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1. Introduction

Dynamic inconsistency is often cited as a behavioral trait, which highlights the importance of

considering alternative formulations of intertemporal choice behavior that do not rely on constant

discount rates. A simple instance of dynamic inconsistency, also known as time inconsistency, arises

when the decision maker prefers a larger, later payment to a smaller, sooner payment when both

payments are delayed, but prefers the smaller, sooner payment to the larger, later payment once enough

time has passed to make the sooner payment immediately accessible. It is possible to attribute this type

of preference reversal to genuine shifts in the decision maker’s preferences between decision dates, but

it is also possible to find theoretical explanations that do not require temporal instability in preferences.

Prominent examples of the latter approach are models of present biased preferences, in which discount

rates are declining over longer time delays between payments.

Inferences on dynamic inconsistency are usually made by studying individual discount rates over

different horizons, but where those discount rates are elicited at a single point in time.1 Thus individuals

might be prompted to reveal their discount rate over a 1-month period starting at some reference point

in time, and then reveal their discount rate over a 24-month period starting from the same reference

point.2 If the elicited discount rates vary over different time horizons, the individual is typically claimed

to have preferences that imply dynamic inconsistency, by holding and acting on preferences at one point

in time that contradict the preferences and decisions of the same individual at a later date. However,

evaluation of dynamic inconsistency requires a longitudinal design that elicits the same individual’s

choices at two different points in time. While cross-sectional discrepancy between the two sets of

choices may support the hypothesis of non-constant discounting, one cannot infer dynamic

inconsistency from these choices without invoking the assumption of temporal stability in time

preferences. The need to distinguish between the notions of dynamic consistency, constant discounting

and temporal stability has been well-recognized in the literature on time preferences,3 and Halevy [2015]

provides a particularly clear statement of the theoretical interplay between the three.4 Despite the

1 See Frederick, Loewenstein and O’Donoghue [2002] and Cohen, Ericson, Laibson and White
[2020] for literature reviews on the measurement and elicitation of time preferences.

2 An alternative approach in the literature is to vary the time delay to the sooner payment and keep
the time period between the sooner and later payments constant, see Halevy [2015] for an example. 

3 For example, see Bommier [2006; p.1236] and Meier and Sprenger [2015; p.273]).
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importance of temporal stability for inferences about dynamic consistency, there is very little data

available from longitudinal experiments or other primary sources to directly test these properties of

intertemporal preferences, and none that reflects a nationally representative population.5

We evaluate and test the hypotheses of constant discounting, temporal stability and dynamic

consistency using data from a longitudinal field experiment with a nationally representative sample of the adult

Danish population. The experiment is designed to elicit discount rates for assets of different time delays at

different decision dates. Our econometric approach is structural in the sense that we directly estimate

latent preference parameters that characterize a potentially non-constant discounting function, and use

the estimated coefficients to draw statistical inferences. Estimating structural models and undertaking

formal hypothesis tests with respect to underlying latent primitives raises an important point about

statistical tests of the underlying theory. It is possible that two of the three properties each individually

hold in a statistical sense, but that they do not jointly hold statistically. We demonstrate an instance of

this issue as a special case of our analysis.

We model time preferences using a quasi-hyperbolic (also known as “β-δ”) discounting function,

which nests constant and non-constant discounting depending on the value of the present bias

parameter β. We evaluate constant discounting by estimating the present bias parameter from choices in

the initial and repeat experiments, respectively, and we evaluate temporal stability by comparing the

estimated discounting functions from the initial and repeat experiments. To evaluate dynamic

consistency we consider choices between two payments delivered at or after the repeat experiment. We

then ask whether the discounting function estimated from the initial experiment predicts the same

choice as the discounting function estimated from the repeat experiment. The degree of present bias in

the discounting function from the initial experiment is therefore irrelevant to our evaluation of dynamic

consistency, since neither payment option is immediate from the perspective of the initial experiment.

However, the present bias parameter is directly relevant to our evaluation of temporal stability, which

requires that the elicited discounting functions from the initial and repeat experiments display the same

degree of present bias.

4 Halevy [2015] nicely clarifies the distinction and relation between three properties that characterize
time preferences: stationarity, time invariance, and time consistency. These properties correspond to our
definitions of constant discounting, temporal stability, and dynamic consistency, respectively. 

5 We review the existing literature in Section 5.A.
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To control for utility curvature on inferred discount rates, we jointly estimate discounting and

utility functions, following the approach by Andersen, Harrison, Lau and Rutström [2008], and extend

their modeling framework to our longitudinal data set by accounting for within-individual correlation in

risk and time preferences over time. Our objective of evaluating discounting functions at two different

decision dates provides a distinct reason to stress the importance of controlling for utility curvature. In a

cross-sectional analysis, incorrectly assuming linear utility may bias the estimation of discounting

functions since neglected utility curvature may be mistaken for the effects of discounting. In a

longitudinal analysis, it is thus possible that temporal instability in the utility function is mistaken for

temporal instability in the discounting function, unless one jointly estimates both functions at both

decision dates. We control for temporal instability in utility curvature under Rank-Dependent Utility

Theory (RDU) following Quiggin [1982], as well as utility curvature under Expected Utility Theory

(EUT). 

We recruited a nationally representative sample of Danish adults between 19 to 75 years of age,

and draw inferences relevant to the broad population. While the experimenter may invite a random

representative sample of subjects from a field population of interest, whether those subjects show up to

the experiment is their own decision. Selection bias arises when subjects with certain types of (latent)

preferences are more likely to self-select into the observed sample. The longitudinal design also raises

concerns about possible sample attrition bias, which arises when unobserved individual preferences are

correlated with the decision to select into the repeat experiment.6 To control for non-random selection

and attrition effects that may bias our inferences with respect to the adult Danish population, we apply

the direct likelihood approach of Harrison, Lau and Yoo [2020] and construct a statistical model that

explicitly recognizes participants in the longitudinal experiment as self-selected members of the

population in both waves. 

Our structural model controls for endogenous sample selection and attrition bias by allowing the

error terms in the selection and attrition equations to be correlated with unobserved heterogeneity in

6 It is common to claim that there is no selection or attrition bias if the sample and population means
of some key observed characteristics are similar. However, such difference-in-means comparisons do not
address the econometric origin of selection or attrition bias, namely unobservable characteristics that are
correlated with selection decisions and preferences. Harrison, Lau and Yoo [2020] show that correction for
non-random selection and attrition can have significant economic effects on inferred risk attitudes, even
when difference-in-means tests may (mis)lead one to expect otherwise. 

-3-



individual preferences. The model combines the random coefficient specification of population

heterogeneity with joint estimation of risk and time preferences akin to Andersen, Harrison, Lau and

Rutström [2008], Heckman’s [1979] celebrated correction for selection bias, and correction for attrition

bias in the style of Capellari and Jenkins [2004]. Estimation of selection and attrition processes requires

data on those who accepted our invitations to the experiments as well as those who did not. We targeted

a random sample of adult Danes obtained from the Danish Civil Registry and observe some basic socio-

demographic characteristics on both groups of individuals, regardless of their decision to participate in

the experiments. Our design builds in explicit randomization of incentives to participate by varying the

recruitment fee in the initial experiment, which provides an exclusion restriction for the empirical

identification of endogenous sample selection bias.

We generally find dynamic inconsistency in the Danish population between 2009 and 2010. This

finding is remarkable since we find constant discounting in the first wave in 2009, which empirically

illustrates the importance of distinguishing constant discounting from dynamic consistency. The

estimated population means in the first wave for the baseline (annual) discount rate, δ, and the present

bias parameter, β, are respectively equal to 0.109 and 1.002. We do not find comparable results on

constant discounting in the second wave in 2010, and that is what is required, on one leg of the tripod of

properties, to claim dynamic consistency. The estimated population means in the second wave for δ and

β are equal to 0.075 and 0.989, respectively. We also reject the hypothesis of temporal stability of time

preferences over the two waves. Hence we infer dynamic inconsistency in the general population. At a

methodological level we also show that flexible specifications of risk preferences, and corrections for

sample selection and attrition, matter for our inferences on constant discounting, temporal stability and

dynamic consistency.

In Section 2 we discuss our longitudinal field experiment with a focus on sampling procedures

and identification of latent risk and time preference parameters. In Section 3 we formalize hypotheses of

constant discounting, temporal stability and dynamic consistency from our structural model of time

preferences. Section 4 report our findings, based on estimation of the joint distribution of individual-

specific preference parameters within and between waves of the experiment. The approach allows us to

make inferences at the population level as well as the individual level. Section 5 connects our analysis to
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previous literature. We conclude in Section 6 and provide a numerical example that illustrates the

implications of our finding on dynamic inconsistency.

2. Data

Our data originate from a longitudinal, artefactual field experiment conducted in Denmark. The

first wave was designed to study alternative specifications of discount functions (Andersen, Harrison,

Lau and Rutström [2014]) and intertemporal risk aversion (Andersen, Harrison, Lau and Rutström

[2018]). The second wave was designed to study dynamic consistency, temporal stability of risk and time

preferences, and sample selection and attrition in risk and time preferences, which we address here.

A. Sampling Procedures

Between September 28 and October 22, 2009, we conducted an artefactual field experiment with

413 Danes. The sample was drawn to be representative of the adult population aged between 18 and 75

years as of January 1, 2009. We obtained a random sample of 50,000 Danes from the Danish Civil

Registration Office, stratified the sample by geographic area, and sent out 1,996 invitations to a

randomly selected sub-sample. The information from the Danish Civil Registration Office includes sex

at birth, age, residential location, marital status, and whether the individual is an immigrant. Thus we are

in the fortunate, and rare, position of knowing some basic demographic characteristics of the individuals

who do not select into our experiment. At a broad level our final sample is representative of the

population in terms of observable characteristics: the sample of 50,000 Danes had an average age of

49.8, 50.1% of them were married, and 50.7% were female; our final sample of 413 subjects had an

average age of 48.7, 56.5% of them were married, and 48.2% were female.

The initial recruitment letter clearly explained that there would be fixed and stochastic earnings

from participating in the experiment. The fixed amount is 500 kroner in one treatment and 300 kroner

in another treatment, and subjects were randomly assigned to one of these two treatments.7 The

stochastic earnings in the recruitment letter refer to the risk aversion and discounting tasks. There were

40 risk aversion tasks and 130 discounting tasks in the experiment, where the risk aversion tasks

preceded the discounting tasks in one treatment, and vice versa in another treatment. Between April 2010

7 The exchange rate at the time was close to 5 kroner per U.S. dollar.
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and October 2010 we repeated the decision tasks with a sample of 182 subjects from the 413 subjects

who participated in the first experiment.8 Each subject was interviewed in private in the second 

experiment, and the meeting was conducted at a convenient location for them (e.g., their private

residence or the hotel where the first experiment took place). All subjects were paid a fixed fee of 300

kroner for their participation in the second experiment.9

B. Decision Tasks

Individual discount rates are evaluated by asking subjects to make a series of choices over two

outcomes that are paid at different dates. For example, the sooner option could be 3000 kroner now,

and the later option could be 3300 kroner in one year. If the subject with a linear utility function

chooses the sooner option, we can infer that the discount rate is above 10% for a one year time delay. If

the same subject picks the later option instead, we can infer that the annual discount rate is below 10%.

By varying the amount of the later option, we can identify the discount rate of the individual,

conditional on knowing the utility of those amounts to the individual. One can also vary the time delay

between the sooner and later options to identify the discounting function, and of course one can vary

the delay to the sooner option. This method has been widely employed (e.g., Coller and Williams [1999],

Harrison, Lau and Williams [2002], Andersen, Harrison, Lau and Rutström [2008], Eckel, Johnson and

Montmarquette [2005] and Dohmen, Falk, Huffman and Sunde [2010]).

We consider time delays between the sooner and later options from 2 weeks to 1 year. Each

subject was presented with choices over four different time delays in ascending or descending order, and

those time delays were drawn at random from a set of thirteen intervals (2 weeks, and 1, 2, 3, 4, 5, 6, 7,

8 From the sample of 413 subjects in the first experiment, a random sub-sample of 354 subjects were
invited to the second experiment. The sample response rate in the first wave was 24.1% with the high
recruitment fee, and 18.1% with the low recruitment fee. This reduction in sample response rates in the first
wave is statistically significant according to a Fisher Exact test, with a p-value less than 0.001. After
participating in the first wave, the sample response rate in the second wave was slightly lower for those
recruited into the first wave with the high recruitment fee compared to those recruited with the low fee. The
sample response rates were 48.4% and 54.7% in the second wave, respectively, and are not statistically
different according to a Fisher Exact test with a two-sided p-value of 0.24. The sampling procedures are
documented in Harrison, Lau and Yoo [2020].

9 We did not vary the recruitment fee in the second experiment because we offered to interview the
subjects at home or the hotel where the first experiment was conducted. The experiments were very time
consuming and expensive to conduct, and we paid subjects the low recruitment fee of 300 kroner in the
second experiments to keep costs down, although we see the value in varying recruitment fees in the second
stage as well. 
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8, 9, 10, 11 and 12 months).10 We also varied the delay to the sooner option on a between-subjects basis:

roughly half of the sample had decision tasks with no delay to the sooner option, and the other half had

a delay of 30 days. Similarly, we varied the provision of implied annual interest rates for each choice on a

between-subjects basis. Finally, we employed two different principals on a between-subjects basis (1500

and 3000 kroner) to assess the significance of magnitude effects on elicited discount rates. The four sets

of treatments, the order of time delay, the delay to the sooner option, information on implied interest

rates, and the level of the principal, give a 2×2×2×2 design. Each subject was randomly assigned to one

of these sixteen combinations in each wave of the experiment.

The subjects were presented with 40 binary choices, in four sets of 10 with the same time delay

between the sooner and later option. The annual interest rate varied between 5% and 50%, in

increments of 5%, on the principal of 1500 kroner or 3000 kroner. We randomly selected one decision

task for each subject using numbered dice and the subjects were paid their preferred sooner or later

option in that task.11  

Utility functions are evaluated from data in which subjects made a series of choices over two

risky lotteries. For example, lottery A might give the individual a 10-90 chance of receiving 2000 kroner

or 1600 kroner to be paid today, and lottery B might have a 10-90 chance of receiving 3850 kroner or

100 kroner today. We gave subjects 40 choices, in four sets of 10 with the same prize combinations. The

prize sets employed were: [A1: 2000 and 1600; B1: 3850 and 100], [A2: 1125 and 750; B2: 2000 and

10 We over-sampled the first three time delays, since short time delays are important with respect to
identification of alternative discounting functions. The shorter time delays were each chosen with probability
2/16=0.125, compared to the 1/16=0.0625 probability for each of the others. The subjects were randomly
assigned to four different time delays in each wave of the experiment. 

11 The following language explained the payment procedures: “You will receive the money on the
date stated in your preferred option. If you receive some money today, then it is paid out at the end of the
experiment. If you receive some money to be paid in the future, then it is transferred to your personal bank
account on the specified date. In that case you will receive a written confirmation from Copenhagen Business
School which guarantees that the money is reserved on an account at Danske Bank. You can send this
document to Danske Bank in a prepaid envelope, and the bank will transfer the money to your account on
the specified date.” Payments by way of bank transfer are common in Denmark, Copenhagen Business
School is a well-known institution in Denmark, and Danske Bank is the largest financial enterprise in the
country as measured by total assets. All payments to subjects were made by Danske Bank on the specified
dates of the subjects’ preferred options, and we treat all future payments as credible and certain in the
intertemporal decision model. Halevy [2008] and Chakraborty, Halevy and Saito [2020], on the other hand,
treat present payments as certain and future payments as uncertain in their evaluation of the interplay
between risk and time preferences. They introduce a hazard rate on future payments, which means that the
correction for probability weighting under RDU enters the additive intertemporal utility function since future
payments are uncertain.
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250], [A3: 1000 and 875; B3: 2000 and 75] and [A4: 2250 and 1000; B4: 4500 and 50]. The order of the

four prize sets was randomized for each subject, with probabilities of high prizes varying in ascending

order between 0.1 and 1 in increments of 0.1 within each set. We asked each subject to select their

preferred option in each of the 40 decision tasks and then randomly selected one task for payment using

numbered dice.12 

3. Hypotheses

Each discounting task presents a choice between option A that pays Yt in period t and option B

that pays Yt+τ in period t+τ, where τ > 0. Given an atemporal utility function U(m) and a discounting

function D(t), the discounted utility of each option is specified as

PVA = D(t) × U(Yt + ω) + D(t + τ) × U(ω) (1)

PVB = D(t) × U(ω) + D(t + τ) × U(Yt+τ + ω) (2)

where ω is a measure of background consumption.13

12 The experimental procedures were standard: Appendix A in Andersen, Harrison, Lau and
Rutström [2014] documents an English translation of the instructions, and shows typical screen displays for
the discounting and risk aversion tasks, as well as a list of parameter values for all choices. After all choices
had been made the subject was asked a series of standard socio-demographic questions. Section 5.B discusses
alternative procedures for eliciting time preferences. The large incentives and budget constraints precluded us
from paying all subjects, so each subject was given a 10% chance of being paid for one choice in each set of
40 choices. The average payment was 242 kroner for the risk attitude choices and 201 kroner for the
discounting choices, for a combined average of 443 kroner, or $91, in addition to the fixed fee of $60 or
$100.

13 Andersen, Harrison, Lau and Rutström [2008] show that the addition of background consumption
ω > 0 is a sufficient condition to avoid negative discount rates under exponential discounting. The
background consumption parameter ω is set exogenously in our model. We follow Andersen, Harrison, Lau
and Rutström [2008][2014] and set it to the average daily consumption of private non-durable goods per
capita, which was 130 kroner at the time of our experiments in 2009. Andreoni and Sprenger [2012] use
convex budget sets to elicit discounting and utility functions, and treat background consumption as an
endogenous parameter that is estimated along with the {β, δ} parameters in the quasi-hyperbolic discounting
function and a relative risk aversion parameter α under EUT. They do not place any sign restrictions on
background consumption and report both positive and negative values for this parameter. To allow negative
background consumption, one would need to restrict the relative risk aversion parameter α > 0 in their
power specification, which is equivalent to r < 1 in our utility function. This inequality constraint may be
innocuous if one is interested in estimating the population mean of the r parameter, which happens to be
smaller than 1. However, when estimating the population distribution of risk attitudes, as long as there are
some individuals whose r parameters exceed 1, the constraint is not innocuous, regardless of whether the
mean is smaller or greater than 1.
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Our experiment includes discounting tasks with variation in the delay to the sooner option. The

resulting basket of choices between an immediate payment and a future payment, and between two

future payments, allows us to identify and estimate a quasi-hyperbolic (QH) discounting function

           D(t) = 1                       if t = 0 (3)

                   = β × 1/(1 + δ)t   if t > 0  

where β is a present bias parameter and δ is a baseline discount rate for someone with no present bias (β

= 1).14 More generally, δ can be interpreted as a long-run discount rate, regardless of the value of β.15 We

denote time delay t in years (e.g., t = 0.5 for a 6-month horizon), and specify δ on an annualized basis.

We assume a priori that decision makers display long-run delay aversion (δ > 0), and let β take values on

either side of 1 to allow for present bias (β < 1) as well as future bias (β > 1). We assume an additive

intertemporal utility function, following convention.

Consider an individual who at time t1 makes a choice between a sooner reward delivered at time

t1+t and a later reward delivered at time t1+t+τ, where t  0 is the delay to the sooner option, and τ > 0

is the time delay between the sooner and later payments. To facilitate the discussion, let t1 be the date of

the initial experiment and t2 be the date of the second experiment. Assume for the moment that the

sooner and later payments are constant nominal values regardless of the payment date and time delay.

Denote by y{t1+t, t1+t+τ|t1} a binary indicator of whether the later payment is preferred at time t1. The

indicator y{t1+t, t1+t+τ|t2} is similarly defined with respect to time t2. 

The quasi-hyperbolic discounting function D(t) in equation (3) takes values of β1 and δ1 in the

first wave (t1) and β2 and δ2 in the second wave (t2) of the longitudinal experiment. We subscript D(t) as

Dw(t) to emphasize that it is based on βw and δw, where w  {1, 2}. Define the relative discounting

factor, Rw(t, t+τ)  Dw(t+τ)/Dw(t). The individual is more likely to choose the later payment when the

present value favors the later instead of the sooner payment. The evaluation of sooner and later

payments in the statistical model is invariant to using the discount factors of Dw(t) over time delay t and

Dw(t+τ) over time delay t+τ or alternative discount factors of 1 over horizon t and Rw(t, t+τ) over

horizon t+τ. It follows that when one considers two different pairs of numerator and denominator

14 The QH specification was introduced by Phelps and Pollak [1968] for a social planning problem,
and applied to model individual behavior by Elster [1979; p.71] and then Laibson [1997].

15 The discount rate under the QH specification is d*(t) that solves 1/(1 + d*)t = β × 1/(1 + δ)t. The
solution is given by d*(t) = (1 + δ) / β(1/t)  1. For any β > 0, d*(t) converges to δ as the horizon t increases,
and in this sense δ can be interpreted as a long-run discount rate. 
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discount factors, both pairs favor the same payment as long as the implied relative discount factors are

identical. We use Rw(t1+t, t1+t+τ|t1) to denote the relative discount factor associated with the choice

y{t1+t, t1+t+τ|t1}, and vary the time indices to address other cases.

In terms of binary preference relations, constant discounting at the time of the initial experiment

refers to the property that choices made at time t1 depend only on the time delay between the two

payments, so y{t1, t1+τ|t1} = y{t1+t, t1+t+τ|t1} where t > 0. In our structural model, this property can

be stated as a single hypothesis H0: β1 = 1. With a delay to the sooner option t > 0, choice y{t1+t,

t1+t+τ|t1} is between two future payments and the relative discounting factor is given by R1(t1+t,

t1+t+τ|t1) = 1/(1 + δ1)
τ . With no delay to the sooner option, choice y{t1, t1+τ|t1} is between an

immediate reward and a future reward such that R1(t1, t1+τ|t1) = β1/(1 + δ1)
τ. The two relative

discounting factors are identical and favor the same payment when β1 = 1, which is when the

discounting function displays neither present nor future bias.

Temporal stability refers to the property that choices do not vary from one point in time to

another, as long as each payment date is adjusted to maintain the same time delay relative to the decision

date, i.e., y{t1+t, t1+t+τ|t1} = y{t2+t, t2+t+τ|t2}. This can be structurally stated as a joint hypothesis H0:

β1 = β2 and δ1 = δ2 . To focus on the pure effects of discounting, we hold constant (or “partial out,” to

use a linear regression analogy) the effects of the utility function that may vary between the evaluation

points, as the joint estimation of discounting and utility functions allows us to do. Consider first

discounting tasks where t > 0. Choice y{t1+t, t1+t+τ|t1} in the initial experiment and choice y{t2+t,

t2+t+τ|t2} in the repeat experiment give relative discounting factors of R1(t1+t, t1+t+τ|t1) = 1/(1 + δ1)
τ

and R2(t2+t, t2+t+τ|t2) = 1/(1 + δ2)
τ, respectively. Both relative discounting factors favor the same

reward when δ1 = δ2. Without any delay to the sooner payment, the relative discounting factor is R1(t1,

t1+τ|t1) = β1/(1 + δ1)
τ for the initial choice y{t1, t1+τ|t1}, and R2(t2, t2+τ|t2) = β2/(1 + δ2)

τ for the repeat

choice y{t2, t2+τ|t2}. On its own, equation R1(t1, t1+τ|t1) = R2(t2, t2+τ|t2) has two unknown parameters

on each side, and may hold for some configuration of {β1, δ1} and {β2, δ2} despite β1β2 and δ1  δ2.

But given the condition δ1 = δ2 for tasks without a front-end delay, the two relative discounting factors

favor the same reward when β1 = β2. 

Finally, dynamic consistency refers to the property that choices do not vary from one point to

another when each payment date is fixed, i.e., y{t1+t, t1+t+τ|t1} = y{t1+t, t1+t+τ|t1+t}. This can be
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structurally stated as a joint hypothesis H0: β2 = 1 and δ1 = δ2. While this property also pertains to

comparisons of choices made at two points in time, each payment date is now fixed in time. Consider

first decisions with a delay to the sooner payment t > 0 in the repeat experiment. Since the choice is

between two future payments from the perspective of the initial and repeat experiment, one may expect

the present bias parameters β1 and β2 to be irrelevant. Indeed, the relative discounting factors, R1(t2+t,

t2+t+τ|t1) = 1/(1 + δ1)
τ for choice y{t2+t, t2+t+τ|t1} in the initial experiment and R2(t2+t, t2+t+τ|t2) =

1/(1 + δ2)
τ for choice y{t2+t, t2+t+τ|t2} in the repeat experiment, favor the same payment when δ1 =

δ2. Now suppose that the delay to the sooner payment in the repeat experiment is removed. This makes

the sooner payment immediate from the perspective of the repeat experiment, but it remains delayed

from that of the initial experiment. As one may expect, β1 remains irrelevant but β2 becomes relevant to

relative discounting factors in the repeat experiment: R1(t2, t2+τ|t1) = 1/(1 + δ1)
τ for the initial choice

y{t2, t2+τ|t1}, and R2(t2, t2+τ|t2) = β2/(1 + δ2)
τ for the repeat choice y{t2, t2+τ|t2}. On its own, R1(t2,

t2+τ|t1) = R2(t2, t2+τ|t2) may be satisfied by some configuration of β2 1 and δ1  δ2. But given the

condition δ1 = δ2 in the case with a positive delay to the sooner payment in the repeat experiment, the

two relative discounting factors favor the same reward when β2 = 1.

Our structural approach fully accommodates the interplay of constant discounting, temporal

stability and dynamic consistency: Each of our three hypotheses may hold without the other two, and a

combination of any two hypotheses implies the third one. Applying the logic behind our approach to a

wider range of non-constant discounting functions shows that the quasi-hyperbolic discounting function

is a rare, if not unique, functional form that allows one to test each hypothesis of constant discounting,

temporal stability and dynamic consistency separately. For example, a hyperbolic discounting function

Dw(t) = 1/(1 + κwt) allows one to test for temporal stability in the κw parameter and nothing else. Given

any non-zero value of κw , the relative discount factor, Rw(t, t+τ) = [1 + κw(t+τ)]/(1 + κwt), implies non-

constant discounting and dynamic inconsistency. A Weibull discounting function Dw(t) = exp{δwtζw}

leads to a relative discount factor of Rw(t, t+τ) = exp{δw[(t+τ)ζwtζw]}, which does not allow one to test

for constant discounting and dynamic consistency separately. When applied to a choice between

payments dated t2 and t2+τ, the relative discount factor becomes R1(t2, t2+τ|t1) = exp{δ1[(t2t1+τ)ζ1

(t2t1)
ζ1]} for the initial choice at t1, and R2(t2, t2+τ|t2) = exp{δ2[τ

ζ2]} for the repeat choice at t2. Thus,
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in the Weibull case, constant discounting at the time of the initial experiment, ζ1 = 1, is a necessary

condition for dynamic consistency, R1(t2, t2+τ|t1) = R2(t2, t2+τ|t2).

Although the three hypotheses of constant discounting, temporal stability and dynamic

consistency pertain to discounting functions, explicit controls for utility curvature in each wave of the

experiment are important to avoid biased evaluations of those hypotheses. We use the risk aversion

tasks to identify the utility function U(m) and assume that it has the functional form

U(m) = m(1r)/(1r), (4)

where the r parameter is an index of utility curvature, with concave utility when r > 0 and convex utility

when r < 0. Under EUT the r parameter is interpreted as the coefficient of relative risk aversion. 

Our identification strategy employs the more general RDU model that attributes risk preferences

to the effects of rank-dependent probability weighting as well as utility curvature. We jointly estimate the

utility function in (4) with the probability weighting function (PWF)

w(P) = exp{(ln P)φ}, (5)

where the φ parameter determines the shape of the PWF, which follows an inverse-S shape over

probabilities if φ < 1 and an S shape if φ > 1. An inverse-S shape over-weights probabilities (w(P) < P)

when P is relatively small, and under-weights probabilities (w(P) > P) when P is relatively large.16 The

order of over-weighting and under-weighting is reversed for an S-shaped function. EUT is a special case

of RDU which assumes φ = 1, hence w(P) = P everywhere. As with the discounting parameters, we

allow the values of the risk preference parameters r and φ to vary between waves.

4. Results

We are interested in evaluating and testing hypotheses with respect to three properties of

individual time preferences: constant discounting, temporal stability, and dynamic consistency. We use

maximum simulated likelihood to estimate the full statistical model that captures behavioral noise in

decision making,17 unobserved preference heterogeneity, endogenous selection into the first wave of the

16 Given our functional form assumption, the small and large probabilities are defined relative to P =
0.368, which is the fixed point where w(P) = P for any value of φ.

17 Our stochastic specification adopts the contextual utility model of Wilcox [2011] for risk aversion
tasks and a Fechner error specification for discounting tasks. We discuss alternatives in the literature in
Section 5.B.
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longitudinal field experiment, and endogenous panel attrition between the two waves of the same

experiment. The statistical model is documented in Appendix A.

Our model accommodates unobserved preference heterogeneity by specifying the time and risk

preference parameters for each wave w  {1, 2} as random parameters {βnw, δnw, rnw, φnw}, where n

indexes different individuals in the population. Then, we estimate population means, medians and

standard deviations of the individual-specific preference parameters as well as within-wave and between-

wave correlations in those parameters. This approach of estimating the joint distribution of the

preference parameters allows us to evaluate discounting functions at both the population level and the

individual level in a coherent manner. At the population level, we test whether discounting functions

evaluated at the population means of the preference parameters display each property of interest. At the

individual level, we derive the population share of individuals who have discounting functions that

display each property of interest, based on the estimated joint distribution function. We also use the

estimated correlation matrix to study within-individual correlation in the same parameter between the

two waves, and within-individual correlation in different parameters as at the same wave.

The statistical procedure addresses the panel dimension of the data set at both the modeling and

inferential stages. At the modeling stage, our random parameter specification induces panel correlation

across repeated observations on the same individual, in an analogous fashion to mixed logit models for

repeated choice data. At the inferential stage, we adjust all standard errors and test statistics for

clustering at the individual level.

We use Johnson’s [1949] “SB” distribution to capture the population distribution of each time

preference parameter. An SB distribution is a logit transformation of a normal distribution. This

transformation produces a flexible parametric distribution that is capable of approximating a wide range

of shapes in population distributions (e.g., uniformity, unimodality, bimodality, and left and right

skewness) without requiring us to impose any shape restriction a priori. The primary tradeoff is that we

cannot obtain analytic solutions for the population means, standard deviations and correlation

coefficients describing the SB-distributed time preference parameters.18 We simulate these population

18 We choose more restrictive but analytically tractable distributions for the risk preference
parameters rnw and φnw, whose roles in our analyses are akin to control variables in everyday regression
contexts. Specifically, we use normal and log-normal distributions to capture the population distributions of
rnw and φnw, respectively.
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moments using 10,000 draws from the estimated joint distribution of the underlying normal parameters,

and compute associated standard errors and confidence intervals using the bootstrapping procedure of

Krinsky and Robb [1986]. All moments that we report for the time preference parameters, βnw and δnw,

refer to their SB distributions rather than the underlying normal distributions.

A. Constant Discounting, Temporal Stability, and Dynamic Consistency

The upper-left panel of Figure 1 displays the estimated population distribution of the baseline

discount rate δnw for each wave w, based on the empirical model that corrects for endogenous selection

and attrition bias. The estimated coefficients in the model are reported in Table 1. The estimated

distribution for wave 1 is unimodal and right-skewed, neither of which has been imposed a priori. There

is an evident degree of preference heterogeneity, although most individuals seem to have baseline

discount rates in the interval between 0% and 10% per annum. This informal description is comparable

with the estimated mean, median and standard deviation, which are 10.9%, 4.4% and 14.5%,

respectively. The estimated population distribution for wave 2 takes a similar shape with slightly higher

density in the interval between 0% and 10%, and the estimated mean, median and standard deviation are

7.5%, 4.1% and 9.2%, respectively. All the estimated means, medians and standard deviations are

significantly greater than 0, with p-values < 0.001. Henceforth, unless we say otherwise, all point

estimates in our discussion have p-values less than 0.001.

The lower-left panel of Figure 1 displays the estimated population distribution of the present

bias parameter βnw for each wave, based on the same empirical model that corrects for endogenous

selection and attrition bias. The estimated distribution for wave 1 is unimodal and left-skewed, and the

interval between 0.95 and 1.05 captures most decision makers in the population. While the estimated

mean and median is 1.002 and 1.005, respectively, the population distribution displays a statistically

significant standard deviation of 0.025. The estimated distribution for wave 2 is more skewed to the left,

with an estimated mean, median and standard deviation of 0.989, 0.992 and 0.030, respectively.19 

19 Formally, the marginal distribution of the baseline discount rate parameter, δnw = 0.7/[1 +
exp(δ*

nw)], is characterized by the mean and standard deviation of the underlying normal parameter δ*
nw.

Similarly, the marginal distribution of the present bias parameter, βnw = 0.7 + 0.4/[1 + exp(β*
nw)], is

characterized by the mean and standard deviation of the underlying normal parameter β*
nw. Using χ2(2)-

distributed Wald tests, we reject the hypothesis that the two marginal distributions in wave 1 and 2 are
identical for each of parameters δnw and βnw, with p-values less than 0.001.
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We now move to more formal statistical tests of properties describing time preferences at the

population level, and consider first the hypothesis of constant discounting, H0: E(βnw) = 1. The estimated

population mean of the present bias parameter for wave 1 is equal to 1.002, and we cannot reject H0:

E(βn1) = 1, despite the small standard error of 0.002 (p-value = 0.317). The estimated population mean

for wave 2 is equal to 0.989 and close to unity, but we nevertheless reject H0: E(βn2) = 1, with a p-value

< 0.001. Hence, we cannot reject the null hypothesis that discount rates are constant in wave 1, but we

formally reject the hypothesis in wave 2, although the estimated population mean of the present bias

parameter is very close to 1. 

Consider next the hypothesis of temporal stability, H0: E(βn1) = E(βn2) and E(δn1) = E(δn2). The

estimated difference in the population means of the present bias parameter, E(βn2)  E(βn1), is equal to

0.013, with a 95% confidence interval of [0.019, 0.007], and the estimated difference in the

population means of the baseline discount rate, E(δn2)  E(δn1), is equal to 0.033, with a 95%

confidence interval of [0.048, 0.012]. The confidence intervals are consistent with relatively small

standard errors for the estimated differences in populations means of the two discounting parameters,

and we reject both H0: E(βn1)= E(βn2) and H0: E(δn1)= E(δn2) with a p-value < 0.001. We also reject the

joint null hypothesis of temporal stability (p-value < 0.001).20 

Finally, consider the hypothesis of dynamic consistency, H0: E(βn2) = 1 and E(δn1) = E(δn2). This null

hypothesis entails constant discounting in wave 2 and temporal stability in the baseline discount rate

across the two waves. The joint test of the two constraints does not entail constant discounting in wave

1, since the relevant payment options are delayed from the perspective of wave 1, which implies that βn1

does not influence the ordering of discounted utilities. Although the estimated coefficients roughly

20 Two correlation coefficients are directly relevant to temporal stability in time preferences: corr(δn1,
δn2) and corr(βn1, βn2) capture within-individual correlation over time in the baseline discount rate and present
bias parameter, respectively. Each correlation coefficient may be used as a measure of individual-level
temporal stability in the respective parameter. With corrections for endogenous selection and attrition bias,
the estimated value of corr(δn1, δn2) is 0.354 with a p-value < 0.001, and the estimated value of corr(βn1, βn2) is
0.273 with a p-value = 0.018. Thus temporal stability holds for each parameter in the sense that if some
individuals display greater long-run delay aversion or present bias than the average person in wave 1, they
also tend to do so in wave 2. However, this directional prediction is not deterministic, since we reject the
hypothesis of perfect positive correlation for either parameter (p-value < 0.001). We discuss comparisons of
these results with previous literature in Section 5.C. 
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satisfy E(βn2) = 1 and E(δn1) = E(δn2), we reject each null hypothesis, as well as the joint hypothesis of

dynamic consistency, with a p-value < 0.001.21

Our econometric approach also allows us to undertake a more individualistic evaluation of

constant discounting, temporal stability and dynamic consistency, by considering the population shares

of decision makers whose discounting functions agree with each hypothesis. Since we have estimated

the population distributions of all preference parameters, including all relevant correlation coefficients,

we can derive population shares for each type of discounting behavior by computing the following

marginal and joint probabilities: Pr(|βnw  1| < εβ) for constant discounting at wave w; Pr(|βn2  βn1| <

εβ and |δn2  δn1| < εδ) for temporal stability between the two waves; and Pr(|βn2  1| < εβ and |δn2 

δn1| < εδ) for dynamic consistency. For hypotheses involving present bias parameters, the absolute

tolerance εβ > 0 defines small deviations from rigid predictions that we will allow for when classifying

discounting behavior into different types.22 For hypotheses involving baseline discount rates, the

tolerance is given by εδ > 0 instead.23 We consider εβ = 0.025 and εδ = 0.05 as benchmark tolerances, and

examine the sensitivity of our results to alternative configurations. Setting εδ = 0.05 is arguably a natural

benchmark for the baseline discount rate, since the smallest increment in annual interest rates across our

discounting tasks for a particular time horizon is 5 percent. A benchmark tolerance for εβ is less obvious

and we set it equal to 0.025, which is close to the estimated standard deviation of the population

distribution for the present bias parameter in both waves. 

Table 2 reports the estimated population shares of decision makers that fall into different types

of discounting behavior, based on the benchmark tolerance configuration. We find that a majority of

Danes display constant discounting in both waves of the experiment: 66.9% of the decision makers have

constant discount rates in wave 1, and 59.8% have constant discount rates in wave 2. The estimated

population share is significantly different from 50% in wave 1 (p-value = 0.022), but we cannot reject

that it is equal to 50% in wave 2 (p-value = 0.138).

21 We obtain the same conclusions when we consider stronger tests of temporal stability and
dynamic consistency that also include utility curvature. In that case the test for temporal stability is H0: E(βn1)
= E(βn2), E(δn1) = E(δn2) and E(rn1) = E(rn2); and the test for dynamic consistency is H0: E(βn2) = 1, E(δn1) =
E(δn2) and E(rn1) = E(rn2).

22 For instance, our evaluation classifies individual n’s behavior as constant discounting in wave w if
(1εβ) < βnw < (1+εβ), whereas the rigid prediction requires that βnw = 1. 

23 Since we adopt continuous population distributions to model preference heterogeneity, setting εβ

= εδ = 0 leads to the trivial conclusion that all three population shares are equal to 0.
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The decision makers who display temporal stability in the baseline discount rate and the present

bias parameter are estimated to make up 27.9% of the population, with a 95% confidence interval of

[20.9%, 36.4%]. Hence, a majority of the population (72.1%) displays temporal instability in at least one

of the two parameters. When we look at each parameter separately, those with temporally stable baseline

discount rates make up 53.0% of the population, and those with temporally stable present bias

parameters also make up 53.0%. The two parameters in the quasi-hyperbolic discounting function thus

show a similar degree of temporal (in)stability. The population share of those with temporal instability in

both parameters is estimated to be 21.9%.

Finally, the estimated share of decision makers who display dynamic consistency is equal to 31.5%,

with a 95% confidence interval of [24.5%, 40.6%]. Dynamic consistency entails constant discounting in

wave 2 along with temporally stability in baseline discount rates between the two waves. The share of

decision makers with constant discounting in wave 2 is 59.8%, and that of those with temporally stable

baseline discount rates is 53.0%. Constant discounting thus seems to be a more important source of

dynamic consistency than temporal stability in baseline discount rates, although our inference

concerning dynamic consistency is based on a joint probability that takes into account the estimated

correlation coefficients for different preference parameters.

Figure 2 illustrates the sensitivity of these findings to different values of the two noise tolerances.

The three panels display the estimated shares of decision makers who reveal constant discounting,

temporal stability and dynamic consistency, respectively. The estimated population shares increase with

the size of the tolerances, by construction, but the tendency is the same as before: when we look at the

shares of decision makers with these traits we find more empirical support for constant discounting than

temporal stability and dynamic consistency.24 

B. Are Risk and Time Preferences Correlated?

Turning to risk preferences, the upper-left panel in Figure 3 shows the estimated population

distributions of the utility curvature parameter rnw across the two waves, with controls for non-random

24 Table C2 in Appendix C reports estimated population shares of decision makers who reveal
constant discounting, temporal stability and dynamic consistency, based on an alternative structural model
with EUT to identify utility curvature. Using the same tolerance configurations as above, we find smaller
population shares for each of those three types of discounting behavior compared to the model with RDU.
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selection and attrition bias. The population distribution of the utility curvature parameter shifts to the

right in wave 2 compared to wave 1, but the apparent increase in risk aversion is not statistically

significant (p-value = 0.097) at the 5% significance level. The estimated population mean is equal to

0.951 with a p-value of 0.066 in wave 1, and equal to 1.076 with a p-value of 0.089 in wave 2. We also

observe that the population distribution in wave 2 has a smaller standard deviation than the distribution

in wave 1; the estimated standard deviation is 0.725 in wave 1 and 0.597 in wave 2, and we cannot reject

the null hypothesis that the estimated difference in the two coefficients is equal to 0 at the 5% level (p-

value = 0.088). Hence, we find temporal stability with respect to the population mean, and also with

respect to the standard deviation of the utility curvature parameter.25

The estimated population distributions of the shape parameter φnw in the PWF are displayed in

the lower-left panel of Figure 3. The distributions control for selection and attrition bias, and we

observe insignificant differences in the estimated population distributions of the shape parameter

between the two waves. The estimated difference in the population mean between the two waves is

statistically insignificant (p-value = 0.758), and we also find that the standard deviation of the population

distribution is temporally stable (p-value = 0.520).26

Turning to the association between risk and time preferences, we find that the baseline discount

rate is negatively correlated with utility curvature in both waves: the estimated values of corr(δn1, rn1) and

corr(δn2, rn2) are 0.378 and 0.349, respectively, and both coefficients are significantly smaller than 0 (p-

value < 0.001).27 The negative correlation coefficients thus suggest that those with higher baseline

discount rates tend to be less risk averse, ceteris paribus.28 The present bias parameter is significantly

correlated with utility curvature in wave 1, but not in wave 2. In wave 1 more present-biased individuals

have less concave utility: the estimated value of corr(βn1, rn1) is 0.183 and significantly greater than 0 (p-

25 The estimated correlation coefficient between the two wave-specific population distributions of
the utility curvature parameter, corr(rn1, rn2), is equal to 0.668, and we reject the hypothesis that they are
independent (p-value < 0.001).

26 The estimated between-wave correlation of the shape parameter, corr(φn1, φn2), is 0.871 with a
standard error of 0.063, which suggests a strong degree of temporal stability at the individual level.

27 Table B1 in Appendix B reports the estimated correlation coefficients. 
28 This finding is not an algebraic artefact. The discounted utility difference between sooner and later

payment options changes in favor of the sooner option, as δnw (i.e., long-run delay aversion) increases or rnw

(i.e., concavity of the utility function) decreases. But this algebraic property says nothing about whether
individuals with δnw > E(δnw) tend to have rnw < E(rnw).   
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value < 0.001). In wave 2, however, the estimated value of corr(βn2, rn2) is 0.005 and we cannot reject

that the two distributions are independent (p-value = 0.949).29 

The estimated correlation coefficient between the baseline discount rate and the shape

parameter for the PWF in wave 1, corr(δn1, φn1), is 0.268. The corresponding coefficient in wave 2,

corr(δn2, φn2), is 0.342. Both coefficients are significantly greater than 0. The implications of these

positive correlation coefficients are less straightforward to evaluate. When the probability of the best

outcome increases, the PWF switches from being concave to convex when φnw < 1, and vice versa when

when φnw > 1. We find that E(φn1) and E(φn2) are equal to 2.171 and 2.091, respectively, which means

that the average person has an S shaped PWF. If the average decision maker under-weights (over-

weights) a particular probability, someone with φnw > E(φnw) will under-weight (over-weight) it even

further. The positive correlation coefficients thus suggest that the effects of S-shaped probability

weighting tend to be more pronounced for those with higher baseline discount rates. The results are

more mixed with respect to the correlation between the present bias and shape parameters. The value of

corr(βn1, φn1) is 0.213 and significantly smaller than 0, but corr(βn2, φn2) is equal to 0.098 and

insignificant (p-value = 0.189). Hence, in wave 1, more present-biased individuals tend to have PWFs

that display more pronounced S shapes. This association, however, almost vanishes in wave 2.

C. Controlling for Endogenous Selection and Attrition

Our model accounts for endogenous sample selection and panel attrition by specifying selection

and attrition equations in the style of Heckman [1979] and Capellari and Jenkins [2004], and allowing

the error terms in those equations to be correlated with each other as well as each of the time and risk

preference parameters. Our experimental design provides natural candidates for exclusion restrictions to

assist empirical identification of the selection and attrition equations. The initial invitation letter

randomized individuals to different recruitment fees, and the longitudinal design allows us to observe

each subject’s additional earnings from the first experiment. We assume that the recruitment fees

29 The estimated pattern of correlation coefficients between risk and time preferences under EUT is
generally the same as the results under RDU, in terms of sign and statistical significance. The only exception
is the estimate of corr(βn2, rn2), which is 0.210 and significantly greater than 0 under EUT (p-value = 0.002).
The estimate of corr(βn1, rn1) remains positive and significant, and we thus find that more present-biased
individuals tend to be less risk-averse in both waves.
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influence the initial decision to accept the first invitation, but not the decision to accept the second

invitation once we control for additional earnings from the first experiment. We maintain the usual

hypothesis that the recruitment fees do not affect the subject’s evaluation of time-dated payments and

lottery pairs directly. Finally, subjects had to travel to hotel meeting rooms to participate in the first

experiment, whereas each subject chose their own preferred venue for the second experiment.

These features of our experimental design allow us to distinguish the selection equation from the

attrition equation. We include the recruitment fee only in the selection equation, and the actual earnings

from the first experiment only in the attrition equation.30 In addition, we augment the selection equation

with each subject’s home-to-hotel distance (in miles) and its square value, and attrition equation with

self-reported income that is only available for those who participated in the first experiment; both

equations also include the individual’s age and gender. The distinctive theoretical structures that we have

placed on the discounting choice model (namely, discounted utilities with quasi-hyperbolic discounting

functions) and the risky choice model (RDU) immediately differentiate the two models from each other,

as well as from the selection and attrition equations.

The sample selection equation reported in Table 1 shows that recruitment fees and the distance

from an individual’s home to a session venue significantly affect the decision to participate in the

experiments.31 The law of demand effectively applies to the participation decisions, with the propensity

to self-select into the experiments increasing significantly when the recruitment fee is raised from 300

kroner to 500 kroner for participation in wave 1. We also find a statistically significant and U-shaped

association between the self-selection index and the home-to-hotel distance, with a negative and

diminishing marginal effect of distance up to a turning point at 30.6 miles. As one may expect, people

30 Adding the recruitment fee to the attrition equation does not change our results and conclusions
with respect to constant discounting, temporal stability and dynamic consistency. Table D1 in Appendix D
reports the estimated parameters for the model where the recruitment fee is included in both the selection
and attrition equation.

Additional earnings in the initial experiment include payments for choices in three sets of decision
tasks which elicit individual risk attitudes, discount rates and correlation aversion, respectively. Additional
earnings are thus negatively correlated with individual discount rates in the first experiment. We obtain
virtually the same results when we restrict the measure of additional earnings to payments for choices in the
risk aversion tasks. Table D2 in Appendix D reports the estimated parameters for the model where additional
earnings in the attrition equation refer to payments for choices in the risk aversion tasks.   

31 The coefficient estimates for the sample selection and attrition equations have been re-scaled so
that the reported results can be interpreted in the same manner as the coefficient estimates for the usual
censored probit models that standardize the variance of each component equation to unity.
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who live farther away from the session venues are less likely to participate, and people who live closer

are more sensitive to a small increase in distance.32 Looking at personal characteristics, middle-aged and

older subjects are more likely to participate in the first wave than younger age groups.33 Table 1 also

shows that it is difficult to explain panel retention in terms of the subject’s observed characteristics,

though the point estimates suggest that those who earned more from the initial experiment are more

likely to return to the second experiment if invited.34 

The hypothesis of no endogenous selection bias involves 9 parametric constraints: it states that

the error term in the selection equation is uncorrelated with the error term in the attrition equation and

the population distributions of the 8 preference parameters in the structural model. We reject this

hypothesis with a p-value < 0.001, so the result is consistent with significant sample selection. The

hypothesis of no endogenous attrition bias implies that the error term in the attrition equation is

uncorrelated with the 8 preference parameters, which is also rejected (p-value < 0.001). This result is

also consistent with significant sample attrition. The estimated correlation coefficient between the error

terms in the selection and attrition equations is equal to 0.273 with a standard error of 0.055, which

further implies that one cannot correct for attrition bias without also correcting for selection bias.35

From Figure 1 we can see the effects of controlling for selection and attrition bias on baseline

discount rates and present bias parameters. The left panels show the estimated population distributions

from a model with corrections for endogenous selection and attrition, and the right panels show the

corresponding results from a model without such corrections. Although we model the time preference

parameters using SB distributions that can display a variety of shapes, the corrected and uncorrected

32 The marginal effect of distance is positive after the turning point, but this is an artefact of the
quadratic specification that has limited practical significance, since only 20 out of the 1996 invitees lived
outside a 30.6 mile radius from a venue. 

33 Most variables have self-evident definitions. The “young” age group is defined as those less than
30 years, the “middle” age group is defined as those between 40 and 50 years, and the “old” age group is
those over 50 years. Lower income is defined in variable “IncLow” by a household income in 2008 below
300,000 kroner, and higher income is defined in variable “IncHigh” by a household income of 500,000
kroner or more. 

34 Removing personal characteristics from the selection and attrition equations does not change our
overall results. Table D3 in Appendix D reports the estimated parameters for the model where the
recruitment fee and home-to-hotel distance are included in the selection equation, and the recruitment fee
and revised measure of additional earnings are included in the attrition equation.

35 The attrition equation can display selection bias because an individual’s attrition outcome is
observed only if the individual participated in the initial experiment, just as the individual’s discounting and
risky choices are.
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population distributions happen to take on similar shapes. The corrected and uncorrected point

estimates are also similar. The estimated coefficients in the model without corrections for sample

selection and attrition bias are reported in Table 3. The estimated mean and standard deviation of the

uncorrected distribution for the baseline discount rate are 11.1% and 12.8% in wave 1, and 9.5% and

12.3% in wave 2. For the present bias parameter, the estimated mean and standard deviation is 0.998

and 0.030 in wave 1, and 0.997 and 0.021 in wave 2.

Incorrectly assuming away endogenous selection and attrition bias changes our population-level

inferences on constant discounting in wave 2, but not in wave 1. Based on the estimated population

means, we do not reject constant discounting in wave 1 (p-value = 0.317) or in wave 2 (p-value = 0.317).

Moreover, we cannot reject the hypothesis of temporal stability at the 10% significance level (p-value =

0.051), whereas temporal stability was rejected at the 1% significance level in the model with

corrections. Although we do not reject constant discounting in wave 2 and cannot reject temporal

stability at the 10% significance level, we continue to reject the hypothesis of dynamic consistency in the

model without corrections (p-value = 0.009).36

The results illustrate the important methodological point that inferences on constant discounting

and temporal stability must be made jointly to infer dynamic consistency. In this instance the two t-tests

of single properties lead us to conclude that we have constant discounting in wave 2 and temporal

stability between the two waves, but the joint Wald test of both properties leads us to conclude that we

have dynamic inconsistency. 

In Table 4 we use the results from the model without corrections for sample selection and

attrition to evaluate the population shares of decision makers who reveal constant discounting, temporal

stability and dynamic consistency. Using the same tolerance configuration used for the model with

corrections (εβ = 0.025 and εδ = 0.05), we continue to find constant discounting for a majority of the

population in both waves. But in contrast to the corrected estimates, the uncorrected estimates suggest

36 Incorrectly assuming away sample selection, but still correcting for sample attrition is relatively
easy to do. In a longitudinal experiment there is often considerable “baseline” data collected on individuals,
which can form the basis for corrections for attrition even if one does not, typically by definition, know
anything about those that do not even turn up to the baseline. However, this special case also leads to some
important differences in inferences compared to correcting for both selection and attrition jointly. It leads to
incorrectly rejecting the null of constant discounting in wave 1, and incorrectly failing to reject the null of
temporal stability. We do correctly reject the joint hypothesis of dynamic consistency at the 5% level, but
incorrectly fail to also reject it at the 1% level.
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that constant discounting is more prevalent in wave 2 than wave 1. The estimated population share is

58.9% in wave 1 and 77.5% in wave 2, with confidence intervals of [47.6%, 72.1%] and [63.6%, 90.1%],

respectively. The population share of those with temporally consistent discounting functions continues

to be relatively small; the estimated population share is 31.8%, with a confidence interval of [21.3%,

42.8%]. Finally, the population share of those with dynamically consistent time preferences is equal to

42.0%. This estimate is 10.5 percentage points larger than the corresponding share in the corrected

model, and we cannot reject the null hypothesis that half of the population have dynamically consistent

preferences (p-value = 0.089).

D. Restrictions on Probability Weighting

The best known theory of decision making under risk is EUT, which allows one to estimate a

non-linear utility function and use it to control for the effects of utility curvature on the inferred

discounting function. Our modeling framework employs RDU, which generalizes EUT, and we find

statistically significant probability weighting in the population as a whole. Specifically, our model nests

EUT as a special case that constrains the shape parameter of the PWF, φnw, to 1 for every person n and

wave w. As Table 1 shows, we reject this hypothesis: the estimated standard deviation of φnw is

significantly greater than 0 in each wave, which suggests that φnw is heterogeneous. 

Nevertheless, given the prominence of EUT, Appendix C reports the EUT-based estimation

results for comparisons with the RDU-based results that we have presented so far. In the EUT-based

results, the estimated population means of the discounting parameters are very close to the null

hypothesis values under constant discounting, temporal stability and dynamic consistency: the point

estimates of E(δn1), E(δn2), E(βn1), and E(βn2) are 12.4%, 13.3%, 0.993, and 1.003, respectively. But we

obtain relatively small standard errors for these estimates. We reject constant discounting in wave 1 (p-

value < 0.001), although that result for wave 1 does not matter for the test of dynamic consistency. We

do not reject constant discounting in wave 2 (p-value = 0.262). We do reject temporal stability (p-value

= 0.007). However, despite rejecting temporal stability, we do not reject dynamic consistency (p-value =

0.372). Hence one would come to the wrong conclusion about dynamic consistency if one constrained

our specification by imposing EUT instead of RDU.
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5. Related Literature

A. Dynamic Consistency

Halevy [2015] provides a particularly clear statement of the theoretical interplay between constant

discounting, temporal stability and dynamic consistency. He evaluates that interplay using a very different

approach than we use. His identification and modeling strategy is based on binary preference relations

over pairs of sooner and later payments that are relevant to analysts who are interested in making non-

structural inferences by studying aggregate and individual-level choice patterns. The time delay between

sooner and later payments was one week in all pairwise choices, and identification is based on variation

in decision dates and time delays to sooner payments.37 He used undergraduate students from a

Canadian university as subjects in his experiments, an appropriate convenience sample to initially

examine behaviour in this, and other, settings.

Halevy [2015] recruited 149 students in the first wave of the main experiment, of which 130 also

participated in the second wave. The sooner payment was either 10 or 100 Canadian dollars. Later

payments varied between $9.90 and $10.00 in increments of $0.10 in the low stakes treatment; and

between $99 and $110 in increments of $1 in the high stakes treatment.38 The observed patterns of

intertemporal choices by his subjects do not reject constant discounting, do reject temporal stability, and

partly reject dynamic consistency. Inferences about time preferences are not the same as inferences about

binary choice patterns, however, unless one assumes away “behavioral noise.” It is perfectly possible for

observed choice patterns to be driven by behavioral errors that are correlated with latent time

preferences. In effect, there are severe limitations as to what one can say about statistical significance of

latent individual preferences by only comparing observed choice patterns across treatments.

Once one moves away from relying on direct inspection of choice patterns for inferences about

dynamic consistency, it is possible to relax the temporal sequencing of the experimental design. Our

37 The one week time delay between sooner and later payments may not be sufficient to detect
present bias if subjects do not discriminate between the two payments over the brief time interval (e.g., a
subject might view the “present” as today, this week or this month, at least under some models of
discounting other than the QH model, as noted by Takeuchi [2011]). This issue pertains to the delay between
the two payment dates, and is not related to, or mitigated by, the two treatments with variation in the front-
end delay to the sooner payment.

38 To facilitate comparisons of implied interest rates in decision tasks with other studies and field
alternatives, it is convenient to state these on an annual basis. Weekly interest rates between 1% and 10%
are equivalent annual interest rates between 67.8% and 14,104%.
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design presented subjects with various time horizons, between 2 weeks and 1 year, for receipt of the

later option. We also varied receipt of the earlier option between 0 days and 30 days. This design allows

estimation of a rich set of discounting models (e.g., Exponential, Quasi-hyperbolic, Smoothly

Hyperbolic). These models define the discount rates of the subjects, at a particular point of time, over

horizons between today and 13 months into the future. What matters for our design is that the re-visit

to the subject occurs within that interval, not at any particular point in that interval. This is true as a

matter of economic theory once we estimate the discounting function over the entire time horizon, and

as a matter of how we estimate our structural models (detailed in Appendix A). It also happens to be

practically essential for field experiments, where it is logistically difficult and prohibitively costly to

locate and interview subjects on specific days over extended periods of time. 

Some studies use willingness to pay for commitment devices as indicators of subjective

awareness of behavioral tendencies to act in a dynamically inconsistent manner (e.g., Augenblick,

Niederle and Sprenger [2015] and Giné, Goldberg, Silverman and Yang [2018]). Although some of those

devices may be useful in restricting intertemporal choice, O’Donoghue and Rabin [2015; p. 277ff.]

correctly note that they are not measures of dynamic inconsistency. The effects of commitment devices

are, at best, suggestive of the effects of dynamic consistency, but could also reflect other behavioral

traits such as low willpower. 

Only a handful of experimental studies with non-student subjects have longitudinal designs that

enable statistical tests of temporal stability alongside tests for constant discounting. Even then, those

studies focus on relatively narrow segments of the general population; do not account for the interplay

of interpersonal heterogeneity, endogenous sample selection and endogenous panel attrition; and do not

consider formal or informal tests of dynamic consistency.39

Meier and Sprenger [2015] recruited a sample of low-to-moderate income earners who obtained

a free tax preparation service at a particular site run by the City of Boston. They consider quasi-

39 Although Sadoff, Samek and Sprenger [2020] allude to dynamic inconsistency, their approach falls
into a different strand of literature, since they do not elicit discounting behavior. The population in their
study refers to customers at two grocery stores in low-income areas of Chicago and Los Angeles, and the
notion of dynamic consistency refers to disparities in the demand for a basket of groceries from the order
date to the delivery date. They test this hypothesis by examining whether the taste coefficients in a rank-
ordered logit model change over time. One cannot disentangle dynamic consistency from temporal stability
in this setting. Indeed, in the stated preference literature where the rank-ordered logit model originates from,
the same type of parametric restriction is used to test temporal stability: see Doiron and Yoo [2017].
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hyperbolic discounting and find empirical support for non-constant discounting and temporal stability.

The population of interest in Kirby et al. [2002] are residents in two villages in a tropical rain forest area

of Bolivia. They assume away behavioral noise and algebraically derive hyperbolic discount rates, which

precludes statistical tests of constant discounting, and find that within-subject correlation in the

hyperbolic discounting parameter is 0.32 or less over the four quarters in their longitudinal design.

Finally, Dean and Sautmann [2020] recruited a sample of household heads who participated in a

children’s health care program in a peri-urban area of Bamako, Mali. The sooner option was either paid

immediately or delayed by one week, and the time horizon between the sooner and later options was

one week in all decision tasks. Summarizing the choice patterns observed at weekly intervals for three

consecutive weeks, they report that 70% to 76% of the subjects display constant discounting in each

week, and the within-subject correlation in choices ranges from 0.67 to 0.72 across the weekly waves of

the experiment.40

In general, we contribute to this literature with the first set of longitudinal findings based on a

nationally representative sample of the general population; a modeling framework which jointly

addresses preference heterogeneity, selection bias and attrition bias; and a coherent inferential approach

that allows one to use the same set of preference parameter estimates to test for constant discounting,

temporal stability and dynamic consistency at both individual and population levels.

B. General Issues in the Elicitation of Time Preferences

Time Preferences for Populations or Individuals?

As documented in Appendix A, our estimation method does not require that each subject

responds to the same set of questions in both waves of the experiment. We fit a joint structural model

to a pooled sample of every individual’s selection outcome and, where applicable, attrition outcome and

choices during the experiment. Our model incorporates a random coefficient specification to account

for interpersonal preference heterogeneity, along with selection and attrition equations to distinguish

subjects from non-participants. An alternative approach to addressing interpersonal heterogeneity is to

40 Annual interest rates vary between 4% and 1,899,088% in Meier and Sprenger [2015], between
15.14% and 1024 × 6.94% in Kirby et al. [2002], and between 99.99% and 1042 × 2.91% in Dean and
Sautmann [2020].
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fit a structural model to observations on each subject separately.41 This approach precludes formal

statistical inferences about the population from which the subjects are drawn as well as corrections for

selection and attrition biases.

Time Preferences and the Modeling of Behavioral Noise

Our stochastic specification adopts the contextual utility model of Wilcox [2011] for risk

aversion tasks and a Fechner error specification for discounting tasks. Apesteguia and Ballester [2018]

argue that the random preference model (RP) is a more attractive stochastic specification to use in

structural estimation since it generates choice probabilities which vary monotonically in a risk or time

preference parameter. As Wilcox [2008; §4.1.1] already noted, however, the RP model generates

implausible predictions in other respects. For example, the RP model predicts that the probability of

choosing a lottery rather than its mean-preserving spread remains constant regardless of their variance

difference, as long as both alternatives are defined over the same set of three outcomes. Moreover, the

stochastic monotonicity property of the RP model is irrelevant to our analysis which jointly estimates

the QH discounting function with RDU. This property only applies to the standalone, non-joint,

analysis of a decision model with a one-dimensional preference parameter (Lau and Yoo [2021]), such as

an exponential discounting function or EUT with a CRRA utility function.42

Time Preferences and Arbitrage Opportunities

There are several issues that arise when one considers the opportunities that subjects have when

they arbitrage their choices in experiments with choices they might make in the field or with their

income and wealth outside the experiment. It is not appropriate to consider all of these issues here,

41 This approach is very demanding of the size of the sample of choices that each individual makes,
and of course the extra demands of joint estimation of risk preferences and time preferences. A better
approach would be to use Bayesian Hierarchical Models, which allow inferences from the pooled sample of
individuals to provide informative prior distributions for estimation of individual-level parameters (e.g., Gao,
Harrison and Tchernis [2022]). This approach would also allow individual subjects to have different or
smaller choice sets, and to have between-subject treatments.

42  The two-parameter RP model reported by Apesteguia, Ballester and Gutierrez-Daza [2022] jointly
estimates a one-parameter RP model for choice data under risk and a separate one-parameter RP model for
choice data over time delay. In their study risk preferences are modeled as EUT with a CRRA utility function
and time preferences are modeled as exponential discounting.
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other than to consider their effects on risk or time preferences that might be considered as sources of

temporal instability and hence as confounds to our inferences about dynamic stability.

One possible source of arbitrage was identified by Coller and Williams [1999] and studied

extensively in the field by Harrison, Lau and Williams [2002]. It arises when a subject faces borrowing

and savings interest rates that are identical, even if they might differ from individual to individual: in the

extreme characterization of “perfect capital markets” they are the same for everyone. It follows from the

Fisher Separation Theorem that we would then be unable to identify individual time preferences from

observed choices in an experiment. However, we do not live in that perfect world. It has been common

for experiments on time preferences, such as Coller and Williams [1999] for university students, and

Harrison, Lau and Williams [2002], Andersen, Harrison, Lau and Rutström [2008][2014][2018] for adult

Danes, to collect information on individual borrowing and savings interest rates. The gap between them

makes it possible to infer time preferences without concerns for arbitrage.43

A second possible source of arbitrage arises from the possibility that individuals might perfectly

integrate their (actual or expected) income from experiments with their personal wealth. This would

have an effect on the appropriate argument for the utility function, in turn serving as a possible

confound for inferences about risk preferences and/or time preferences. Of course, to the extent that

one can control for asset integration by proxies for income or wealth, they can be corrected for. An

opportunity for a direct test arises in Denmark, due to the ability to link our experimental data directly

to the Danish Registry, which contains administrative data on various types of income and (financial)

wealth of the subject. Andersen, Cox, Harrison, Lau, Rutström and Sadiraj [2018] undertake this direct

test and find that subjects do not perfectly integrate experimental income with field wealth, and that one

can safely ignore that potential confound, at least for the Danish population.

A third possible source of arbitrage mentioned in the literature, such as Cubitt and Read [2007]

and Cohen, Ericson, Laibson and White [2020], arises from the relationship between choices over time-

dated money and intertemporal consumption. When one thinks of utility discount rates, it becomes more

natural for some economists to think in terms of the utility of consumption flows rather than stocks of

43 When the borrowing and savings rates might influence responses in experiments, or inferences
about standard errors of estimated discount rates, standard econometric methods allow one to “censor”
observed choices in those experiments since one knows the censoring threshold from the elicited data on
those rates. Coller and Williams [1999] document how one does this.
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money. In that case, Cubitt and Read [2007] show that, even if one assumes linear utility functions for

simplicity of exposition, discount rates over money do not necessarily elicit discount rates over

consumption. 

One can make structural assumptions about the link between time-dated money and

consumption flows, and hence “translate” inferences about the former into inferences about the latter.

This is what Andersen, Harrison, Lau and Rutström [2008] did, with a “dual-self” model of decision-

making following Fudenberg and Levine [2006]. This approach does not test the proposition in question.

Instead it makes assumptions, whether or not they are a priori plausible, that are hard to test, and that

allow one to infer discount rates over consumption flows if true.

It is also possible to ask if the “worst case” preferences that generate differences between

discount rates over money and consumption are plausible. This worst case requires that the elasticity of

substitution between consumption flows in two periods is “sufficiently” low. Assumptions about this

elasticity allow one to bound the possible difference between the two discount rates, and those bounds

can become very tight for plausible elasticities. A more direct response is to ask if this “worst case”

behavior is indeed observed, when one modifies the basic experimental design to allow it to show itself.

A simple modification of the canonical experimental task we used channels a constructive suggestion by

Cubitt and Read [2007; p.384]. The constructive suggestion referred to is to simply allow each subject to

form a portfolio between the smaller-sooner amount of money and the larger-later amount of money,

rather than having to choose one or the other. In other words, to form an interior portfolio from the two

choice outcomes. There is evidence44 that one “almost never” observes the preferences, at the individual

subject level, that generate the problems posed by Cubitt and Read [2007; p.384]. This suggestion was

popularized by Andreoni and Sprenger [2010], with some other extensions.45 If individual subjects chose

an interior solution, the worst-case conditions required for arbitrage between monetary allocations and

consumption allocations to be an issue arise; if individual subjects choose one of the extreme solutions,

this arbitrage issue does not apply as a matter of theory.

44 Presented in Harrison and Swarthout [2011].
45 Andreoni and Sprenger [2010] extended the method proposed here by giving the subject 100

tokens to allocation between the sooner and later time period, and then varying the exchange rate between tokens
and money for sooner or later amounts.
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Time Preferences Over Real Effort or Over Real Money?

Several studies have made the general point that time preferences should only be elicited over

allocations of flows of real effort by the subject, rather than allocations of time-dated stocks of real

money. We take the general view that both types of allocations are of interest in different applications,

and that there is no formal or informal basis to exclude one in favor of the other. A general concern

with these real effort experiments is that they tend to involve somewhat boring tasks or popular games,

each of which comes with potential confounds that would be expected a priori to vary from subject to

subject. In that respect the fungibility of money provides greater control.

Augenblick, Niederle and Sprenger [2015] use a longitudinal design and evaluate constant

discounting over money and work effort. They pool intertemporal choices from both waves of their

longitudinal experiment with undergraduate students and structurally estimate quasi-hyperbolic

discounting functions over money and work effort.46 They find that subjects are more susceptible to

present bias in work effort tasks compared to monetary decision tasks. However, they do not utilize the

longitudinal dimension of their data to test for temporal stability and dynamic consistency, since they

explicitly assume temporal stability.

Augenblick and Rabin [2019] use a longitudinal design with similar work effort tasks

(identification of Greek letters) to study intertemporal choice. They asked the subjects to state how

many computer based tasks their were willing to complete at different dates and piecemeal payments.

All payments to subjects were made at specific dates, and the quasi-hyperbolic discounting function in

their intertemporal model is identified from variation in decision and work effort dates while payment

dates are kept fixed. They do not evaluate dynamic consistency but test for constant discounting

46 Augenblick, Niederle and Sprenger [2015] elicited time preferences from choice allocations in
convex budget sets similar to those in Andreoni and Sprenger [2012]. There were four sets of monetary
decision tasks in their design. In the first week of the experiment, the subjects were asked to allocate $20
between sooner payments now and/or later payments in four weeks; sooner payments now and/or later
payments in seven weeks; and sooner payments in four weeks and/or later payments in seven weeks. Four
weeks later the subjects were asked to repeat the first set of decision tasks with sooner payments now and/or
later payments in four weeks. These tasks were repeated with different interest rates. In the work effort tasks
the subjects were endowed with 50 replications of specific computer based tasks that involved identification
of Greek letters and completion of partial Tetris games. In the first week of the experiment, the subjects were
asked to allocate the computer based tasks between work effort in one week and/or work effort in two
weeks at various intertemporal exchange rates, and one week later they were asked to allocate the computer
based tasks between work effort now and/or work effort in one week.
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assuming non-linear (dis)utility over work effort and linear utility over income from the work effort

tasks.

C. Comparison of Results

Chuang and Schechter [2015] report in a literature review that the “correlation of time

preferences over time” in longitudinal experiments with real incentives varies between 0.004 to 0.75. In

each of those experiments subjects were asked to complete a structured list of choices between sooner

and later payments, and an algebraic transformation of each subject’s switching point from sooner to

later payments was used as a measure of their time preferences. Thus, those correlation coefficients are

effectively descriptive statistics for raw data. 

It is difficult to compare the magnitudes of those correlation coefficients across studies, because

the algebraic transformation in question varies from study to study. Dean and Sautmann [2020] compute

correlation coefficients for switching points observed in two different periods directly, without taking

any further transformation of the data. Before computing the correlation coefficients, Kirby et al. [2002]

and Kirby [2009] transform each switching point into the parameter κw from the hyperbolic discounting

function Dw(t) = 1/(1 + κwt) reviewed in Section 3. Wölbert and Riedl [2014] instead transform each

switching point into an exponential discount rate. Meier and Sprenger [2015] also undertake this type of

algebraic calculation, because their structural model does not incorporate correlated preference

parameters. Exploiting variations in switching points across tasks with and without front-end delays,

they compute that corr(δn1, δn2)  and corr(βn1, βn2) are equal to 0.246 and 0.364, respectively, which

happen to be similar to our structural estimates. Similarly, Yoon [2020] implements a cross-sectional

experiment, using algebraic transforms to infer discount rates assuming linear utility. These attempts to

derive discounting functions from switching points rely on assumptions that the utility function is linear,

that there is no sample selection into the experiment, and that there is no behavioral error in the

subject’s decision making.
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6. Conclusions

At a substantive level, we find dynamic inconsistency in the Danish population between 2009

and 2010. In an analysis that allows for small classification errors, we find that 68.5% of the decision

makers display dynamic inconsistency, by violating constant discounting in the second wave of the

experiment and/or temporal stability in baseline discount rates between the first and second waves. The

results refer to a stratified sample of the adult population in Denmark, and the statistical analysis

recognizes preference heterogeneity within that population while controlling for endogenous sample

selection and attrition. 

A simple numerical example illustrates this finding. Imagine a smaller, sooner (SS) outcome of

1000 kroner in 1 year and a larger, later (LL) outcome of 1100 kroner in 2 years. Using the estimated

population means for β and δ from Table 1 for wave 1, we calculate present values of the SS (LL)

outcome today of 903.5 (896.2) kroner, making the SS outcome more attractive. If wave 2 occurs 6

months from the present, and using the estimated population means for wave 2, these present values

would be 953.9 (976.1) kroner, making the LL outcome more attractive, and reversing the preferences in

wave 1. If wave 2 occurs 1 year from the present instead, these present values for wave 2 become 1000

(1012.0), again leading to the preference reversal. Figure 4 illustrates this simple example. The horizontal

line is the present value of the SS outcome of 1000 kroner and the upward sloping line is the present

value of LL outcome. The dashed, vertical line indicates the indifference point between the SS and LL

outcomes, which moves from 1109 kroner when the two options are evaluated today, to 1075 kroner

when the two options are evaluated after six months, and to 1087 kroner when they are evaluated after 1

year. Dynamic inconsistency in this simple example thus occurs at annual interest rates between 7.5%

and 10.9%.47 

At a methodological level, we demonstrate the careful interplay of theory, experimental design

and econometric inference needed to draw our substantive conclusion on dynamic inconsistency. We

47 One can of course look at other numerical examples where the preference reversal moves in the
opposite direction. Suppose the baseline discount rate is temporally stable with δ1 = δ2 = 0.109 and the
present bias parameter in wave 2, β2, is equal to 0.989, such that constant discounting is violated in wave 2.
The decision maker will make the same choice when the two delayed outcomes are evaluated today and after
6 months, and select the LL outcome when the annual interest rate is higher than 10.9%. However, the
decision maker will select the SS outcome at annual interest rates below 12.1% when the two outcomes are
evaluated after 1 year, leading to the classical example of preference reversal in intertemporal choice at annual
interest rates between 10.9% and 12.1%.  
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know from the literature on individual discounting that one needs to pay attention to issues such as

utility over income (or goods) to draw reliable inferences about time preferences, whether that issue was

attended to by experimental design (e.g., Laury, McInnes and Swarthout [2012] and Andreoni and

Sprenger [2012]) or joint estimation across several experimental tasks (e.g., Andersen, Harrison, Lau and

Rutström [2008]). We also need to consider ways in which discount rates may be non-constant, such as

quasi-hyperbolic discounting functions (e.g., Phelps and Pollak [1968], Elster [1979] and Laibson

[1997]), and we need to consider corrections for sample selection and attrition in analyses of longitudinal

data to infer non-biased preferences of a population (e.g., Harrison, Lau and Yoo [2020]).

Inferences about dynamic consistency requires careful consideration of all these issues. The need

to test for constant discounting and temporal stability in order to draw inferences about dynamic

consistency is stressed by Halevy [2015], which serves as a warning against claiming that non-constant

discounting necessarily implies dynamic consistency. Our results show that it is critical to test joint

hypotheses of non-constant discounting and temporal stability, which requires longitudinal data and, for

now, a structural model of time preferences.

Our econometric analysis is facilitated by access to a remarkable combination of Danish civil

registry and experimental data. However, this is not to say that our structural approach to address

selection and attrition bias is applicable only in this rich data environment. Longitudinal data sets

normally provides sufficient information to correct for endogenous attrition bias, and correction for

endogenous selection bias does not necessarily require access to administrative data. In some cases,

experiments on risk and time preferences have been combined with large household surveys, such as the

Living Standard Survey in Vietnam (Tanaka, Camerer and Ngyuen [2010]), the UK Household

Longitudinal Study (Galizzi, Machado and Miniaci [2016]) and the American Life Panel (Dimmock,

Kouwenberg, Mitchell and Peijnenburg [2021]). One may then merge the sample of experimental

participants with the sample of non-participants in the main survey, and evaluate the effects of self-

selection into the experiment relative to the sampling frame of the main survey. 

Even when experimental data are not directly linked to survey data, it is customary to comment

on potential selection bias by comparing the experimental sample to an unrelated household survey

sample in terms of average socio-demographic characteristics. If one is willing to accept the validity of

such informal comparisons, one may as well consider the same survey sample as a sample of non-
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participants and formally test for endogenous selection. A unique feature of our experimental design is

exogenous variation in recruitment fees that we use as an exclusion restriction to estimate the selection

equation: without a deliberate design, it is difficult to find an equally attractive restriction. This challenge

has not deterred the use of sample selection models in other empirical studies of economic behavior. In

our view, formal correction for endogenous selection and attrition bias is an important step that one

should consider in any field experiment when those studies intend to make inferences for broader

segments of the population. 

-34-



Table 1: Estimates of Structural Parameters 
With Full Controls for Sample Selection and Attrition

Standard
Variable Estimate Error p-value 95% Confidence Interval

Selection equation: β1/Var(un1)

female -0.046 0.063 0.464 -0.171  0.078
young  0.187 0.117 0.112 -0.044  0.417
middle  0.326 0.111 0.003  0.108  0.544
old  0.395 0.102 <0.001  0.195  0.595
high_fee  0.189 0.066 0.004  0.060  0.318
dist -0.033 0.006 <0.001 -0.044 -0.021
dist2  0.001 <0.001 <0.001  <0.001  0.001
constant -0.827 0.104 <0.001 -1.032 -0.623

Attrition equation: β2/Var(un2)

female -0.074 0.125 0.552 -0.319  0.171
young -0.308 0.236 0.191 -0.770  0.154
middle -0.269 0.217 0.216 -0.694  0.156
old -0.221 0.204 0.278 -0.621  0.178
IncLow -0.192 0.170 0.258 -0.525  0.141
IncHigh -0.122 0.141 0.387 -0.399  0.155
earnings  0.054 0.037 0.147 -0.019  0.126
constant  0.678 0.230 0.003  0.228  1.129

Means of δ and β parameters in wave 1 and wave 2

δ1  0.109 0.007 <0.001  0.096  0.124 
δ2  0.075 0.009 <0.001  0.062  0.097 

β1  1.002 0.002 <0.001  0.999  1.006 
β2  0.989 0.003 <0.001  0.983  0.995 

Medians of δ and β parameters in wave 1 and wave 2

δ1  0.044 0.008 <0.001  0.029  0.059
δ2  0.041 0.006 <0.001  0.029  0.053

β1  1.005 0.002 <0.001  1.001  1.008
β2  0.992 0.002 <0.001  0.987  0.996

Standard deviations and correlation coefficients of δ and β parameters in wave 1 and wave 2

σδ1  0.145 0.007 <0.001  0.131  0.159 
σδ2  0.092 0.009 <0.001  0.078  0.113     

σβ1  0.025 0.004 <0.001  0.018  0.033 
σβ2  0.030 0.004 <0.001  0.022  0.039  
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ρδ1 δ2  0.354 0.059 <0.001  0.246  0.474 
ρβ1 β2  0.273 0.131 0.036 -0.006  0.502 

Means of r and φ parameters in wave 1 and wave 2

r1  0.951 0.066 <0.001  0.821  1.081
r2  1.076 0.089 <0.001  0.902  1.250

φ1  2.171 0.195 <0.001  1.787  2.554
φ2  2.091 0.236 <0.001  1.627  2.554

Standard deviations and correlation coefficients of r and φ parameters in wave 1 and wave 2

σr1  0.725 0.056 <0.001  0.616  0.835
σr2  0.597 0.067 <0.001  0.466  0.728

σφ1  3.579 0.870 <0.001  1.875  5.283
σφ2  2.864 0.876 0.001  1.147  4.581

ρr1 r2  0.668 0.078 <0.001  0.515  0.821
ρ1 2  0.871 0.063 <0.001  0.747  0.995
Notes: Table B1 in Online Appendix B reports other correlation coefficients.
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Table 2: Individual-level Discounting Behavior 
With Full Controls for Sample Selection and Attrition

Standard
Variable Estimate Error p-value 95% Confidence Interval

A. Constant discounting

Pr(|β11|<0.025)  0.669 0.074 <0.001  0.538  0.823 
Pr(|β21|<0.025)  0.598 0.066 <0.001  0.481  0.739 

B. Temporal stavbility

Pr(|Δβ|<0.025)  0.530 0.058 <0.001  0.430  0.659 
Pr(|Δδ|<0.050)  0.530 0.025 <0.001  0.477  0.575 

Pr(|Δβ|<0.025; |Δδ|<0.05)  0.279 0.040 <0.001  0.209  0.364 
Pr(|Δβ|<0.025; |Δδ|>0.05)  0.251 0.026 <0.001  0.206  0.308 
Pr(|Δβ|>0.025; |Δδ|<0.05)  0.251 0.032 <0.001  0.182  0.306 
Pr(|Δβ|>0.025; |Δδ|>0.05)  0.219 0.032 <0.001  0.153  0.280

C. Dynamic consistency

Pr(|β21|<0.025; |Δδ|<0.05)  0.315 0.041 <0.001  0.245  0.406 
Pr(|β21|<0.025; |Δδ|>0.05)  0.283 0.032 <0.001  0.225  0.349 
Pr(|β21|>0.025; |Δδ|<0.05)  0.215 0.035 <0.001  0.136  0.274 
Pr(|β21|>0.025; |Δδ|>0.05)  0.187 0.035 <0.001  0.119  0.257 
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Table 3: Estimates of Structural Parameters 
Without Controls for Sample Selection and Attrition

Standard
Variable Estimate Error p-value 95% Confidence Interval

Means of δ and β parameters in wave 1 and wave 2

δ1  0.111 0.008 <0.001  0.095  0.128
δ2  0.095 0.007 <0.001  0.080  0.109

β1  0.998 0.002 <0.001  0.994  1.002
β2  0.997 0.003 <0.001  0.991  1.001 

Medians of δ and β parameters in wave 1 and wave 2

δ1  0.059 0.005 <0.001  0.049  0.068
δ2  0.042 0.008 <0.001  0.025  0.058

β1  1.001 0.002 <0.001  0.997  1.006
β2  0.997 0.002 <0.001  0.993  1.002

Standard deviations and correlation coefficients of δ and β parameters in wave 1 and wave 2

σδ1  0.128 0.009 <0.001  0.111  0.147 
σδ2  0.123 0.011 <0.001  0.100  0.143 

σβ1  0.030 0.004 <0.001  0.023  0.039 
σβ2  0.021 0.003 <0.001  0.015  0.028 

ρδ1 δ2  0.373 0.034 <0.001  0.318  0.453
ρβ1 β2  0.292 0.146 0.045 -0.062  0.502

Means of r and φ parameters in wave 1 and wave 2

r1  0.797 0.072 <0.001  0.656  0.938
r2  0.955 0.073 <0.001  0.811  1.099

φ1  3.337 0.307 <0.001  2.736  3.938
φ2  2.653 0.272 <0.001  2.120  3.186

Standard deviations and correlation coefficients of r and φ parameters in wave 1 and wave 2

σr1  0.620 0.039 <0.001  0.543  0.696
σr2  0.586 0.071 <0.001  0.447  0.725

σφ1  3.328 0.779 <0.001  1.802  4.855
σφ2  1.945 0.664 0.003  0.643  3.247

ρr1 r2  0.679 0.077 <0.001  0.528  0.830
ρ1 2  0.248 0.160 0.120 -0.065  0.562
Notes: Table B2 in Online Appendix B reports other correlation coefficients.
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Table 4: Individual-level Discounting Behavior 
without Controls for Sample Selection and Attrition

Standard
Variable Estimate Error p-value 95% Confidence Interval

A. Constant discounting

Pr(|β11|<0.025)  0.589 0.063 <0.001  0.476  0.721 
Pr(|β21|<0.025)  0.775 0.068 <0.001  0.636  0.901   

B. Temporal stavbility

Pr(|Δβ|<0.025)  0.577 0.072 <0.001  0.434  0.717 
Pr(|Δδ|<0.050)  0.496 0.026 <0.001  0.449  0.552 

Pr(|Δβ|<0.025;|Δδ|<0.05)  0.318 0.055 <0.001  0.213  0.428 
Pr(|Δβ|<0.025;|Δδ|>0.05)  0.260 0.021 <0.001  0.216  0.298 
Pr(|Δβ|>0.025;|Δδ|<0.05)  0.179 0.039 <0.001  0.107  0.256 
Pr(|Δβ|>0.025;|Δδ|>0.05)  0.244 0.040 <0.001  0.164  0.324  

C. Dynamic consistency

Pr(|β21|<0.025;|Δδ|<0.05)  0.420 0.047 <0.001  0.330  0.512 
Pr(|β21|<0.025;|Δδ|>0.05)  0.354 0.034 <0.001  0.276  0.406 
Pr(|β21|>0.025;|Δδ|<0.05)  0.076 0.026 0.003  0.031  0.130 
Pr(|β21|<0.025;|Δδ|>0.05)  0.149 0.044 0.001  0.067  0.240 
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Online Appendix A: Econometrics

We first write out a structural model of discounting choices and then consider extensions to
address unobserved preference heterogeneity and corrections for endogenous selection and attrition
bias.

A. Basics

Consider first the estimation of time preferences in a simple framework that does not involve
unobserved preference heterogeneity, endogenous sample selection and attrition. Each discounting task
presents a choice between option A that pays Yt in period t and option B that pays Yt+τ in period t+τ,
where τ > 0. Given an atemporal utility function U(m) and a discounting function D(t), the discounted
utility of each option is specified as

PVA = D(t) × U(Yt + ω) + D(t + τ) × U(ω) (A1)
PVB = D(t) × U(ω) + D(t + τ) × U(Yt+τ + ω) (A2)

where ω is a measure of background consumption.48

Let y denote a binary indicator of the subject’s choice between the sooner payment A (y = 0) or
the later payment B (y = 1). Let I(.) denote an indicator function, and assume that the choice depends
on the difference in discounted utilities, as well as a behavioral error ν that is normally distributed, N(0,
γ2), such that y = I(PVB  PVA + γ > 0). The likelihood of each choice can then be specified as

Pr(β, δ, r, γ) = [1  Φ(PV)](1y) × Φ(PV)y (A3)

where Φ(PV) is the standard normal cumulative distribution evaluated at the index value PV = (PVB

 PVA)/γ. We now turn to the specifications of the discounting and atemporal utility functions that
determine the discounted utilities of the sooner and later options. 

Our experiment includes discounting tasks with variation in the delay to the sooner option. The
resulting basket of choices between an immediate payment and a future payment, and between two
future payments, allows us to identify and estimate a quasi-hyperbolic (QH) discounting function

48 Andersen, Harrison, Lau and Rutström [2008] show that the addition of background consumption
ω > 0 is a sufficient condition to avoid negative discount rates under exponential discounting. The
background consumption parameter ω is set exogenously in our model. We follow Andersen, Harrison, Lau
and Rutström [2008][2014] and set it to the average daily consumption of private non-durable goods per
capita, which was 130 kroner at the time of our experiments in 2009. Andreoni and Sprenger [2012] use
convex budget sets to elicit discounting and utility functions, and treat background consumption as an
endogenous parameter that is estimated along with the {β, δ} parameters in the quasi-hyperbolic discounting
function and a relative risk aversion parameter α under EUT. They do not place any sign restrictions on
background consumption and report both positive and negative values for this parameter. To allow negative
background consumption, one would need to restrict the relative risk aversion parameter α > 0 in their
power specification, which is equivalent to r < 1 in our utility function. This inequality constraint may be
innocuous if one is interested in estimating the population mean of the r parameter, which happens to be
smaller than 1. However, when estimating the population distribution of risk attitudes, as long as there are
some individuals whose r parameters exceed 1, the constraint is not innocuous, regardless of whether the
mean is smaller or greater than 1.
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           D(t) = 1                       if t = 0 (A4)
                   = β × 1/(1 + δ)t   if t > 0  

where β is a present bias parameter and δ is a baseline discount rate for someone with no present bias (β
= 1). More generally, δ can be interpreted as a long-run discount rate, regardless of the value of β. We
denote time delay t in years (e.g., t = 0.5 for a 6-month horizon), and specify δ on an annualized basis.
We assume a priori that decision makers display long-run delay aversion (δ > 0), and let β take values on
either side of 1 to allow for present bias (β < 1) as well as future bias (β > 1). We assume an additive
intertemporal utility function, following convention.

The risk aversion tasks allow us to identify the utility function U(m), and apply the joint
likelihood strategy of Andersen, Harrison, Lau and Rutström [2008]. Each risk aversion task presents a
choice between lottery A and lottery B, where lottery L  {A, B} pays prize ML,1 with probability P and
prize ML,2 with probability (1  P). Assume that the subject evaluates each lottery according to the Rank
Dependent Utility (RDU) model of Quiggin [1982] such that the RDU evaluation of lottery L is

RDUL = w(P) × U(ML,1) + (1  w(P)) × U(ML,2) (A5)

where U(m) has a constant relative risk aversion (CRRA) functional form 

U(m) = m(1r)/(1r) (A6)

and w(.) is a probability weighting function due to Prelec [1998] 

w(P) = exp{(ln P)φ}. (A7)

The r parameter in U(m) is an index of utility curvature, with concave utility when r > 0 and convex
utility when r < 0. Under Expected Utility Theory (EUT), which assumes w(P) = P, the r parameter is
interpreted as the coefficient of relative risk aversion. The φ parameter in w(P) determines the shape of
the probability weighting function, which follows an inverse-S shape over probabilities if φ < 1 and an S
shape if φ > 1. An inverse-S shape over-weights probabilities (w(P) < P) when P is relatively small, and
under-weights probabilities (w(P) > P) when P is relatively large; an S shaped probability weighting
function under-weights probabilities for small P and over-weights probabilities for large P.     

Let y denote a binary indicator of the subject’s choice between lottery A (y = 0) and lottery B (y
= 1). Assume that the choice depends on the RDU difference as well as a normally distributed
behavioral error , such that y =I[(RDUB  RDUA) +  > 0]. Denote Umax and Umin as the maximum
and minimum of the four outcome utilities, U(MA,1), U(MA,2), U(MB,1) and U(MB,2). We adopt the
contextual utility model of Wilcox [2011], under which the standard deviation of  is equal to (Umax 
Umin) times a constant μ. The likelihood of the resulting choice observation can then be specified as 

Pr(r, φ, μ) = [1  Φ(RDU)](1y) × Φ(RDU)y (A8)

where the index RDU is given by (RDUB  RDUA)/[μ × (Umax  Umin)].

We now turn to the joint likelihood of multiple discounting choices and risk aversion choices
made by the same subject. The data follows a multi-level panel structure. At the upper level we have two
“waves” of data on subjects participating in both the initial (wave 1) and the repeat (wave 2) experiment.
At the lower level, within each wave, we have 80 observations per subject since each subject completed
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40 discounting tasks and 40 risk aversion tasks. We subscript the marginal likelihood of a discounting
choice in (A3) as Prnjw(βw, δw, rw, γ) henceforth, to emphasize that it describes subject n’s choice in the jth

discounting task of wave w. Similarly, we subscript the marginal likelihood of a risk aversion choice in
(A8) as Prnjw(rw, φw, μ). For simplicity of exposition only, assume for now that the preference parameters
αw = {βw, δw, rw, φw} may vary across waves, but not across subjects. The conditional likelihood of all
observations by subject n is then given by

CLn(α1, α2, γ, μ) = jPrnj1(β1, δ1, r1, γ) × jPrnj1(r1, φ1, μ) if sn2 = 0 (A9)
 = w [ jPrnjw(βw, δw, rw, γ) × jPrnjw(rw, φw, μ) ] if sn2 = 1

where sn2 is an indicator of whether subject n participated in only the first wave (sn2 = 0) or both waves
(sn2 = 1). 

Equation (A9) presents a restrictive structural model that does not consider unobserved
preference heterogeneity, within-individual correlation across repeated observations, selection bias, and
attrition bias. Our econometric analysis relaxes all these restrictions, and we return to these extensions
after discussing how one can test the hypotheses of constant discounting, temporal stability, and
dynamic consistency with this structure.

B. Unobserved Preference Heterogeneity 

We first extend the model to address interpersonal preference heterogeneity, by adopting a
random parameter specification. Let αn1 = {βn1, δn1, rn1, φn1} and αn2 = {βn2, δn2, rn2, φn2} denote structural
parameters describing subject n’s preferences in wave 1 and 2. We consider each of these 8 parameters
as a draw from a distinct statistical distribution that describes the population distribution of that
parameter in a particular wave w. To accommodate within-individual correlation in preferences, we
allow for an unrestricted set of correlations among the 8 distributions. These include, inter alia, corr(δn1,
δn2) that captures correlation of baseline discount rates between the two waves, and corr(δn1, rn1) that is a
measure of correlation between utility curvature and baseline discount rates in wave 1. To accommodate
temporal instability in preferences, we allow the joint distribution of αn1 to be different from the joint
distribution of αn2. 

The baseline discount rate δnw is assumed to be positive so that the subject displays aversion to
time delay, at least over the long run. To impose this sign constraint we specify the marginal distribution
as logit-normal, also known as Johnson’s [1949] “SB” distribution. This distribution offers qualitatively
similar flexibility as a Beta distribution, with the added advantage of being amenable to a multivariate
extension. We set δnw  (0, 0.7), based on the required sign constraint and the highest annual interest
rate of 50% offered in our discounting tasks, which translates into annual effective rates of 60% with
quarterly compounding and 65% with daily compounding. The present bias parameter is also assumed
to follow a logit-normal distribution, and we set βnw  (0.7, 1.1).49 As to the RDU parameters, we follow

49 The selection of lower and upper bounds for βnw is informed by individual-level maximum
likelihood estimates that Andersen, Harrison, Lau and Rutström [2014] computed using data from the first
wave of the experiment. They focus squarely on the issue of constant discounting in the first wave and do
not exploit the longitudinal dimension of the data to evaluate temporal stability and dynamic consistency, nor
utilize information from the Danish Civil Registry to correct for selection bias.
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Harrison, Lau, and Yoo [2020], and model rnw and φnw using normal and log-normal distributions,
respectively.50 

Given our distributional assumptions, we can invert each αnw = {βnw, δnw, rnw, φnw} into a vector
of normally distributed random variables. Denote by T1(αnw) = {β*

nw, δ*
nw, rnw, ln(φnw)} this inverse

transform, where β*
nw and δ*

nw are the underlying “normal” components of “logit-normal” βnw and δnw.
Specifically, βnw = 0.7 + 0.4 × Λ(β*

nw) and δnw = 0.7 × Λ(δ*
nw), where Λ(.) is the standard logistic

distribution function. Denote by h(αn1, αn2|θ) the density function that describes the joint population
distribution of the 8 structural parameters, as a function of distributional parameters θ that include the [8
× 1] mean vector and [8 × 8] variance-covariance matrix of multivariate normal {T1(αn1), T

1(αn2)}.

To estimate the heterogeneous preferences model, the joint likelihood of subject n’s choices can
be specified by “integrating out” the random parameters, in the same manner as one integrates out the
random intercept from a random effects probit model (e.g. Wooldridge [2010; p.613]). Specifically, the
likelihood function is given by 

Ln(θ, γ, μ) = CLn(αn1, αn2, γ, μ)h(αn1, αn2; θ)dαn1dαn2 (A10)

where CLn(.) is the conditional likelihood function under the baseline model, as defined in (A9). The
unconditional likelihood function Ln(θ, γ, μ) does not have a closed-form expression, but can be
approximated using simulation methods (Train [2009; p.144-145]). We compute maximum simulated
likelihood (MSL) estimates of preference parameters θ and behavioral noise parameters γ and μ by
maximizing a simulated analogue to the sample log-likelihood function nLn(θ, γ, μ), where subject
index n iterates over 413 subjects who participated in the first experiment or both experiments. Note
that unlike the baseline model’s conditional likelihood function, Ln(θ, γ, μ) is a multivariate integral, the
log of which does not break down into the sum of marginal log-likelihood functions at the choice level.
The structural model with random parameters thus allows for panel correlation across repeated
observations on the same individual, in a similar manner as the usual random effects probit model.

The MSL estimator of θ is consistent under the assumption of exogenous sample selection and
panel attrition, which is a strong assumption to maintain considering that the subjects self-selected to
participate into both waves of the experiment. We therefore relax that assumption next.

C. Sample Selection and Attrition 

To correct for selection bias, we take the initial pool of 1,996 invited individuals as a random
sample from the overall adult population, and model the selection process that led to the 413 subjects
observed in the initial experiment. From this sample of 413 subjects, 354 subjects were invited to
participate in the repeat experiment. To correct for attrition bias, we take those 354 subjects as a
random sample from the sub-population that would have self-selected into the first experiment if
invited, and model the attrition process that led to 182 subjects in the repeat experiment. This general
strategy is consistent with our experimental design, under which the experimenter exogenously

50 Harrison, Lau, and Yoo [2020] introduce econometric methods to estimate structural models of
decision making under risk with correction for selection and attrition bias. The study is based on the same
risk preference experiment as the present analysis, but does not consider the joint estimation of risk and time
preferences.

-51-



determines whether someone is invited to the initial experiment, and subsequently which subjects in the
initial experiment are invited to the repeat experiment.

The extension to address selection and attrition biases can be specified as a system of binary
response models. Let snw be an indicator of whether subject n accepted the invitation to the experiment
in wave w (snw = 1) or not (snw = 0). For those who were not invited to the second experiment, we set sn2

= 1. Assume that each observed outcome snw is determined by a latent propensity s*
nw, such that sn1 =

I[s*
n1 > 0], and sn2 = I[s*

n1 > 0  s*
n2 > 0] if subject n was invited to the second experiment. The latent

propensities are specified as

s*
n1 = Xn1π1 + un1 = Xn1π1 + (an1 + en1) (A11)

s*
n2 = Xn2π2 + un2 = Xn2π2 + (an2 + en2) (A12)

where Xnw is a vector of explanatory variables including a constant, πw is a conformable vector of
coefficients to estimate, and unw is a random disturbance. unw is further decomposed into an error
component anw that is potentially correlated across selection and attrition processes, and an idiosyncratic
error term enw that is orthogonal to anw. Assume that the correlated components an1 and an2 are bivariate
normal, and each idiosyncratic error enw is independently normal. Without loss of generality, we
normalize this system by setting E(anw) = E(enw) = 0, Var(an1) = Var(en1) = Var(en2) = 1 and Var(an2) = 1
+ σs1s2, where σs1s2 = Cov(un1, un2) = Cov(an1, an2). 

We link the latent selection and attrition processes to the structural model by allowing error
components an1 and an2 to be correlated with the structural parameters αn1 = {βn1, δn1, rn1, φn1} and αn2 =
{βn2, δn2, rn2, φn2}. This type of correlation captures the essence of the self-selection problem: individuals
with certain types of preferences may be more likely to self-select into each wave of the experiment. 
For example, if corr(an1, δn1) < 0 then those who participate in the experiment tend to have a smaller
baseline discount rate in the first wave than the average Dane. Note also that when viewed in isolation
from the structural model, (A11) and (A12) are akin to the “selection” and “outcome” equations of the
usual probit model with sample selection: when corr(an1, an2)  0, one cannot correct for attrition bias
without correcting for selection bias because attrition outcomes are only observed for those who self-
selected into the initial experiment. 

Denote by q(an1, an2, αn1, αn2; Θ) the density function that describes the population joint
distribution of selection errors, attrition errors and 8 structural parameters. The distributional parameters
Θ include all parameters in θ that characterize the joint distribution of the 8 structural parameters, h(αn1,

αn2|θ), as well as additional covariance parameters that are unique to the [10 × 10] variance-covariance
matrix of {an1, an2, T

1(αn1), T
1(αn2)}. 

The joint likelihood of observations on individual n under the full model that accounts for
preference heterogeneity, selection bias and attrition bias can be then specified as 

      Ln(Θ, π1, π2, γ, μ) = Fn(an1, an2, αn1, αn2, π1, π2, γ, μ)q(an1, an2, αn1, αn2; Θ)dan1dan2dαn1dαn2 (A13)

where the kernel Fn(.) is obtained by augmenting the baseline model’s conditional likelihood function,
CLn(.) in equation (A9), with the marginal probabilities of selection and attrition conditional on
particular draws of an1 and an2. Specifically, 

         Fn(an1, an2, αn1, αn2, π1, π2, γ, μ) (A14)
= 1  Φ(zn1)                                                                                         if sn1 = 0                      
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            = Φ(zn1) × jPrnj1(βn1, δn1, rn1, γ) × jPrnj1(rn1, φn1, μ)                           if sn1 = 1, sn2 = 1       
= Φ(zn1) × [1  Φ(zn2)] × jPrnj1(βn1, δn1, rn1, γ) × jPrnj1(rn1, φn1, μ)      if sn1 = 1, sn2 = 0         

            = Φ(zn1) × Φ(zn2) × w[jPrnjw(βnw, δnw, rnw, γ) × jPrnjw(rnw, φnw, μ)]     if sn1 = 1, sn2 = 1         

where znw = Xnwπw + anw. The exact form of the likelihood function Ln(Θ, π1, π2, γ, μ) thus varies for
those who rejected the first invitation (sn1 = 0), those who participated in the first experiment but did
not receive the second invitation (sn1 = 1, sn2 = 1), those who participated in the first experiment but
rejected the second invitation (sn1 = 1, sn2 = 0), and finally those who participated in both experiments
(sn1 = sn2 = 1). Like the likelihood function under the heterogeneous preferences model without
correction for selection and attrition in (A10), Ln(Θ, π1, π2, γ, μ) is a multidimensional integral that does
not have a closed form expression. We compute the MSL estimates of Θ, π1, π2 γ, and μ by maximizing
a simulated analogue to the sample log-likelihood function nln(Ln(Θ, π1, π2, γ, μ)), where index n
iterates over all 1,996 individuals who were invited to the first experiment.   
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Online Appendix B: Additional Results Assuming Rank-Dependent Utility Theory

Table B1: Correlation Coefficients with Full Controls for Sample Selection and Attrition

Standard
Variable Estimate Error p-value 95% Confidence Interval

Correlation coefficients

ρs1s2 -0.273 0.055 <0.001 -0.382 -0.165

ρs1 δ1  0.030 0.029 0.299 -0.011  0.102 
ρs1 δ2  0.389 0.029 <0.001  0.338  0.450 
ρs1 β1 -0.216 0.026 <0.001 -0.273 -0.171
ρs1 β2  0.270 0.049 <0.001  0.147  0.341 
 
ρs1 r1 -0.370 0.031 <0.001 -0.431 -0.309
ρs1 r2 -0.495 0.043 <0.001 -0.580 -0.410
ρs1 1  0.410 0.038 <0.001  0.336  0.484
ρs1 2  0.419 0.050 <0.001  0.321  0.516

ρs2 δ1 -0.041 0.029 0.155 -0.113 -0.001
ρs2 δ2 -0.196 0.062 0.001 -0.304 -0.061
ρs2 β1  0.179 0.031 <0.001  0.107  0.230 
ρs2 β2 -0.143 0.067 0.032 -0.258  0.007 

ρs2 r1 -0.198 0.070 0.005 -0.335 -0.060
ρs2 r2  0.194 0.090 0.031  0.018  0.371                
ρs2 1 -0.346 0.051 <0.001 -0.445 -0.246
ρs2 2 -0.483 0.057 <0.001 -0.594 -0.372

ρδ1 β1 -0.119 0.067 0.075 -0.229  0.030 
ρδ1 β2 -0.030 0.052 0.565 -0.134  0.069
ρδ2 β1 -0.356 0.035 <0.001 -0.404 -0.267 
ρδ2 β2  0.283 0.083 0.001  0.114  0.439 

ρδ1 r1 -0.378 0.040 <0.001 -0.465 -0.306
ρδ1 r2 -0.311 0.065 <0.001 -0.446 -0.189
ρδ2 r1 -0.456 0.053 <0.001 -0.555 -0.346 
ρδ2 r2 -0.349 0.063 <0.001 -0.463 -0.216

ρδ1 φ1  0.268 0.063 <0.001  0.158  0.405 
ρδ1 φ2  0.112 0.066 0.089  0.002  0.260 
ρδ2 φ1  0.354 0.088 <0.001  0.181  0.526 
ρδ2 φ2  0.342 0.115 0.003  0.124  0.567 

ρβ1 r1  0.183 0.037 <0.001  0.108  0.255 
ρβ1 r2  0.307 0.038 <0.001  0.226  0.375  
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ρβ2 r1 -0.071 0.066 0.284 -0.194  0.066
ρβ2 r2  0.005 0.074 0.949 -0.114  0.176 

ρβ1 φ1 -0.213 0.035 <0.001 -0.271 -0.132
ρβ1 φ2 -0.341 0.088 <0.001 -0.491 -0.144 
ρβ2 φ1 -0.213 0.035 <0.001 -0.271 -0.132
ρβ2 φ2  0.098 0.074 0.189 -0.078  0.215

ρr1 φ1 -0.337 0.068 <0.001 -0.470 -0.204
ρr1 φ2 -0.149 0.102 0.143 -0.349  0.050
ρr2 φ1 -0.596 0.067 <0.001 -0.727 -0.466
ρr2 φ2 -0.524 0.084 <0.001 -0.689 -0.360
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Table B2: Correlation Coefficients without Controls for Sample Selection and Attrition

Standard
Variable Estimate Error p-value 95% Confidence Interval

Correlation coefficients

ρδ1 β1 -0.225 0.034 <0.001 -0.293 -0.159
ρδ1 β2 -0.366 0.101 <0.001 -0.511 -0.119 
ρδ2 β1 -0.327 0.047 <0.001 -0.434 -0.250
ρδ2 β2  0.269 0.067 <0.001  0.142  0.403 

ρδ1 r1 -0.265 0.041 <0.001 -0.338 -0.177 
ρδ1 r2 -0.492 0.042 <0.001 -0.544 -0.379 
ρδ2 r1 -0.492 0.042 <0.001 -0.544 -0.379 
ρδ2 r2 -0.539 0.035 <0.001 -0.587 -0.453 

ρδ1 φ1  0.266 0.045 <0.001  0.173  0.347 
ρδ1 φ2  0.059 0.064 0.360 -0.085  0.168 
ρδ2 φ1  0.663 0.057 <0.001  0.507  0.724 
ρδ2 φ2  0.252 0.102 0.014 -0.005  0.404 

ρβ1 r1  0.247 0.084 0.003  0.107  0.437 
ρβ1 r2  0.034 0.056 0.546 -0.057  0.167 
ρβ2 r1  0.205 0.079 0.009  0.047  0.357
ρβ2 r2 -0.265 0.066 <0.001 -0.381 -0.119 

ρβ1 φ1  0.137 0.073 0.061 -0.044  0.239 
ρβ1 φ2 -0.111 0.117 0.342 -0.310  0.154
ρβ2 φ1  0.137 0.073 0.061 -0.044  0.239 
ρβ2 φ2  0.200 0.177 0.259 -0.149  0.525 

ρr1 φ1 -0.608 0.101 <0.001 -0.805 -0.411
ρr1 φ2 -0.433 0.192 0.024 -0.810 -0.056
ρr2 φ1 -0.558 0.097 <0.001 -0.748 -0.368
ρr2 φ2 -0.467 0.125 <0.001 -0.712 -0.222
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Online Appendix C: Additional Results Assuming Expected Utility Theory

Table C1: Estimates of Structural Parameters 
with Full Controls for Sample Selection and Attrition

Standard
Variable Estimate Error p-value 95% Confidence Interval

Selection equation: β1/Var(un1)

female -0.133 0.067 0.046 -0.264 -0.002
young  0.109 0.123 0.372 -0.131  0.350
middle  0.205 0.113 0.071 -0.017  0.427
old  0.363 0.104 <0.001  0.160  0.566
high_fee  0.168 0.067 0.013  0.036  0.299
dist -0.034 0.006 <0.001 -0.046 -0.021
dist2  0.001 <0.001 <0.001  <0.001  0.001
constant -0.716 0.108 <0.001 -0.928 -0.504

Attrition equation: β2/Var(un2)

female -0.092 0.128 0.474 -0.343  0.160
young -0.179 0.274 0.512 -0.716  0.357
middle  0.041 0.240 0.863 -0.429  0.511
old -0.215 0.213 0.311 -0.632  0.201
IncLow -0.167 0.183 0.361 -0.525  0.191
IncHigh -0.287 0.152 0.059 -0.586  0.011
earnings  0.076 0.042 0.074 -0.007  0.159
constant  0.682 0.226 0.003  0.239  1.126

Means of δ and β parameters in wave 1 and wave 2

δ1  0.124 0.007 <0.001  0.111  0.136 
δ2  0.133 0.009 <0.001  0.118  0.152 

β1  0.993 0.002 <0.001  0.988  0.996 
β2  1.003 0.002 <0.001  0.998  1.008 

Medians of δ and β parameters in wave 1 and wave 2

δ1  0.061 0.005 <0.001  0.050  0.072
δ2  0.075 0.007 <0.001  0.060  0.090

β1  0.999 0.002 <0.001  0.995  1.003
β2  1.010 0.003 <0.001  1.005  1.015
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Standard deviations and correlation coefficients of δ and β parameters in wave 1 and wave 2

σδ1  0.147 0.007 <0.001  0.133  0.160 
σδ2  0.146 0.009 <0.001  0.128  0.165 
σβ1  0.048 0.006 <0.001  0.041  0.055 
σβ2  0.043 0.004 <0.001  0.036  0.051 

ρδ1 δ2  0.295 0.034 <0.001  0.214  0.350 
ρβ1 β2  0.212 0.076 0.006  0.074  0.373 

Means of r parameters in wave 1 and wave 2

r1  0.572 0.046 <0.001  0.481  0.662
r2  0.776 0.056 <0.001  0.666  0.885

Standard deviations and correlation coefficients of r parameters in wave 1 and wave 2

σr1  0.658 0.042 <0.001  0.575  0.741
σr2  0.535 0.043 <0.001  0.450  0.619

ρr1 r2  0.795 0.063 <0.001  0.671  0.919

Other correlation coefficients

ρs1s2 -0.341 0.057 <0.001 -0.450 -0.232

ρs1 δ1  0.074 0.024 0.002  0.052  0.144 
ρs1 δ2 -0.350 0.022 <0.001 -0.402 -0.316 
ρs1 β1  0.073 0.019 <0.001  0.015  0.091 
ρs1 β2 -0.434 0.038 <0.001 -0.481 -0.348 

ρs2 δ1 -0.137 0.026 <0.001 -0.189 -0.087 
ρs2 δ2  0.079 0.063 0.210 -0.038  0.209 
ρs2 β1  0.084 0.023 <0.001  0.033  0.123 
ρs2 β2  0.057 0.063 0.365 -0.078  0.168 

ρs1 r1  0.107 0.039 0.006  0.030  0.184
ρs1 r2  0.329 0.041 <0.001  0.248  0.410
ρs2 r1  0.071 0.039 0.070 -0.006  0.147
ρs2 r2 -0.524 0.047 <0.001 -0.616 -0.431                 

ρδ1 β1 -0.148 0.033 <0.001 -0.209 -0.080 
ρδ1 β2 -0.227 0.043 <0.001 -0.321 -0.152 
ρδ2 β1 -0.310 0.038 <0.001 -0.368 -0.220 
ρδ2 β2  0.493 0.042 <0.001  0.401  0.565
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ρδ1 r1 -0.154 0.030 <0.001 -0.208 -0.092 
ρδ1 r2 -0.046 0.038 0.223 -0.120  0.028 
ρδ2 r1 -0.267 0.056 <0.001 -0.378 -0.158 
ρδ2 r2 -0.242 0.056 <0.001 -0.371 -0.150 

ρβ1 r1  0.238 0.022 <0.001  0.205  0.290 
ρβ1 r2  0.269 0.060 <0.001  0.156  0.391 
ρβ2 r1  0.122 0.064 0.056  0.013  0.263
ρβ2 r2  0.210 0.074 0.004  0.066  0.352 
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Table C2: Individual-level Discounting Behavior 
with Full Controls for Sample Selection and Attrition

Standard
Variable Estimate Error p-value 95% Confidence Interval

A. Constant discounting

Pr(|β11|<0.025)  0.396 0.029 <0.001  0.349  0.463 
Pr(|β21|<0.025)  0.411 0.037 <0.001  0.346  0.489  

B. Temporal stavbility

Pr(|Δβ|<0.025)  0.357 0.024 <0.001  0.312  0.409 
Pr(|Δδ|<0.050)  0.408 0.016 <0.001  0.370  0.434 

Pr(|Δβ|<0.025,|Δδ|<0.05)  0.179 0.017 <0.001  0.150  0.216 
Pr(|Δβ|<0.025,|Δδ|>0.05)  0.178 0.014 <0.001  0.150  0.205 
Pr(|Δβ|>0.025,|Δδ|<0.05)  0.228 0.016 <0.001  0.188  0.252 
Pr(|Δβ|>0.025,|Δδ|>0.05)  0.414 0.020 <0.001  0.383  0.460   

C. Dynamic consistency

Pr(|β21|<0.025,|Δδ|<0.05)  0.210 0.020 <0.001  0.171  0.250 
Pr(|β21|<0.025,|Δδ|>0.05)  0.201 0.020 <0.001  0.167  0.246 
Pr(|β21|>0.025,|Δδ|<0.05)  0.198 0.016 <0.001  0.162  0.224 
Pr(|β21|>0.025,|Δδ|>0.05)  0.391 0.028 <0.001  0.337  0.447
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Table C3: Estimates of Structural Parameters 
without Controls for Sample Selection and Attrition

Standard
Variable Estimate Error p-value 95% Confidence Interval

Means of δ and β parameters in wave 1 and wave 2

δ1  0.131 0.008 <0.001 0.114  0.145
δ2  0.114 0.009 <0.001 0.096  0.132 

β1  0.999 0.002 <0.001 0.995  1.003
β2  0.988 0.004 <0.001 0.980  0.996 

Medians of δ and β parameters in wave 1 and wave 2

δ1  0.064 0.007 <0.001  0.050  0.079
δ2  0.066 0.007 <0.001  0.053  0.079

β1  1.006 0.003 <0.001  0.999  1.012
β2  0.992 0.004 <0.001  0.984  0.999

Standard deviations and correlation coefficients of δ and β parameters in wave 1 and wave 2

σδ1  0.153 0.008 <0.001  0.135  0.166 
σδ2  0.124 0.014 <0.001  0.096  0.148 

σβ1  0.043 0.006 <0.001  0.033  0.057 
σβ2  0.035 0.005 <0.001  0.028  0.048 

ρδ1 δ2  0.639 0.063 <0.001  0.507  0.752 
ρβ1 β2  0.250 0.119 0.036 -0.055  0.412

Means of r parameters in wave 1 and wave 2

r1  0.625 0.057 <0.001  0.513  0.737
r2  0.760 0.059 <0.001  0.645  0.875

Standard deviations and correlation coefficients of r parameters in wave 1 and wave 2

σr1  0.655 0.047 <0.001  0.562  0.747
σr2  0.514 0.057 <0.001  0.401  0.627

ρr1 r2  0.885 0.059 <0.001  0.770  1.000
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Other correlation coefficients

ρδ1 β1  0.039 0.070 0.576 -0.129  0.147 
ρδ1 β2 -0.241 0.128 0.060 -0.427  0.065 
ρδ2 β1 -0.225 0.057 <0.001 -0.344 -0.120 
ρδ2 β2  0.020 0.129 0.878 -0.188  0.309

ρδ1 β1 -0.225 0.034 <0.001 -0.293 -0.159
ρδ1 β2 -0.366 0.101 <0.001 -0.511 -0.119 
ρδ2 β1 -0.327 0.047 <0.001 -0.434 -0.250
ρδ2 β2  0.269 0.067 <0.001  0.142  0.403 

ρδ1 r1 -0.374 0.042 <0.001 -0.447 -0.283 
ρδ1 r2 -0.418 0.039 <0.001 -0.491 -0.337
ρδ2 r1 -0.614 0.047 <0.001 -0.698 -0.514 
ρδ2 r2 -0.364 0.087 <0.001 -0.527 -0.185 

ρβ1 r1  0.231 0.086 0.007  0.088  0.420 
ρβ1 r2  0.071 0.129 0.586 -0.149  0.359 
ρβ2 r1  0.088 0.076 0.247 -0.067  0.233 
ρβ2 r2  0.202 0.096 0.035  0.027  0.401 
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Table C4: Individual-level Discounting Behavior 
without Controls for Sample Selection and Attrition

Standard
Variable Estimate Error p-value 95% Confidence Interval

A. Constant discounting

Pr(|β11|< 0.025)  0.430 0.062 <0.001  0.317  0.558 
Pr(|β21|< 0.025)  0.528 0.059 <0.001  0.402  0.629   

B. Temporal stavbility

Pr(|Δβ|<0.025)  0.384 0.042 <0.001  0.294  0.460 
Pr(|Δδ|<0.050)  0.534 0.036 <0.001  0.466  0.609 

Pr(|Δβ|<0.025,|Δδ|<0.05)  0.227 0.034 <0.001  0.160  0.295 
Pr(|Δβ|<0.025,|Δδ|>0.05)  0.157 0.017 <0.001  0.119  0.188 
Pr(|Δβ|>0.025,|Δδ|<0.05)  0.306 0.031 <0.001  0.257  0.381 
Pr(|Δβ|>0.025,|Δδ|>0.05)  0.309 0.032 <0.001  0.248  0.374  

C. Dynamic consistency

Pr(|β21|<0.025,|Δδ|<0.05)  0.297 0.044 <0.001  0.209  0.381 
Pr(|β21|<0.025,|Δδ|>0.05)  0.231 0.028 <0.001  0.173  0.279 
Pr(|β21|>0.025,|Δδ|<0.05)  0.237 0.026 <0.001  0.194  0.297 
Pr(|β21|>0.025,|Δδ|>0.05)  0.235 0.040 <0.001  0.163  0.319  
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Online Appendix D: Alternative Control Variables in Selection and Attrition Equations 

Table D1: Estimates of Structural Parameters 
with Control for Recruitment Fee in Sample Selection and Attrition Equations

Standard
Variable Estimate Error p-value 95% Confidence Interval

Selection equation: β1/Var(un1)

female -0.046 0.063 0.465 -0.170  0.078
young  0.188 0.117 0.109 -0.042  0.417
middle  0.326 0.111 0.003  0.109  0.544
old  0.395 0.102 <0.001  0.194  0.595
high_fee  0.192 0.065 0.003  0.064  0.320
dist -0.033 0.006 <0.001 -0.044 -0.021
dist2  0.001 <0.001 <0.001  0.000  0.001
constant -0.829 0.104 <0.001 -1.033 -0.624

Attrition equation: β2/Var(un2)

female -0.100 0.120 0.403 -0.336  0.135
young -0.314 0.235 0.182 -0.775  0.147
middle -0.279 0.214 0.193 -0.699  0.141
old -0.226 0.199 0.256 -0.617  0.165
IncLow -0.226 0.169 0.182 -0.558  0.106
IncHigh -0.138 0.139 0.320 -0.410  0.134
earnings  0.049 0.037 0.187 -0.024  0.123
high_fee -0.186 0.122 0.126 -0.425  0.052
constant  0.813 0.229 <0.001  0.365  1.262

Means of δ and β parameters in wave 1 and wave 2

δ1  0.106 0.007 <0.001  0.096  0.124 
δ2  0.075 0.009 <0.001  0.062  0.096 

β1  1.002 0.002 <0.001  0.999  1.006 
β2  0.989 0.003 <0.001  0.984  0.994 

Medians of δ and β parameters in wave 1 and wave 2

δ1  0.043 0.007 <0.001  0.029  0.058
δ2  0.041 0.006 <0.001  0.029  0.053

β1  1.005 0.002 <0.001  1.001  1.008
β2  0.992 0.002 <0.001  0.987  0.996
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Standard deviations and correlation coefficients of δ and β parameters in wave 1 and wave 2

σδ1  0.144 0.007 <0.001  0.131  0.159 
σδ2  0.092 0.009 <0.001  0.077  0.113

σβ1  0.025 0.003 <0.001  0.019  0.032
σβ2  0.029 0.004 <0.001  0.023  0.037

ρδ1 δ2  0.341 0.055 <0.001  0.248  0.464
ρβ1 β2  0.300 0.135 0.027  0.000  0.526

Means of r and φ parameters in wave 1 and wave 2

r1  0.953 0.065 <0.001  0.826  1.081
r2  1.078 0.087 <0.001  0.907  1.248

φ1  2.172 0.196 <0.001  1.788  2.555
φ2  2.093 0.222 <0.001  1.659  2.527

Standard deviations and correlation coefficients of r and φ parameters in wave 1 and wave 2

σr1  0.727 0.055 <0.001  0.621  0.834
σr2  0.596 0.064 <0.001  0.471  0.722

σφ1  3.578 0.861 <0.001  1.891  5.265
σφ2  2.869 0.844 0.001  1.215  4.523

ρr1 r2  0.667 0.081 <0.001  0.509  0.825
ρ1 2  0.870 0.063 <0.001  0.747  0.993
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Table D2: Estimates of Structural Parameters 
with Alternative Measure of Previous Earnings in Sample Attrition Equation

Standard
Variable Estimate Error p-value 95% Confidence Interval

Selection equation: β1/Var(un1)

female -0.046 0.063 0.466 -0.170  0.078
young  0.187 0.117 0.110 -0.043  0.417
middle  0.326 0.111 0.003  0.109  0.544
old  0.395 0.102 <0.001  0.196  0.595
high_fee  0.189 0.066 0.004  0.060  0.317
dist -0.033 0.006 <0.001 -0.044 -0.021
dist2  0.001 <0.001 <0.001  0.000  0.001
constant -0.828 0.104 <0.001 -1.032 -0.623

Attrition equation: β2/Var(un2)

female -0.078 0.125 0.534 -0.323  0.168
young -0.326 0.237 0.168 -0.790  0.138
middle -0.282 0.219 0.197 -0.711  0.147
old -0.224 0.204 0.270 -0.623  0.175
IncLow -0.189 0.170 0.267 -0.523  0.145
IncHigh -0.113 0.140 0.421 -0.388  0.162
ra_income  0.071 0.072 0.320 -0.069  0.211
constant  0.697 0.226 0.002  0.254  1.141

Means of δ and β parameters in wave 1 and wave 2

δ1  0.109 0.007 <0.001  0.097  0.123
δ2  0.075 0.009 <0.001  0.062  0.096 

β1  1.002 0.002 <0.001  0.999  1.006
β2  0.989 0.003 <0.001  0.984  0.994

Medians of δ and β parameters in wave 1 and wave 2

δ1  0.044 0.007 <0.001  0.030  0.058
δ2  0.041 0.006 <0.001  0.029  0.053

β1  1.005 0.002 <0.001  1.001  1.008
β2  0.992 0.002 <0.001  0.987  0.996
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Standard deviations and correlation coefficients of δ and β parameters in wave 1 and wave 2

σδ1  0.145 0.007 <0.001  0.131  0.159 
σδ2  0.092 0.009 <0.001  0.078  0.113

σβ1  0.025 0.004 <0.001  0.018  0.033
σβ2  0.030 0.004 <0.001  0.022  0.038

ρδ1 δ2  0.354 0.058 <0.001  0.247  0.474
ρβ1 β2  0.274 0.129 0.033  0.004  0.507

Means of r and φ parameters in wave 1 and wave 2

r1  0.951 0.064 <0.001  0.827  1.076
r2  1.076 0.086 <0.001  0.907  1.246

φ1  2.168 0.194 <0.001  1.787  2.549
φ2  2.091 0.232 <0.001  1.636  2.547

Standard deviations and correlation coefficients of r and φ parameters in wave 1 and wave 2

σr1  0.725 0.055 <0.001  0.617  0.833
σr2  0.597 0.066 <0.001  0.468  0.725

σφ1  3.567 0.864 <0.001  1.873  5.261
σφ2  2.865 0.867 0.001  1.164  4.565

ρr1 r2  0.668 0.076 <0.001  0.519  0.818
ρ1 2  0.870 0.062 <0.001  0.748  0.992
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Table D3: Estimates of Structural Parameters 
without Socio-Demographic Variables in Sample Selection and Attrition Equations

Standard
Variable Estimate Error p-value 95% Confidence Interval

Selection equation: β1/Var(un1)

high_fee  0.227 0.066 0.001  0.099  0.356
constant -0.790 0.044 <0.001 -0.876 -0.704

Attrition equation: β2/Var(un2)

high_fee -0.152 0.123 0.216 -0.393  0.089
ra_income  0.056 0.072 0.434 -0.085  0.198
constant  0.377 0.106 <0.001  0.168  0.585

Means of δ and β parameters in wave 1 and wave 2

δ1  0.109 0.006 <0.001  0.098  0.120
δ2  0.076 0.007 <0.001  0.065  0.094

β1  1.003 0.001 <0.001  1.000  1.006
β2  0.993 0.001 <0.001  0.990  0.996

Medians of δ and β parameters in wave 1 and wave 2

δ1  0.041 0.004 <0.001  0.033  0.050
δ2  0.039 0.005 <0.001  0.029  0.049

β1  1.005 0.002 <0.001  1.002  1.009
β2  0.992 0.001 <0.001  0.993  0.998

Standard deviations and correlation coefficients of δ and β parameters in wave 1 and wave 2

σδ1  0.149 0.007 <0.001  0.135  0.161
σδ2  0.094 0.009 <0.001  0.081  0.117

σβ1  0.024 0.002 <0.001  0.020  0.028
σβ2  0.029 0.003 <0.001  0.025  0.037

ρδ1 δ2  0.388 0.105 <0.001  0.153  0.558
ρβ1 β2  0.204 0.063 0.001  0.078  0.322
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Means of r and φ parameters in wave 1 and wave 2

r1  0.968 0.048 <0.001  0.874  1.063
r2  1.096 0.070 <0.001  0.960  1.232

φ1  2.123 0.181 <0.001  1.767  2.478
φ2  2.010 0.226 <0.001  1.567  2.453

Standard deviations and correlation coefficients of r and φ parameters in wave 1 and wave 2

σr1  0.738 0.047 <0.001  0.646  0.830
σr2  0.610 0.097 <0.001  0.420  0.800

σφ1  3.310 0.746 <0.001  1.848  4.773
σφ2  2.483 0.836 0.001  0.844  4.121

ρr1 r2  0.665 0.104 <0.001  0.461  0.868
ρ1 2  0.871 0.071 <0.001  0.732  1.010
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