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ABSTRACT. 

We take Cumulative Prospect Theory (CPT) seriously by rigorously estimating  structural models
using the full set of CPT parameters. Much of the literature only estimates a subset of CPT
parameters, or more simply assume CPT parameter values from prior studies. Our data are from
laboratory experiments with undergraduate students and MBA students facing substantial real
incentives and losses. We also estimate structural models from Expected Utility Theory, Dual
Theory, Rank-Dependent Utility (RDU) and Disappointment Aversion for comparison. Our major
finding is that a majority of individuals in our sample locally asset integrate. That is, they see a loss
frame for what it is, a frame, and behave as if they evaluate the net payment rather than the gross
loss when one is presented to them. This finding is devastating to the direct application of CPT to
these data for those subjects. Support for CPT is greater when losses are covered out of an earned
endowment rather than house money, but RDU is still the best single characterization of individual
and pooled choices. Defenders of the CPT model claim, correctly, that the CPT model exists
“because the data says it should.” In other words, the CPT model was borne from a wide range of
stylized facts culled from parts of the cognitive psychology literature. If one is to take the CPT
model seriously and rigorously then it needs to do a much better job of explaining the data than we
see here.
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The Cumulative Prospect Theory (CPT) of Tversky and Kahneman [1992] has proven to be

a highly influential model of risky choice.  The theory provides three pathways to characterize the

risk premium over risky lotteries, and is for many an appealing behavioral characterization of human

decision making over risk. Given the popularity of CPT, it would be reasonable to assume that the

theory has been validated empirically by independent researchers in the years soon after its

publication.  In fact, we assumed this when we started this line of research.  However, after

reviewing the literature, it became clear to us that such empirical validation largely does not exist and

subsequent researchers simply assume the validity, in part or in whole, of CPT.  Given the paucity of

laboratory evidence for CPT, we set out to conduct a new laboratory experiment evaluating CPT in

its full structural form.

We appreciate that some may interpret our claim of a lack of evidence as provocative, and

we do not expect our claim to be accepted at face value. We provide a thorough and critical review

of the existent literature reporting laboratory evaluation and econometric estimation of CPT.  We

take the position that full-form CPT estimation must include all three psychological pathways

introduced by Tversky and Kahneman [1992]: diminishing marginal utility, probability weighting,

and loss aversion. Many studies assume away one or more of these pathways and estimate only a

reduced-form CPT model and thus do not provide a test of the full model. We find a litany of

questionable practices in prior work, in terms of both experimental design and econometric

methods. A primary conclusion of our review is that almost all laboratory evaluations of CPT in the

literature fail to estimate the full structural form of the model with salient rewards. When

considering only the few studies which used appropriate experimental design and econometric

methods, we see only equivocal support for CPT. Because of these striking and surprising findings,

new experiments are urgently needed.
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We choose the laboratory1 to undertake simple, direct tests of the hypothesis that individuals

make choices over risky lotteries in the manner assumed by CPT. We go back to the “base camp” of

evidence for CPT from Tversky and Kahneman [1992] and evaluate parametric, structural models

for individuals making incentivized choices over risky lotteries defined over the gain frame, the loss

frame, and the mixed frame. Our results are surprising.

We focus on five core models of decision-making under objective risk. One is Expected

Utility Theory (EUT), and posits that the risk premium is explained solely by an aversion to

variability of earnings from a prospect. The second model is Dual Theory (DT) which assumes no

aversion to variability of earnings from a prospect, but instead posits that decision-makers may be

pessimistic or optimistic with respect to the probabilities of outcomes. The third model is Rank-

Dependent Utility (RDU), which allows both of the latent psychological processes of EUT and DT

in combination. RDU does not rule out aversion to variability of earnings, as in DT, but just

augments it with an additional latent psychological process. The fourth model is Disappointment

Aversion (DA), which assumes that individuals evaluate prospects according to an augmented

version of EUT, in which they also take into account the extent to which outcomes differ from the

certainty-equivalent of the prospect. EUT, DT, RDU and DA assume that individuals asset

integrate, in the sense that they net out framed losses from some endowment. The final model is

CPT, which adds to RDU an aversion to losses as a possible psychological pathway to the risk

premium, and also adds the assumption that gross gains and losses matter because individuals do not

1 We appreciate that there is a substantial literature claiming that CPT, and specifically loss aversion,
is well-documented in the field. We are staunch advocates of the value of field experiments, as in Harrison
and List [2004], but only as a complement to what we can more efficiently learn from the laboratory. For
instance, Ray, Shum and Camerer [2015; p.376] note that loss aversion “... was originally discovered in
laboratory choices among monetary risks [...], but has since become evident in allocations, behavior, and
institutional rules in many markets.” Given the paucity of evidence for CPT in the controlled setting of the
laboratory when we demand the use of real incentives, experimental designs that allow the conceptual
identification of loss aversion, and explicit structural estimation, we are skeptical about claims from the field,
where there are always acknowledged confounds to clean inference. We define the laboratory in the
conventional manner, including artefactual field experiments, following the definitions in Harrison and List
[2004]. The latter field experiments are often referred to as “lab-in-the field” experiments. 
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locally asset integrate and evaluate net gains or losses.

We find that the vast majority of individuals in our sample appear to locally asset integrate.

That is, they see the loss frame for what it is, a frame, and behave as if they evaluate the net payment

rather than the gross loss when one is presented to them. This finding is devastating to the direct

application of CPT to these data. We find greater support for RDU than CPT, and in many cases

greater support for EUT over CPT. We find virtually no support for DT or DA. At the individual

level, almost all of our subjects can be classified using EUT and RDU, with a majority being RDU.

In section 1 we outline the experimental design we developed, in which each subject is given

100 binary lottery choices defined over the gain frame, loss frame and mixed frame. The parameter

values were designed, following a neglected design of Loomes and Sugden [1998], to provide stress

tests of the independence axiom of EUT as well as to allow for identification of a wide range of risk

attitudes. In section 2 we lay out the models to be estimated, with particular care over the

specification of the CPT model. A by-product is attention to the theoretical implications for the

CPT model, implications for experimental design, and a detailed statement of the manner in which

mixed frame lotteries are handled. All of these issues are “in the literature,” but scattered and often

neglected. In section 3 we present results. Section 4 seeks to connect our approach and findings to

the vast literature, noting the remarkably under-developed state of structural estimation for the CPT

model once we apply minimal methodological requirements. We discuss limitations of our results in

Section 5, and offer conclusions in Section 6, focusing on the variants that should be examined next

in the rigorous evaluation of CPT.

1. Experiment

Our objective is to design a battery of tests that allows identification of all of the parameters

of the EUT, DT, RDU, DA and CPT models, that provides some “stress tests” of the EUT model,

and that allows estimation of a wide range of risk preferences at the individual level. The first
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criterion means that we must have gain frame lotteries, loss frame lotteries, and mixed frame

lotteries. The terminology “gain” and “loss” refer here to lotteries in which all prizes are (weakly)

gains or losses, and the terminology “mixed” refers here to lotteries in which some prizes are

(strictly) gains and some are (strictly) losses. The second criterion means that we need to present

some sets of choices that generate sharp predictions under EUT, such as the classic Allais Paradox

set of two choices, and the classic Common Ratio set of two choices. The third criterion means that

we need to recognize that certain risk preferences could make individuals indifferent between the

two lotteries in any given choice, and hence generate low power tests of EUT, DT or RDU. And it

also means that we should try to generate stakes that are as large as possible, within obvious

feasibility constraints for budgets. Following the vast literature, we focus on binary lottery choices,

with a standard interface illustrated in Figure 1.

Some of the most important batteries of tests do not satisfy all three of these, nor were they

designed to do so. For instance, the justifiably influential battery developed by Hey and Orme [1994]

does not have loss or mixed frames, and deliberately avoided sets of lottery pairs that had generated

“knife-edge” tests of EUT. Their design mantra was to be agnostic about choice patterns, and see

which models best characterized the data, rather than selecting lottery pairs designed to be hard for

EUT per se.

Loomes and Sugden [1998] pose an important design feature for Common Ratio tests,

allowing us to meet the last two criteria: variation in the “gradient” of the EUT-consistent

indifference curves within a Marschak-Machina (MM) triangle. The reason for this is variation is to

generate some choice patterns that are more powerful tests of EUT for any given risk attitude.

Under EUT the slope of the indifference curve within a MM triangle is a measure of risk aversion.

So there always exists some risk attitude such that the subject is indifferent, as stressed by Harrison
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[1984], and evidence of Common Ratio violations has virtually zero power.2 This design can be

visualized instantly from Loomes and Sugden [1998; Figure 2, p.587]. For our batteries of 100 lottery

choices, explained in more detail below, the comparable MM visualizations are shown in Figures 2

and 3.

Each panel within Figures 2 and 3 refers to a specific context of prizes. The top left panel of

Figure 2 has prizes of $0, $5 and $25, and the panel immediately to its right has prizes of $0, $15 and

$75. There are always one, two or three prizes in each lottery that have positive probability of

occurring. The vertical axis in each panel shows the probability attached to the high prize of that

triple, and the horizontal axis shows the probability attached to the low prize of that triple. When

the probability of the highest and lowest prize is zero, then 100% weight falls on the middle prize.

This specific lottery is illustrated in the bottom left corner of the very first panel, where the subject

has a lottery offering $5 for certain. Any lotteries strictly in the interior of the MM triangle have

positive weight on all three prizes, and any lottery on the boundary of the MM triangle has zero

weight on one or two prizes.

The solid dots within each panel of Figures 2 and 3 show specific lotteries offered to

subjects, and the lines show choice pairs offered. The detailed numerical patterns are listed in

Appendix A. For the top left panel of Figure 2, we have the familiar Allais Paradox defined over real

monetary outcomes. The lottery pair given by the chord in the bottom left corner has subject

choose between {$0, 0; $5, 1; $25, 0} and {$0, 0.01; $5, 0.89; $25, 0.1}, and the lottery pair given by

the chord in the bottom right corner has the subject choose between {$0, 0.89; $5, 0.11; $25, 0} and

{$0, 0.9; $5, 0.11; $25, 0.1}. Since the slopes of these two chords are the same, and we know that

indifference curves under EUT are straight lines within the MM triangle, we can easily see the choice

2 EUT does not, then, predict 50:50 choices, as some casually claim. It does say that the expected
utility differences will not explain behavior, and that then allows all sorts of psychological factors to explain
behavior. In effect, EUT has no prediction in this instance, and that is not the same as predicting an even
split.
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pattern predicted by EUT: pick the first lottery in each pair or pick the second lottery in each pair.

EUT is violated if the first (second) lottery is picked in the first pair, and the second (first) lottery is

picked in the second pair.

The difference between the first two panels of the top row of Figures 2 and 3 is simply the

change in the prize context. The first panel shows a “low stakes” context, and the second panel

shows a “high stakes” context.

Figure 2 shows the 100 lottery pairs presented to a sample of 177 undergraduate students

sampled from the Georgia State University population, and Figure 3 shows the 100 lottery pairs

presented to a sample of 94 MBA students sampled from the Georgia State University population.

The only difference between Figures 2 and 3 are the prizes, with the domain of net prizes for the

undergraduates spanning $0 up to $70, and spanning $0 up to $750 for the MBA students. We

deliberately had a number of prize contexts for the MBA students that were identical to the domain

of prizes that the undergraduates faced, so we could ascertain the pure effect of stake size. In fact,

the common lotteries themselves were identical: these 24 common choices are in the 2 panels in the

bottom row of Figures 2 and 3, and in the third panel of the penultimate row of Figures 2 and 3.

Comparing panels within Figures 2 or 3, the logic of the Loomes and Sugden [1998] design

appears: to have several choices within a MM triangle that allow tests of EUT, but to vary the slope

of the chord connecting lottery pairs. For instance, consider the four panels within Figure 3 with

prizes of $0, $35 and $70 (the last panel of the first row, the second row, and the first panel of the

third row). Each panel contains several tests of the Common Ratio effect conditional on a given risk

attitude under EUT. Then the gradients change from panel to panel, implying that one should have

one panel, and probably several, that provide more powerful tests of EUT for any given risk attitude

than other panels. A subject might be indifferent between the choices in one panel of these four, but

then that subject must, by design, have strict preferences for some or all of the other panels. Harrison,

Johnson, McInnes and Rutström [2007] refer to this as a “complementary slack experimental
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design,” since low-power tests of EUT in one panel mean that there must be higher-power tests of

EUT in another panel.3

In our battery, 96 of the choice pairs were derived from the Loomes and Sugden [1998]

logic. Our modest contribution is to have some prize contexts in which endowments were given to

subjects and the prizes framed as losses. The result is that we have 16 lottery pairs with loss frames,

and 16 lottery pairs with mixed frames. Table A1 in Appendix A lists the complete battery.

Endowments of $0, $35 or $70 were provided in a given binary choice to ensure that net prizes were

always non-negative.

We added two Allais Paradox pairs to this set of lottery choices. Conlisk [1989] presents a

real version of the Allais Paradox, with the binary choices marked “Allais low” in Figures 2 and 3

(the very first panel). When subjects are presented with just one lottery choice, and he compares

patterns of choices on a between-subjects basis, he finds no evidence whatsoever of the Allais

Paradox. For some reason, this finding does not stop many from referring to the Allais Paradox as a

well-known pattern of EUT violation.4 Starmer [1992] provided one of the first explorations of the

generality of the common consequence effect, concluding (p. 829) that “... if we wish to use

experimental evidence as a basis for developing new theories of choice under uncertainty, we may

3 The experimental setting in which they proposed this terminology is when one conducts Common
Ratio tests for the usual gradients and also conducts Preference Reversal tests for the usual lottery patterns.
The former tests generate indifference or low power for modest and widely observed levels of risk aversion,
and the latter tests generate indifference or low power for risk neutral subjects. If one can identify, to some
statistical tolerance, whether a subject is risk neutral or not, conducting both types of tests allows one to
know a priori that one of the tests should be a more powerful test of EUT. Of course, no single test can be a
powerful test of EUT for all subjects, if one allows a mix of risk averse and risk neutral subjects. The basic
idea was clearly stated in Loomes and Sugden [1998; p. 589, especially fn. 3].

4 This result is acknowledged by some, but not welcome. For instance, Cubitt, Starmer and Sugden
[1989; p. 130] comment that these results are “... sometimes quoted as evidence that violations of EUT are
less frequent in single choice than in random lottery designs. Conlisk investigated the Common Consequence
effect using a single choice design. In each of the two relevant tasks, almost all subjects (26 out of 27 in one
case, 24 out of 26 in the other) chose the riskier option. Clearly, this distribution of responses between riskier
and safer choices is far too asymmetric for the experiment to be a satisfactory test for systematic deviations
from EUT.” The logic of the final sentence is hard to ascertain. Moreover, the evidence for the Common
Consequence effect in incentivized  “random lottery designs” is decidedly mixed: Burke, Carter, Gominiak and
Ohl [1996] and Fan [2002] find no evidence of an EUT violation, whereas Starmer and Sugden [1991] do.
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have to accept that the behavior of individuals is rather more subtle and complex than we have

previously thought.” We therefore include two instances of Allais Paradox tasks in our battery.

Figure 4 displays the complete set of probability patterns for our battery, ignoring the prize

context. The rich array of slopes for the choice chords allows one to see why this design should

provide an attractive setting to estimate models of risky choice, certainly from the perspective of

stress-testing EUT against RDU and CPT.5 For the undergraduate sample, average payouts for a

risk-neutral subject would be just over $39, comparable to earlier experiments with this population,

but on the high side historically for tests of EUT with real consequences. We consider the effect of

prize “context” by using different prizes and the lottery choices in 24 gain frame choices. This

allows us to move from having choices defined over prizes of only $0, $35 and $70, to having prizes

of $0, $5, $10, $15, $20, $25, $30, $35, $45, $55, $60 and $70. This design feature will help

estimation of a more precise utility function.

The lotteries for the MBA students are qualitatively identical to those for the undergraduate

sample, but many are scaled up in monetary value by a multiplicative factor of 25. In addition,

subjects were offered a healthy $40 show-up fee, to reflect the increased opportunity cost of their

time compared to our convenience sample of GSU undergraduates. We scaled up 71 of the tasks,

including all loss and mixed frame tasks, by 25 such that the gross prize frame varied from -$500 up

to +$500 and that net prizes varied between $0 and $750 after the house endowment was factored

in. One of the Allais Paradox tasks was scaled up by a factor of 20, so that the higher-stake prizes

for this task are $0, $100 and $500. The low-stakes Allais Paradox task, and 24 gain-frame tasks,

5 We use all 40 of the Loomes and Sugden [1998] choice patterns, given by triangles I through V of
their design. Triangle VI was used for their £20 sample, and triangle V for their £30 sample. These provide
us with 40 gain-frame choice pairs. We then use the choices from their triangles II and V for 16 loss-frame
lottery pairs, and 16 mixed-frame lottery pairs. Triangle II shows considerable evidence of their subjects
picking the “safe” lottery, so this will test if loss frames induce risk-seeking: there is somewhere for the
choices to go, compared to the gain frame expectations. Triangle V has a mix of safe and risky choices, just
slightly dominated by risky choices, so it provides a non-extreme baseline to see the effect of loss frames.
Triangle V is also likely to be more statistically information than taking triangles III or IV on top of triangle
II, due to the change in gradient.
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were left at the original scaling to allow comparability of behavior across the samples, and to assess

the effect of scaling up payoffs substantially. Table A2 in Appendix A lists the complete battery.

Endowments of $0, $250 or $500 were provided in a given binary choice to ensure that net prizes

were always non-negative. A risk-neutral individual would expect to earn $210.37 from these

choices, before the show-up fee.

Appendix C contains the instructions given to subjects. Subjects had no other salient task in

the experiment, although they did have to answer a series of hypothetical questions about “risk

tolerance” after making their choices. We also collected standard demographic information.

We opted for using the Random Lottery Incentive Method (RLIM), where one of the 100

choices was to be chosen at random for playing out and payment. We did so for two reasons,

recognizing that this is not as innocent a procedure as some maintain.6 The first reason was to

ensure that we collected choices over a wide enough array of lotteries to be able to identify the three

competing models. If we had opted for giving one choice to each subject, to avoid using the RLIM,

this would have been infeasible. The second reason was to be able to estimate at the level of the

individual, to compare those estimates to pooled estimates over all individuals. Again, this would

have been infeasible if we had given each subject just one choose.7

6 See Cox, Sadiraj and Schmidt [2015] and Harrison and Swarthout [2014] for detailed arguments and
evidence, as well as extensive literature discussion.

7 The use of the RLIM is problematic, for well known theoretical reasons (Holt [1986] and Karni
and Safra [1987]). Its use entails a certain “bipolar hypothesis” about the independence axiom when
estimating RDU or CPT models: that the axiom works as it should when subjects evaluate the compound
lottery over 100 simple lotteries that is implied by payment protocol, but that it magically blows up when
subjects evaluate each simple lottery in the choice pair. One has to be simultaneously depressed and
optimistically manic about the independence axiom to maintain these two positions. Moreover, Harrison and
Swarthout [2014] find evidence that it does make a difference behaviorally when estimating RDU models, but
not, as one would expect, when estimating EUT models. One logical response to this problem is just to
assume two independence axioms: one axiom that applies to the evaluation of a given prospect, and that is
assumed to be violated by DT, DA, RDU and CPT, and another axiom that applies to the evaluation of the
experimental payment protocol. One can then assume failure of the former axiom, when estimating non-
EUT models, but validity of the latter axiom. Brown and Healy [2018] report results that show that ordered
prospects, akin to those in a multiple price list (Holt and Laury [2002], Andersen, Harrison, Lau and
Rutström [2006]), generate different choice patterns on a between-subjects basis when presented to subjects in
that order compared to when they are presented to subjects in a random order. The choice pattern in the latter
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Total payouts from these experiments amounted to $42,258. 

2. Theoretical Models

A. Expected Utility Theory

Assume that utility of income is defined by

U(x) = x(1r)/(1r) (1)

where x is the lottery prize and r1 is a parameter to be estimated. For r=1 assume U(x)=ln(x) if

needed. Thus r is the coefficient of CRRA: r=0 corresponds to risk neutrality, r<0 to risk loving,

and r>0 to risk aversion. Let there be J possible outcomes in a lottery. Under EUT the probabilities

for each outcome xj, p(xj), are those that are induced by the experimenter, so expected utility is

simply the probability weighted utility of each outcome in each lottery i:

EUi = j=1,J [ p(xj) × U(xj) ]. (2)

The EU for each lottery pair is calculated for a candidate estimate of r, and the index

EU = EUR  EUL (3)

calculated, where EUL is the “left” lottery and EUR is the “right” lottery as presented to subjects.

This latent index, based on latent preferences, is then linked to observed choices using a standard

cumulative normal distribution function Φ(EU). This “probit” function takes any argument

between ± and transforms it into a number between 0 and 1. Thus we have the probit link

function,

prob(choose lottery R) = Φ(EU) (4)

Even though this “link function” is common in econometrics texts, it is worth noting explicitly and

case is the same as when just one prospect is presented to subjects, suggesting that the random presentation
is eliciting preferences reliably even if RLIM is used to reward subjects. Harrison and Swarthout [2014], in
contrast, presented non-ordered prospects in a random order when applying RLIM, rather than ordered
prospects in a random order. And their inferences concerned the inferred risk preferences under EUT or
RDU, not just an evaluation of choice pattern differences for one, single prospect. Brown and Healy [2018]
cannot evaluate models of EUT or RDU in the two payment treatments, since they only looked at the same
prospect in the treatment in which just one prospect was presented to subjects.
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understanding. It forms the critical statistical link between observed binary choices, the latent

structure generating the index EU, and the probability of that index being observed. The index

defined by (3) is linked to the observed choices by specifying that the R lottery is chosen when

Φ(EU)>½, which is implied by (4).

Thus the likelihood of the observed responses, conditional on the EUT and CRRA

specifications being true, depends on the estimates of r given the above statistical specification and

the observed choices. The “statistical specification” here includes assuming some functional form

for the cumulative density function (CDF). The conditional log-likelihood is then

ln L(r; y, X) = i [ (ln Φ(EU)×I(yi = 1)) + (ln (1-Φ(EU))×I(yi = 1)) ] (5)

where I() is the indicator function, yi =1(1) denotes the choice of the right (left) lottery in risk

aversion task i, and X is a vector of individual characteristics reflecting age, sex, race, and so on.

Harrison and Rutström [2008; Appendix F] review procedures that can be used to estimate

structural models of this kind, as well as more complex non-EUT models. The goal is to illustrate

how researches can write explicit maximum likelihood (ML) routines that are specific to different

structural choice models. It is a simple matter to correct for multiple responses from the same

subject (“clustering”), as needed.

It is also a simple matter to generalize this ML analysis to allow the core parameter r to be a

linear function of observable characteristics of the individual or task. We would then extend the

model to be r = r0 + R×X, where r0 is a fixed parameter and R is a vector of effects associated with

each characteristic in the variable vector X. In effect the unconditional model assumes r = r0 and just

estimates r0. This extension significantly enhances the attraction of structural ML estimation,

particularly for responses pooled over different subjects and treatments, since one can condition

estimates on observable characteristics of the task or subject. In the present context we can

introduce variables to reflect the answers to the RT questionnaires.

An important extension of the core model is to allow for subjects to make some behavioral
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errors. The notion of error is one that has already been encountered in the form of the statistical

assumption that the probability of choosing a lottery is not 1 when the EU of that lottery exceeds

the EU of the other lottery. This assumption is clear in the use of a non-degenerate link function

between the latent index EU and the probability of picking one or other lottery; in the case of the

normal CDF, this link function is Φ(EU). If there were no errors from the perspective of EUT,

this function would be a step function: zero for all values of EU<0, anywhere between 0 and 1 for

EU=0, and 1 for all values of EU>0.

We employ the error specification originally due to Fechner and popularized by Hey and

Orme [1994]. This error specification posits the latent index

EU = (EUR  EUL)/μ (3)

instead of (3), where μ is a structural “noise parameter” used to allow some errors from the

perspective of the deterministic EUT model. This is just one of several different types of error story

that could be used, and Wilcox [2008] provides a masterful review of the implications of the

alternatives. As μ0 this specification collapses to the deterministic choice EUT model, where the

choice is strictly determined by the EU of the two lotteries; but as μ gets larger and larger the choice

essentially becomes random. When μ=1 this specification collapses to (3), where the probability of

picking one lottery is given by the ratio of the EU of one lottery to the sum of the EU of both

lotteries. Thus μ can be viewed as a parameter that flattens out the link functions as it gets larger.

An important contribution to the characterization of behavioral errors is the “contextual

error” specification proposed by Wilcox [2011]. It is designed to allow robust inferences about the

primitive “more stochastically risk averse than,” and posits the latent index

EU = ((EUR  EUL)/ν)/μ (3)

instead of (3), where ν is a new, normalizing term for each lottery pair L and R. The normalizing

term ν is defined as the maximum utility over all prizes in this lottery pair minus the minimum utility

over all prizes in this lottery pair. The value of ν varies, in principle, from lottery choice pair to
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lottery choice pair: hence it is said to be “contextual.” For the Fechner specification, dividing by ν

ensures that the normalized EU difference [(EUR  EUL)/ν] remains in the unit interval. The term ν

does not need to be estimated in addition to the utility function parameters and the parameter for

the behavioral error tern, since it is given by the data and the assumed values of those estimated

parameters.

The specification employed here is the CRRA utility function from (1), the Fechner error

specification using contextual utility from (3), and the link function using the normal CDF from

(4). The log-likelihood is then

ln L(r, μ; y, X) = i [ (ln Φ(EU)×I(yi = 1)) + (ln (1-Φ(EU))×I(yi = 1)) ] (5)

and the parameters to be estimated are r and μ given observed data on the binary choices y and the

lottery parameters in X.

It is possible to consider more flexible utility functions than the CRRA specification in (1),

but that is not essential for present purposes.

Once the utility function is estimated, it is a simple matter to evaluate the implications for

risk aversion. Of course, the concept of risk aversion traditionally refers to “diminishing marginal

utility,” which is driven by the curvature of the utility function, which is in turn given by the second

derivative of the utility function. Although somewhat loose, this can be viewed as characterizing

individuals that are averse to mean-preserving increases in the variance of returns.

But there are also so-called “higher-order risk aversion” processes, known as prudence and

temperance, that correspond to properties of the third and fourth derivative of the utility function,

respectively (see Eeckhoudt and Schlesinger [2006]). Again loosely, these can be viewed as

characterizing individuals that are averse to mean-preserving increases in the skewness and kurtosis

of returns, respectively. The graphic on the next page summarizes these implications, again

informally and under EUT.

For the CRRA utility function given by (1), and widely used for our estimates, the second

-13-



derivative is -rx-1-r and the third derivative is -(-1-r)rx-2-r. Hence it is a simple matter to evaluate if the

individual exhibits prudence, for example.

B. Rank-Dependent Utility

The RDU model of Quiggin [1982] extends the EUT model by allowing for decision weights

on lottery outcomes. The specification of the utility function is the same parametric specification

(1) and (1) considered for EUT. To calculate decision weights under RDU one replaces expected

utility defined by (2) with RDU

RDUi = j=1,J [ w(p(Mj)) × U(Mj) ] = j=1,J [ wj × U(Mj) ] (2)
where

wj = ω(pj + ... + pJ) - ω(pj+1 + ... + pJ) (6a)
for j=1,... , J-1, and

wj = ω(pj) (6b)

for j=J, with the subscript j ranking outcomes from worst to best, and ω() is some probability

weighting function.

We consider three popular probability weighting functions. The first is the simple “power”

probability weighting function proposed by Quiggin [1982], with curvature parameter γ:

ω(p) = pγ (7)

So γ1 is consistent with a deviation from the conventional EUT representation. Convexity of the

probability weighting function is said to reflect “pessimism” and generates, if one assumes for

simplicity a linear utility function, a risk premium since ω(p) < p  p and hence the “RDU EV”

weighted by ω(p) instead of p has to be less than the EV weighted by p. The rest of the ML

specification for the RDU model is identical to the specification for the EUT model, but with

different parameters to estimate.

The second probability weighting function is the “inverse-S” function popularized by

Tversky and Kahneman [1992]:

ω(p) = pγ / ( pγ + (1-p)γ )1/γ (8)
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This function exhibits inverse-S probability weighting (optimism for small p, and pessimism for large

p) for γ<1, and S-shaped probability weighting (pessimism for small p, and optimism for large p) for

γ>1.

The third probability weighting function is a general functional form proposed by Prelec

[1998] that exhibits considerable flexibility. This function is

ω(p) = exp{-η(-ln p)φ}, (9)

and is defined for 0<p1, η>0 and φ>0. When φ=1 this function collapses to the Power function

ω(p) = pη. Of course, EUT assumes the identity function ω(p)=p, which is the case when η = φ = 1.

Many apply the Prelec [1998; Proposition 1, part (B)] function with constraint 0 < φ < 1, which

requires that the probability weighting function exhibit subproportionality (so-called “inverse-S”

weighting). Contrary to received wisdom, many individuals exhibit estimated probability weighting

functions that violate subproportionality, so we use the more general specification from Prelec

[1998; Proposition 1, part (C)], only requiring φ > 0, and let the evidence determine if the estimated

φ lies in the unit interval. This seemingly minor point often makes a major difference empirically.8 

The construction of the log-likelihood for the RDU model with Power or Inverse-S

probability weighting follows the same pattern as for EUT, with the parameters r, γ and μ to be

estimated.

C. Dual Theory

The Dual Theory (DT) specification of Yaari [1987] is the special case of the RDU model in

which the utility function is assumed to be linear. Hence diminishing marginal utility can have no

influence on the risk premium, and the only thing that can explain the risk premium is “probability

8 One often finds applications of the one-parameter Prelec [1988] function, on the grounds that it is
“flexible” and only uses one parameter. The additional flexibility over the Inverse-S probability weighting
function is real, but minimal compared to the full two-parameter function. The need to allow for a wider
range of probability weighting functions than the Inverse-S is also stressed by Wilcox [2022].
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pessimism.”

D. Disappointment Aversion

Gul [1991] proposed a model of decision making under risk that allowed for a reference

point for each lottery, and then posited that the decision maker might experience “disappointment”

or “elation” relative to that reference point when evaluating the lottery.

Consider a lottery A with prizes xi and objective probabilities pi. Assume some utility

function u(x), such as the CRRA function (1) proposed earlier, with parameter r. For a given value

of r, we can then easily numerically evaluate the Certainty Equivalent (CE) of the lottery (in some

special cases the CE is a closed-form expression, but in general it need not be).

Once the CE is calculated, we can define x+ to be the set of prizes greater than or equal to

the CE, and x- to be the set of prizes worse than the CE. Then define the sum of probabilities for

each of these components of the original lottery, for 4 possible outcomes:

p+ = i=1,4 pi s.t. xi  x+ (10)
p- = i=1,4 pi s.t. xi  x- (11)

We know that (p+) + (p-) = 1, by construction. Then we may construct a lottery based on A that

reflects the prizes that are greater than the CE (A+) and a lottery based on A that reflects the prizes

that are worse than the CE (A-) as follows:

A+:     i=1,4 (pi/p+) u(xi) s.t. xi  x+ (12)
A-:     i=1,4 (pi/p-) u(xi) s.t. xi  x- (13)

By construction, we know that A is now the lottery A+ with probability p+ and the lottery A- with

probability (1-p+) = p-. To allow different weights for disappointment and elation define a function

that weights these probabilities p+ and p- as follows:

γ(p+) = (p+) / [ 1 + (1-(p+)) θ ] (14)

where θ  (-1, ). The evaluation of the lottery is then just the disappointment-weighted evaluation

of A+ and A-:
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γ(p+) × (A+) + [ 1 - γ(p+)] × (A-) (15)

When θ = 0 we have γ(p+) = p+, and (15) is just the EUT evaluation of lottery A.

When θ > 0 we place greater weight on A- than we would under EUT since γ(p+) < p+,

and the decision-maker is said to be disappointment averse. When θ  (-1, 0) we place greater weight on

A+ than we would under EUT since γ(p+)  p+, and the decision-maker is said to be elation loving.

The upshot for structural estimation is that we have two parameters, r and θ, to estimate.9

E. Cumulative Prospect Theory

The key innovation of CPT, in comparison to RDU, is to allow sign-dependent preferences,

where risk attitudes depend on whether the individual is evaluating a gain or a loss. The concept of

loss aversion, or sign-dependent preferences, is one that has been formalized in different ways in the

literature. It is important to review the different formalizations, and implications for experimental

design and estimation.

Kahneman and Tversky [1979] introduced the notion of sign-dependent preferences,

stressing the role of the reference point when evaluating lotteries. They defined loss aversion as the

notion that the disutility of losses weighs more heavily than the utility of comparable gains. Here is

the key paragraph (p. 279) introducing the concept:

A salient characteristic of attitudes to changes in welfare is that losses loom larger
than gains. The aggravation that one experiences in losing a sum of money appears
to be greater than the pleasure associated with gaining the same amount of money
[...]. Indeed, most people find symmetric bets of the form (x, .50; -x, .50) distinctly
unattractive. Moreover, the aversiveness of symmetric fair bets generally increases
with the size of the stake. That is, if x>y0, then (y, .50; -y, .50) is preferred to (x,
.50; -x, .50). According to [their] equation (1), therefore, v(y)+v(-y)>v(x)+v(-x) and
v(-y)-v(-x)>v(x)-v(y). Setting y=0 yields v(x)<-v(-x), and letting y approach x yields
v(x)<v(-x), provided v, the derivative of v, exists. Thus, the valuation function for
losses is steeper than the value function for gains.

Note that at this stage there is no presumption that the difference between v(x) and -v(-x) be a

9 We add some modest constraints on r so that the CE evaluations do not become degenerate.
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constant, λ. Indeed, that assumption is never made in Kahneman and Tversky [1979], and appears

later in the literature.

But when we say that the utility decrement of a unit loss, where the absolute value of (x-y)

defines the unit here, is bigger than the utility increment of a unit gain, we need to be able to

compare utility changes in the gain domain and the loss domain. This means that we cannot just

have a utility scale that allows any order-preserving transformation: otherwise one could choose

utility numbers such that the statement was true or false. This just means that we have to be more

restrictive than allowing positive affine transformations, and restrict ourselves to defining utility on a

ratio scale rather than an interval scale. This result is not easy to identify in the literature.

Chateauneuf and Wakker [1999; Theorem 2.3, p. 142] present axiomatizations for CPT under

objective risk that appear to allow value functions to be unique up to an interval scale, which is the

same as allowing arbitrary positive affine transformations. But this is due to them imposing a “tradeoff

consistency” assumption that effectively restricts the analysis to prospects that are either all defined

over the gain domain or all defined over the loss domain. Thus one rules out so-called “mixed

prospects,” which are the general case and central to the robust empirical identification of utility loss

aversion. The general version of this theorem, again applying solely for “loss prospects” and “gain

prospects,” is provided by Wakker and Tversky [1993; Theorem 4.3, p. 155], where the value

function is again unique up to an interval scale. The general case, in fact referred to as “the truly mixed

case” in the statement of the theorem, is provided by Wakker and Tversky [1993; Theorem 6.3, p.

159], and there the value function is only unique up to a ratio scale. In this case the value functions

are unique up to transformations by a positive constant.

Note also the final discussion in the quote from Kahneman and Tversky [1979] about

defining loss aversion in terms of the derivatives of the utility function around a zero reference

point, which is y=0 in the quote. This suggestion anticipates later proposals for defining loss

aversion from Köbberling and Wakker [2005] and others.
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Tversky and Kahneman [1992; p. 309] popularized the functional forms we often see for

loss aversion, using a CRRA specification of utility:

U(m) = m1-α /(1-α) when m  0 (16a)
U(m) = -λ[(-m)1-β /(1-β)] when m < 0, (16b)

where we redefine the notation for utility U() from (1), and where λ is the loss aversion parameter.

Here we have the assumption that the degree of loss aversion for small unit changes is the same as

the degree of loss aversion for large unit changes: the same λ applies locally to gains and losses of

the same monetary magnitude around 0 as it does globally to any size gain or loss of the same

magnitude. This is not a criticism, just a restrictive parametric turn in the specification compared to

Kahneman and Tversky [1979].

Another way to write this, following Wakker [2010; p. 239] is as follows:

The phenomenon can be modeled by a regular basic utility function u and a loss aversion
parameter λ > 0, with u(0) = 0, and the utility function U of the form U(α) = u(α) for
α0 [and] U(α) = λu(α) for α<0. The idea behind this definition is that u captures the
intrinsic value of outcomes and satisfies usual regularity conditions such as being
smooth and differentiable at α=0, and λ is a factor separate from u. To distinguish U
from u, we sometimes call U the overall utility. The unqualified term utility will
continue to refer to U. We use the following scaling conventions for u and λ, which
are plausible if u is differentiable at 0 and is approximately linear on the small
interval [-1, 1]. [...]. 

u(1) = 1, u(-1) = -1, U(1) = 1, so that λ = -U(-1)
This scaling convention was implicitly adopted by Tversky and Kahneman [1992],
who chose u(α) = αθ for gains and u(α) = αθ for α<0, with a θthat possibly differs
from θ. These scaling choices amount to the convention of u(1) = 1 and u(-1) = -1,
[...].

To anticipate, and remove a technical side issue, the analytical problems for loss aversion come

when the coefficients θ and θ differ. Using the definition proposed by Köbberling and Wakker

[2005], loss aversion is infinite if θ > θ and zero if θ < θ. So we shall assume they are the same,

which is one of the assumptions Köbberling and Wakker [2005; §7] and Wakker [2010; §9.6]

propose themselves.10 Extending the notation from Wakker [2010; p.239] to be explicit, and using

10 The same issue with identification arises if one employs more flexible functional forms than the
power utility function or CRRA functions in general. For example, the two-parameter Expo-Power utility
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the specification (16a) and (16b) from Tversky and Kahneman [1992; p. 309] with α=β, we have

U(m) = u(m) = m1-α /(1-α) for m  0 (17a)
U(m) = -λ u(-m) = -λ[(-m)1-α /(1-α)] for m < 0. (17b)

Does this discussion have any implications for what choice tasks can be used to identify loss

aversion? If one has choice data solely in the gain domain it is possible to estimate the basic utility

function, as defined above. Then one can look at choices defined solely in the loss domain, and estimate

the λ that best explains them, in effect “holding basic utility constant” based on the choices in the

gain domain. This is one solution to the identification problem of picking a λ and a basic utility

function at the same time. Note that one could use choices from the gain domain and choices from

the mixed domain just as well, or choices from the loss domain and choices from a mixed domain,

but one needs to have some choices from the gain or loss domain. In our design we have no

problems of this kind, since we have gain-frame, loss-frame and mixed-frame lotteries. 

Must one have mixed-frame lotteries in order to estimate the loss aversion parameter λ? It is

apparent that λ does not affect preferences over two gain-frame lotteries, or for that matter between

two loss-frame lotteries. In the former case λ literally plays no role, and in the latter case it scales the

total utility of all lotteries equally, so cannot change their ranking. Hence variations in λ do not affect

observed binary choices.11 

function popularized by Holt and Laury [2002] collapses to CRRA for certain parameter values, so it also
runs into the same theoretical issues. It is curious to see how the literature on CPT tries to “kill off” power
utility per se, rather than accept the restriction that is implied for identification. For example, Schmidt and
Zank [2008; p. 214] note that “The preceding analysis shows that strong risk aversion and CPT exclude
power utility. More generally, the [loss aversion ratio] is not well defined for power utility under CPT unless
the two powers are equal.” These are two different statements. The first says that one can never use power
utility, the second says that power utility is valid under a simple restriction on the powers in the gain and loss
frame. Later, they note (p.214) that Köbberling and Wakker [2005; §7] “... showed that power utility is
problematic for the index of loss aversion. They suggested an alternative parametric form...” Again, the word
“problematic” just means that one should not try to estimate separate powers in the gain and loss frame, not
that one has to discard power utility, CRRA utility, or its natural generalizations such as Expo-Power.

11 Bruhin, Fehr-Duda and Epper [2010; p. 1382] claim that one cannot identify λ in the all-or-
nothing sense by just comparing preferences over lotteries in the loss domain (one of their “lotteries” is a
certainty-equivalent, but that is not essential to the argument). This is correct, and noted above: preference
over two loss-frame lotteries are not affected by the value of λ. So we agree with their conclusion that “...
when there are no mixed lotteries available, estimating such a parameter is neither feasible nor meaningful” if
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Apart from the critical role of the same intrinsic utility function, one must also avoid applying

the “contextual utility” normalization of Wilcox [2011] that was appropriate for EUT and RDU, and

affected (3). This is why it is important to be clear about the scaling restrictions on intrinsic utility

clarified earlier, that intrinsic utility be unique up to a ratio scale (and not the weaker interval scale).12

There is a clear statement of the “exchange rate assumptions” needed to define loss aversion

in Abdellaoui, Bleichrodt and Paraschiv [2007; p.1662], as well as a tabulation of the range of

definitions that have been proposed in the literature. For instance, Fishburn and Kochenberger

[1979] and Pennings and Smidts [2003] defined loss aversion as U(-x)/U(x), Tversky and

Kahneman [1992] as -U(-1)/U(1), Bleichrodt, Pinto and Wakker [2001] as -U(-x)/U(x), and Schmidt

and Traub [2002; p.235] as U(x)-U(y)  U(-y)-U(-x)  x>y0.  One can make the exchange rate

assumptions formally de minimus by defining an index of loss aversion solely in terms of the

directional derivatives at the reference point, U(0)/U(0), as proposed by Köbberling and Wakker

[2005] and Booij and van de Kuilen [2009]. But this has the very unfortunate effect, as honestly

emphasized by Wakker [2010; p. 247], that global properties of loss aversion are being driven by very,

very local properties of estimated utility functionals,13 and that puts a great strain on empirics and

functional form assumptions.

For comparability with the “base camp” of the mountain of estimations of CPT, we follow

Tversky and Kahneman [1992] and define utility loss aversion as λ  -U(-1)/U(1). Hence the

we qualify the claim to refer to estimating the correct λ value. One can estimate a CPT model and obtain an
estimate of λ but, as we demonstrate in §5.C, one cannot do so and obtain the correct estimate.

12 Although it is apparent that one should not apply contextual utility, due to Wilcox [2011], to CPT.
Does it follow, however, that normalization of any kind should be used for CPT? There is a strong case to be
made that one should consider some normalization, even if it is not contextual utility. The logic that leads one
to apply a (contextual utility) normalization for EUT and RDU equally applies, for example, to the various
lottery pairs in the gain frame under CPT. Hence, one should be wary of the effect of giving CPT a “get out
of jail card for free” when it comes to using a normalization, solely on a priori grounds. From a practical
perspective, perhaps the poor empirical performance of CPT is due to the lack of a normalization, potentially
implying fragile inferences about the primitive “more stochastically risk averse than.” The appropriate
stochastic normalization for CPT remains an open research question for those that seek to apply CPT.

13 In other words, the utility loss aversion for a loss of one penny is the same proportionally as the
utility loss aversion of one million dollars.
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empirical strategy is to evaluate estimates of α and β, and then infer λ by evaluating the implied

utility function at ±1.14 Estimates of all three parameters are then used, along with estimated

decision weights, to evaluate each lottery using (16a) and (16b).

What if the probability weighting functions for the gain domain differ from the probability

weighting functions for the loss domain? There is nothing a priori in CPT to rule this out, and good

reasons to want to de-couple the extent of probability weighting in the gain and loss frames. Even if

the basic utility functions for gains and losses are linear, and conventional loss aversion is absent

(λ=1), differences in the decision weights for gains and losses could induce the same behavior as if

there were utility loss aversion. This is called “probabilistic loss aversion” by Schmidt and Zank

[2008; p.213]. Imagine that there is no probability weighting on the gain domain, so the decision

weights are the objective probabilities, but that there is some probability weighting on the loss

domain. Then one could easily have losses weighted more than gains, from the implied decision

weights.

To see the point intuitively, assume a power probability weighting function, so statements

about concave or convex probability weighting apply for all objective probabilities. Then one simply

needs to have the probability weighting function for losses be convex (overweighting) and the

probability weighting function for gains be linear for there to be probabilistic loss aversion.15 In this

14 It is common to assume that u(x) is weakly increasing in x, and that u(0) = 0, hence that U(0)=0.
This implies that λ > 0, so that the utility values for losses are all negative. If we do not impose the arbitrary
normalization u(0)=0, then weak monotonicity only implies that λ  -1, since we then have U(x)  U(-x) if we
have the same “intrinsic” utility function u(x). Values of λ that are negative have the same interpretation in
this case as values of λ that are positive. The general, non-parametric definition of loss aversion proposed by
Schmidt and Traub [2002; p. 235], that U(x) - U(y)  U(-y) - U(-x)  x > y  0, evaluates identically whether λ
is positive or negative, providing monotonicity holds. We set u(0) = [u(τ) + u(-τ)]/2 for τ  0, and the exact,
small value of τ makes no difference to results; we use τ = $0.50. This assigns a value to u(0) that depends on
the specific utility function and parameters being estimated, and ensures that we have monotonicity at 0 if
λ<0. For comparability with other studies we always report |λ|.

15 Note that the effect on risk aversion of overweighting and underweighting for losses is the
opposite of the effect for gains. As noted by Neilson and Stowe [2002; p.34] CPT “weights extreme
outcomes first,” the best outcome under gains and the worst outcome under losses. Appendix B discusses this
point in more detail. We generally avoid the expressions “optimism” and “pessimism” in CPT, since it can
lead to confusion in general. Wakker [2010; p. 289] offers an excellent definition of these terms, which
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case we have probability neutrality for gains and probability pessimism for losses, implying, ceteris

paribus, risk neutrality over gains and risk aversion over losses. These assumptions are stronger than

needed, but illustrate the importance for estimates of the “utility loss aversion” parameter λ of

allowing flexible degrees of probability weighting in the gain and loss domains.16

We allow flexibility in the probability weighting for losses and gains with the power

probability weighting function by using

ω(p) = pγ+ for m  0 (18a)
ω(p) = pγ- for m < 0 (18b)

and where the p in question is the objective probability associated with that specific m. For the

inverse-S function we use

ω(p) = pγ+ / ( pγ+ + (1-p)γ+ )1/γ+ for m  0 (19a)
ω(p) = pγ- / ( pγ- + (1-p)γ- )1/γ- for m < 0. (19b)

For the Prelec function we use

ω(p) = exp{ -η+ (-ln p)φ+ } (20a)
ω(p) = exp{ -η-  (-ln p)φ- }. (20b)

The construction of the log-likelihood for the CPT model follows the same pattern as for

EUT and RDU, with the parameters α, β, λ, γ+ and γ- (or η+, φ+, η- and φ-) as well as a Fechner error

term μ, to be estimated. One difference is that the “contextual utility” normalization is inappropriate

on theoretical grounds, as noted earlier. A second difference is that loss frame lotteries have their

decision weights based on a rank-ordering from worst prize to best, rather than the rank-ordering

from best to worst used for gain frame lotteries (and all lotteries under RDU). Appendix B explains

generalizes from RDU to CPT: optimism (pessimism) is when an improvement in the rank is associated with
a higher (lower) decision weight. Of course, to add potential semantic confusion, this definition further
assumes the use of what Wakker [2010; §7.6] calls gain-ranks rather than loss-ranks. The former is now the
default, but the latter was used in early studies on RDU, such as the classic by Chew, Karni and Safra [1987],
since it is more natural when referring to cumulative density functions in statistics.

16 There can be a probabilistic loss aversion or loss seeking effect even if the probability weighting
functions for gains and losses are the same. The point is rather that if sign-dependence is the key insight of
CPT then one should not a priori hardwire one of the determinants of (probabilistic) loss aversion with that
constraint.

-23-



this difference. 

A final difference with CPT is that mixed frame lotteries are “parsed” into a gain frame

version and a loss frame version, which are then separately evaluated. The evaluation of the overall

mixed frame lottery is then the sum of these two components, as explained in detail in §2 of

Appendix B. This assumption is known in the literature as “gain-loss separability,” and has been

questioned in some hypothetical surveys by Wu and Markle [2008] and Birnbaum and Bahra

[2007].17 The batteries developed to test gain-loss separability should, at some point, be evaluated

with salient rewards and rigorous econometric methods.18

3. Estimates

We first estimate each of the alternative models with data pooled across all subjects, to allow

a characterization of representative individual behavior. We initially assume homogeneous

preferences to keep things simple, illustrate results, and explain how we classify behavior as being

best characterized by one model. We then allow for heterogeneous preferences by estimating for

each individual.

The bottom line of our analysis is a comparison of the performance of the five models,

shown in Figure 5 for the sample of 177 undergraduates and in Figure 6 for the sample of 95 MBA

students with higher stakes. We conclude that RDU is the best characterization overall, followed by

EUT. There is virtually no support for DT, DA or CPT. 

The simple reason for the poor performance of CPT is that our subjects locally asset

17 In fact, Birnbaum and Bahra [2007] let 3% of their sample play out one choice for payment. We
do not regard this as effectively salient, but appreciate that a theorist might.

18 One implication of violations in gain-loss separability is the possibility that the probability
weighting functions for mixed frame lotteries might differ from the probability weighting functions for gain
or loss frame lotteries, as posited by Wu and Markle [2008] and Pachur and Kellen [2013]. Since one can
generate the effect of “losses looming larger than gains” through the pathway of probabilistic loss aversion, this
implication would likely cause serious identification problems for utility loss aversion (viz., the beloved λ)
without experimental designs that address that problem. 
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integrate over the frames presented to them. As stressed earlier, this is a key difference between CPT

and the other models.19 We expect DT and EUT to underperform RDU, since they are each nested

in RDU. Finally, the poor showing for DA is consistent with extensive evidence from the early

experimental work on EUT rejecting the Betweenness Axiom (BWA)20 that it uses as an alternative

to the Independence Axiom (IA): see Camerer and Ho [1994; p. 191] and Starmer [2000; p.358].

A. Estimates for the Representative Agent

Although individual-level estimates are our focus, it is useful to consider the estimates for

each model when it is assumed to characterize every subject. Table 1 presents maximum likelihood

estimates for each model.21 EUT shows moderate risk aversion, at a level generally consistent with

many years of evidence from laboratory experiments. We can also see the EUT estimate as a

“descriptive” way to flag that there is a risk premium for the representative agent, even if the other

models decompose it differently.

With DT and the Prelec probability weighting function, allowing η > 0 and φ > 0, we have

evidence of probability pessimism for almost all the range of probabilities, as shown in Figure 7. The

left panel of Figure 7 shows the estimated probability weighting function, and the right panel shows

the implied decision weights for the ranked outcomes, using an equi-probably reference lottery to

19 There is good reason to be verbose on this point, since a number of studies referenced in Section
5 estimate an RDU model but casually refer to it as CPT. By this they presumably mean that the RDU model
contains the same probability weighting as CPT, but that is only on the gain frame. RDU and CPT are
otherwise very different models.

20 The difference is easy to explain, and important to understand for the positive evidence in favor of
RDU. The usual IA states that preferences over lotteries A and B are not changed if we consider some lottery
consisting of a p chance of A and a (1-p) chance of C and some lottery consisting of a p chance of B and a
(1-p) chance of C, for any C and all p. In words, preferences over two lotteries are not affected by adding a
common consequence C with the same probability weight. The BWA simply restricts C to be some mixture
of A or B. The important consequence of this change from the IA to the BWA is that indifference curves
within the Marschak-Machina probability simplex are still linear but do not have to be parallel, as required under
EUT. The BWA axiom also underlies the Chew-Dekel class of risk preferences, which play a critical role in
Epstein-Zinn preferences in finance.

21 Table E1 in Appendix E shows comparable estimates for the MBA sample.
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see the pure effect of rank-dependent probability weighting. The top (second) [bottom] line in the

right panel shows a two-outcome lottery in which both outcomes have a probability of ½ (a) [¼].

So we see in each case that the worst outcome is given greater decision weight than the best

outcome, but the best outcome is given slightly more weight than the intermediate outcomes for

lotteries with 3 or 4 outcomes. This probability weighting function has the popular “inverse-S”

shape, but is predominately convex. Hence DT generates a risk premium, consistent with the

implication from the EUT model.

Turning to the RDU model, we focus here just on the specification with the Prelec

probability weighting function. We now get a very different pattern of probability weighting than the

DT model, as demonstrated by Figure 8 and comparison to Figure 7. This probability weighting

function is concave, implying risk-loving behavior ceteris paribus the effect of the curvature of the

utility function. Since we know from the EUT and DT estimates that there is a risk premium overall,

we can infer that there must be a more concave utility function than EUT in order for the net effect

of probability optimism and diminishing marginal utility to generate a modest risk premium. This is

exactly what we find, in Table 1, with the CRRA coefficient estimate of 0.70 compared to the EUT

estimate of 0.45. For both DT and RDU we can easily reject the hypothesis that there is no

probability weighting (i.e., that η = φ = 1).

The DA model estimates in Table 1 imply statistically significant concave utility (r = 0.70 >

0) and disappointment aversion (θ = 0.51 > 0). This model has to do as well as EUT, since EUT is

nested, when θ = 0. It might be expected to do as well as RDU, since if there are only two prizes

then the DA model literally collapses to RDU (Abdellaoui and Bleichrodt [2007]); on the other

hand, we have up to four prizes per lottery in these data, and in those cases RDU and DA are not

the same.

Finally, we consider the CPT model with the Prelec probability weighting function. Table 1

presents the estimates, and Figures 9 and 10 visualize their implications. We find concave utility in
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the gain frame (α > 0), linear utility in the loss frame (β  0), and mild evidence for utility loss

aversion (λ > 1). The top left panel of Figure 9 shows the estimated “intrinsic” utility functions, and

the top right panel then shows the “full” utility functions. These full utility functions are the same in

the gain frame as the intrinsic utility function, but the full utility function in the loss frame also

incorporates the effect of utility loss aversion, and is shown in the solid line.

The CPT estimates for probability weighting imply the pattern shown in Figure 10: classic

“inverse-S” probability weighting for gains, and concave utility weighting for losses. The implication

of concave probability weighting for losses is to put greater (lower) weight on the worst (best)

outcomes, so that we would have probabilistic loss aversion if there had been no probability

weighting for gains.

The “hit rates” of successful predictions for EUT, DT, RDU, DA and CPT are 71%, 70%,

73%, 72% and 76%, respectively, for the undergraduates using house money to cover any losses.22

The log-likelihoods are -10818, -10952, -10456, -10722 and -10936. So by both metrics, RDU

dominates EUT which in turn dominates CPT. Of course, neither EUT nor RDU is nested within

CPT.23

 For the non-nested model comparisons we use tests that compare models by looking at the

likelihoods for the same observation, and defining a statistic on those observation-specific

comparisons, rather than the sum of likelihoods. The two most popular tests are the Vuoung [1989]

test and the Clarke [2003][2007] test, described in Harrison and Rutström [2009]. Using them we are

able to test the null hypothesis that the two models are equally close to the true specification, and

that one cannot discriminate between them. Each test allows us to say which model is “favored,”

but also provides some statistical confidence in the rejection of the null in the direction of the

22 Unless otherwise stated, we only report results for the most flexible probability weighting
specification for DT, RDU and CPT: the Prelec function.

23  If one uses the “information criteria” AIC and BIC, which allow comparisons of non-nested
models using ad hoc punishment terms for additional parameters, the same ranking applies.
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favored model. Using these tests we can draw a strong conclusion for the representative agent

comparisons: the CPT model is favored over each of the EUT, DT, RDU and DA models in terms

of both tests, each test allows one to reject the null hypothesis of non-discrimination with p-values

below 0.01, and the distribution of data underlying the test statistics is non-Gaussian so the Clarke

test should be used.24 As it happens both tests lead to the same conclusion: CPT wins.

Both tests generate the same conclusions, which flows primarily from the huge sample size

with all of the pooled choices. There is some evidence that the ratio of log-likelihoods is non-

Gaussian, and leptokurtic, when sample sizes are less than 500: the asymptotic convergence to a

Gaussian distribution of the ratio of log-likelihoods is slow for smaller sample sizes, and the

distribution tends to resemble a double exponential (Clarke and Signorino [2010; p. 377]). In that

case the Clarke test is much more reliable. We will see below that this point is of some importance

when evaluating individual subjects, since the sample size is 100 there and we do see differences

between the conclusions from the two tests.

A final way to evaluate the risk preferences of the representative agent is by means of a

mixture model, following Harrison and Rutström [2009]. Focusing only on the mixture between the

EUT and CPT models, and the RDU and CPT models, the first result is that the RDU model

characterizes 66% of the choices: indeed, even the EUT model characterized 68% of the choices in

a comparable mixture model. The second result is that we have a very concave utility function for

the RDU choices, but an optimistic probability weighting function, more or less offsetting each

other. In fact, if we estimate an EUT and CPT model, we find that the utility function is concave,

suggesting that the net effect of the offsetting processes in the RDU model is to be risk averse.

The third result from the estimates under the mixture specification is that we have a concave

utility function for gains under CPT, but a linear utility function for losses. Utility loss aversion is

24 The only exception was a p-value between the RDU and CPT models of 0.04.
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significant. We also find very little probability weighting in either gain or loss frames, as shown

below. This differs from some prior estimates in which we get very little utility loss aversion, but

significant probabilistic loss aversion, at least at the pooled level.

B. Hypothesis Tests to Discriminate Between Models

When typing individuals as EUT, DT or RDU we have the benefit of a direct hypothesis test

that ω(p) = p. Similarly, when typing individuals as EUT or DA we can similarly directly test the

hypothesis that θ = 0. But when we have CPT we have to either estimate a mixture model for each

subject or apply some non-nested hypothesis tests. The former can be challenging numerically for

samples of just 100 observations, and the latter can be reliably undertaken if we have log-likelihoods

for each observation and for each model being preferred.25 Hence we first consider how the nested

hypotheses tests allow us to discriminate between the EUT, DT, RDU and DA models, and then

consider the extension to discriminating between these models and CPT.

Figure 11 displays the models selected using the nested hypothesis tests with respect to

EUT. The left panel displays the distribution of p-values on these tests, with one p-value for each

subject. We select the winning model for each subject based on log-likelihoods, and then check if

the null hypothesis of EUT can be rejected at the 1%, 5% or 10% significance level. Unless the

alternative to EUT exhibits statistically significant rejection of EUT, we retain the EUT

classification.26 We find a relatively low fraction, just over 25%, of EUT-consistent subjects for

samples from this population. There are virtually no subjects classified as DT, and very few classified

as DA. The modal risk preference type is RDU, with the Prelec probability weighting function

dominating.

25 When sample sizes are large enough, the mixture model is preferred for reasons spelled out in
Harrison and Rutström [2009; §5].

26 We also check the DA and RDU models using non-nested hypothesis tests, and they do not
change the rankings based solely on the aggregate log-likelihoods.
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Now consider extending this model discrimination exercise to include CPT. Start with a

subject for whom RDU is favored over CPT, such as subject #2 (in turn, EUT was rejected for this

subject in the comparison with RDU). In Figure 12 we show the “jagged” distribution of the log-

likelihood ratios that form the basis of the Vuoung test of the non-nested model. We also show a

fitted Normal distribution to this empirical distribution, since the Vuoung test requires that this

distribution be Normal, as it is asymptotically.27 It is apparent that the empirical distribution is more

peaked than the normal, consistent with the tendency in samples below 500 for this distribution to

be leptokurtic. In fact, in the last subtitle line we show the p-value from the Chen and Shapiro [1995]

test of Normalcy, as implemented by Brzezinski [2012]; this test has been shown to be more robust

than the popular Shapiro-Wilk test. This p-value is less than 0.01, implying that we can reject the

hypothesis that the log-likelihood ratios are distributed Normally, and hence we must use the Clarke

test rather than the Vuoung test.28

Doing so, we find that the Clarke test favors the RDU model over the CPT model, and that

the p-value on the null hypothesis of non-discrimination between the RDU and CPT models is

below 0.01. Hence, at the 5% significance level we can reject that null, and infer that the RDU

model is favored over the CPT model for this subject. The hit rates of the fitted models are also

consistent with this conclusion: the CPT hit rate is only 71% compared to the RDU hit rate of 80%.

In this instance we see the importance of determining if the conditions for the Vuoung test are met:

the p-value on non-discrimination for that test is only 0.49, and we would not have concluded that

the RDU model was superior to the CPT model. 

27 In fact, the requirement is that the distribution be a unit Normal, and the fitted Normal shown
here, and implicitly used in the statistical tests of Normalcy, is not constrained to have zero mean or standard
deviation of 1, but that only makes our tests conservative with respect to rejecting Normalcy.

28 One can adjust the Clarke and Voung test statistics to “punish” models with relatively more
parameters (e.g., Clarke and Signorino [2010; p. 376]), but the correction factors are the same ad hoc ones
noted earlier for the AIC and BIC “information criteria,” and again have no convincing methodological
foundation. These corrections would only strengthen a conclusion not to adopt the CPT model, so they
would not increase the share of individuals classified as CPT decision-makers.
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An example in which CPT wins is subject #7, shown in Figure 13. In this instance both non-

nested hypothesis tests favor the CPT model over RDU, as well as CPT have a superior hit rate.

Again, the Chen-Shapiro test rejects the assumption required for the Vuoung test, although in this

instance that is moot.

There are many instances in which EUT dominates CPT, and Figure 14 illustrates the case

of subject #8. In this instance the Clarke test favors EUT, and indeed the hit rate for EUT is greater

than the hit rate for CPT. However, the p-value on the Clarke test being unable to statistically

discriminate between EUT and CPT is 0.09, so in this instance the subject is classified as EUT since

CPT is not favored in a statistically significant manner.

A similar example arises for subject #3, shown in Figure 15, where the CPT model is

favored over the EUT, but not in a statistically significant manner. Again, we therefore classify this

subject as an EUT decision-maker, in the absence of statistically significant evidence to the contrary.

Turning from individual instances, we can characterize the general trend of these hypothesis

tests. Figure 16 shows the fraction of cases in black for which the “base model” named on the far

left is favored by the non-nested hypothesis test indicated by the Chen-Shapiro test of Normalcy of

the log-likelihood ratios. The fraction of cases in light blue show where the CPT model is favored

compared to the base model. Of course, each subject is classified as one or other of these two base

models, but these unconditional results illustrate the pattern more clearly than just focusing on

shares for the preferred base model for each subject.

In general we see that the CPT model fares better when compared to the EUT model rather

than the RDU model, as one might expect from the added flexibility of the RDU model. But these

shares, again, do not tell us whether the favored model was favored in a statistically significant manner.

For that we need to look to the p-values on the null hypothesis of non-discrimination, as illustrated

for the specific examples considered earlier. Figure 17 shows these for the cases in which the non-

nested hypothesis test favored the CPT model (i.e., the sub-sample from Figure 16 shown in light
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blue). These are the cases we care about to understand why the CPT model, although favored, was

not favored in a statistically significant manner. Figure 17 shows the average p-values in this case,

although one could eaqually look at the median or interquartile range. We show one of the 9

complete distributions of p-values later, to verify this point. Figure 17 suggests that it does not

matter which non-nested hypothesis test, Vuoung or Clarke, is used when comparing RDU and

CPT models: in both cases the average of p-values is well above 10%. Hence, for the subjects

classified as RDU from the nested hypothesis test, which is around 60% of the sample (see Figures 5

and 6), it is very unlikely that the non-nested hypothesis test would positively and statistically significantly

favor the CPT model (and recall that this is the average for the cases in which the CPT model was

favored).

However, Figure 17 does suggest that it matters whether the Vuoung or Clarke test is used

when comparing EUT and CPT models, or DA and CPT models. The Vuoung test has average p-

values that are between 0.10 and 0.19, suggesting that there could be a decent fraction below 1%,

5% or 10%. But the Clarke test has very high p-values, virtually ensuring that the CPT model would

not be positively and statistically significantly favored over the EUT or DA model. The final piece in this

story, then, is to see how often the Vuoung test is used when the CPT model is favored. Figure 18

makes it clear, if one considers the tiny values on the bottom axis, that the Clarke test is almost

always used. This figure shows the average p-values of the Chen-Shapiro test of Normalcy of the

ratio of log-likelihoods: rejecting that hypothesis implies that we must use the Clarke test instead of

the Vuoung test, as noted above for the 4 individual examples.

Finally, Figure 19 shows a complete distribution of p-values for the Clarke non-nested

hypothesis comparing RDU Prelec and CPT Prelec, in contrast to the average shown in Figure 17 in

the light blue bars. The kernel density approximation does “bleed” below 0 and above 1 slightly,29

29 This is entirely due to the kernel density being a local approximation around 0 and 1. One could
alternatively display a histogram, to ensure values in the unit interval, but then one loses information on the
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but the point is clear: the vast bulk of the p-values are greater than the 1%, 5% and 10% levels

shown in red, dashed lines. 

4. Previous Literature

Surely we are not the first to estimate a structural version of CPT? As it happens, we are not,

but it is rather remarkable to see how light the previous evidence is when one weights the

experimental and econometric procedures carefully. Moreover, a recent trend seems to be to declare

any evidence for probability weighting, even if only in the gain domain, as evidence for CPT when it

is literally evidence for RDU. Table 2 summarizes our review of the literature we are aware of,

focusing only on controlled experiments, which has been the original basis of empirical claims for

CPT.

Tversky and Kahneman [1992] gave their 25 subjects a total of 64 choices. Their subjects

received $25 to participate in the experiment, but rewards were not salient, so their choices had no

monetary consequences. The majority of data from their experiments used an elicitation procedure

that we would now call a multiple price list, in the spirit of Holt and Laury [2002]. Subjects were told

the expected value of the risky lottery, and 7 certain amounts were presented in a logarithmic scale,

with values spanning the extreme payouts of the risky lottery. The subject made 7 binary choices

between the given risky lottery and the series of certain amounts. To generate more refined choices,

the subject was given a second series of 7 certainty equivalents for the same risky lottery, zeroing in

on the interval selected in the first stage. This variant is called an iterative multiple price list by

Andersen, Harrison, Lau and Rutström [2006]. Furthermore, “switching” was ruled out, with the

computer program enforcing a single switch between the risky lottery and the certain values. This

variant is called a sequential multiple price list by Andersen, Harrison, Lau and Rutström [2006]. All

interior shape of the distribution.
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risky prospects used two prizes, and there were 56 prospects evaluated in this manner. One half of

these prospects were in the gain frame, and one half were in the loss frame, with the latter being a

“reflection” of the former in terms of the values employed.

A further 8 tasks involved mixed-frame gambles. In these choices the subject was asked to

Fill-In-the-Blank (FIB) by entering a value $x that would make the risky lottery ($a, ½; $b, ½)

equivalent to ($c, ½; $x, ½), for given values of a, b and c. The probabilities for the initial 56 gain

and loss frame choices were 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95 and 0.99, whereas the sole

probability for the 8 mixed-frame choices was ½.30

Tversky and Kahneman [1992] estimate a structural model of CPT using non-linear least

squares, and at the level of the individual. Remarkably, they then report the median point estimate,

for each structural parameter, over the 25 estimated values. So over all 25 subjects, and using our

notation, the median value for α was 0.88, the median value of λ was 2.22, the median value of γ+

was 0.61, and the median value of γ- was 0.69.31

These parameter estimates are remarkable in three respects, given the prominence they have

received in the literature. First, whenever one sees point estimates estimated for individuals, one can

be certain that there are many “wild” estimates from an a priori perspective,32 so reporting the

median value alone might be quite unrepresentative of the average value, and provides no

information whatsoever on the variability across subjects. Second, there is no mention at all of

standard errors, so we have no way of knowing, for example, if the oft-repeated value of λ is

30 Wakker [2010; p. 175] sharply admonishes anyone that only uses one probability to elicit risk
attitudes. Of course, Tversky and Kahneman [1992] used several probabilities in the gain frame and in the
loss frame, so it is surprising that they did not do likewise in the mixed frame. No obvious “all-or-nothing”
identification problems arise from their choice set design overall, but identification of probabilistic loss
aversion is surely improved, in the broader sense, if one allows various probabilities in mixed frame lotteries.

31 They also estimated β and apparently obtained exactly the same median value as α, which is quite
remarkable from a numerical perspective.

32 This issue is the focus of the use of “hierarchical” methods by Nilsson, Rieskamp and
Wagenmakers [2011] and Murphy and ten Brincke [2018], which are in principle well-suited to handling this
particular problem, which is not unique to CPT.
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statistically significantly different from 1. Third, the median value of any given parameter is not

linked in any manner to the median value of any other parameter: these are not the values of some

representative, median subject, which is often how they are implicitly portrayed.33 The subject who

actually generated the median value of λ, for instance, might have had any value for α, β, γ+ and γ-.

These shortcomings of the Tversky and Kahneman [1992] study have not, to our knowledge,

led anyone to replicate their experiments with salient rewards and report complete sets of parameter

estimates with standard errors. The fault is not that of Tversky and Kahneman [1992], who

otherwise employed quite modern methods, but the subsequent CPT literature. Anybody casually

using these estimates as statistically representative should simply stop doing so and instead demand a

more rigorous treatment of CPT estimates. 

Camerer and Ho [1994] is a remarkable study, with many insights. It was also one of the first

to propose and estimate a structural model of CPT using maximum likelihood (§6.1). The data

employed were choice patterns from a wide range of studies, but the analysis was explicitly restricted

to the gain frame (p. 188). Hence it could be said to be the first structural estimation of the RDU

model, but not of a CPT model including losses.

Wu and Gonzalez [1996] focus entirely on the probability weighting function. They stress

the point that they estimate the probability weighting function without having to make assumptions

about utility functions, and view the need to make those assumptions as a methodological flaw. The

reason it is said to be a flaw is that inferences about the probability weighting function could be

confounded by mis-specifications of the true utility function (p.1678). They propose a simple

method for eliciting probability weights based on a series of choices with only two common

33 Tversky and Kahneman [1992; p. 312] do note that the “parameters estimated from the median
data were essentially the same.” It is not clear how to interpret this sentence. It may mean that the median
certainty-equivalents for the initial 56 choices, and the median values of $x for the final 8 choices, were
combined to form a synthetic “median subject,” and then estimates obtained from those data. The
expression “median data” does not lead one to suspect that it was any one actual subject. Nor is there any
reference to standard errors for these estimates.
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outcomes, $200 or $240. Hence one could normalize utilities of these outcomes to 0 and 1, and

avoid making any further assumptions about the utility function. Unfortunately this procedure was

implemented in a non-salient, hypothetical choice task, and only for the gain frame (§4). When Wu

and Gonzalez [1996] undertake maximum likelihood estimation, via a non-linear least squares

method, they assume a power utility function and also restrict themselves to gain frame choices (§5).

One could adapt the Wu and Gonzalez [1996] method for eliciting a probability weighting function

for the gain frame to eliciting functions for the gain and loss frame, but they did not do so. Gonzalez

and Wu [1999] estimate (non-parametric) probability weighting functions and utility functions for 10

subjects based on elicited certainty-equivalents for two-outcome lotteries solely in the gain frame.

They at least employed salient rewards for their small number of subjects.

Harbaugh, Krause and Vesterlund [2002] paid for one of the 24 lotteries studied.  Each

lottery had two outcomes, with zero payment possible in every lottery.  In half the lotteries the

second payment was positive, and the other half of lotteries had a negative second payment; thus,

there were no mixed frame lotteries.  Each decision was between one of the lotteries and a certain

amount, which was usually the expected value of the lottery.  Decisions were presented to subjects

on separate plastic cards, with each lottery presented as a pie chart with a “spinner” in the middle of

the circle.  Extra care was given to the method of task presentation, since subjects were as young as

five years old. They do not undertake structural estimation of the CPT model, claiming (p.83) that,

“Given our data it is not possible to simultaneously estimate both the probability weighting function

and the value function.” They do not consider utility loss aversion at all.

Mason, Shogren, Settle and List [2005] evaluate behavior over risky lotteries defined solely in

a loss frame. They do not consider gain frame choices or mixed frame choices, but they do employ

salient, real rewards.

Stott [2006] examines a wide range of parametric functional forms for CPT, but only
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considers data from hypothetical tasks defined over the gain frame.34

Fehr-Duda, Gennaro and Schubert [2006] paid subjects for one of 50 binary choices over

lotteries with two outcomes. Half of the battery of losses were for gains, half were for losses, and

there were no mixed frame choices. For each lottery, an ordered MPL with 20 certain amounts was

used to elicit a certainty equivalent. The certain amounts spanned the two outcomes of the lottery,

so each subject faced 50 MPLs each with 20 rows. The utility loss aversion parameter λ was not

estimated, because of the absence of mixed frame lotteries (p. 295).

Fennema and van Assen [1998], Abdellaoui [2000], Etchart-Vincent [2004], Schunk and

Betsch [2006], Abdellaoui, Bleichrodt and L’Haridon [2008] and Booij and van de Kuilen [2009] are

widely cited as having used the “tradeoff method” to estimate the utility function for losses.

Fennema and van Assen [1998], Etchart-Vincent [2004] and Booij and van de Kuilen [2009] used

hypothetical survey questions, with no real consequences. Abdellaoui [2000; p. 1502] and Schunk

and Betsch [2006; p. 389] used real incentives for the gain frame, but hypothetical survey questions

for the loss frame; neither asked any questions in the mixed frame. Abdellaoui, Bleichrodt and

L’Haridon [2008] also asked real questions in the gain frame, but only hypothetical survey questions

in the loss and mixed frames. Brooks and Zank [2005] used real losses, and focused on testing

certain implications for choice patterns from utility loss aversion, not estimating the full CPT

structure. In a similar vein, Brooks, Peters and Zank [2014] used real losses from a house

endowment, and generated choice predictions based on assumed parametric values for a standard

CPT specification. No CPT model was estimated from the 105 binary choices each subject made

over gain, mixed and loss frames.

Rieskamp [2008] uses “slightly real” rewards and all three frames. Subjects made binary

34 Stott [2006; p.113] notes that one choice was incentivized by scaling prizes down from nominal
amounts up to ^40,000 to actual payment amounts up to ^5. Average salient payments were just ^2.13. We
view this as effectively hypothetical.
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choices over lotteries with outcomes between +€100 and -€100, one of 180 choices was selected for

payment and realization, and then 5% of the outcome added or subtracted from an endowment of

€15. So the rewards were salient, but not substantial. Nonetheless, this is a great advance from

virtually all other studies. The structural estimates employed both α and β in power utility functions,

with no discussion of the implications for identifying utility loss aversion. As it happened, the

estimates of these two parameters were virtually identical, as in Tversky and Kahneman [1992]. The

utility loss aversion parameter was constrained to be greater than 1, ruling out utility loss seeking.

And the parameters for the Inverse-S probability weighting functions were constrained to be less

than 1 for both gains and losses. Pooled over all subjects, the estimates (p. 1455) were α = β = 0.91,

λ = 1, γ+ = 0.69 and γ- = 0.71. It is an open question what these estimates would be if λ had not

“hit” the imposed lower boundary value.

Booij, van Praag and van de Kuilen [2010] estimate parametric models of CPT, but use

hypothetical survey questions.

Bruhin, Fehr-Duda and Epper [2010] estimated parametric models of CPT that assumed

that the utility loss aversion parameter λ was 1, noting wryly that “our specification of the value

function seems to lack a prominent feature of prospect theory, loss aversion...” (p. 1382). They did

this because their design only included lotteries in the gain frame and the loss frame, and none in the

mixed frame. Estimation of utility loss aversion is logically impossible without mixed frame choices.

They did provide real incentives for decisions, and employed an endowment of house money just as

we did.

Pachur, Hanoch and Gummerum [2010] studied inmates in a UK prison, as well as UK non-

prisoners. Choices were hypothetical, as the inmates received no compensation of any kind, and the

non-prisoners received only a fixed £3 pound participation payment that was non-salient.

Nilsson, Rieskamp and Wagenmakers [2011] utilized the same “slightly real” data of

Rieskamp [2008] and applied a Bayesian hierarchical model to estimate structural CPT parameters.
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They recognized the identification problem with power utility specifications when α  β indirectly.

They initially simulated data using the popular point estimates from Tversky and Kahneman [1992],

to test the ability of their model to recover them. They found that their model underestimated λ and

that α was estimated to be much lower than β, rather than α  β. They concluded (p.89) as follows:

It is likely that these results are caused by a peculiarity of CPT, that is, its ability to
account for loss aversion in multiple ways. The most obvious way for CPT to
account for loss aversion is by parameter λ (after all, the purpose of λ is to measure
loss aversion). A second way, however, is to decrease the marginal utility at a faster
pace for gains than for losses. This occurs when α is smaller than β. Based on this
reasoning, we hypothesized that the parameter estimation routines compensate for
the underestimation of λ by assigning lower values to α than to β; in this way, CPT
accounts for the existing loss aversion indirectly in a manner that we had not
anticipated.

Of course, this is just the theoretical identification issue that requires an “exchange rate assumption,”

as noted earlier and discussed in Köbberling and Wakker [2005; §7] and Wakker [2010; §9.6]. In any

event, they optionally estimate all models with α = β, and avoid this identification problem. Using

the Inverse-S probability weighting function they reported Bayesian posterior modes (standard

deviations) over the pooled sample of α = β = 0.91 (0.16), λ = 1.02 (0.26), γ+ = 0.68 (0.11) and γ- =

0.89 (0.19). Unlike Rieskamp [2008], they did not constrain λ to be greater than 1. 

These estimates are the Bayesian counterparts of random coefficients: hence each parameter

is a distribution, which can be summarized in several ways. Reporting the mode is a more robust

alternative to the mean, given the symmetric nature of their visual display of estimates, and the

standard deviation provides information on the estimated variability across the 30 subjects, each

making 180 binary choices. They find no evidence for utility loss aversion. Figure 3 shows the two

probability weighting functions estimated, and implied decision weights. There is very slight evidence

of probabilistic loss aversion for small probabilities, since there is slight risk loving over gains and

extremely slight risk aversion for losses. For large probabilities this evidence suggests probabilistic

-39-



loss seeking, albeit modest.35

Glöckner and Pachur [2012] undertook incentivized experiments, presenting subjects with

138 binary choices over two-outcome lotteries spanning the gain, loss and mixed frames. A house

endowment of €22 was used to cover potential losses of up to €9.90 from the one lottery choice that

was selected to play out.36 Structural CPT estimates were generated, and one of their metrics for

selecting parameters reflected likelihoods, rather than the unweighted hit rate. However, it appears

that their estimation procedures do not generate standard errors, as illustrated by the tests of the

hypothesis of stability of choices over two sessions.37 Median estimates of parameters across

individuals are reported (Table 4, p.27), following the unfortunate procedure of Tversky and

Kahneman [1992], so one cannot say what any individual or representative agent’s parameters were.

EUT is compared (p. 29), but only with respect to the unweighted hit rate; there is no comparison to

RDU, although a long list of ad hoc heuristics (Table 2, p. 26) are compared in terms of unweighted

hit rates.

von Gaudecker, van Soest and Wengström [2011] estimated parametric models of CPT that

assumed a complete absence of probability weighting, on both gain and loss frames. They note

clearly (p.675) that their specification entails

35 They also report (Table 2, p.91) ML estimates for each of the 30 subjects, and comment about the
relative imprecision of these estimates compared to those obtained from the pooled Bayesian hierarchical
methods. We agree with this likely outcome from individual-level estimates, as noted earlier, even when there
are 180 binary choices per subject. Earlier they anticipated this finding, noting (p. 87) that they “... illustrate
how single-subject ML, one of the most popular estimation methods for CPT (e.g. Harrison & Rutström
2009; Harless & Camerer, 1994; Stott, 2006), can produce extreme, implausible point estimates for
parameters estimated with high uncertainty.” The first two studies referenced here did not in fact estimate at
the level of the individual, as claimed, and Stott [2006] used hypothetical choice data.

36 An unfortunate, but popular, use of a “lab currency” allowed them to state outcomes ranging
between -€1000 and +€1200. These amounts were scaled down by 100 if chosen for payment. This
procedure is unattractive, since it only affects behavior if subjects exhibit money illusion and are unable to
infer the true payoff in the natural currency. If subjects exhibit money illusion then there is a loss of control
over stimuli, by definition, since one does not know how the illusion manifests itself (e.g., non-linearly). We
prefer to deal with the budgetary consequences of presenting monetary amounts in the natural currency.

37 They consider correlations of parameter estimates for each subject between the two sessions (p.
28), rather than a direct test of the hypothesis that the estimate distributions are the same.
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...departures from the original prospect theory specification. [...] it does not involve
nonlinear probability weighting because our goal is to estimate individual-level
parameters, and the dimension of the estimation problem is large already. Adding a
parameter that is highly collinear with utility curvature in our experimental setup
would result in an infeasibly large number of parameters, given the structure of our
data. Furthermore, typical probability weighting functionals develop the highest
impact at extreme probabilities, which are absent from our experiment.

Unfortunately these justifications are tenuous. The fact that the goal is individual-level estimation

does not, by itself, have any theoretical implications for why one can pick and choose aspects of the

CPT model. Indeed, adding one or two parameters for probability weighting, assuming one of the

popular one-parameter specifications and the possibility of constraining probability weighting to be

the same in the gain and loss frames, does add to the dimensionality of the estimation problem. But

numerical convenience is hardly an acceptable rationale for mis-specification of the CPT model.

Colinearity with utility curvature is actually a theoretical point of some importance, and to be

expected, and not an econometric nuisance. Indeed, it extends to colinearity with the utility loss

aversion parameter, unless one assumes away a priori the possibility of probabilistic loss aversion. If

one parameter plays a significant role in explaining the risk premium for an individual, then

assuming it away surely biases conclusions about the strength and even sign of other psychological

pathways. The final point, about not having sufficient variability in probabilities to estimate

probability weighting functions, is even less clear. Their initial lottery choices varied the probability

of the high prize from 0.25 to 0.5, 0.75 and 1; then their second stage choice interpolated the

probability weights between one of these gaps (0 to 0.25, 0.25 to 0.5, 0.5 to 0.75, or 0.75 to 1) in

grids of roughly 10 percentage points. Even from the first stage choices, if one assumes the popular

Power or Inverse-S function then one only needs one interior probability to allow estimation. In

fact, they always have the three interior probabilities of the first stage, and typically have refinements

within one of those intervals. In sum, these arguments sound as though they were constructed “after

the fact” of extensive numerical and econometric experimentation, and in the face of a priori

unreliable numerical results.
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von Gaudecker, van Soest and Wengström [2011] employed a design in which all payments

were to be sent to participants 3 months after their choices were made. This was to allow the design

to vary the time of resolution of risk (now or in the future), without confounding that treatment

with the timing of payment and discount rates. Their payoff configurations (Table 1, p. 669) include

gain frame lotteries, mixed-frame lotteries, and no loss frame lotteries. Four of the seven payoff

configurations have all risk resolved at the time of choice, although by means of a computer

realization (raising issues of credibility).

Zeisberger, Vrecko and Langer [2012] estimate a structural CPT model from experimental

data from 89 students, who earned €60 in an experiment a month prior, with payment only for the

two sessions. One in ten students were paid, based on their choices for one random task out of 30.

They elicited CE for lotteries in the gain, mixed and loss frames, using the Becker, De Groot and

Marschak [1964] procedure. They estimated a “full” model for each subject in which all CPT

parameters are jointly estimated using maximum likelihood methods. For some reason standard

errors needed to be generated by bootstrapping (e.g., Table 5, p. 375), and no hypothesis tests of

parameters are presented. Median estimates are presented (Table 4, p. 373), but at least interquartile

ranges are also presented. The median pooled estimate of loss aversion is λ=1.37. No estimates for a

representative agent are presented. Individual point estimates are presented (Table 5, p. 375ff.), and

exhibit some “wild” estimates. This may be due to the small number of choices for each subject,

although if the CE is reliably elicited it embeds more information than a binary choice. No

comparison between CPT and other models is presented.  

Abdelloui, L’Haridon and Paraschiv [2013] estimated parametric models of an RDU model

defined over gains, but referred to this as a CPT model even if there were no losses at all in the

stimuli. They did use real incentives, and told 65 couples that “they could be selected to play out one

of their choices for real...”; it is not clear if one of the 65 would be selected for salient rewards, or

this means that there was some probability that each couple could be selected. In any event, this is
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not a CPT model since losses played no part.

Bouchouicha and Vieider [2017] report the results of two experiments. One experiment

employs only gain frame lotteries with weakly-salient rewards: two of the 47 participants were

randomly selected to play a choice for monetary reward. The other experiment uses hypothetical

rewards over loss frame lotteries. No mixed frame lotteries were presented in either experiment, and

thus loss aversion was not estimated.

Pachur, Schulte-Mecklenbeck, Murphy and Hertwig [2018] conduct an experiment38 with a

total of 91 pairs of lotteries: 25 loss frame, 35 gain frame, and 31 mixed frame. Incentives included a

fixed amount of €10 and salient reward that averaged €1.26 (with a range of -€9.1 and €9.8). Each of

the 90 participants attended two sessions, with the same lotteries presented in different order in each

session. They estimated CPT with a hierarchical Bayesian procedure at the individual level and

separately for each session, with power utility curvature assumed to be the same over gains and

losses (i.e., α = β, in our notation). Of particular note, they do not find evidence of loss aversion: the

first session mean loss aversion estimate is λ=0.905 (95% credible interval 0.816  0.996) and the

second session estimate is λ=0.985 (0.891  1.085).

Murphy and ten Brincke [2018] estimate parametric structural models of CPT at the

individual level, using mixed estimation methods to condition individual estimates based on pooled

estimates. They assume that α = β in order to avoid making any “exchange rate assumption,” but of

course that is an assumption nonetheless. Although they used the flexible Prelec [1998] probability

weighting function (9), they assumed the same probability weighting function for gains and losses,

another restrictive assumption; their rationale (fn. 4) was “... parsimony and as a first pass, given the

relatively low number of binary observations compared to the number of model parameters.” They

38 In fact, they report two experiments, but we discuss only their first experiment. Their second
experiment involved a manipulation of participants’ attention to gains and losses to test for variation of the
loss aversion parameter estimate, and thus did not provide unbiased estimates of all CPT parameters.
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report (§6.1) values for λ of 1.11 and 1.18 in two sessions, one later than the other, but do not say if

these estimates were statistically significantly different from 1. Figure 21 displays estimated

distributions, “given by medians of estimates” (fn. 9) for the pooled sample.39 There appears to be

no statistical significant loss aversion, with λ1, and virtually no probability weighting on average,

with η  φ  1. Figure 22 shows the implied utility functions and probability weighting functions,

using the means of the distributions in Figure 21.

L’Haridon and Vieider [2019] conduct an experiment with 2,939 participants from 30

countries and estimate a CPT model with country-level fixed effects. Although the primary estimates

use a constrained CPT model assuming linear utility, the appendix reports the results of estimating

an unconstrained CPT model. The global loss aversion parameter estimate from this unconstrained

version of CPT is λ=1.63, with notable variation across countries: a low of λ=1.11 in Germany, a

high of  λ=2.81 in Nigeria, and λ=1.31 in the USA.40 Of note, this experiment relied upon a single

mixed frame prospect to identify loss aversion.

In summary, Table 2 shows that very few studies estimate an unconstrained version of CPT

with real, salient incentives for gain, loss and mixed frames. Those that meet these methodological

criteria are shaded. Of the 33 studies reviewed, only 9 meet these methodological requirements. And

of these 9, none report average loss aversion parameter estimates close the λ=2.25 value

that is often casually bandied about in the literature.41  In fact, all of these studies report loss

aversion estimates less than 2, and roughly half of them report loss aversion values near 1, which

39 Figure 4 is generated by considering the distribution for each parameter separately, since no
information is provided about the full multivariate distribution spanning all parameters. It is unlikely that this
would affect qualitative statements about the statistical (in)significance of utility loss aversion.

40 While their appendix reports results of a full CPT model with country fixed effects, it does not
report global estimates. We thank Ferdinand Vieider for providing us with these estimates.  

41 To be clear, Tversky and Kahneman [1992] report a median loss aversion estimate of 2.25 and we
are not criticizing this result.  Rather, we are criticizing the subsequent literature that treated this initial
singular empirical observation as a behavioral constant.
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implies no loss aversion.42 Clearly, the evidence in support of loss aversion, and thus CPT, is not

monolithic as commonly claimed.

Finally, a meta-analysis of loss aversion estimates by Brown, Imai, Vieider and Camerer

[2023] reports a mean estimate of λ with a 95% probability of being between 1.81 and 2.11 based on

607 estimates from 150 studies across many disciplines. This estimate must be taken with a grain of

salt. First, it is answering a question that differs from the question asked here. It assumes that CPT is

used to characterize all of the data, and examines the estimate that results. For example, referring to

a working paper version of the present study, it uses the estimate 1.34 from Panel C of Table 1. But

Figure 5 shows that only around 18% of the subject sample are best characterized by CPT, and that

CPT is rejected in favor of RDU and EUT. Second, in many cases the same data were recorded

twice for a given study: one based on individual median estimates and another based on individual

mean estimates. Third, it explicitly culls estimates from a wide range of disciplines, and adopts a

casual “come as you are” stance towards how the estimates were generated. Consider just the

estimates that used lab experiments with real rewards, and that did not rely on invalid statistical

methods to infer the standard error of the point estimate of λ. This brings the sample down to 46

studies and 146 observations. Of these, 2 observations in 1 study actually had no real rewards; 4

observations in 2 studies did not use real rewards for the loss-frame and mixed-frame choices, which

are central to the estimate of λ; 32 observations in 1 study assumed linear utility for both gains and

losses, and had only one mixed frame choice; 1 observation in 1 study had only one mixed frame

choice when allowing different utility curvatures for gains and losses; 25 observations in 9 studies

assumed linear utility for gains and losses and no probability weighting; 1 observation in 1 study had

no probability weighting; 6 observations in 2 studies had no probability weighting and assumed

identical utility curvature for gains and losses; 22 observations in 9 studies assumed linear utility for

42 We review this summary conclusion below in §5.C and in Figure 32.
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gains and losses, no probability weighting, and estimated λ from less than a handful of observations

for each subject, following Tom et al. [2007] from neuroscience; 18 observations in 2 studies

assumed point estimates for the utility functions and probability weighting functions, and then

estimated λ with a profile likelihood maximization; and 1 observation in 1 study that had no λ

estimate that could be found. In the end, there are 17 of the original 46 studies (29 less), and 34 of

the original 146 observations (112 less). In principle there is no issue with undertaking a meta-

analysis of estimates, but one would want appropriate controls built in for varying quality of the

economic and econometric basis of the estimates.

5. Limitations and Extensions

We are well aware of limitations of our results, and we view them as simply shifting the

burden of proof back on to those that claim support for CPT in the laboratory. On the other hand,

we vigorously defend them as the appropriate place to start a rigorous examination of the general

empirical validity of the CPT model, claims about the importance of loss aversion in general, and the

psychological pathway for loss aversion. The reason for our vigor should be apparent from the

appalling state of the literature reviewed in §4 and Table 2.43 We consider limitations from the

perspective of theory, experimental procedure, and econometrics, recognizing that these are not

independent domains. 

A. Theoretical Issues

The Reference Point

The first theoretical point is the vexing question of the specification of the “right” reference

43 We also see this literature review as a challenge to methodologists to explain how such a false
consensus could have emerged and been sustained for so long. Harrison and Ross [2017] begin that
methodological explanation.
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point. Kahneman and Tversky [1979] were explicitly agnostic on this issue, Tversky and Kahneman

[1992] were silent, and the issue has been dormant until the recent development of “endogenous

reference point” models by Kőszegi and Rabin [2006][2007] and Schmidt, Starmer and Sugden

[2008]. Obviously any theoretical specification of the reference point that differs from the framed

reference point in our experiments will make a difference to the effect of frames, since that

reference point acts to define what choices fall into which frame.44 These theoretical specifications

are, however, surprisingly vague as to how they are to be operationalized, and their rigorous

evaluation remains open pending those specifications. Of course, the CE in Disappointment

Aversion models provides one, early endogenous reference point specification.

Asset Integration

A second theoretical point is global asset integration, by which we mean the assumed

manner in which earnings within the laboratory are combining with extra-lab income or wealth. In

one sense the issue of global asset integration, which raises the calibration critique of estimates of

risk aversion from small stakes, is one reason one might want to rigorously model loss aversion.

Rabin [2000; p.1288] used loss aversion as the primary throw-away explanation of why one actually

observes subjects picking safer lotteries over riskier lotteries, even when they perfectly integrate

“wealth” with income from experimental lotteries:

What does explain risk aversion over modest stakes? While this paper provides a
“proof by calibration” that expected-utility theory does not help explain some risk
attitudes, there are of course more direct tests showing that alternative models better
capture risk attitudes. [...] Many of these models seem to provide a more plausible

44 Without developing a theory of “the” reference point, Harrison and Rutström [2008; p.95-98]
evaluate a wide range of parametrically assumed reference points, and construct a “profile likelihood” for
each of them. The reference point with the best profile likelihood was not $0, as assumed here, but some
positive amount possibly reflecting some “homegrown reference point” that the subject brought to the lab
based on expected earnings. What is relevant here is not their method of finding the empirically best-
performing reference point, which was a-theoretical, but that the structural parameter estimates for utility
loss aversion were much more in accord with a priori beliefs when that alternative reference point was
assumed.
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account of modest-scale risk attitudes... [...] indeed, what is empirically the most
firmly established feature of risk, loss aversion, is a departure from expected-utility
theory that provides a direct explanation for modest-scale risk aversion.

We disagree with many, in fact all, of the assertions here, but the point is that non-EUT

specifications are viewed as one way of accounting for calibration puzzles.45 Moreover, the historical

evidence for CPT has been accumulated with utility functions defined solely over experimental

income.

Rank-Dependent Probability Weighting

One of the main innovations of CPT over the Original Prospect Theory (OPT) of

Kahneman and Tversky [1979] was the use of rank-dependent probability weighting in order to

remove the possibility of violations of first-order stochastic dominance. Of course, Kahneman and

Tversky [1979] had addressed this concern in their “editing process,” assumed to occur prior to the

“evaluation process” that most economists focus on. There is clear evidence that subjects tend to

avoid such blatant violations: see Carbone and Hey [1995], Hey [2001] and Loomes and Sugden

[1998]. If one has a sufficiently strong prior that a theory ought not to allow such violations, then

the rank-dependent model of RDU and CPT is one popular option; Blavatsky [2012] reviews other

options.

From an empirical perspective, what is the implication of estimating a model of OPT? If

subjects do indeed avoid violations of first-order stochastic dominance, then choices implied by that

behavior should, to some extent, condition the maximum likelihood estimates of an OPT model so

as not to predict them. On the other hand, some violations might be consistent with a maximum

45 These calibration puzzles were independently developed by Hansson [1988] and Rabin [2000], and
rest on an empirical premiss that subjects exhibit risk aversion over a wide enough range of wealth and
lotteries defined over small stakes. Building on an ingenious design independently due to Cox and Sadiraj
[2006][2008; p.33] and Wilcox [2013], Harrison, Lau, Ross and Swarthout [2017] show that this premiss is
strikingly false for subjects drawn from the same population as the experiments reported here. Andersen,
Cox, Harrison, Lau, Rutström and Sadiraj [2018] show that it is not false for other populations of interest,
such as adult Danes, at least for the finite range of lab wealth considered in their experiments.
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likelihood OPT model if they sufficiently improve the aggregate log-likelihood with respect to other

choice patterns (e.g., violations that have little economic significance to the decision-maker).

Moreover, structural models of decision-making under risk allow for behavioral errors of one form

or another, and they are designed to accommodate unexplained violations of this kind.46

Figure 24 displays the results of estimating our structural model, but assuming OPT instead

of CPT. Here we use the data from undergraduates who had house money to cover losses, so Figure

10 provides the CPT counterpart. One immediate result is that the aggregate log-likelihood of the

OPT model is superior to the aggregate log-likelihood of the CPT model. However, since OPT and

CPT are not nested with each other, comparisons of aggregate log-likelihoods are not appropriate.47 It

turns out that the non-nested Vuoung test supports CPT over OPT, but the assumptions for the

validity of that test are strikingly violated, so one must use the Clarke variant, and it strongly

supports OPT over CPT. The significance of this result is that it is, to our knowledge, the first head-

to-head comparison of OPT and CPT in a full, structural model where violations of first-order

stochastic dominance are viewed along with all other behavior patterns. In other words, assuming

CPT because of the possibility of these violations implicitly places a dogmatic prior on avoiding those

violations. Our OPT estimates simply weigh their significance along with other deviations from trial

parameter values, and decides on a maximum likelihood basis whether they should be “allowed” or

not. Recall that the likelihood of an observed binary choice is the probability of that choice, given

the trial parameter values. So when we refer to “weighing” of violations, we are referring to the

chance of the model making the right probabilistic prediction for the full set of observations.

The specific parameter estimates in Figure 25 differ from those for the CPT model by

having a much lower estimate of the β parameter, in fact implying concave utility in the loss frame.

46  These behavioral errors are distinct from the standard errors of the structural model parameters,
which can also accommodate unexplained violations by getting larger than they would otherwise be.

47 As explained earlier, and in greater detail in Harrison and Rutström [2009], all of the non-nested
tests are based on statistics derived from a vector of observation-wise comparisons of log-likelihoods.
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The implied loss aversion parameter λ is 1.96, much higher than with CPT. Probability weighting in

the gain frame is similar for OPT and CPT, but virtually absent in the loss frame for OPT.

B. Experimental Procedures

Earned Endowments

If someone had undertaken a prior task, with some real task, and with real earnings rather

than some artefactual earnings from “house money,” would they exhibit greater loss aversion?

This is an easy extension to make to our design. Following Laury, McInnes and Swarthout

[2009], we modified our procedures to provide subjects with a quiz of 15 questions in which they

could earn $80 or $40 depending on their knowledge of current events, American history, and

geography. We also explained that any earnings or losses from later choice tasks would be added to

or subtracted from the earnings from the quiz. We therefore generated an endowment that applied

equally to all three frames: the “house money” of our main experiments only applied to the mixed

frame and loss frame. It would be artificial, and disingenuous, to generate an “earned endowment”

that can only be retained if someone was running the risk of losing it. Indeed, the cash earnings were

paid out immediately and left in sight, on top of the desk during the lottery choice task. Appendix D

contains the introductory text to the experiment that explained the connection between the quiz that

generated an earned endowment and the later choice tasks. It also contains the quiz itself, which was

designed to be relatively easy to score 8 or more correct answers, and hence $80. The main

instructions in Appendix C were modified to explain that any gains or losses would be added or

subtracted from the quiz earnings, but were otherwise the same as those in the main experiments.

The choice tasks were those given to undergraduates, involving maximal losses of $70, so

nobody would lose their entire endowment if they had earned $80. All net earnings were on top of

the show-up fee. We had prepared an alternative set of choice questions with maximal losses of $40

in the event that someone failed to earn $80 from the quiz, but that did not happen.
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Over two sessions, 58 undergraduate GSU subjects participated in the experiment, which

obviously  was not cheap to run because of the earned endowment. Figure 23 displays the pooled

estimates for this samples of undergraduates, to be compared to Figure 9 for undergraduates with

house money to cover losses.48 There is an increase in the estimate of β from 0.06 to 0.23 as we

move from house money to earned endowments, and λ increases from 1.34 to 1.76. The form of

probability weighting over gains and losses is virtually identical. 

At the level of individual estimation, however, this treatment did increase the fraction of

subjects classified as CPT, at the expense of those classified EUT and RDU. Figure 24 shows the

classifications, to be contrasted with Figure 5.

Somebody wanting to defend CPT might argue that our earned endowment task was facile,

and that it amounted in effect to just another “house money” treatment in the minds of subjects.

Alternative procedures for generating earned endowments, with time to integrate them into extra-lab

wealth, have been proposed (e.g., Bosch-Domènech and Silvestre [2010] and Cárdenas, De Roux,

Jaramillo and Martinez [2014]) and could be evaluated. Clearly, however, at some point the burden

has to rest on advocates of CPT to propose an operationally meaningful way to endow subjects and

then evaluate behavior in a more rigorous econometric manner.

Alternative Elicitation Methods

Would there be any effect from using alternative elicitation methods than binary choices?

One popular alternative is to elicit a certainty-equivalent of some lottery, allowing one to directly

infer the risk premium conditional on believing that the certainty-equivalent has been reliably

elicited. The use of the open-ended, “fill in the blank,” Becker, De Groot and Marschak [1964]

elicitation method for certainty-equivalents is controversial: many experimenters believe that it

48 Table E in Appendix Elists the full set of estimates for all major models.
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performs poorly in practice, for various reasons. One can devise iterative multiple price lists, in the

sense of Tversky and Kahneman [1992] and Andersen, Harrison, Lau and Rutström [2006], that can

“drill down” in a series of ordered, binary choice tasks to effectively elicit a tight interval for the

certainty-equivalent. The incentive-compatibility of these methods are more likely to be understood

by subjects than the open-ended methods.

C. Econometric Issues

We characterize heterogenous preferences by estimating at the level of the individual, with a

design that allows that because there are 100 binary choices for each individual. Another way to

account for unobserved individual heterogeneity is to estimate structural models using random

coefficients that reflect the latent population distribution of the parameters across subjects.

Econometric methods for the estimation of non-linear systems, of the kind we encounter with the

EUT, DT, RDU, DA and CPT structural models, have been developed by Andersen, Harrison,

Hole, Lau and Rutström [2012]. Although we see these as valuable techniques to characterize

heterogeneity, we do not expect them to fundamentally alter our conclusions about the ability of

CPT to explain the broad pattern of observed behavior.

Finally, there is a perennial issue in econometrics of parametric specifications versus non-

parametric specifications. In fact, there are three issues here: the use of parametric assumptions

about the utility and probability weighting functions, the use of non-parametric predictions of

theories (typically about choice patterns), and the use of parametric assumptions about the

stochastic error processes. In each case we are open to the use of non-parametrics, but caution that

there is a tradeoff in power when one does so, of course conditional on us having “good” or

“flexible” parametric specifications.
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“Second Best” Econometrics

In public economics, the theory of the second best tells us that if you place a constraint on a

system whose outcome is subject to optimization, then the properties of the unconstrained system

might be very different, and there is no easy way to be confident that they are similar. The same

point applies to econometric models of CPT. Over the years an astonishing array of restricted

versions of CPT have been estimated, as our literature review identified. Here we quickly review

what difference it makes to the estimates of the original-recipe CPT model. For simplicity, we focus

on the pooled estimates with undergraduates using house money for losses. Hence Figure 10 is the

benchmark set of parameter estimates: α = 0.21, β = 0.006, λ = 1.34, substantial inverse-S

probability weighting in the gain frame, and globally concave weighting in the loss frame. The 95%

confidence interval for λ is between 1.14 and 1.54.

The first special case is where the coefficients for the intrinsic utility functions are set equal

to each other: α = β. The only rationale for this assumption is that Tversky and Kahneman [1992]

found that these were similar; there is no theoretical rationale.49 Of course, while their econometric

methods were reasonable, these “representative estimates” were a Frankenstein composed of the

median α from one subject and the median β from another subject; it is embarrassing to see such

estimates viewed as representative. In any event, Figure 26 shows what happens with the same data

used to estimate the unrestricted CPT model. The joint parameter for utility functions is estimated

to be 0.23, close to the unrestricted estimate for α, but λ is now inferred to be much higher, at 1.70.

The pattern of probability weighting is similar to the unrestricted version. So these data suggest that

this restriction leads to an over-estimate of utility loss aversion for ths sample from a specific

population.

The second special case is when utility functions are assumed to be linear: α = β = 1. The

49  Parsimony with respect to the number of parameters is not a theoretical rationale. Nor, as it
happens, do we view it as well-motivated econometrically, but that is a separate debate.
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usual rationale is an appeal to Rabin [2000], which as noted earlier refers to the claim from Hansson

[1988] and Rabin [2000] that utility functions under EUT had been be close to linear for the “small

stakes” seen in the lab, or else a priori implausible risk aversion is implied for large stakes. As noted

earlier, Harrison, Lau, Ross and Swarthout [2017] demonstrated that the empirical premiss, when

properly posed to match the theoretical premiss, does not apply to samples from the population

studied here.50 Moreover, it is strange to see an argument against the ability of EUT to explain large

stakes risk aversion used to justify assuming linear utility functions in CPT, when it was utility loss

aversion that Rabin [2000] conjectured as the explanation for large stakes risk aversion. Nonetheless,

the estimates that result from this restriction are shown in Figure 27. Of course, λ collapses by

definition to 1 in this case. And while the qualitative pattern of probability weighting in the gain

frame formally remains inverse-S, it has a much more significant convex region for a wide range of

probabilities.51

The third special case is to assume sign-independent probability weighting, so that the same

probability weighting function applies in the gain frame and in the loss frame: η+ = η- and φ+ = φ-.

Again, the only rationale we have seen for this derives from the Frankenstein “representative agent”

estimates for γ+ and γ- in Tversky and Kahmeman [1992] being close to each other, despite γ+ being

the median estimate from one subject and γ- being the median estimate for another subject. The

effect is shown in Figure 28. The concavity of the gain frame utility function is reduced, the loss

frame utility function becomes distinctly concave, the loss aversion parameter λ drops to 0.99, and

probability weighting for the two frames becomes slightly inverse-S.

50  On the other hand, Andersen, Cox, Harrison, Lau, Rutström and Sadiraj [2018] found evidence
consistent with the empirical premiss for the adult Danish population. 

51  One often sees linear utility functions assumed when no probability weighting is also assumed,
with λ as the sole parameter. This requires a deviation from the implied definition of λ through various
“exchange rate assumptions.” We were unable to solve such a “myopic loss aversion” model with only the λ
parameter and the μ behavioral noise parameter. We doubt that anyone has actually estimated this model
with data spanning gain, mixed and loss frames. 
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The fourth special case is to assume away probability weighting altogether, as critically

reviewed earlier in reference to von Gaudecker, van Soest and Wengström [2011]. Figure 29 displays

the results of making this assumption. The concavity of the gain frame utility function is higher, the

slightly convex loss frame utility function becomes slightly concave, and loss aversion stays about

the same, at λ = 1.34. Although there is no significant change in loss aversion, the aggregate log-

likelihood is much worse than the full specification, and in this case these comparisons are nested:

these restrictions can be rejected with a p-value below 0.0001.

The fifth special case is to assume away the need for mixed frame lotteries altogether, as

critically reviewed in reference to Bruhin, Fehr-Duda and Epper [2010]. Here we infer an estimate

of λ whenever we have estimates of α and β, since we can infer λ  -U(-1)/U(1) directly. Employing

the CRRA functional form for utility in (16a) and (16b), this means that we infer λ as [m(1-β)/(1-

β)]/[m(1-α)/(1-α)] where m = 1. From a mathematical point of view, it is feasible to infer a point

estimate and standard error for λ if one has point estimates and standard errors (and a covariance

between these standard errors) for α and β. The problem is that λ plays no role theoretically to affect

any choice in the battery, which now consists of only gain frame and loss frame tasks. Hence one

cannot reliably infer the correct value of λ, since it had no role in affecting the log-likelihoods of

observed choices. Intuitively, if there is some true β and some true λ  1 that the decision-maker

has, and we have no mixed frame lotteries, the estimated CPT values of β can be viewed as incorrectly

picking up the joint effect of the true values of β and λ. Figure 30 illustrates this case with our data.

The utility function for gains is slightly more concave, the utility function for losses is significantly

more convex, the estimate λ = 2.0 of loss aversion is much higher than the true value, and the extent

of probability weighting is qualitatively similar to the unrestricted model in Figure 10.

The final special case is a slight variant on the last one, where we consider only one mixed

frame lottery in the battery, following Vieider et al. [2015][2019] and L’Haridon and Vieider [2019].

In our battery there were 16 mixed frame lotteries, so the simplest way to evaluate the effect of this
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case is to consider each mixed frame lottery one at a time. The results are generally very close to the

case in which there are no mixed frame lotteries, as one would expect from only adding one more

choice to the battery. Figure 31 displays the effects of these variants, shown in the last 16 lines in the

form of point estimates and 95% confidence intervals. Although there is some arbitrariness in

estimates of λ from selecting one particular mixed frame lottery, the effects are always relatively

close to the case of having no mixed frame lotteries at all.

Figure 31 also serves as a summary of the effects of these special cases on estimates of the

loss aversion parameter λ. In general we see various deviations from the estimate of λ from the

unrestricted model, in all but one case statistically significant deviations. Given the propensity of the

literature to rationalize restrictions of this kind, we caution that these are for one large sample from

a specific population, and depend on the specific battery used here. Further, these are pooled

estimates of a representative individual, assuming away the considerable individual heterogeneity

stressed throughout. The most important implication of that heterogeneity is that if one looked at

pooled estimates of CPT in isolation, one might conclude that the data support a standard CPT

specification, albeit without the coveted point estimates from Tversky and Kahneman [1992].

However, that inference would be a mistake, since we demonstrated earlier in Figure 5 that a very

small fraction of our individual subjects were best characterized as consistent with CPT. The correct

inference from Figure 31 is quite clear: one should not take seriously estimates of CPT models that

impose these restrictions.

For comparison purposes, Figure 32 summarizes the estimates of λ found in the studies

from Table 2 that meet our minimal methodological criteria. Several of these involves designs that

we regard as “second-best” as identified in Figure 31: for example, Vieider et al. [2015], L’Haridon

and Vieider [2019] and Vieider et al. [2019] all use the same design that had just one mixed frame

lottery, and our estimates from Figure 30 suggest systematic bias from that limitation. If we review

the estimates in Figure 32 that do not use special cases flagged in Figure 31, we see lower estimates
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of loss aversion than claimed from Tversky and Kahnemen [1992], and many that show no

statistically significant evidence for utility loss aversion. Again, we caution that these are all estimates

from pooled data for representative agents that assume the validity of the CPT model, and this

assumption is sharply rejected on the basis of our estimates at the level of the individual.

6. Conclusions

Cumulative Prospect Theory does not obviously dominate alternative specifications of

decision making under risk. In all treatments, RDU explains the behavior of more subjects, although

with earned endowments the superiority of RDU is not as great as with the use of house money.

The reason for this poor performance of CPT, where “poor” is in relation to the hyperbole found in

the behavioral literature, is that subjects locally asset integrate over frames, and then apply

probability weighting consistent with an RDU model. Of course, extended versions of CPT might

explain these behavior, but the core CPT model does not fare well.

Another theme of our results is to discourage the sloppy habit of defining the CPT model in

terms of the qualitative properties of specific parameter values. For example, some behave as if the

CPT model claims that “individuals overweight low probabilities and underweight high probabilities,”

“probability weighting in the loss domain is the same as probability weighting in the gain domain,”

or that “loss aversion drives risk premia,” when these just happen to be specific instances of the

model.52 This is a semantic matter, but an important one. None of these claims emerge from our

experiments and econometric analysis. A more serious version of this problem of definitions is

referring to estimates of an RDU model as evidence for “prospect theory.”

Some defenders of the CPT model claim, correctly, that the CPT model exists “because the

52 These claims are familiar from the literature, but one can document one for completeness. Wakker
[2010; p.234] makes the astonishing empirical claim that “I think that more than half of the risk aversion
empirically observed has nothing to do with utility curvature or with probability weighting. Instead, it is
generated by loss aversion...”
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data says it should.” In other words, the CPT model was born, in Kahneman and Tversky [1979],

from a wide range of stylized facts culled from parts of the cognitive psychology literature. If one is

to take the CPT model seriously and rigorously then it needs to do a much better job of explaining

the data than we see here.

Our own constructive suggestion is to extend the econometric modeling of CPT to Bayesian

Hierarchical Models (BHM), as illustrated by Gao, Harrison and Tchernis [2022] for EUT and RDU

models. The idea of a BHM is that the pooled responses over all subjects can provide informative

priors for the estimation of models of individual responses. Quite apart from the descriptive value of

obtaining reliable estimates of risk preferences at the level of the individual, such estimates are

essential for accurate normative evaluations of choices under risk, as illustrated by Harrison and Ng

[2016] for choices over the humble full-indemnity insurance contract. The BHM approach is ideal

for CPT, since it is a model that needs a lot of data to estimate, and those data must span gain, loss

and mixed frames. And CPT adds considerable sources of non-linearity to responses. This is not at

all just a matter of adding parameters, although that happens as well: CPT models offer several

routes to the same presumed behavior patterns, as our discussion of “utility loss aversion” and

“probabilistic loss aversion” illustrates. A BHM can also recognize, with an extra hierarchy, that the

pooled responses might be better viewed as coming from a mixture of EUT, RDU or CPT data-

generating processes, following Harrison and Rutström [2009]. Since EUT and RDU are not nested

in CPT, this would allow a more flexible generate of informative priors for individual-level

estimation. 
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Table 1: Estimates for EUT, DT, RDU, DA and CPT Models with Pooled Data

N=177 undergraduates with house money to cover losses
DT, RDU and CPT estimates with the Prelec Probability Weighting Function

Parameter
Point

Estimate
Standard

Error p-value 95% Confidence Interval

A. Expected Utility

r 0.45 0.028 <0.001 0.39 0.50

B. Dual Theory

η 1.20 0.041 <0.001 1.12 1.28

φ 0.55 0.026 <0.001 0.50 0.61

C. Rank Dependent Utility

r 0.70 0.019 <0.001 0.66 0.74

η 0.51 0.025 <0.001 0.46 0.56

φ 0.18 0.010 <0.001 0.84 0.99

D. Disappointment Aversion

r 0.68 0.018 <0.001 0.65 0.71

θ 0.54 0.035 <0.001 0.47 0.60

E. Cumulative Prospect Theory

α 0.21 0.021 <0.001 0.17 0.25

β 0.06 0.054 0.29 -0.05 0.16

λ 1.34 0.103 <0.001 (H0: λ=1) 1.14 1.54

η+ 1.04 0.052 <0.001 0.94 1.14

φ+ 0.44 0.035 <0.001 0.37 0.51

η- 0.75 0.057 <0.001 0.63 0.86

φ- 0.97 0.039 <0.001 0.90 1.05
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Table 2: The Existing Literature Claiming to Estimate CPT

Study Rewards Frames Comments

Tversky and Kahneman [1992] Non-salient Gain, Loss “Median” estimates reported.

Camerer and Ho [1994] Real Gain

Wu and Gonzalez [1996] Hypothetical Gain

Gonzalez and Wu [1999] Real Gain

Fennema and van Assen [1998] Hypothetical Gain, Loss, Mixed

Abdellaoui [2000]
Real Gain

Hypothetical Loss

Schmidt and Traub [2002] Hypothetical Gain, Loss

Harbaugh, Krause and Vesterlund [2002] Real Gain, Loss
Assumes no utility loss aversion. Claim to
be unable to jointly estimate probability

weighting and the value function. 

Pennings and Smidts [2003] Hypothetical Gain, Loss†

Etchart-Vincent [2004] Hypothetical Loss

Mason, Shogren, Settle and List [2005] Real Loss

Schunk and Betsch [2006]
Real Gain

Hypothetical Loss

Stott [2006] “Slightly Real” ¶ Gain Does not mention loss aversion.

Fehr-Duda, Gennaro, and Schubert [2006] Real Gain, Loss Assumes no utility loss aversion.

Abdellaoui, Bleichrodt and L’Haridon [2008]
Real Gain

Hypothetical Loss, Mixed

Rieskamp [2008] “Slightly Real” ‡ Gain, Loss, Mixed Constrained to show loss aversion.

Booij and van de Kuilen [2009] Hypothetical Gain, Loss
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Booij, van Praag and van de Kuilen [2010] Hypothetical Gain, Loss, Mixed

Bruhin, Fehr-Duda and Epper [2010] Real Gain, Loss Assumes no utility loss aversion.

Pachur, Hanoch and Gummerum [2010] Hypothetical Gain, Loss Mixed

von Gaudecker, van Soest and Wengström [2011] Real Gain, Mixed Assumes no probability weighting.

Nilsson, Rieskamp and Wagenmakers [2011] “Slightly Real” ‡ Gain, Loss, Mixed

Glöckner and Pachur [2012] Real Gain, Loss, Mixed “Median” estimates reported, apparently
with no standard errors 

Zeisberger, Vrecko and Langer [2012] Real § Gain, Loss, Mixed
Becker, DeGroot and Marschak [1964]

method used to elicit certainty-equivalents.

Abdelloui, L’Haridon and Paraschiv [2013] Real Gain

Scholten and Read [2014] Non-Salient Gain, Loss Assumes no utility loss aversion.

Vieider, Chmura, Fisher, Kusakawa, Martinsson,
Thompson and Sunday [2015]

Real Gain, Loss, Mixed Single mixed frame prospect

Balcombe and Fraser [2016] Gain Does not mention loss aversion.

Bouchouicha and Vieider [2017] Hypothetical
Real 

Gain, Loss
Gain

Assumes no utility loss aversion.

Pachur, Schulte-Mecklenbeck, Murphy and
Hertwig [2018]

Real  Gain, Loss, Mixed

Murphy and ten Brincke [2018] Real Gain, Loss, Mixed

L’Haridon and Vieider [2019] Real Gain, Loss, Mixed Single mixed frame prospect

Vieider, Martinsson, Nam and Truong [2019] Real Gain, Loss, Mixed Single mixed frame prospect

Notes: † Subject elicitations were all in the gain frame, but the authors’ assumed (p. 1254) some positive reference point in their analysis and treated
gains below that as “losses” for the purposes of analysis.

‡ Subjects made binary choices over lotteries with outcomes between +€100 and -€100, one of 180 choices was selected for payment and
realization, and then 5% of the outcome added or subtracted from an endowment of €15.
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¶ Lottery prizes up to £40,000 were included in binary lottery choices. Each subject was given a fixed £3, and one of the 90 choices selected, re-
scaled so that the maximum prize would be £5, and then played out.

§ One subject in ten was selected for payment, but the losses in that case were substantial (up to €60) out of an endowment that had been earned
in a previous task in that session.

 Two participants out of 47 total were selected randomly to for payment.

 Realized monetary outcomes were scaled down to 10% of the amounts displayed on screen to subjects during the choices.
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Appendix A: Parameters of Experiments

Table A1: Battery of 100 Lottery Tasks in Choices Made by Undergraduate Subjects

Task EV left EV right EV ratio Left $ 1
Left p

1
Left $ 2 Left p 2 Left $ 3 Left p 3 Right $ 1 Right p 1 Right $ 2 Right p 2 Right $ 3

Right p

3
Notes

1 $5.00     $6.95 -28% $0 0 $5 1 $0 0 $0 0.01 $5 0.89 $25 0.1 Allais - lower stakes

2 $0.55 $2.50 -78% $0 0.89 $5 0.11 $0 0 $0 0.9 $5 0 $25 0.1 Allais - lower stakes

3 $15.00 $20.85 -28% $0 0 $15 1 $0 0 $0 0.01 $15 0.89 $75 0.1 Allais - higher stakes

4 $1.65 $7.50 -78% $0 0.89 $15 0.11 $0 0 $0 0.9 $15 0 $75 0.1 Allais - higher stakes

5 $59.50 $61.25 -3% $0 0.15 $35 0 $70 0.85 $0 0 $35 0.25 $70 0.75 LS1: Loomes and Sugden

6 $49.00 $50.75 -3% $0 0.3 $35 0 $70 0.7 $0 0.15 $35 0.25 $70 0.6 LS2: Loomes and Sugden

7 $49.00 $52.50 -7% $0 0.3 $35 0 $70 0.7 $0 0 $35 0.5 $70 0.5 LS3: Loomes and Sugden

8 $50.75 $52.50 -3% $0 0.15 $35 0.25 $70 0.6 $0 0 $35 0.5 $70 0.5 LS4: Loomes and Sugden

9 $33.25 $35.00 -5% $0 0.15 $35 0.75 $70 0.1 $0 0 $35 1 $70 0 LS5: Loomes and Sugden

10 $28.00 $35.00 -20% $0 0.6 $35 0 $70 0.4 $0 0 $35 1 $70 0 LS6: Loomes and Sugden

11 $28.00 $33.25 -16% $0 0.6 $35 0 $70 0.4 $0 0.15 $35 0.75 $70 0.1 LS7: Loomes and Sugden

12 $7.00 $8.75 -20% $0 0.9 $35 0 $70 0.1 $0 0.75 $35 0.25 $70 0 LS8: Loomes and Sugden

13 $63.00 $63.00 0% $0 0.1 $35 0 $70 0.9 $0 0 $35 0.2 $70 0.8 LS9: Loomes and Sugden

14 $35.00 $35.00 0% $0 0.5 $35 0 $70 0.5 $0 0.1 $35 0.8 $70 0.1 LS10: Loomes and Sugden

15 $35.00 $35.00 0% $0 0.5 $35 0 $70 0.5 $0 0 $35 1 $70 0 LS11: Loomes and Sugden

16 $35.00 $35.00 0% $0 0.1 $35 0.8 $70 0.1 $0 0 $35 1 $70 0 LS12: Loomes and Sugden

17 $21.00 $21.00 0% $0 0.7 $35 0 $70 0.3 $0 0.5 $35 0.4 $70 0.1 LS13: Loomes and Sugden

18 $21.00 $21.00 0% $0 0.7 $35 0 $70 0.3 $0 0.4 $35 0.6 $70 0 LS14: Loomes and Sugden

19 $21.00 $21.00 0% $0 0.5 $35 0.4 $70 0.1 $0 0.4 $35 0.6 $70 0 LS15: Loomes and Sugden

20 $7.00 $7.00 0% $0 0.9 $35 0 $70 0.1 $0 0.8 $35 0.2 $70 0 LS16: Loomes and Sugden

21 $63.00 $61.25 3% $0 0.1 $35 0 $70 0.9 $0 0 $35 0.25 $70 0.75 LS17: Loomes and Sugden

22 $42.00 $36.75 14% $0 0.4 $35 0 $70 0.6 $0 0.1 $35 0.75 $70 0.15 LS18: Loomes and Sugden

23 $42.00 $35.00 20% $0 0.4 $35 0 $70 0.6 $0 0 $35 1 $70 0 LS19: Loomes and Sugden

24 $36.75 $35.00 5% $0 0.1 $35 0.75 $70 0.15 $0 0 $35 1 $70 0 LS20: Loomes and Sugden

25 $21.00 $19.25 9% $0 0.7 $35 0 $70 0.3 $0 0.6 $35 0.25 $70 0.15 LS21: Loomes and Sugden

26 $21.00 $17.50 20% $0 0.7 $35 0 $70 0.3 $0 0.5 $35 0.5 $70 0 LS22: Loomes and Sugden

27 $19.25 $17.50 10% $0 0.6 $35 0.25 $70 0.15 $0 0.5 $35 0.5 $70 0 LS23: Loomes and Sugden

28 $10.50 $8.75 20% $0 0.85 $35 0 $70 0.15 $0 0.75 $35 0.25 $70 0 LS24: Loomes and Sugden

29 $63.00 $59.50 6% $0 0.1 $35 0 $70 0.9 $0 0 $35 0.3 $70 0.7 LS25: Loomes and Sugden

30 $42.00 $35.00 20% $0 0.4 $35 0 $70 0.6 $0 0.2 $35 0.6 $70 0.2 LS26: Loomes and Sugden

31 $42.00 $31.50 33% $0 0.4 $35 0 $70 0.6 $0 0.1 $35 0.9 $70 0 LS27: Loomes and Sugden

32 $35.00 $31.50 11% $0 0.2 $35 0.6 $70 0.2 $0 0.1 $35 0.9 $70 0 LS28: Loomes and Sugden

33 $28.00 $24.50 14% $0 0.6 $35 0 $70 0.4 $0 0.5 $35 0.3 $70 0.2 LS29: Loomes and Sugden

34 $28.00 $21.00 33% $0 0.6 $35 0 $70 0.4 $0 0.4 $35 0.6 $70 0 LS30: Loomes and Sugden

35 $24.50 $21.00 17% $0 0.5 $35 0.3 $70 0.2 $0 0.4 $35 0.6 $70 0 LS31: Loomes and Sugden

36 $14.00 $10.50 33% $0 0.8 $35 0 $70 0.2 $0 0.7 $35 0.3 $70 0 LS32: Loomes and Sugden

37 $63.00 $56.00 13% $0 0.1 $35 0 $70 0.9 $0 0 $35 0.4 $70 0.6 LS33: Loomes and Sugden

38 $52.50 $42.00 25% $0 0.25 $35 0 $70 0.75 $0 0.1 $35 0.6 $70 0.3 LS34: Loomes and Sugden

39 $52.50 $35.00 50% $0 0.25 $35 0 $70 0.75 $0 0 $35 1 $70 0 LS35: Loomes and Sugden
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40 $42.00 $35.00 20% $0 0.1 $35 0.6 $70 0.3 $0 0 $35 1 $70 0 LS36: Loomes and Sugden

41 $28.00 $21.00 33% $0 0.5 $35 0.2 $70 0.3 $0 0.4 $35 0.6 $70 0 LS37: Loomes and Sugden

42 $31.50 $21.00 50% $0 0.55 $35 0 $70 0.45 $0 0.4 $35 0.6 $70 0 LS38: Loomes and Sugden

43 $31.50 $28.00 13% $0 0.55 $35 0 $70 0.45 $0 0.5 $35 0.2 $70 0.3 LS39: Loomes and Sugden

44 $21.00 $14.00 50% $0 0.7 $35 0 $70 0.3 $0 0.6 $35 0.4 $70 0 LS40: Loomes and Sugden

45 ($63.00) ($63.00) 0% $0 0.1 ($35) 0 ($70) 0.9 $0 0 ($35) 0.2 ($70) 0.8 LS9: Loomes and Sugden

46 ($35.00) ($35.00) 0% $0 0.5 ($35) 0 ($70) 0.5 $0 0.1 ($35) 0.8 ($70) 0.1 LS10: Loomes and Sugden

47 ($35.00) ($35.00) 0% $0 0.5 ($35) 0 ($70) 0.5 $0 0 ($35) 1 ($70) 0 LS11: Loomes and Sugden

48 ($35.00) ($35.00) 0% $0 0.1 ($35) 0.8 ($70) 0.1 $0 0 ($35) 1 ($70) 0 LS12: Loomes and Sugden

49 ($21.00) ($21.00) 0% $0 0.7 ($35) 0 ($70) 0.3 $0 0.5 ($35) 0.4 ($70) 0.1 LS13: Loomes and Sugden

50 ($21.00) ($21.00) 0% $0 0.7 ($35) 0 ($70) 0.3 $0 0.4 ($35) 0.6 ($70) 0 LS14: Loomes and Sugden

51 ($21.00) ($21.00) 0% $0 0.5 ($35) 0.4 ($70) 0.1 $0 0.4 ($35) 0.6 ($70) 0 LS15: Loomes and Sugden

52 ($7.00) ($7.00) 0% $0 0.9 ($35) 0 ($70) 0.1 $0 0.8 ($35) 0.2 ($70) 0 LS16: Loomes and Sugden

53 ($63.00) ($56.00) 13% $0 0.1 ($35) 0 ($70) 0.9 $0 0 ($35) 0.4 ($70) 0.6 LS33: Loomes and Sugden

54 ($52.50) ($42.00) 25% $0 0.25 ($35) 0 ($70) 0.75 $0 0.1 ($35) 0.6 ($70) 0.3 LS34: Loomes and Sugden

55 ($52.50) ($35.00) 50% $0 0.25 ($35) 0 ($70) 0.75 $0 0 ($35) 1 ($70) 0 LS35: Loomes and Sugden

56 ($42.00) ($35.00) 20% $0 0.1 ($35) 0.6 ($70) 0.3 $0 0 ($35) 1 ($70) 0 LS36: Loomes and Sugden

57 ($28.00) ($21.00) 33% $0 0.5 ($35) 0.2 ($70) 0.3 $0 0.4 ($35) 0.6 ($70) 0 LS37: Loomes and Sugden

58 ($31.50) ($21.00) 50% $0 0.55 ($35) 0 ($70) 0.45 $0 0.4 ($35) 0.6 ($70) 0 LS38: Loomes and Sugden

59 ($31.50) ($28.00) 13% $0 0.55 ($35) 0 ($70) 0.45 $0 0.5 ($35) 0.2 ($70) 0.3 LS39: Loomes and Sugden

60 ($21.00) ($14.00) 50% $0 0.7 ($35) 0 ($70) 0.3 $0 0.6 ($35) 0.4 ($70) 0 LS40: Loomes and Sugden

61 $59.50 $51.80 15% ($35) 0.1 ($21) 0 $70 0.9 ($35) 0 ($21) 0.2 $70 0.8 LS9: Loomes and Sugden

62 $17.50 ($13.30) -232% ($35) 0.5 ($21) 0 $70 0.5 ($35) 0.1 ($21) 0.8 $70 0.1 LS10: Loomes and Sugden

63 $17.50 ($21.00) -183% ($35) 0.5 ($21) 0 $70 0.5 ($35) 0 ($21) 1 $70 0 LS11: Loomes and Sugden

64 ($13.30) ($21.00) -37% ($35) 0.1 ($21) 0.8 $70 0.1 ($35) 0 ($21) 1 $70 0 LS12: Loomes and Sugden

65 ($3.50) ($18.90) -81% ($35) 0.7 ($21) 0 $70 0.3 ($35) 0.5 ($21) 0.4 $70 0.1 LS13: Loomes and Sugden

66 ($3.50) ($26.60) -87% ($35) 0.7 ($21) 0 $70 0.3 ($35) 0.4 ($21) 0.6 $70 0 LS14: Loomes and Sugden

67 ($18.90) ($26.60) -29% ($35) 0.5 ($21) 0.4 $70 0.1 ($35) 0.4 ($21) 0.6 $70 0 LS15: Loomes and Sugden

68 ($24.50) ($32.20) -24% ($35) 0.9 ($21) 0 $70 0.1 ($35) 0.8 ($21) 0.2 $70 0 LS16: Loomes and Sugden

69 $59.50 $33.60 77% ($35) 0.1 ($21) 0 $70 0.9 ($35) 0 ($21) 0.4 $70 0.6 LS33: Loomes and Sugden

70 $43.75 $4.90 793% ($35) 0.25 ($21) 0 $70 0.75 ($35) 0.1 ($21) 0.6 $70 0.3 LS34: Loomes and Sugden

71 $43.75 ($21.00) -308% ($35) 0.25 ($21) 0 $70 0.75 ($35) 0 ($21) 1 $70 0 LS35: Loomes and Sugden

72 $4.90 ($21.00) -123% ($35) 0.1 ($21) 0.6 $70 0.3 ($35) 0 ($21) 1 $70 0 LS36: Loomes and Sugden

73 ($0.70) ($26.60) -97% ($35) 0.5 ($21) 0.2 $70 0.3 ($35) 0.4 ($21) 0.6 $70 0 LS37: Loomes and Sugden

74 $12.25 ($26.60) -146% ($35) 0.55 ($21) 0 $70 0.45 ($35) 0.4 ($21) 0.6 $70 0 LS38: Loomes and Sugden

75 $12.25 ($0.70) -1850% ($35) 0.55 ($21) 0 $70 0.45 ($35) 0.5 ($21) 0.2 $70 0.3 LS39: Loomes and Sugden

76 ($3.50) ($29.40) -88% ($35) 0.7 ($21) 0 $70 0.3 ($35) 0.6 ($21) 0.4 $70 0 LS40: Loomes and Sugden

77 $52.50 $50.00 5% $10 0.15 $20 0 $60 0.85 $10 0 $20 0.25 $60 0.75 LS1: Loomes and Sugden

78 $45.00 $42.50 6% $10 0.3 $20 0 $60 0.7 $10 0.15 $20 0.25 $60 0.6 LS2: Loomes and Sugden

79 $45.00 $40.00 13% $10 0.3 $20 0 $60 0.7 $10 0 $20 0.5 $60 0.5 LS3: Loomes and Sugden

80 $42.50 $40.00 6% $10 0.15 $20 0.25 $60 0.6 $10 0 $20 0.5 $60 0.5 LS4: Loomes and Sugden

81 $22.50 $20.00 13% $10 0.15 $20 0.75 $60 0.1 $10 0 $20 1 $60 0 LS5: Loomes and Sugden

82 $30.00 $20.00 50% $10 0.6 $20 0 $60 0.4 $10 0 $20 1 $60 0 LS6: Loomes and Sugden

83 $30.00 $22.50 33% $10 0.6 $20 0 $60 0.4 $10 0.15 $20 0.75 $60 0.1 LS7: Loomes and Sugden

84 $15.00 $12.50 20% $10 0.9 $20 0 $60 0.1 $10 0.75 $20 0.25 $60 0 LS8: Loomes and Sugden
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85 $50.00 $47.50 5% $5 0.1 $25 0 $55 0.9 $5 0 $25 0.25 $55 0.75 LS17: Loomes and Sugden

86 $35.00 $27.50 27% $5 0.4 $25 0 $55 0.6 $5 0.1 $25 0.75 $55 0.15 LS18: Loomes and Sugden

87 $35.00 $25.00 40% $5 0.4 $25 0 $55 0.6 $5 0 $25 1 $55 0 LS19: Loomes and Sugden

88 $27.50 $25.00 10% $5 0.1 $25 0.75 $55 0.15 $5 0 $25 1 $55 0 LS20: Loomes and Sugden

89 $20.00 $17.50 14% $5 0.7 $25 0 $55 0.3 $5 0.6 $25 0.25 $55 0.15 LS21: Loomes and Sugden

90 $20.00 $15.00 33% $5 0.7 $25 0 $55 0.3 $5 0.5 $25 0.5 $55 0 LS22: Loomes and Sugden

91 $17.50 $15.00 17% $5 0.6 $25 0.25 $55 0.15 $5 0.5 $25 0.5 $55 0 LS23: Loomes and Sugden

92 $12.50 $10.00 25% $5 0.85 $25 0 $55 0.15 $5 0.75 $25 0.25 $55 0 LS24: Loomes and Sugden

93 $42.00 $40.50 4% $15 0.1 $30 0 $45 0.9 $15 0 $30 0.3 $45 0.7 LS25: Loomes and Sugden

94 $33.00 $30.00 10% $15 0.4 $30 0 $45 0.6 $15 0.2 $30 0.6 $45 0.2 LS26: Loomes and Sugden

95 $33.00 $28.50 16% $15 0.4 $30 0 $45 0.6 $15 0.1 $30 0.9 $45 0 LS27: Loomes and Sugden

96 $30.00 $28.50 5% $15 0.2 $30 0.6 $45 0.2 $15 0.1 $30 0.9 $45 0 LS28: Loomes and Sugden

97 $27.00 $25.50 6% $15 0.6 $30 0 $45 0.4 $15 0.5 $30 0.3 $45 0.2 LS29: Loomes and Sugden

98 $27.00 $24.00 13% $15 0.6 $30 0 $45 0.4 $15 0.4 $30 0.6 $45 0 LS30: Loomes and Sugden

99 $25.50 $24.00 6% $15 0.5 $30 0.3 $45 0.2 $15 0.4 $30 0.6 $45 0 LS31: Loomes and Sugden

100 $21.00 $19.50 8% $15 0.8 $30 0 $45 0.2 $15 0.7 $30 0.3 $45 0 LS32: Loomes and Sugden

Table A2: Battery of 100 Lottery Tasks in Choices Made by MBA Students

Task EV left EV right EV ratio Left $ 1
Left p

1
Left $ 2 Left p 2 Left $ 3 Left p 3 Right $ 1 Right p 1 Right $ 2 Right p 2 Right $ 3

Right p

3
Notes

1 $5.00 $6.95 -0.2806 $0 0 $5 1 $0 0 $0 0.01 $5 0.89 $25 0.1 Allais - lower stakes

2 $0.55 $2.50 -0.78 $0 0.89 $5 0.11 $0 0 $0 0.9 $5 0 $25 0.1 Allais - lower stakes

3 $100.00 $139.00 -0.2806 $0 0 $100 1 $0 0 $0 0.01 $100 0.89 $500 0.1 Allais - higher stakes

4 $11.00 $50.00 -0.78 $0 0.89 $100 0.11 $0 0 $0 0.9 $100 0 $500 0.1 Allais - higher stakes

5 $425.00 $437.50 -0.029 $0 0.15 $250 0 $500 0.85 $0 0 $250 0.25 $500 0.75 LS1: Loomes and Sugden

6 $350.00 $362.50 -0.034 $0 0.3 $250 0 $500 0.7 $0 0.15 $250 0.25 $500 0.6 LS2: Loomes and Sugden

7 $350.00 $375.00 -0.067 $0 0.3 $250 0 $500 0.7 $0 0 $250 0.5 $500 0.5 LS3: Loomes and Sugden

8 $362.50 $375.00 -0.033 $0 0.15 $250 0.25 $500 0.6 $0 0 $250 0.5 $500 0.5 LS4: Loomes and Sugden

9 $237.50 $250.00 -0.05 $0 0.15 $250 0.75 $500 0.1 $0 0 $250 1 $500 0 LS5: Loomes and Sugden

10 $200.00 $250.00 -0.2 $0 0.6 $250 0 $500 0.4 $0 0 $250 1 $500 0 LS6: Loomes and Sugden

11 $200.00 $237.50 -0.1579 $0 0.6 $250 0 $500 0.4 $0 0.15 $250 0.75 $500 0.1 LS7: Loomes and Sugden

12 $50.00 $62.50 -0.2 $0 0.9 $250 0 $500 0.1 $0 0.75 $250 0.25 $500 0 LS8: Loomes and Sugden

13 $450.00 $450.00 0 $0 0.1 $250 0 $500 0.9 $0 0 $250 0.2 $500 0.8 LS9: Loomes and Sugden

14 $250.00 $250.00 0 $0 0.5 $250 0 $500 0.5 $0 0.1 $250 0.8 $500 0.1 LS10: Loomes and Sugden

15 $250.00 $250.00 0 $0 0.5 $250 0 $500 0.5 $0 0 $250 1 $500 0 LS11: Loomes and Sugden

16 $250.00 $250.00 0 $0 0.1 $250 0.8 $500 0.1 $0 0 $250 1 $500 0 LS12: Loomes and Sugden

17 $150.00 $150.00 0 $0 0.7 $250 0 $500 0.3 $0 0.5 $250 0.4 $500 0.1 LS13: Loomes and Sugden

18 $150.00 $150.00 0 $0 0.7 $250 0 $500 0.3 $0 0.4 $250 0.6 $500 0 LS14: Loomes and Sugden

19 $150.00 $150.00 0 $0 0.5 $250 0.4 $500 0.1 $0 0.4 $250 0.6 $500 0 LS15: Loomes and Sugden

20 $50.00 $50.00 0 $0 0.9 $250 0 $500 0.1 $0 0.8 $250 0.2 $500 0 LS16: Loomes and Sugden

21 $450.00 $437.50 0.0286 $0 0.1 $250 0 $500 0.9 $0 0 $250 0.25 $500 0.75 LS17: Loomes and Sugden

22 $300.00 $262.50 0.14286 $0 0.4 $250 0 $500 0.6 $0 0.1 $250 0.75 $500 0.15 LS18: Loomes and Sugden

23 $300.00 $250.00 0.2 $0 0.4 $250 0 $500 0.6 $0 0 $250 1 $500 0 LS19: Loomes and Sugden
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24 $262.50 $250.00 0.05 $0 0.1 $250 0.75 $500 0.15 $0 0 $250 1 $500 0 LS20: Loomes and Sugden

25 $150.00 $137.50 0.0909 $0 0.7 $250 0 $500 0.3 $0 0.6 $250 0.25 $500 0.15 LS21: Loomes and Sugden

26 $150.00 $125.00 0.2 $0 0.7 $250 0 $500 0.3 $0 0.5 $250 0.5 $500 0 LS22: Loomes and Sugden

27 $137.50 $125.00 0.1 $0 0.6 $250 0.25 $500 0.15 $0 0.5 $250 0.5 $500 0 LS23: Loomes and Sugden

28 $75.00 $62.50 0.2 $0 0.85 $250 0 $500 0.15 $0 0.75 $250 0.25 $500 0 LS24: Loomes and Sugden

29 $450.00 $425.00 0.0588 $0 0.1 $250 0 $500 0.9 $0 0 $250 0.3 $500 0.7 LS25: Loomes and Sugden

30 $300.00 $250.00 0.2 $0 0.4 $250 0 $500 0.6 $0 0.2 $250 0.6 $500 0.2 LS26: Loomes and Sugden

31 $300.00 $225.00 0.33333 $0 0.4 $250 0 $500 0.6 $0 0.1 $250 0.9 $500 0 LS27: Loomes and Sugden

32 $250.00 $225.00 0.11111 $0 0.2 $250 0.6 $500 0.2 $0 0.1 $250 0.9 $500 0 LS28: Loomes and Sugden

33 $200.00 $175.00 0.14286 $0 0.6 $250 0 $500 0.4 $0 0.5 $250 0.3 $500 0.2 LS29: Loomes and Sugden

34 $200.00 $150.00 0.33333 $0 0.6 $250 0 $500 0.4 $0 0.4 $250 0.6 $500 0 LS30: Loomes and Sugden

35 $175.00 $150.00 0.16667 $0 0.5 $250 0.3 $500 0.2 $0 0.4 $250 0.6 $500 0 LS31: Loomes and Sugden

36 $100.00 $75.00 0.33333 $0 0.8 $250 0 $500 0.2 $0 0.7 $250 0.3 $500 0 LS32: Loomes and Sugden

37 $450.00 $400.00 0.125 $0 0.1 $250 0 $500 0.9 $0 0 $250 0.4 $500 0.6 LS33: Loomes and Sugden

38 $375.00 $300.00 0.25 $0 0.25 $250 0 $500 0.75 $0 0.1 $250 0.6 $500 0.3 LS34: Loomes and Sugden

39 $375.00 $250.00 0.5 $0 0.25 $250 0 $500 0.75 $0 0 $250 1 $500 0 LS35: Loomes and Sugden

40 $300.00 $250.00 0.2 $0 0.1 $250 0.6 $500 0.3 $0 0 $250 1 $500 0 LS36: Loomes and Sugden

41 $200.00 $150.00 0.33333 $0 0.5 $250 0.2 $500 0.3 $0 0.4 $250 0.6 $500 0 LS37: Loomes and Sugden

42 $225.00 $150.00 0.5 $0 0.55 $250 0 $500 0.45 $0 0.4 $250 0.6 $500 0 LS38: Loomes and Sugden

43 $225.00 $200.00 0.125 $0 0.55 $250 0 $500 0.45 $0 0.5 $250 0.2 $500 0.3 LS39: Loomes and Sugden

44 $150.00 $100.00 0.5 $0 0.7 $250 0 $500 0.3 $0 0.6 $250 0.4 $500 0 LS40: Loomes and Sugden

45
($450.00

)
($450.00) 0 $0 0.1 ($250) 0 ($500) 0.9 $0 0 ($250) 0.2 ($500) 0.8 LS9: Loomes and Sugden

46
($250.00

)
($250.00) 0 $0 0.5 ($250) 0 ($500) 0.5 $0 0.1 ($250) 0.8 ($500) 0.1 LS10: Loomes and Sugden

47
($250.00

)
($250.00) 0 $0 0.5 ($250) 0 ($500) 0.5 $0 0 ($250) 1 ($500) 0 LS11: Loomes and Sugden

48
($250.00

)
($250.00) 0 $0 0.1 ($250) 0.8 ($500) 0.1 $0 0 ($250) 1 ($500) 0 LS12: Loomes and Sugden

49
($150.00

)
($150.00) 0 $0 0.7 ($250) 0 ($500) 0.3 $0 0.5 ($250) 0.4 ($500) 0.1 LS13: Loomes and Sugden

50
($150.00

)
($150.00) 0 $0 0.7 ($250) 0 ($500) 0.3 $0 0.4 ($250) 0.6 ($500) 0 LS14: Loomes and Sugden

51
($150.00

)
($150.00) 0 $0 0.5 ($250) 0.4 ($500) 0.1 $0 0.4 ($250) 0.6 ($500) 0 LS15: Loomes and Sugden

52 ($50.00) ($50.00) 0 $0 0.9 ($250) 0 ($500) 0.1 $0 0.8 ($250) 0.2 ($500) 0 LS16: Loomes and Sugden

53
($450.00

)
($400.00) 0.125 $0 0.1 ($250) 0 ($500) 0.9 $0 0 ($250) 0.4 ($500) 0.6 LS33: Loomes and Sugden

54
($375.00

)
($300.00) 0.25 $0 0.25 ($250) 0 ($500) 0.75 $0 0.1 ($250) 0.6 ($500) 0.3 LS34: Loomes and Sugden

55
($375.00

)
($250.00) 0.5 $0 0.25 ($250) 0 ($500) 0.75 $0 0 ($250) 1 ($500) 0 LS35: Loomes and Sugden

56
($300.00

)
($250.00) 0.2 $0 0.1 ($250) 0.6 ($500) 0.3 $0 0 ($250) 1 ($500) 0 LS36: Loomes and Sugden

57
($200.00

)
($150.00) 0.33333 $0 0.5 ($250) 0.2 ($500) 0.3 $0 0.4 ($250) 0.6 ($500) 0 LS37: Loomes and Sugden
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58
($225.00

)
($150.00) 0.5 $0 0.55 ($250) 0 ($500) 0.45 $0 0.4 ($250) 0.6 ($500) 0 LS38: Loomes and Sugden

59
($225.00

)
($200.00) 0.125 $0 0.55 ($250) 0 ($500) 0.45 $0 0.5 ($250) 0.2 ($500) 0.3 LS39: Loomes and Sugden

60
($150.00

)
($100.00) 0.5 $0 0.7 ($250) 0 ($500) 0.3 $0 0.6 ($250) 0.4 ($500) 0 LS40: Loomes and Sugden

61 $425.00 $370.00 0.14865 ($250) 0.1 ($150) 0 $500 0.9 ($250) 0 ($150) 0.2 $500 0.8 LS9: Loomes and Sugden

62 $125.00 ($95.00) -2.3158 ($250) 0.5 ($150) 0 $500 0.5 ($250) 0.1 ($150) 0.8 $500 0.1 LS10: Loomes and Sugden

63 $125.00 ($150.00) -1.8333 ($250) 0.5 ($150) 0 $500 0.5 ($250) 0 ($150) 1 $500 0 LS11: Loomes and Sugden

64 ($95.00) ($150.00) -0.3667 ($250) 0.1 ($150) 0.8 $500 0.1 ($250) 0 ($150) 1 $500 0 LS12: Loomes and Sugden

65 ($25.00) ($135.00) -0.8148 ($250) 0.7 ($150) 0 $500 0.3 ($250) 0.5 ($150) 0.4 $500 0.1 LS13: Loomes and Sugden

66 ($25.00) ($190.00) -0.8684 ($250) 0.7 ($150) 0 $500 0.3 ($250) 0.4 ($150) 0.6 $500 0 LS14: Loomes and Sugden

67
($135.00

)
($190.00) -0.2895 ($250) 0.5 ($150) 0.4 $500 0.1 ($250) 0.4 ($150) 0.6 $500 0 LS15: Loomes and Sugden

68
($175.00

)
($230.00) -0.2391 ($250) 0.9 ($150) 0 $500 0.1 ($250) 0.8 ($150) 0.2 $500 0 LS16: Loomes and Sugden

69 $425.00 $240.00 0.77083 ($250) 0.1 ($150) 0 $500 0.9 ($250) 0 ($150) 0.4 $500 0.6 LS33: Loomes and Sugden

70 $312.50 $35.00 7.92857 ($250) 0.25 ($150) 0 $500 0.75 ($250) 0.1 ($150) 0.6 $500 0.3 LS34: Loomes and Sugden

71 $312.50 ($150.00) -3.0833 ($250) 0.25 ($150) 0 $500 0.75 ($250) 0 ($150) 1 $500 0 LS35: Loomes and Sugden

72 $35.00 ($150.00) -1.2333 ($250) 0.1 ($150) 0.6 $500 0.3 ($250) 0 ($150) 1 $500 0 LS36: Loomes and Sugden

73 ($5.00) ($190.00) -0.9737 ($250) 0.5 ($150) 0.2 $500 0.3 ($250) 0.4 ($150) 0.6 $500 0 LS37: Loomes and Sugden

74 $87.50 ($190.00) -1.4605 ($250) 0.55 ($150) 0 $500 0.45 ($250) 0.4 ($150) 0.6 $500 0 LS38: Loomes and Sugden

75 $87.50 ($5.00) -18.5 ($250) 0.55 ($150) 0 $500 0.45 ($250) 0.5 ($150) 0.2 $500 0.3 LS39: Loomes and Sugden

76 ($25.00) ($210.00) -0.881 ($250) 0.7 ($150) 0 $500 0.3 ($250) 0.6 ($150) 0.4 $500 0 LS40: Loomes and Sugden

77 $52.50 $50.00 0.05 $10 0.15 $20 0 $60 0.85 $10 0 $20 0.25 $60 0.75 LS1: Loomes and Sugden

78 $45.00 $42.50 0.0588 $10 0.3 $20 0 $60 0.7 $10 0.15 $20 0.25 $60 0.6 LS2: Loomes and Sugden

79 $45.00 $40.00 0.125 $10 0.3 $20 0 $60 0.7 $10 0 $20 0.5 $60 0.5 LS3: Loomes and Sugden

80 $42.50 $40.00 0.0625 $10 0.15 $20 0.25 $60 0.6 $10 0 $20 0.5 $60 0.5 LS4: Loomes and Sugden

81 $22.50 $20.00 0.125 $10 0.15 $20 0.75 $60 0.1 $10 0 $20 1 $60 0 LS5: Loomes and Sugden

82 $30.00 $20.00 0.5 $10 0.6 $20 0 $60 0.4 $10 0 $20 1 $60 0 LS6: Loomes and Sugden

83 $30.00 $22.50 0.33333 $10 0.6 $20 0 $60 0.4 $10 0.15 $20 0.75 $60 0.1 LS7: Loomes and Sugden

84 $15.00 $12.50 0.2 $10 0.9 $20 0 $60 0.1 $10 0.75 $20 0.25 $60 0 LS8: Loomes and Sugden

85 $50.00 $47.50 0.0526 $5 0.1 $25 0 $55 0.9 $5 0 $25 0.25 $55 0.75 LS17: Loomes and Sugden

86 $35.00 $27.50 0.27273 $5 0.4 $25 0 $55 0.6 $5 0.1 $25 0.75 $55 0.15 LS18: Loomes and Sugden

87 $35.00 $25.00 0.4 $5 0.4 $25 0 $55 0.6 $5 0 $25 1 $55 0 LS19: Loomes and Sugden

88 $27.50 $25.00 0.1 $5 0.1 $25 0.75 $55 0.15 $5 0 $25 1 $55 0 LS20: Loomes and Sugden

89 $20.00 $17.50 0.14286 $5 0.7 $25 0 $55 0.3 $5 0.6 $25 0.25 $55 0.15 LS21: Loomes and Sugden

90 $20.00 $15.00 0.33333 $5 0.7 $25 0 $55 0.3 $5 0.5 $25 0.5 $55 0 LS22: Loomes and Sugden

91 $17.50 $15.00 0.16667 $5 0.6 $25 0.25 $55 0.15 $5 0.5 $25 0.5 $55 0 LS23: Loomes and Sugden

92 $12.50 $10.00 0.25 $5 0.85 $25 0 $55 0.15 $5 0.75 $25 0.25 $55 0 LS24: Loomes and Sugden

93 $42.00 $40.50 0.037 $15 0.1 $30 0 $45 0.9 $15 0 $30 0.3 $45 0.7 LS25: Loomes and Sugden

94 $33.00 $30.00 0.1 $15 0.4 $30 0 $45 0.6 $15 0.2 $30 0.6 $45 0.2 LS26: Loomes and Sugden

95 $33.00 $28.50 0.15789 $15 0.4 $30 0 $45 0.6 $15 0.1 $30 0.9 $45 0 LS27: Loomes and Sugden

96 $30.00 $28.50 0.0526 $15 0.2 $30 0.6 $45 0.2 $15 0.1 $30 0.9 $45 0 LS28: Loomes and Sugden

97 $27.00 $25.50 0.0588 $15 0.6 $30 0 $45 0.4 $15 0.5 $30 0.3 $45 0.2 LS29: Loomes and Sugden

98 $27.00 $24.00 0.125 $15 0.6 $30 0 $45 0.4 $15 0.4 $30 0.6 $45 0 LS30: Loomes and Sugden
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99 $25.50 $24.00 0.0625 $15 0.5 $30 0.3 $45 0.2 $15 0.4 $30 0.6 $45 0 LS31: Loomes and Sugden

100 $21.00 $19.50 0.0769 $15 0.8 $30 0 $45 0.2 $15 0.7 $30 0.3 $45 0 LS32: Loomes and Sugden
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Appendix B: Numerical Examples of Decision Weights

To understand the mechanics of evaluating lotteries using RDU and CPT it is useful to see worked numerical

examples. Although this is purely a pedagogic exercise, in our experience many users of RDU and CPT are not familiar

with these mechanics, and they are critical to the correct application of these models. Even the best pedagogic source

available, Wakker [2010], leaves many worked examples as exercises, and many of the examples are correctly contrived

to make a special pedagogic point. The most general source, actually, is an online computer program on Peter

Wakker’s home page that calculates values for CPT using the Inverse-S probability weighting function and up to four

outcomes:

http://people.few.eur.nl/wakker/miscella/calculate.cpt.kobb/index.htm

We use this program to generate some examples to illustrate the logic of decision weights under CPT.

The building block for understanding the construction of decision weights under CPT, for the general case of a

mixed-frame lottery, is the construction of decision weights for gains under RDU. We provide one detailed example

there, and then examine the CPT extension.

B.1 Rank-Dependent Decision Weights

Assume a simple power probability weighting function ω(p) = pγ and let γ = 1.25. To see the pure effect of

probability weighting, assume U(x) = x for x0. Start with a two-prize lottery, then consider three-prizes and four-

prizes to see the general logic.

In the two-prize case, let y be the smaller prize and Y be the larger prize, so Y>y0. Again, to see the pure

effect of probability weighting, assume objective probabilities p(y) = p(Y) = ½. The first step is to get the decision

weight of the largest prize. This uses the answer to the question, “what is the probability of getting at least  Y?”53 This is

obviously ½, so we then calculate the decision weight using the probability weighting function as ω(½) = (½)γ = 0.42.

53 This expression leads to what Wakker [2010; §7.6] usefully calls the “gain-rank.” The “loss-rank”
would be based on the answer to the question, “what is the probability of getting Y or less?” Loss-ranks were
popular with some of the earlier studies in rank-dependent utility.
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To keep notation for probability weights and decision weights similar but distinct, denote the decision weight for Y as

w(Y). Then we have w(Y) = 0.42.

The second step for the two-prize case is to give the other, smaller prize y the residual weight. This uses the

answer to the question, “what is the probability of getting at least  y?” Since one always gets at least y, the answer is

obviously 1. Since ω(1) = 1 for any of the popular probability weighting functions,54 we can attribute the decision

weight ω(1) - ω(½) = 1 - 0.42 = 0.58 to the prize y. Another way to see the same thing is to directly calculate the

decision weight for the smallest prize to ensure that the decision weights sum to 1, so that the decision weight w(y) is

calculated as 1-w(Y) = 1 - 0.42 = 0.58. The two-prize case actually makes it harder to see the rank-dependent logic

than when we examine the three-prize or four-prize case, but can be seen in retrospect as a special case.

With these two decision weights in place, the RDU evaluation of the lottery is 0.42 ×U(Y) + 0.58×U(y), or

0.42Y + 0.58y given our simplifying assumption of a linear utility function. Inspection of this RDU evaluation, and

viewing the decision weights as if they were probabilities, shows why the RDU evaluation has to be less than the

Expected Value (EV) of the lottery using the true probabilities, since that is 0.5Y + 0.5y. The RDU evaluation puts

more weight on the worst prize, and greater weight on the better prize, so it has to have a CE that is less than the EV

(this last step is helped by the fact that U(x) = x, of course). Hence probability weighting in this case generates a CE

that is less than the EV, and hence a risk premium.

However, the two-prize case collapses the essential logic of the RDU model. Consider a three-prize case in

which we use the same probability weighting functions and utility functions, but have three prizes, y, Y and Y, where

Y>Y>y, and p(y) = p(Y) = p(Y) = a.

The decision weight for Y is evaluated first, and uses the answer to the question, “what is the probability of

getting at least Y?” The answer is a, so the decision weight for Y is then directly evaluated as w(Y) = ω(a) = (a)γ =

0.25.

54 The prominent exception is the probability weighting function suggested by Kahneman and
Tversky [1979], which had interior discontinuities at p=0 and p=1.
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The decision weight for Y is evaluated next, and uses the answer to the more interesting question, “what is the

probability of getting at least  Y?” This is p(Y) + p(Y) = a + a = b, so the probability weight is ω(b) = (b)γ = 0.60.

But the only part of this probability weight that is to be attributed solely to Y is the part that is not already attributed to

Y, hence the decision weight for Y is ω(b) - ω(a) = ω(Y) - ω(Y) = 0.60 - 0.25 = 0.35. This intermediate step shows

the rank-dependent logic in the clearest fashion. One could equally talk about cumulative probability weights, rather than

just probability weights, but the logic is simple enough when one thinks of the question being asked “psychologically”

and the partial attribution to Y that flows from it. In the two-prize case this partial attribution is skipped over.

The decision weight for y is again evaluated residually, as in the two-prize case. We can either see this by

evaluating ω(1) - ω(b) = 1 - 0.60 = 0.40, or by evaluating 1 - w(Y) - w(Y) = 1 - 0.35 - 0.25 = 0.40.

The general logic may now be stated in words as follows:

• Rank the prizes from best to worst.

• Use the probability weighting function to calculate the probability of getting at least the prize in question.

• Then assign the decision weight for the best prize directly as the weighted probability of that prize.

• For each of the intermediate prizes in declining order, assign the decision weight using the weighted cumulative

probability for that prize less the decision weights for better prizes (or, equivalently, the weighted cumulative

probability for the immediately better prize).

• For the worst prize the decision weight is the residual decision weight to ensure that the decision weights sum

to 1.

The key is to view the decision weights as the incremental decision weight attributable to that prize.

Table B1 collects these steps for each of the examples, and adds a four prize example. From a programming

perspective, these calculations are tedious but not difficult as long as one can assume that prizes are rank-ordered as

they are evaluated. Our computer code in Stata allows for up to four prizes, which spans most applications in

laboratory or field settings, and is of course applicable for lotteries with any number of prizes up to four. The logic can

be easily extended to more prizes.
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Figure B1 illustrates these calculations using the power probability weighting function. The dashed line in the

left panel displays the probability weighting function ω(p) = pγ = p1.25, with the vertical axis showing underweighting of

the objective probabilities displayed on the bottom axis. The implications for decision weights are then shown in the

right panel, for the two-prize, three-prize and four-prize cases. In the right panel the bottom axis shows prizes ranked

from worst to best, so one immediately identifies the “probability pessimism” at work with this probability weighting

function. Values of γ < 1 generate overweighting of the objective probabilities and “probability optimism,” as one

might expect.

Figure B2 shows the effects of using the “inverse-S” probability weighting function ω(p) = pγ / ( pγ + (1-p)γ )1/γ

for γ = 0.65. This function exhibits inverse-S probability weighting (optimism for small p, and pessimism for large p)

for γ<1, and S-shaped probability weighting (pessimism for small p, and optimism for large p) for γ>1. Although one

observes a wide range of values of γ in careful applied work, for many CPT advocates the qualitative assumption that

γ<1 is often regarded as a critical component of CPT.

B.2 Cumulative Prospect Theory Decision Weights

The calculation of decision weights for CPT builds on this RDU logic. Indeed, for lotteries that are in the gain

frame, there is nothing to add. But for lotteries that are in the loss frame or mixed frame, one has to be careful in

applying these procedures.

Loss Frame Decision Weights

Consider a lottery that pays -100, -50, -25 and 0 with equal probability ¼ and EV of -43.75. Assume a Power

probability weighting function, since this specification allows us to look at the effects of underweighting and

overweighting without worrying about whether the probabilities are small or large. Start with the overweighting case, in

which γ- is 0.5. The tabulations are shown in panel A of Table B2. The first point of difference with the way in which

decision weights were calculated for gains in Table B1 is that we have listed the probabilities from Worst to Best,

-103-



rather than Best to Worst. In fact, that is the only point of difference, apart from using the weighting function with γ-

= 0.5. This is an application of the notion of loss-ranks, stressed by Wakker [2010; §7.6] in an explication of the history

of RDU thought, and then in Wakker [2010; §9.1] when introducing the sign-dependence of CPT. Gain-ranks are used

for gains under CPT, and loss-ranks are used for losses under CPT. This point is so important that it is worth being

verbose and restate the RDU logic using the language of gain-ranks, so that the parallel with loss-ranks becomes

evidence.

For gains, in panel C of Table B1, we rank the best prize as #1, the second best prize as #2, the third best prize

as #3, and the worst prize as #3. The probability whose outcome has gain-rank 1 is assigned a decision weight that is

equal to the weighted probability for that outcome (0.18). Then the probability whose outcome has gain-rank 2 is

assigned a decision weight equal to the weighted cumulative probability of getting that outcome (0.42) minus the

weighted cumulative probability of getting the outcome with gain-rank 1 (0.18, so the decision weight is 0.24 = 0.42-

0.18). And so on for the remaining outcomes.

Now turn to panel A of Table B2, with losses. We rank the worst prize as #1, the second worst prize as #2, the

third worst prize as #3, and the best prize as #3. The probability whose outcome has loss-rank 1 is assigned a decision

weight that is equal to the weighted probability for that outcome (0.50). Then the probability whose outcome has loss-

rank 2 is assigned a decision weight equal to the weighted cumulative probability of getting that outcome (0.71) minus

the weighted cumulative probability of getting the outcome with loss-rank 1 (0.50, so the decision weight is 0.21 =

0.71-0.50). And so on for the remaining outcomes.

To drive home the parallel nature of the calculations, once the shift from gain-ranks to loss-ranks has been

made, in panel B of Table B2 we consider an underweighting Power probability weighting with γ- = 1.25, exactly the

same function that was used in panel C of Table B1. Apart from the listing of probabilities from worst outcome to best

outcome, the calculations are identical!

Putting aside the mechanics of calculating these decision weights, focus on the effect of overweighting and

underweighting on the final decision weights, recalling of course that the underlying objective probabilities were each
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¼. In the overweighting case the decisions weights put greater weight on the worst outcomes compared to the best

outcomes, so if the utility function was linear, it is apparent that the CE would be lower than the EV by construction,

implying a positive risk premium and, ceteris paribus, risk aversion. In the underweighting case the decisions weights put

greater weight on the best outcomes compared to the worst outcomes, so if the utility function was linear the CE

would be higher than the EV, implying a negative risk premium and, ceteris paribus, risk seeking. So we end up with the

reverse effect of overweighting and underweighting in terms of risk aversion compared to the gain frame.

Mixed Frame Decision Weights

The logic here is to initially parse the mixed frame lottery in a gain lottery and a loss lottery, evaluate each of

those two parsed lotteries while ensuring that each has residual weight on the “zero outcome,” and then add the

parsed evaluations. The “zero outcome” here is in quotation marks because it refers to the assumed reference point,

which need not be zero in any currency units, although it often is. In our analysis the “zero outcome” is in fact the

endowment given to subjects, and hence it embodies the assumption that subjects fail to locally asset integrate the

endowment with the framed prizes. The logic of the example below is general, but one needs to keep this distinction in

mind when generalizing CPT to other reference points.

We employ the following notation, found in many CPT studies. Rank order the n outcomes so that

x1  ...  xk  0  xk+1  ...  xn

so that the kth and k+1th outcomes mark the dividing line between gains and losses. Then define the mixed-frame

lottery as

P: (x1, p1; ... ; xk, pk; 0, p0; xk+1, pk+1; ... ; xn, pn)

Note that it is quite possible that p0 = 0 in the specification of P. The mixed-frame lottery is then parsed into a gain

frame component and a loss frame component. The gain frame component is defined as

P+: (x1, p1; ... ; xk, pk; 0, p0 + pk+1 + ... + pn),
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where the “zero outcome” is assigned all of the probability mass for losses, as well as any probability mass originally

assigned to p0. The loss frame component is defined as

P-: (0, p1 + ... + pk + p0; xk+1, pk+1; ... ; xn, pn),

where the “zero outcome” is assigned all of the probability mass for gains, as well as any probability mass originally

assigned to p0. One then evaluates the cumulative prospective utility of P+ and P-, which we can denote CPU(P+) and

CPU(P-), and then these are literally added together to get the cumulative prospective utility of the mixed-frame lottery

P:

CPU(P) = CPU(P+) + CPU(P-)

Thus if we know how to evaluate the RDU decision weights for P+ using gain-ranks, and the decision weights for loss

frame prospects such as P- using loss-ranks, we can generate the decision weights for all types of lotteries using CPT.55

To take a textbook example, consider Exercise 9.34 from Wakker [2010; p.257]. In this case u(x) = xα for x  0

and u(x) = xβ for x<0, with α = β = 0.5, ω(p+) = (p+)2 for gains, ω(p-) = p- for losses, and λ = 2. Let the mixed frame

gamble be

P: (9, 0.1; 4, 0.4; -4, 0.4, -9, 0.1)

so the parsed gain frame component is

P+: (9, 0.1; 4, 0.5; 0, 0.5)

and the parsed loss frame component is

P-: (0, 0.5; -4, 0.4, -9, 0.1).

Tables B3 and B4 show the detailed application of this parsing process.

To take a full-blooded example, consider the default lottery on the web page referred to earlier. This

specification uses the Inverse-S probability weighting function, with parameters γ+ = 0.61 and γ- = 0.69 in terms of

our notation. There are two negative prizes, and two positive prizes in the lottery, and equal probability ¼ for each

55 Wakker [2010; p. 255, 261] discusses the implications of the decisions weights for mixed frame
lotteries summing to more than 1. There are none.
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outcome. Figure B3 shows an image of the output of the web page after evaluating this lottery, with the decision

weights at the bottom. Table B5 spells out the calculations in the manner in which we have been presenting them,

ending up with exactly the same answers apart from trivial rounding errors. We explicitly list the “fake 0 reference

point” that is added to P+ and P-, although these are arithmetically irrelevant. The symbol  means that the numerical

value in that cell is cut out, since it is not needed to identify the final decision weights.
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Table B1: Tabulations of RDU Examples

Prize Probability
Cumulative
Probability

Weighted
Cumulative
Probability

Decision
Weight

A. Two Prizes

Y 0.5 0.5 0.42 = 0.51.25 0.42

y < Y 0.5 1 1 = 11.25 0.58 = 1 - 0.42

B. Three Prizes

Y 0.33 0.33 0.25 = 0.331.25 0.25

Y < Y 0.33 0.67 0.60 = 0.671.25 0.35 = 0.60 - 0.25

y < Y < Y 0.33 1 1 = 11.25 0.40 = 1 - 0.60
= 1 - 0.35 - 0.25

C. Four Prizes

Best 0.25 0.25 0.18 = 0.251.25 0.18

2nd Best 0.25 0.5 0.42 = 0.501.25 0.24 = 0.42 - 0.18

3rd Best 0.25 0.75 0.70 = 0.751.25 0.28 = 0.70 - 0.42
= 1 - 0.24 - 0.18

Worst 0.25 1 11.25 0.30 = 1 - 0.70
= 1 - 0.28 - 0.24 - 0.18
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Figure B1: Power Probability Weighting
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Figure B2: Inverse-S Probability Weighting
and Implied Decision Weights for Gains
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Table B2: Tabulations of CPT Loss Frame Examples

Prize Probability
Cumulative
Probability

Weighted
Cumulative
Probability

Decision
Weight

A. Overweighting

Worst 0.25 0.25 0.50 = 0.250.5 0.5

2nd Worst 0.25 0.5 0.71 = 0.500.5 0.21 = 0.71 - 0.50

3rd Worst 0.25 0.75 0.87 = 0.750.5 0.16 = 0.87 - 0.71

Best 0.25 1 10.5 0.13 = 1 - 0.87

B. Underweighting

Worst 0.25 0.25 0.18 = 0.251.25 0.18

2nd Worst 0.25 0.5 0.42 = 0.501.25 0.24 = 0.42 - 0.18

3rd Worst 0.25 0.75 0.70 = 0.751.25 0.28 = 0.70 - 0.42

Best 0.25 1 11.25 0.30 = 1 - 0.70
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Table B3: Initial Tabulation of CPT Example

x p u(x) -λu(-x) x+ or x-  p ω ( p) w(x)

I. Evaluation of P+

-9 0.1 -6 = -2×9 0 1 1 0.19

-4 0.4 -4 = -2×4 0 0.9 0.81 0.56

4 0.4 2 = 4 4 0.5 0.25 0.24

9 0.1 3 = 9 9 0.1 0.01 0.01

II. Evaluation of P-

-9 0.1 -6 = -2×9 -9 0.1 0.1 0.1

-4 0.4 -4 = -2×4 -4 0.5 0.5 0.4

4 0.4 2 = 4 0 0.9 0.9 0.4

9 0.1 3 = 9 0 1 1 0.1

Table B4: Final Tabulation of CPT Example

x p U(x) = u(x)
U(x) =

-λ×u(-x)
w(x)

if x0
w(x)

if x<0
CPU(x) =
w(x)×U(x)

EU(x) =
p×u(x)

-9 0.1 -6 0.1 -0.6 -0.3

-4 0.4 -4 0.4 -1.6 -0.8

4 0.4 2 0.24 0.48 0.8

9 0.1 3 0.01 0.03 0.3

Sum -1.69 0
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Figure B3: Default Example from Wakker Web Page
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Table B5: Tabulations of CPT Mixed Frame Examples from Wakker Home Page

Prize Probability
Cumulative
Probability

Weighted
Cumulative
Probability

Decision
Weight

A. Gain Frame

Best (200) 0.25 0.25 0.29 0.29

2nd Best (50) 0.25 0.5 0.42 0.13 = 0.42 - 0.29

3rd Best (Fake 0) 0.25 0.75  

Worst (Fake 0) 0.25 1  

B. Loss Frame

Worst (-200) 0.25 0.25 0.29 0.29

2nd Worst (-50) 0.25 0.5 0.45 0.16 = 0.45 - 0.29

3rd Worst (Fake 0) 0.25 0.75  

Best (Fake 0) 0.25 1  
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Appendix C: Main Instructions (NOT FOR PUBLICATION)

Choices Over Risky Prospects

This is a task where you will choose between prospects with varying prizes and chances of winning.
You will be presented with a series of pairs of prospects where you will choose one of them. There are 100
pairs in the series. For each pair of prospects, you should choose the prospect you prefer to play. You will
actually get the chance to play one of the prospects you choose, and you will be paid according to the
outcome of that prospect, so you should think carefully about which prospect you prefer.

Here is an example of what the computer display of such a pair of prospects will look like.

The outcome of the prospects will be determined by the draw of a random number between 1 and
100. Each number between, and including, 1 and 100 is equally likely to occur. In fact, you will be able to
draw the number yourself using two 10-sided dice.
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You will be told your cash endowment for each lottery at the top of the lottery. In this example it is
$35, so any earnings would be added to or subtracted from this endowment. The endowment may change
from choice to choice, so be sure to pay attention to it. The endowment you are shown only applies for
that choice.

In the above example the left prospect pays twenty-five dollars ($25) if the number drawn is
between 1 and 5, and pays negative five dollars ($-5) if the number is between 6 and 55, and pays negative
thirty-five dollars ($-35) if the number is between 56 and 100. The blue color in the pie chart corresponds
to 5% of the area and illustrates the chances that the number drawn will be between 1 and 5 and your prize
will be $25. The orange area in the pie chart corresponds to 50% of the area and illustrates the chances that
the number drawn will be between 6 and 55 and your prize will be $-5. The green area in the pie chart
corresponds to 45% of the area and illustrates the chances that the number drawn will be between 56 and
100. When you select the lottery to be played out the computer will tell you what die throws translate into
what prize.

Now look at the pie in the chart on the right. It pays twenty-five dollars ($25) if the number drawn
is between 1 and 15, negative five dollars ($-5) if the number is between 16 and 25, and negative thirty-five
dollars ($-35) if the number is between 26 and 100. As with the prospect on the left, the pie slices represent
the fraction of the possible numbers which yield each payoff. For example, the size of the $25 pie slice is
15% of the total pie.

Even though the screen says that you might win a negative amount, this is actually a loss to be
deducted from your endowment. So if you “win” $-5, your earnings would be $30 = $35 - $5.

Each pair of prospects is shown on a separate screen on the computer. On each screen, you should
indicate which prospect you prefer to play by clicking on one of the buttons beneath the prospects. 

After you have worked through all of the pairs of prospects, raise your hand and an experimenter
will come over. You will then roll two ten-sided die to determine which pair of the 100 prospects you
chose will be played out:. Since there is a chance that any of your 100 choices could be played out for real,
you should approach each pair of prospects as if it is the one that you will play out. Finally, you will roll the
two ten-sided dice again to determine the outcome of the prospect you chose.

For instance, suppose you picked the prospect on the right in the above example. If the random
number was 7, you would win $25 in addition to your endowment; if it was 93, you would lose $35 from
your endowment. If you picked the prospect on the left and drew the number 7, you would lose $5 from
your endowment; if it was 93, you would again lose $35 from your endowment.

Therefore, your payoff is determined by three things:

• by which prospect you selected, the left or the right, for each of these 100 pairs;
• by which prospect pair is chosen to be played out in the series of 100 such pairs using the two

ten-sided die; and
• by the outcome of that prospect when you roll the two 10-sided dice.

Which prospects you prefer is a matter of personal taste. The people next to you may be presented
with different prospects, and may have different preferences, so their responses should not matter to you.
Please work silently, and make your choices by thinking carefully about each prospect.

-115-



All payoffs are in cash, and are in addition to the $7.50 show-up fee that you receive just for being
here, as well as any other earnings in other tasks.
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Appendix D: Additional Instructions (NOT FOR PUBLICATION)

D1. Introductory Text

Today’s Experiment

Thank you for participating in this experiment.  Please turn off your cell phones and any other
non-health related devices (electronic or otherwise) that you may have. The use of such devices is
prohibited while in the lab.

In this experiment, you will participate in more than one decision-making task.  You will have the
opportunity to earn money in the first task. In the second task, you stand a chance of winning or losing
money.

After the first task, which will earn you money, you will make 100 decisions in the second task. 
One of your second task decisions will be selected at random to be played out for cash.  Since each of
those second task decisions is equally likely to be played for cash, you should carefully consider each
decision.

You have already earned $10 for your participation in today’s experiment.  You will NOT be asked
to risk your $10 participation fee.  Any other money that you earn in today’s experiment will depend on
your choices, and also on chance.  However, you will not leave the experiment with any earned money
(other than the $10 participation fee) unless you complete the entire experiment today.

If you wish to withdraw at this time or at any time before the end of experiment, you may do so
and keep only your $10 participation fee.  Please initial this form to indicate that you understand the
requirements above.
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D2. Quiz for Earned Endowment

The following questions test your knowledge of current events, American history, and geography. 
Please indicate the correct answer in the blank beside each question.  You will be paid based on the
number of questions you answer correctly.  

If you answer 8 or more questions correctly, you will be paid $80.
If you answer 7 or fewer questions correctly, you will be paid $40.

   ______1.  The current Secretary of State is

   a. Joe Biden
   b. Timothy Geithner
   c. John Kerry
   d.  Hillary Clinton

   ______2.  The winner of the 2013 Superbowl was

   a. New York Giants
   b. San Fransisco 49ers
   c. Green Bay Packers
   d. Baltimore Ravens

   ______3.  Which of the following states borders the Gulf of Mexico?

   a. California
   b. Texas
   c. Maine
   d. North Carolina   

   ______4.  Who was the last President to die in office?

   a. John Kennedy
   b. Bill Clinton
   c. Gerald Ford
   d. Ronald Reagan

   ______5.  What is the capital of Arkansas?

   a. Pierre
   b. Sacramento
   c. Albany
   d. Little Rock
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   ______6.  Which of the following was one of the first 13 colonies?

   a. Montana
   b. Virginia
   c. Louisiana
   d. Texas

   ______7.  Who is the host of American Idol?

   a. Howie Mandel
   b. Regis Philben
   c. Jeff Probst
   d. Ryan Seacrest

   ______8.  Which of the following toys was named for a U.S. President?

   a. Jacks
   b. Raggedy Andy
   c. Marco Polo
   d. Teddy bear

   ______9.  “Only you can prevent wild fires.” is the slogan of

   a. Toucan Sam
   b. Polly the Parrot
   c. Woodsy the Owl
   d. Smokey the Bear

   ______10.  Which of the following was an ally of the United States in World War II?

   a. Germany
   b. Switzerland
   c. Italy
   d. Great Britain

   ______11.  Which of the following is a movie set in a future where the Capitol selects a boy and girl
from the twelve districts to fight to the death on live television?

   a. 21 Jump Street
   b. Ted
   c. The Hunger Games
   d. Safe House
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   ______12.  Which television network carries the Real Housewives?

   a. Bravo
   b. PBS
   c. HBO
   d. MTV

   ______13.  “Grey’s Anatomy” is a television series centered around 

   a. a carwash
   b. a hospital
   c. a baseball team
   d. hotel maid service

   ______14.  Who is credited with inventing the light bulb?

   a. Eli Whitney
   b. Oprah Winfrey
   c. Thomas Edison
   d.  Enrico Marconi

   ______15.  “First in Flight” is the slogan of which of the following states?

   a. Texas
   b. Montana
   c. Maine
   d. North Carolina
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D3. Choice Task Instructions

Choices Over Risky Prospects

This is a task where you will choose between prospects with varying prizes and chances of winning.
You will be presented with a series of pairs of prospects where you will choose one of them. There are 100
pairs in the series. For each pair of prospects, you should choose the prospect you prefer to play. You will
actually get the chance to play one of the prospects you choose, and you will be paid according to the
outcome of that prospect, so you should think carefully about which prospect you prefer.

Here is an example of what the computer display of such a pair of prospects will look like.

The outcome of the prospects will be determined by the draw of a random number between 1 and
100. Each number between, and including, 1 and 100 is equally likely to occur. In fact, you will be able to
draw the number yourself using two 10-sided dice.

Any losses from this task will be taken from your initial earnings sitting on your desk.
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In the above example the left prospect pays twenty-five dollars ($25) if the number drawn is
between 1 and 5, and pays negative five dollars ($-5) if the number is between 6 and 55, and pays negative
thirty dollars ($-30) if the number is between 56 and 100. The blue color in the pie chart corresponds to
5% of the area and illustrates the chances that the number drawn will be between 1 and 5 and your prize
will be $25. The orange area in the pie chart corresponds to 50% of the area and illustrates the chances that
the number drawn will be between 6 and 55 and your prize will be $-5. The green area in the pie chart
corresponds to 45% of the area and illustrates the chances that the number drawn will be between 56 and
100 and your prize will be $-30. When you select the lottery to be played out the computer will tell you
what die throws translate into what prize.

Now look at the pie in the chart on the right. It pays twenty-five dollars ($25) if the number drawn
is between 1 and 15, negative five dollars ($-5) if the number is between 16 and 25, and negative thirty
dollars ($-30) if the number is between 26 and 100. As with the prospect on the left, the pie slices represent
the fraction of the possible numbers which yield each payoff. For example, the size of the $25 pie slice is
15% of the total pie.

Even though the screen says that you might win a negative amount, this is actually a loss to be
deducted from your quiz earnings. So if you “win” $-5 and you earned $50 from the quiz, your earnings
would be $45 = $50 - $5.

Each pair of prospects is shown on a separate screen on the computer. On each screen, you should
indicate which prospect you prefer to play by clicking on one of the buttons beneath the prospects. 

Since there is a chance that any of your choices could be played out for real, you should approach
each pair of prospects as if it is the one that you will play out. When one of your choices from this task is
selected to be played out, you will roll the two ten-sided dice to determine the outcome of the prospect you
chose.

For instance, suppose you picked the prospect on the right in the above example. If the random
number was 7, you would win $25 in addition to your endowment; if it was 93, you would lose $30 from
your endowment. If you picked the prospect on the left and drew the number 7, you would lose $5 from
your endowment; if it was 93, you would lose $30 from your endowment.

Which prospects you prefer is a matter of personal taste. The people next to you may be presented
with different prospects, and may have different preferences, so their responses should not matter to you.
Please work silently, and make your choices by thinking carefully about each prospect.

All payoffs are in cash, and are in addition to the $10 show-up payment that you receive just for
being here.  Any losses will be deducted from your initial earnings.  You will never lose your show-up
payment.
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Appendix E: Additional Estimates (NOT FOR PUBLICATION)

Table E1: Estimates for Models with Pooled MBA Data

N=94 MBA students with house money to cover losses
DT, RDU and CPT estimates with the Prelec Probability Weighting Function

Parameter
Point

Estimate
Standard

Error p-value 95% Confidence Interval

A. Expected Utility

r 0.49 0.039 <0.001 0.42 0.57

B. Dual Theory

η 0.46 0.037 <0.001 0.39 0.53

φ 0.77 0.034 <0.001 0.70 0.83

C. Rank Dependent Utility

r 0.75 0.031 <0.001 0.69 0.82

η 0.46 0.077 <0.001 0.39 0.53

φ 0.77 0.034 <0.001 0.70 0.83

D. Disappointment Aversion

r 0.55 0.042 <0.001 0.46 0.63

θ -0.14 0.084 0.10 -0.30 0.02

E. Cumulative Prospect Theory

α 0.05 0.074 0.49 -0.09 0.19

β -0.10 0.136 0.48 -0.36 0.17

λ 0.96 0.194 0.84 (H0: λ=1) 0.58 1.34

η+ 1.35 0.159 <0.001 1.04 1.66

φ+ 0.35 0.048 <0.001 0.25 0.44

η- 0.84 0.145 <0.001 0.56 1.14

φ- 0.94 0.095 <0.001 0.75 1.13
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Table E2: Estimates for Models with Pooled Undergraduate Data with Earned Endowments

N=58 undergraduate students with “earned endowment” to cover losses
DT, RDU and CPT estimates with the Prelec Probability Weighting Function

Parameter
Point

Estimate
Standard

Error p-value 95% Confidence Interval

A. Expected Utility

r 1.42 0.35 <0.001 0.74 2.10

B. Dual Theory

η 1.06 0.117 <0.001 0.83 1.29

φ 0.56 0.047 <0.001 0.47 0.66

C. Rank Dependent Utility

r 0.63 0.470 0.18 -0.29 1.55

η 1.06 0.117 <0.001 0.83 1.29

φ 0.56 0.047 <0.001 0.47 0.66

D. Disappointment Aversion

r 0.40 0.295 0.17 -0.18 0.98

θ 0.70 0.279 0.01 0.16 1.25

E. Cumulative Prospect Theory

α 0.26 0.025 <0.001 0.21 0.31

β 0.23 0.077 <0.001 0.08 0.38

λ 1.76 0.201 <0.001 (H0: λ=1) 1.36 2.15

η+ 1.09 0.091 <0.001 0.92 1.27

φ+ 0.48 0.052 <0.001 0.38 0.58

η- 0.62 0.095 <0.001 0.43 0.80

φ- 0.93 0.068 <0.001 0.79 1.06
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