq 0 0

0 0 pi|jklpyi2|yj1, yk2, yl1qq pi|jklpyi2|yj1, yk2, yl2q

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

pi|jklpyi1|yj2, yk1, yl1q pi|jklpyi1|yj2, yk1, yl2q 0 0

0 0 pi|jklpyi1|yj2, yk2, yl1q pi|jklpyi1}yj2, yk2, yl2q

0 0 0 0
0 0 0 0

pi|jklpyi2|yj2, yk1, yl1qq pi|jklpyi2|yj2, yk1, yl2q 0 0

0 0 pi|jklpyi2|yj2, yk2, yl1q pi|jklpyi2|yj2, yk2, yl2q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

The closed-loop transition matrices are

(107) Tijk “ Tijk|jklTjkl|kliTkli|lijTlij|ijk

for pijklq P tp1234q, p2341q, p3412q , p4123qu. The complementary probability mass func-
tions are the eigenvectors pijk of the unit eigenvalues of Tijk for ijk P t234, 341, 412, 123u,
from which the steady-state utility functions are obtained, for a 4ˆ 2 network, via
(108)

Ti|jkl “

„

pi|jklpyi1|yj1, yk1, yl1q pi|jklpyi1|yj1, yk1, yl2q pi|jklpyi1|yj1, yk2, yl1q pi|jklpyi1|yj1, yk2, yl2q

pi|jklpyi2|yj1, yk1, yl1q pi|jklpyi2|yj1, yk1, yl2q pi|jklpyi2|yj1, yk2, yl1q pi|jklpyi2|yj1, yk2, yl2q

pi|jklpyi1|yj2, yk1, yl1q pi|jklpyi1|yj2, yk1, yl2q pi|jklpyi1|yj2, yk2, yl1q pi|jklpyi1|yj2, yk2, yl2q

pi|jklpyi2|yj2, yk1, yl1q pi|jklpyi2|yj2, yk1, yl2q pi|jklpyi2|yj2, yk2, yl1q pi|jklpyi2|yj2, yk2, yl2q



,

yielding

(109) pi “ Ti|jklpjkl

with

(110) pi “

„

pipyi1q
pipyi2q



s

and xx

(111) pjkl “

»

—

—

—

—

—

—

—

—

—

—

–

pjklpyj1, yk1, yl1q
pjklpyj1, yk1, yl2q
pjklpyj1, yk2, yl1q
pjklpyj1, yk2, yl2q
pjklpyj2, yk1, yl1q
pjklpyj2, yk1, yl2q
pjklpyj2, yk2, yl1q
pjklpyj2, yk2, yl2q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

for i|jkl P t1|234, 2|341, 3|412, 4|123u.
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4.2. Five-Member Networks. Consider a five-member network comprising tY1, Y2, Y3, Y4, Y5u
with original-form graphical representation

(112)

Y1

Y5

Y4 Y3

Y2
uu

����

��

55

����

,,

QQ

^^

kk

EE

FF

PP

++

66

\\

ll

��vv

and transition probability mass functions p1|2345, p2|3451, p3|4512, p4|5123, and p5|1234. The compo-
nents of Y´iptq are the quadric elements YiptqYjptqYkptqYlptq P tp1234q, p2345q, p3451q, p4512q, p5123qu,
and the complementary network graph is

(113)

Y1Y2Y3Y4

Y2Y3Y4Y5

Y3Y4Y5Y1 Y4Y5Y1Y2

Y5Y1Y2Y3

Y5

Y1

Y2 Y3

Y4

T5|1234

OO

T1|2345jj

T2|3451�� T3|4512 ��

T4|5123 44

T5123|1234

##

T4512|5123





T3451|4512

oo

T2345|3451

TT

T1234|2345

;;

.
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Successively applying the chain rule (suppressing arguments) yields

pijkl|jklm “ pl|ijkjklm pijk|jklm

“ pl|ijkjklm pk|ijjklm pij|jklm

“ pl|ijkjklm pk|ijjklm pj|ijklm pi|jklm .

(114)

The functions pl|ijklm, pk|ijklm, and pj|ijklm are degenerate mass functions, thus

(115) pijkl|jklmpai, aj , ak, al|a
1
j , a

1
k, a

1
l, amq “

#

pi|jklmpai|aj , ak, al, amq if paj , ak, alq “ pa1j , a
1
k, a

1
lq

0 otherwise,

which preserves Markov equivalence.
The transition from Y2ptqY3ptqY4ptqY5ptq to Y1pt` 1qY2pt` 1qY3pt` 1qY4pt` 1q for a

5ˆ 2 network is the 16ˆ 16 matrix T1234|2345 “ rtijkl,mnpqs where

tijkl,mnpq “ p1234|2345py1i, y2j , y3k, y4l|y2m, y3n, y4p, y5qq

“

#

p1|2345py1i|y2j , y3k, y4l, y5mq if pj, k, lq “ pm,n,pq
0 otherwise.

(116)

is the entry in the ijklth row, mnpqth column, with row indexing convention

pijklq P tp1111q, p1112q, p1121q, p1122q, p1211q, p1212q, p1221q, p1222q,

p2111q, p2112q, p2121q, p2122q, p2211q, p2212q, p2221q, p2222qu

and column indexing convention

pmnpqq P tp1111q, p1112q, p1121q, p1122q, p1211q, p1212q, p1221q, p1222q,

p2111q, p2112q, p2121q, p2122q, p2211q, p2212q, p2221q, p2222qu.

By similar arguments, the remaining transition matrices are
T2345|4512 “ rtijkl,mnpqs with

tijkl,mnpq “ p2345|4512py2i, y3j , y4k, y5l|y4m, y5n, y1p, y2qq

“

#

p2|3451py2i|y3j , y4k, y5l, y1mq if pj, k, lq “ pm,n,pq
0 otherwise ;

(117)

T3451|4512 “ rtijkl,mnpqs with

tijkl,mnpq “ p3451|4512py3i, y4j , y5k, y1l|y4m, y5n, y1p, y2qq

“

#

p3|4512py3i|y4m, y5n, y1p, y2qq if pj, k, lq “ pm,n,pq
0 otherwise ;

(118)

T4512|5123 “ rtijkl,mnpqs with

tijkl,mnpq “ p4512|5123py4i, y5j , y1k, y2k|y5m, y1n, y2p, y3qq

“

#

p4|5123py4i|y5m, y1n, y2p, y3qq if pj, k, lq “ pm,n,pq
0 otherwise ;

(119)
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and T5123|1234 “ rtijkl,mnpqs with

tijkl,mnpq “ p5123|1234py5i, y1jy2k, y3k|y1m, y2n, y3p, y4qq

“

#

p5|1234py5i|y1m, y2n, y3p, y4qq if pj, k, lq “ pm,n,pq
0 otherwise .

(120)

The closed-loop transition matrices are

(121) Tijkl “ Tijkl|jklmTjklm|klmiTklmi|lmijTlmij|mijkTmijk|ijkl

for ijkl P t1234,2345,3451,4512,5123u.
The complementary probability mass functions are the eigenvectors pijkl of the unit eigen-

values of Tijkl, from which the steady-state probability mass functions are

(122) pi “ Ti|jklmpjklm

with

(123) Ti|jklm “

„

pi|jklmpyi1|yj1, yk1, yl1, ym1q ¨ ¨ ¨ pi|jklmpyi1|yj2, yk2, yl2, ym2q

pi|jklmpyi2|yj1, yk1, yl1, ym1q ¨ ¨ ¨ pi|jklmpyi2|yj2, yk2, yl2, ym2q



and

(124) pjklm “

»

—

–

pjklmpyj1, yj1, yk1, ym1q
...

pjklmpyj2, yj2, yk2, ym2q

fi

ffi

fl

,

with entries descending in lexicographical order for i|jklm P t1|2345, 2|3451, 3|4512,
4|5123, 5|1234u.

5. Summary and Conclusions. We establish a methodology for determining the steady
state of a stationary multivariate Markov chain with joint-conditioning transition probabilities
pi|´i: Ai|A´iÑ r0,1s, rather than marginal-conditioning transition transitions pi|j : Ai|Aj Ñ

r0,1swhich in general, do not account for structural interrelationships that may exist between
members of Y´i. The key result of this approach is to establish the existence of a Markov
equivalent graphical representation of the original representation of a non-self-influence net-
work that admits the direct application of the Markov chain convergence theorem, which is
then extended to general multivariate Markov chains that admit self-influence (and,by direct
implication, reciprocal influence).

The distinguishing property of the complementary network graphical representation is
that, rather than the vertices comprising the individual members of the network with edges
comprising joint-conditioning/marginal-conditioned transition probability mass functions,
the vertices of the complementary representation comprise the complementary subsets and
the edges comprise joint-conditioning/joint conditioned transition mass functions that are
defined to be Markov equivalent to the original conditional mass functions.

This result has numerous potential applications, including to economic, sociological, po-
litical, genetic, ecological, robotics, and image modeling, machine learning, and neural net-
work engineering. For such applications it is most useful to model the probabilistic behavior
of each influence source in terms of the joint states of all sources, rather than to try to isolate
the dependency of each source separately. Indeed, it is not generally possible to deduce equiv-
alent individual conditional dependency relationships from joint conditional dependency re-
lationships.

A significant operational principle that emerges from this analysis is that the statistical
intra-relationships of individual influence generators within a group are determined by the
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statistical interrelationships between their complementary subgroups.This principle may in-
form the analysis and design of multiagent systems such as robots and of games involving
multiple subjects in an economics laboratory or in behavioral ecology experiments. Such
projects are facilitated by the design of experiments that generate joint-conditioning transi-
tion probabilities rather than focusing on marginal-conditioning transition probabilities (for
examples see [26, 27]

It is important to identify limitations of the approach. It cannot be applied in cases where
analysis depends on the strict directedness of graphs, for example in solving for extensive-
form equilibria of games by backward induction, even when such games involve learning
characterized by Markov processes [11, chapters 5 and 6]. However, even in such cases, our
approach can narrow the set of available equilibria by being used to model processes by
which game players arrive at shared priors for Bayesian updating during subsequent play.

The key practical achievement of the analysis is to extend the reach of Markov-chain
analysis to a wide potential range of contexts in which it has hitherto been inapplicable, by
relaxing the requirement of strict directedness of associated graphs.

REFERENCES

[1] ANDERSSON, S. A., MADIGAN, D. and PERLMAN, M. D. (1997). A characterization of Markov equiva-
lence classes for acyclic digraphs. The Annals of Statistics 25 505 – 541. https://doi.org/10.1214/aos/
1031833662

[2] ANTHONY, M. and BARTLETT, P. (1999). Neural Network Learning: Theoretical Foundations. Cambridge
University Press.

[3] CASTELLETTI, F., CONSONNI, G., VEDOVA, M. L. D. and PELUSO, S. (2018). Learning Markov Equiva-
lence Classes of Directed Acyclic Graphs: An Objective Bayes Approach. Bayesian Analysis 13 1235–
1260.

[4] CECHIN, R. B. and CORSO, L. L. (2019). Higher-Order Multivariate Markov Chain Applied in Dow Jones
and Ibovespa Indexes. Pesquisa Operacional 39 205-223. https://doi.org/10.1590/0101-7438.2019.
039.01.0205

[5] CHING, W., FUNG, E. and NG, M. (2002). A multivariate Markov chain model for categorical data Se-
quences and its applications in demand predictions. IMA Journal of Management Mathematics 13
180-199.

[6] CHING, W., FUNG, E. and NG, M. (2008). Higher-order multivariate Markov chains and their applications.
Lin. Alg. Appl 3 492-507.

[7] COWELL, R. G., DAWID, A. P., LAURITZEN, S. L. and SPIEGELHALTER, D. J. (1999). Probabilistic
Networks and Expert Systems. Springer Verlag, New York, NY.

[8] DIAZ-GARCIA, G., BULLO, F. and MARDEN, J. R. (2023). Distributed Markov Chain-Based Strategies
for Multi-Agent Robotics Surveillance. IEEE Control Systems Letters 7 2527-2532.

[9] DOOB, J. L. (1953). Stochastic Processes. John Wiley & Sons, New York, NY.
[10] EASLEY, D. and KLEINBERG, J. (2010). Networks, Crowds, and Markets: Reasoning about a Highly Con-

nected World. Cambridge University Press, Cambridge.
[11] FUDENBERG, D. and LEVINE, D. K. (1998). The Theory of Learning in Games. MIT Press, Cambridge,

MA.
[12] GÜL, M. and ÖZ, E. (2018). Multivariate Markov Chain Model: An Application to S&P500 and FTSE-100

Stock Exchanges. Marmara Journal of Economics 2 75-88.
[13] HE, Y., JIA, J. and YU, B. (2015). Counting and exploring sizes of Markov equivalence classes of directed

acyclic graphs. The Journal of Machine Learning Research 16 2589–2609.
[14] JACKSON, M. O. (2008). Social and Economic Networks. Princeton University Press, Princeton, NJ.
[15] JENSEN, F. V. (2001). Bayesian Networks and Decision Graphs. Springer Verlag, New York, NY.
[16] JORDAN, M. I., ed. (2001). Learning in Graphical Models. MIT Press.
[17] KHARE, K. and MUKHERJEE, N. (2013). Convergence Analysis of Some Multivariate Markov Chains

Using Stochastic Monotonicity. The Annals of Applied Probability 23 811-833.
[18] LUENBERGER, D. G. (1979). Introduction to Dynamic Systems. John Wiley, New York.
[19] MESBAHI, M. and EGERSTEDT, M. (2021). Graphical Theoretic Methods in Multiagent Networks. Prince-

ton University Press.
[20] MEYN, S. (2008). Control Techniques for Complex Networks. Cambridge University Press, Cambridge,

UK.



26

[21] NORRIS, J. R. (1997). Markov Chains. Cambridge University Press.
[22] PEARL, J. (1988). Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Mateo, CA.
[23] PEARL, J. (2009). Causality: Models, Reasoning, and Inference, second ed. Cambridge University Press,

Cambridge, UK.
[24] RAFTERY, A. E. (1985). A Model for High-order Markov Chains. Journal Royal Statistical Society 47

528-539.
[25] ROSS, D. and STIRLING, W. C. (2021). Economics, Social Neuroscience, and Mindshaping. In The Brain

and the Social–Methods and Philosophy of Integrating Neuroscience and Economics (J. Harbecke and
C. Hermann-Pillath, eds.) 10, 179-201. Routledge.

[26] ROSS, D., STIRLING, W. C. and TUMMOLINI, L. (2023). Strategic Theory of Norms for Empirical Ap-
plications in Political Science and Political Economy. In Oxford Handbook of Philosophy of Political
Science (H. Kincaid and J. V. Bouwel, eds.) 5, 86 - 121. Oxford University Press.

[27] ROSS, D., STIRLING, W. C. and TUMMOLINI, L. (2024). Modeling norm-governed communities with con-
ditional games: Sociological game-determination and economic equilibria. Oeconomia forthcoming.

[28] SAMMUT, G. and BAUER, M. (2021). The Psychology of Social Influence. Cambridge University Press.
[29] SCHOTTER, A. (2023). Advice, Social Learning, and the Evolution of Conventions. Cambridge University

Press.
[30] SHOHAM, Y. and LEYTON-BROWN, K. (2009). Multiagent Systems. Cambridge University Press, Cam-

bridge, UK.
[31] SIU, T., CHING, W., NG, M. and FUNG, E. (2005). On a multivariate Markov chain model for credit risk

measurement. Quant. Fin. 7 543-556.
[32] STIRLING, W. C. (2019). Conditional Coordination Games on Cyclic Social Influence Networks. IEEE

Transactions on Computational Social Systems 6 250-267.
[33] WANG, C., HUANG, T.-Z. and CHING, W.-K. (2014). A New Multivariate Markov Chain Model for

Adding a New Categorical Data Sequence. Mathematical Problems in Engineering 2014. https:
//doi.org/10.1155/2014/502808

[34] ZAWIDZKI, T. W. (2013). Mindshaping: A New Framework for Understanding Human Social Cognition.
MIT Press.

[35] ZHANG, S. Q., CHING, W. K., JIAO, Y., WU, L. Y. and CHAN, R. H. (2008). A Simplified Multivariate
Markov Chain Model for the Construction and Control of Genetic Regulatory Networks. 2008 2nd
International Conference on Bioinformatics and Biomedical Engineering, Shanghai, China. https:
//doi.org/10.1109/ICBBE.2008.138

[36] ZHU, D.-M. and CHING, W.-K. (2011). A note on the stationary property of high-dimensional Markov
chain models. International Journal of Pure and Applied Mathematics 66 321-330.


	Introduction
	Graphical Representations of Multivariate Markov Chains
	Transition Graphs
	Network Graphs

	Graphical Topologies
	Ring Graph
	Fully Connected Graphs
	Non-Self-Influence Network Graphs
	Self-Influencing Network Graphs


	General Algorithm
	Four-Member Networks
	Five-Member Networks

	Summary and Conclusions
	References

