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An individual reports subjective beliefs over continuous events using a proper scoring rule,

such as the popular Quadratic Scoring Rule. Under some mild additional assumption, it has been

known since Matheson and Winkler [1976] that these reports reflect latent subjective beliefs if the

individual is risk neutral and obeys Subjective Expected Utility (SEU) theory. It is also known since

Harrison, Martínez-Correa, Swarthout and Ulm [2017] that these reports are “close” to latent subjective

beliefs if the individual obeys SEU and has a concave utility function in the range observed over typical

payments in experiments.

We extend these theoretical results in three ways. First, we demonstrate how to exactly recover

latent subjective belief distributions if the individual obeys SEU. Thus one does not have to rely on

approximation results from theory that show that these are likely to be “close,” and one can

demonstrate exactly how close they are on an individual basis. Second, and more significantly, we

demonstrate how to recover latent subjective belief distributions if the individual is known to distort

probabilities into decision weights using Rank Dependent Utility (RDU) theory. This extension

provides a constructive basis for exactly recovering latent subjective belief distributions for individuals

that do not behave consistently with SEU.1 Third, we generalize these results to the complete class of

proper scoring rules, of which the QSR is just the most popular.

These theoretical results assume that one knows the risk preferences of an individual. However,

those preferences are also latent, and typically generated using econometric methods which must allow

1 This is not the same as eliciting a series of binary subjective probabilities and “knitting together” an
elicited subjective belief distribution. The elicitation problem for subjective probabilities over binary events
has been well-studied, and operational methods for recovering latent subjective probabilities for various risk-
dependent scoring rules developed (e.g., Offerman, Sonnemans, van de Kuilen and Wakker [2009] and
Andersen, Harrison, Fountain and Rutström [2014]). Our approach is to elicit the distribution in one task,
not in a number of independent tasks. Undertaking a series of binary elicitations runs the risk of order
effects, or the risk of elicited probabilities not summing to 1. It is also much harder to test hypotheses that
span the full latent distribution, such as hypotheses about bias and confidence, by making a series of
independent inferences about binary slices of the underlying distribution.
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for statistical imprecision in the estimates.2 To account for this statistical imprecision when recovering

beliefs a natural approach is to utilize Bayesian econometric methods. One reason this approach is

more natural is that the posterior distribution from Bayesian inference these days invariably takes the

form of a simulated set of M samples using Markov Chain Monte Carlo (MCMC) algorithms, and our

theoretical results apply exactly to each of those M samples.3 Hence our theoretical results allow us to

directly derive a Bayesian posterior predictive distribution for the subjective beliefs of an individual.4

Moreover, this derivation is virtually instantaneous computationally, allowing for easy application using

common software.

Another reason it is natural to use Bayesian methods is that we want to recover beliefs at the

level of the individual, and Bayesian Hierarchical Models (BHM) provide an attractive way to estimate

risk preferences at the level of the individual. There are well-understood limitations of classical

methods at the level of the individual, particularly when sample sizes for individuals are not designed

for individual-level estimation due to time constraints that limit the number of risky choices one can

expect to a subject to make. Gao, Harrison and Tchernis [2022] discuss these issues, the way in which a

BHM mitigates them, and also provide software templates for application.

We demonstrate the application of these theoretical results by recovering the latent subjective

belief distributions from observed reports by individuals in an incentivized experiment, and for whom

2 The notion of statistical imprecision means fundamentally different things to classical and Bayesian
econometricians. 

3 One does not have to be using Bayesian econometric methods to generate estimates using
simulations. This is common in econometric methods using so-called “random coefficients,” also known as
“mixed estimation.” For example, Andersen, Hole, Harrison, Lau and Rutström [2012] use random
coefficient methods to simulate risk preferences for pooled samples. The Bayesian approach is more natural
for generating estimates for individual subjects.

4 This is formally the same as the calculations of the Bayesian posterior predictive distribution for
the normative welfare effects of insurance purchase decisions in Gao, Harrison and Tchernis [2022]. Here the
application is descriptive, closer to the joint estimation of risk preferences and subjective probabilities for
binary events of Andersen, Fountain, Harrison, Lau and Rutström [2014] using classical econometric
methods.
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we also have individual estimates of their risk preferences using a BHM. We show that the recovered

belief distributions of RDU-consistent individuals exhibit first-order differences from observed reports.

The extent of the difference between observed and recovered beliefs intuitively depends on the

dispersion of observed beliefs as well as the extent of probability weighting, each of which can vary

across different belief questions and individuals.

These theoretical results and empirical applications significantly widen the domain of

applicability of proper scoring rules for eliciting latent subject belief distributions. Apart from intrinsic

interest in knowing the subjective belief distributions of individuals, our methods help make Bayesian

inference more operational by recovering latent beliefs when one cannot be certain that the individual

is risk neutral.

Section 1 briefly reviews different approaches to eliciting subjective belief distributions, section

2 provides new theoretical results for belief recovery under RDU, and section 3 illustrates the

application of our Bayesian approach to beliefs about the addictiveness of smoking. Online appendices

provide proofs of formal results, instructions for the experiments, and documentation of computer

software we provide to undertake these calculations.

1. Eliciting Belief Distributions

It is becoming popular to elicit subjective belief distributions, since they provide information on

the bias of beliefs as well as the confidence with which those beliefs are held. There are three ways to

elicit beliefs, each with strengths and weaknesses for different applications.

Following Manski [2014], belief distributions might be elicited using hypothetical surveys. The

key feature here is the absence of any incentives for responses. The advantage of this approach is that it

is cheap, easier to explain to subjects, easier to implement in software, and allows questions about

events that cannot be verified. Considerable attention has been paid to the manner in which belief
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questions are presented, particularly in field settings: see Delavande, Giné and McKenzie [2011]. The

disadvantage of this approach is that the results might exhibit hypothetical bias, and it is easy to

document that this bias can be a significant one (Harrison [2016]). What “hypothetical bias” means

here is that one gets different results, usually on a between-subjects basis, when asking the same

question with no incentives compared to asking with incentives. In the nature of subjective beliefs,

there is no true answer that one can look to: fidelity with some objective outcome is no metric of value

here, unless one wants to impose some “rational expectations” constraint on beliefs, which we do not.

So the expression “hypothetical bias” is just a short-hand for the results being different with and

without incentives, and the prior that incentivized responses are likely to reflect more effort and

willingness to respond truthfully than non-incentivized responses. Although this is our prior, we

appreciate that others might not share it. 

For us, the primary remaining advantage of hypothetical eliciation is the ability to ask questions

about non-verifiable events. For example, if someone is interested in longevity risk, one could ask a

series of incentivized questions about how long the subject thinks people in their country will live, or

someone with their gender, or someone with their gender and race, or someone with their gender, race

and income level, and so on. Each of these could be incentivized with respect to official mortality

tables. But then a question about how long the specific subject will live cannot be so incentivized, and

is what we might be interested in. To take this example, we would ask all of the incentivized questions

and then one non-incentivized question, and evaluate the bias and confidence of all but the last in

relation to verifiable data. This would then give us a prior on the bias and confidence for the final

hypothetical question. In this manner we see hypothetical and incentivized belief questions as

complementary.

A second approach to belief elicitation starts by recognizing that risk preferences affect the

rational responses of subjects to the usual scoring rules, but that subjects should rationally report their
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beliefs if they are risk neutral. Hence one can append an experimental payment procedure, called the

Binary Lottery Procedure (BLP), to “risk neutralize” the responses of the subject and view reports

directly as beliefs.  The BLP was developed by Smith [1961], and has been widely used in various

settings in which risk preferences are a confound, such as the bargaining experiments of Roth and

Malouf [1979].5 The first statements of this mechanism, joining the QSR and the BLP, appear to be

Allen [1987] and McKelvey and Page [1990]. Schlag and ven der Weel [2013] and Hossain and Okui

[2013] examine the same extension of the QSR, along with certain generalizations, renaming it a

“randomized QSR” and “binarized scoring rule,” respectively. Harrison, Martínez-Correa, Swarthout

and Ulm [2015] evaluated the QSR with the BLP in terms of the elicitation of subjective belief

distributions, not just some summary statistic of that distribution. Harrison and Phillips [2014] applied

this method to elict the beliefs about financial risk by Chief Risk Officers of major companies, all of

whom had advanced training in statistical and actuarial methods.

The clear strength of this approach is that it allows the reports of the subject to be evaluated

directly as beliefs, under the maintained assumption that the BLP works as advertized by theory. The

disadvantage is that it adds an additional layer of understanding for subjects when it comes to

translating earnings in the QSR into cash.6 In our experience, documented in Harrison et al.

5 Berg, Daley, Dickhaut and O’Brien [1986] extended the BLP to allow for a non-linear exchange
rate between the “points” that define the binary probability lottery chances of a bigger prize. This extension
allows the experimenter to induce risk averse or risk-loving preferences with concave or convex exchange
rate functions, albeit with added complexity for subjects.

6 Although there are some studies showing the apparent failure of the BLP in other settings, that
evidence is not as compelling as many claim: see Harrison et al. [2013] for a critical literature review. The
claim by Danz, Vesterlund and Wilson [2022] that the QSR using the BLP fails metrics of “behavioral
incentive compatibility” is premature: they explicitly assume that subjects correctly understand the objective
likelihoods the experimenter induces. They correctly note (p. 2853) that the real “challenge for examining
whether information on the mechanism’s quantitative incentives encourages truth telling is that we do not
know participants’ true beliefs.” But they then take the extreme metric of “reports of the objective prior as
truthful [subjective beliefs]. This true/false terminology is chosen for clarity, and does not imply that all
participants are assumed to understand that the objective prior is the true likelihood.” So they are testing
some variant of a rational expectations model of subjective beliefs jointly with the incentive compatibility of
the QSR using the BLP applied to the innate subjective beliefs subjects might hold, and they are not just
testing the later hypothesis.
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[2013][2014][2015], this is relatively easy to overcome: one simply defines all earnings from the QSR in

terms of points rather than a natural currency, and then add a paragraph at the end explaining how

points get turned into cash using the BLP.7 Nonetheless, there are many settings in which one does not

want to have to assume understanding of the BLP mechanism, particularly for less formally literate

field populations who, in our experience, can be wary of “sophisticated”, indirect payment protocols.

The third approach is to just implement some scoring rule, such as the QSR, and pay the

subjects the stated rewards in a natural currency. The strength of this approach is that it allows the

subject to see the monetary bets that her reports are generating, just as if she was placing bets with a

series of bookies at some sporting event. This framing of the reports as bets is made more transparent

with the use of real-time interfaces of the kind we use, developed by Harrison et al. [2017]. Early

implementations of the QSR relied on subject’s understanding algorithms or squinting at long

numerical tabulations of potential payoffs, but those have not been used for decades. 

The weakness of this approach is that one must account for the effect of risk preferences on

stated reports. This requires one additional task be conducted to elicit risk preferences, some

econometrics to infer risk preferences at the individual level, and the recovery of beliefs once one has

those estimated risk preferences in hand. As demonstrated by Gao, Harrison and Tchernis [2022], the

use of a BHM allows one to reduce the number of choice tasks required of each subject significantly,

and still maintain reliable inferences using informative priors from the choices of other individuals.

This speeds up the overall task of eliciting risk preferences, as well as providing estimates at the

individual level. And our present results address the final issue, the difficulty of actually inferring latent

7 We avoid reference to “experimental currencies” and a stated exchange rate between those
currencies and some natural currency. This device is often used to just scale up rewards in some framed
experimental currency, with the hope that this motivates subjects better. This procedure risks the confound
of money illusion: if the subjects do not suffer from money illusion, the procedure adds nothing to incentives
in terms of the natural currency, but if they do suffer from money illusion the experimenter has lost control
of incentives.
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beliefs from observed reports.

In summary, we see the second and third approaches as the most attractive, and

complementary, and have used both in different settings. They trade off the “extra work” needed to

rigorously identify subjective beliefs. The second approach effectively puts that burden on the subject,

and the third approach effectively puts that burden on the experimenter. 

2. Theoretical Results

We focus on the finite case, in part for expository reasons, but also because this is the

interesting case in terms of operational scoring rules. We do not  assume symmetric subjective

distributions, nor do we assume that the distribution is even unimodal.

Let the decision maker report her subjective beliefs in a discrete version of a QSR for

continuous distributions (Matheson and Winkler [1976]).8 Partition the domain into K intervals, and

denote as r k the report of the likelihood that the event falls in interval k = 1, , K. Assume for the

moment that the decision maker is risk neutral, and that the full report consists of a series of reports

for each interval, { r1, r2, , r k ,, r K } such that r k  0 k and   i = 1K (r i ) = 1.

If k is the interval in which the actual value lies, then the payoff score is defined by Matheson

and Winkler [1976; p.1088, equation (6)]: S = (2 × r k)  -   i = 1K (r i )
2. So the reward in the score is a

doubling of the report allocated to the true interval, and the penalty depends on how these reports are

distributed across the K intervals. The subject is rewarded for accuracy, but if that accuracy misses the

true interval the punishment is severe. The punishment includes all possible reports, including the

8 Alternative scoring rules could be characterized, and we provide proof that our results generalize to
the class of proper scoring rules. The QSR is the most popular scoring rule in practice, and all of the practical
issues of recovering beliefs can be directly examined in that context. For instance, Andersen, Fountain,
Harrison and Rutström [2014] show that behavior under a Linear Scoring Rule and QSR are behaviorally
identical when applied to elicit subjective probabilities for binary events and one undertakes calibration for
the different effects of risk aversion and probability weighting on the two types of scoring rules. 
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correct one.9

To ensure complete generality, and avoid any decision maker facing losses, allow some

endowment, α, and scaling of the score, β. We then get the following scoring rule for each report in

interval k

α + β [ (2 × r k)  -   i =1K (r i )
 2 ], (0)

where we initially assumed α=0 and β=1. We can assume α>0 and β>0 to get the payoffs to any

positive level and units we want. Let pk represent the underlying, true, latent subjective probability of an

individual for an outcome that falls into interval k. Figures 1 and 2 illustrate one visual representation

of the QSR, which we will use in experiments, for α = β = 25 and K=10.

We restate Lemma 1 from Harrison, Martínez-Correa, Swarthout and Ulm [2017]: 

Lemma 1: Let pk represent the underlying subjective probability of an individual for outcome k and let
rk represent the reported probability for outcome k in a given scoring rule. Let θ(k) = α + β2r k - β 

i=1K (r i)
2 be the scoring rule that determines earnings θ if state k occurs. Assume that the individual

behaves consistently with SEU. If the individual has a utility function u() that is continuous, twice
differentiable, increasing and concave and maximizes expected utility over actual subjective
probabilities, the actual and reported probabilities must obey the following system of equations:

pk × u/θ θ = θ(k) r k × Ep [u/θ] = 0,  k = 1,..., K (1)

Our main theoretical result is a generalization of Lemma 1 for RDU individuals, who distort

probabilities and employ “decision weights” when evaluating ranked payoff outcomes.

We state parametric versions of EUT and RDU decision making over objective probabilities, to

introduce notation and basic concepts. Nothing hinges on the parametric assumptions, although the

9 Take some examples, assuming K = 4. What if the subject has very tight subjective beliefs and
allocates all of the weight to the correct interval? Then the score is S = (2 × 1) - (12 + 02 + 02 + 02 ) = 2 - 1 =
1, and this is positive. But if the subject has tight subjective beliefs that are wrong, the score is S = (2 × 0) 
(12 + 02 + 02 + 02 ) = 0  1 = 1, and the score is negative. So we see that this score would have to include
some additional “endowment” to ensure that the earnings are positive. Assuming that the subject has very
diffuse subjective beliefs and allocates 25% of the weight to each interval, the score is less than 1: S = (2 ×
¼)  ((¼)2 + (¼)2 + (¼)2 + (¼)2 ) = ½  ¼ = ¼ < 1. So the tradeoff from the last case is that one can
always ensure a score of ¼, but there is an incentive to provide less diffuse reports, and that incentive is the
possibility of a score of 1.
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parametric forms assumed are standard in the literature.

Assume that utility of income in an elicitation is defined by

U(x) = x(1s)/(1s) (2)

where x is the lottery prize and s1 is a parameter to be estimated. For s=1 assume U(x)=ln(x) if

needed. Thus s is the coefficient of CRRA for an EUT individual: s=0 corresponds to risk neutrality,

s<0 to risk loving, and s>0 to risk aversion. Of course, risk attitudes under RDU depend on more than

the curvature of the utility function.

Let there be J possible outcomes in a lottery defined over objective probabilities commonly

implemented in experiments. Under EUT the probabilities for each outcome xj, p(xj), are those that are

induced by the experimenter, so expected utility is simply the probability weighted utility of each

outcome in each lottery i:

EUi = j=1,J [ p(xj) × U(xj) ]. (3)

The RDU model of Quiggin [1982] extends the EUT model by allowing for decision weights

on lottery outcomes. The specification of the utility function is the same parametric specification (2)

considered for EUT.10 To calculate decision weights under RDU one replaces expected utility defined

by (3) with RDU

RDUi = j=1,J [ w(p(xj)) × U(xj) ] = j=1,J [ wj × U(xj) ] (4)

where

wj = ω(pj + ... + pJ) - ω(pj+1 + ... + pJ) (5a)

for j=1,... , J-1, and

wj = ω(pj) (5b)

for j=J, with the subscript j ranking outcomes from worst to best, and ω() is some probability

10 To ease notation we use the same parameter s because the context always make it clear if this
refers to an EUT model or a RDU model.
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weighting function.

We consider three popular probability weighting functions. The first is the simple “power”

probability weighting function proposed by Quiggin [1982], with curvature parameter γ:

ω(p) = pγ (6)

So γ1 is consistent with a deviation from the conventional EUT representation. Convexity of the

probability weighting function is said to reflect “pessimism” and generates, if one assumes for

simplicity a linear utility function, a risk premium since ω(p) < p  p and hence the “RDU EV”

weighted by ω(p) instead of p has to be less than the EV weighted by p.

The second probability weighting function is the “inverse-S” function popularized by Tversky

and Kahneman [1992]:

ω(p) = pγ / ( pγ + (1-p)γ )1/γ (7)

This function exhibits inverse-S probability weighting (optimism for small p, and pessimism for large p)

for γ<1, and S-shaped probability weighting (pessimism for small p, and optimism for large p) for γ>1.

The third probability weighting function is a general functional form proposed by Prelec [1998]

that exhibits considerable flexibility. This function is

ω(p) = exp{-η(-ln p)φ}, (8)

and is defined for 0<p1, η>0 and φ>0.11 When φ=1 this function collapses to the Power function

ω(p) = pη.

One important reason to be able to recover beliefs that accommodate these different

specifications is that there is clear evidence that there is considerable individual heterogeneity in the type

of probability weighting that individuals exhibit (Wilcox [2022]). It is simply not true that many, or even

11 Many apply the Prelec [1998; Proposition 1, part (B)] function with constraint 0 < φ < 1, which
requires that the probability weighting function exhibit subproportionality. Contrary to received wisdom,
many individuals exhibit estimated probability weighting functions that violate subproportionality, so we use
the more general specification from Prelec [1998; Proposition 1, part (C)], only requiring φ > 0, and let the
evidence for an individual determine if the estimates φ lies in the unit interval.
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most, individuals exhibit behavior consistent with “inverse-S” probability weighting functions. Nor is

much gained by further debating that point, when we can span these three specifications.

We generalize Lemma 1 to include individuals that distort probabilities, with all proofs in

Appendix A (online):

Lemma 2: Let pk represent the underlying subjective probability of an individual for outcome k and let
rk represent the reported probability for outcome k in a given scoring rule. Let θ(k) = α + β2r k - β 

i=1K (r i)
2 be the scoring rule that determines earnings θ if state k occurs. Assume that the individual uses

some probability weighting function ω(), leading to decision weights w() defined in the standard
decumulative fashion of (5a) and (5b). Assume that the individual behaves consistently with RDU,
applied to subjective probabilities. If the individual has a utility function u() that is continuous, twice
differentiable, increasing and concave and maximizes rank-dependent utility over weighted subjective
probabilities, the actual and reported probabilities must obey the following system of equations:

w(pk) × u/θ θ = θ(k)   j=1, K { w(p j) × r k × u/θ θ = θ(  j ) }  =  0,  k = 1,..., K (9)

The application of (9) is straightforward. If the reports rk are given from observation of experimental

data, the partial derivatives are fixed and independent of the decision weights w(pk), so this is a linear

system of equations in the unknown decision weights.12 Although it turns out the equations are linearly

dependent, we can replace any one of them with  k=1, K  w(pk)  = 1 to remove the redundancy and

obtain a unique solution.

A numerical example illustrates the basic ideas. Assume K=10 bins. An individual reports 30,

45 and 25, out of 100 tokens, in bins 3, 4 and 5, leaving 0 tokens in the other 7 bins. Thus we have r 1 =

0.00, r 2 = 0.00, r 3 = 0.30,  r 4 = 0.45,  r 5 = 0.25,  r 6 = 0.00, r 7 = 0.00, r 8 = 0.00,  r 9 = 0.00 and r 10 =

0.00. Assume the QSR given by (0) with α = β = 25, consistent with the experiments reported later. Let

the CRRA utility function be given by (2) with s = 0.77, consistent with evidence from a wide array of

experiments, so that u/θ = θ - s.13 For RDU individuals further assume the inverse-S probability

12 While these equations can be solved using standard linear algebra techniques, it can be shown that
the exact solution is w(pk) = r k  [θ/u θ=θ(k)] /  j =1K  r j   [θ/u θ=θ(j)]. In the CRRA case we are considering
here, this becomes w(pk) = r k  θ(k) -s /  j =1K  r j  θ(j) -s.

13 For the CARA utility function U(θ) = exp(-k θ) the partial is k exp(-θk), and for the Expo-Power
utility function U(θ) = [1-exp(-α θ1-s)]/α the partial is exp{-θ(1-s)α} (1-s) θ - s.
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weighting function (7) with γ = 0.5 and numerically invert (7).14 

The derivative of the utility function is only relevant for the three bins with positive reports,

since the decision weights will be 0 for the other bins with zero reports. The 3 equations in 3

unknowns are then

       0.049591  × w(p 3)  -  0.018       × w(p 4) -   0.02267 × w(p 5)  =  0 (10a)
      -0.03188   × w(p 3)  + 0.032997 × w(p 4)  -   0.034    × w(p 5)  =  0 (10b)
                          w(p 3)  +                    w(p 4) +                  w(p 5)   =  1 (10c)

The numbers in these 3 equations are direct applications of (9). For example, from (10a) we have

   0.049591 = 0.7 × 0.07084443      = (1-r 3) × [25 + (50 × 0.30) - (25 × (0.302 + 0.452 + 0.252))] -0.77

  -0.018      = -0.3 × 0.059994478   = (-r 3)   × [25 + (50 × 0.45) - (25 × (0.302 + 0.452 + 0.252))] -0.77

  -0.02267  = -0.3 × 0.075562439   = (-r 3)   × [25 + (50 × 0.25) - (25 × (0.302 + 0.452 + 0.252))] -0.77.

We solve (10a), (10b) and (10c) for decision weights w(p 3) = (0.3/0.07084443)/15.04384315 =

0.281486, w(p 4) = (0.45/0.059994478)/15.04384315 = 0.498589 and w(p 5) (0.25/0.075562439)/

15.04384315 = 0.219925. If the individual were an EUT maximizer, we would be finished and these

weights would be the individual’s implied subjective probabilities. As expected from the results of

Harrison, Martínez-Correa, Swarthout and Ulm [2017], and the assumed value of s, the differences

between these weights and the observed reports are small. The mean of the observed reports is 34.5 if

the bins intervals are 0 to 10, 11 to 20, , 91 to 100, and the mean of the recovered beliefs is 34.38439.

The next step is to extract the probabilities from the decision weights if the individual was

known to be an RDU maximizer. We first sort the outcomes from lowest payoff to highest payoff. For

a given individual and elicitation, this is the same as sorting from lowest to highest report in terms of

tokens, or sorting from lowest to highest decision weight. We sort to w(p 5) = 0.219925,   w(p 3) =

0.281486 and w(p 4) = 0.498589. We then apply a decumulative process to extract the cumulative

14 Since (7) is not monotonic for γ < 0.278, as noted by Rieger and Wang [2006; §1.2], we assume
values of γ for which it is monotonic, and the inverse function is uniquely defined. This is a reasonable a priori
restriction given the available empirical evidence for values of γ. For the power probability weighting
function (6) the inverse function is p(1/γ), and for the Prelec probability weighting function (8) the inverse
function is exp{-[(ln p)/(-η)]1/φ }.
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distribution function for the probabilities. For example, p 4 produces the largest decision weight, since

bin 4 was allocated the most tokens, and the relevant probability of being in bin 4 is then ω -1 (0.498589)

= 0.802313. The probability of being in bin 3 is then ω -1 (0.281486 + 0.498589) - ω -1 (0.498589) =

0.179121, since bin 3 was allocated the second-highest number of tokens, and the residual probability

of being in bin 5 is then ω -1 (0.219925 + 0.281486 + 0.498589) - ω -1 (0.281486 + 0.498589) = 0.018566.

These probabilities must finally be “de-sorted” to connect with the appropriate bin, so p 3 = 0.179121, 

p 4 = 0.802313 and p 5 = 0.018566. These are significant, first order differences, relative to the

second-order effect of risk-aversion. The mean of the recovered beliefs in this case is 33.39445,

noticeably different from the mean of 34.5 for observed reports.15

This example illustrates the computational steps involved. We have developed a Stata program

to undertake these calculations for practical applications, and document this in Appendix B (online).

The program handles CRRA, Power, CARA or Expo-Power utility functions, and Power, Inverse-S or

Prelec probability weighting functions, where EUT is a special case.

Finally, we can also prove a generalization to all proper scoring rules. Define a scoring rule S

where S1(r1,..., rn), S2(r1,..., rn),..., and Sn(r1,..., rn) represent the payoffs for each of the possible states of

nature 1,..., n. Sk is the payoff if state k is realized after reports r1,..., rn, where rn = 1 -  i=1n-1 r I. Let 

f (p1,..., pn; r1,..., rn) =   i=1n piSi(r1,..., rn). 

A scoring rule is “proper” if the maximizing arguments are ri = pi for all i.  Hence a risk-neutral

decision maker will report truthfully, bypassing the need for a solution to the “recovery” problem

solved by Lemma 2. Our generalization is then:

Proposition 1: Lemma 1 generalizes to include all proper scoring rules. Hence all of the results that
flow from Lemma 1 also generalize.

15 It is possible in some cases for the probabilities and weights derived in this fashion to violate first
order stochastic dominance. The violations are in most cases small in terms of certainty equivalent, and
subjects with extreme, a priori unreasonable preferences have been removed from the analysis.
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This also means that Propositions 1 through 7 of Harrison, Martínez-Correa, Swarthout and Ulm

[2017], characterizing the beliefs recovered for an SEU decision-maker, also generalize.

3. Beliefs About the Addictiveness of Smoking

To illustrate our theoretical results, we examine their application in an incentivized experiment

examining beliefs about a basic informational input to the decision to smoke when young: beliefs about

how addictive smoking is.16 The “rational model of addiction” of Becker and Murphy [1988] has been

criticized for the assumption that the addict has full information about the consequences of starting to

consume cigarettes. Many daily adult smokers started smoking when they were teenagers, and were able

to quit for periods relatively easily in their early years of smoking. Hence they could easily form beliefs

that smoking is not very addictive, precisely due to them have good experience with their ability to quit

when just starting to smoke and, rationally in terms of that personal data, forming beliefs that quitting is

easy in general. Hence they could plausibly develop poor beliefs about the longer-term addictiveness of

cigarettes after some initial period of consumption.

Orphanides and Zervos [1995; p.740] hypothesize 

... that the bulk of objections concerning earlier rational models can be attributed not to
rational decision making, but rather to the common implicit assumption of perfect
foresight. The essential feature lacking from these models is the recognition that
inexperienced individuals are initially uncertain of the exact potential harm associated
with consuming an addictive good. Once uncertainty and a process of learning through
experimentation are incorporated into the earlier rational framework, the process of
rationally getting “hooked” into an addiction becomes evident, and our understanding
of the determinants of addiction is substantially improved.

They present a model in which Bayesian updating, starting from optimism about the ease of quitting

16 Declaration of Competing Interests: Harrison has served as a testifying expert witness for
plaintiffs in litigation against tobacco companies in the United States and Canada for 25 years, and continues
to do so. His testimony is primarily on health care costs to governments associated with tobacco-related
diseases, and he has received compensation for the research and time supporting this testimony. The design,
of the experiments reported here was undertaken independently of any litigation, and subject fees were
funded by the Center for the Economic Analysis of Risk at Georgia State University.
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smoking, could lead to young smokers become addicted as the result of past consumption. The validity

of the “rational addiction” model is not the issue here, just the motivation for wanting to examine

subjective beliefs of young people about the addictiveness of smoking cigarettes. A characterization of

these beliefs is presumably of value to any model of smoking addiction, as well evaluations of

informational public polices.

The two belief questions we asked about addictiveness17 were as follows, with response

intervals in square brackets and the correct answers used to reward subjects in curly brackets:

1. Over a 5-year period, 687 out of 1000  current adult smokers reported quitting for at least a
month. How many of the 687 relapsed, and started smoking again? [None, 1 to 99, 100 to
199, 200 to 299, 300 to 399, 400 to 499, 500 to 599, 600 to 687] {Correct answer is 532: see
Borland et al. [2011; p.677]}.

2. On average, how many times does a current adult smoker try to quit before successfully
quitting for 1 year or more? [1, 2 or 3, 4 or 5, 6 or 7, 8 or 9, 10 to 14, 15 to 19, 20 to 24, 25 to
35, 36 or more] {Correct answer is 29.6: see Chaiton [2016; p.5]}.

Question #1 used 8 bins for responses, and questions #2 used 10 bins. All questions allowed 100

tokens, and QSR parameters α = β = 25 resulting in a $50 payment if all 100 tokens were allocated to

the correct answer.

Figures 1 and 2 illustrate the interface used to elicit beliefs from subjects, developed by

Harrison, Martínez-Correa, Swarthout and Ulm [2017]. Appendix C (online) contains the instructions

presented to subjects. Each subject allocates 100 token across 10 or 8 bins, and the displays change in

real-time so the subject sees the payoffs from the bets being placed about the correct answer. As

17 Two prior questions about the mortality effects of smoking were asked. The first was “Men and
women over 55 who currently smoke are how many more times as likely to die of lung cancer as men and
women over 55 who have never smoked?” and the second was “Men and women over 55 who are former
smokers are how many more times as likely to die of lung cancer as men and women over 55 who have
never smoked?”. From data in Thun et al. [2013; pages 356 and 358], the correct answer for the first
(second) question was 25.66 (6.70) for women and 24.97 (6.75) for men, so about 25 (6.7) times. These
questions were incentivized elicitations of mortality risk questions widely used by Professor W. Kip Viscusi in
defense testimony for tobacco companies in the United States and Canada (e.g., Viscusi [2002; chapter 7]).
One additional question was asked at the end, “Based on survey data from 2012/13, what is the likelihood of
somebody being clinically dependent on nicotine if they are a current daily smoker and started smoking
up to 40 years earlier? From updated calculations using the statistical model of Harrison [2017], the correct
answer is 85%.
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stressed by Savage [1971], scoring rules can be viewed as formalizations of asking individuals to stake

an endowment with an array of “bookies” offering different odds. After responses for all belief

questions are collected, one question is selected at random for payment and the subject receives the

cash payment indicated on their report for the bin corresponding to the correct answer.

Subjects were recruited in 2019 and early 2020 from the population of undergraduate students

from a variety of majors at Georgia State University. All subjects had also completed 100 incentivized,

binary choices over risky lotteries, in experimental sessions documented by Harrison, Morsink and

Schneider [2020]. The BHM of Gao, Harrison and Tchernis [2022] was applied to these data, assuming

an RDU model of risk preferences with a CRRA utility function and the Prelec probability weighting

function. The result of that estimation is a Bayesian posterior distribution for each subject with M =

25,000 samples for each of the parameters of an RDU model of their risk preferences.

In our sample of 383 the average age was 20, 64% were self-reported as female, 62% were

black, 27% had a business major, 36% were Juniors, Seniors or Graduate students, 46% were working

part-time or full-time, 18% had parents with a joint annual income between $65,000 and $100,000, 15%

had parents with a joint annual income over $100,000, 12% reported a non-Christian religion, and 19%

reported being an atheist, agnostic or non-religious. Very few students report being current smokers,

and the sample was not constructed to identify smokers and non-smokers.

We report results by examining the recovered beliefs using the posterior predictive

distribution.18 We compare these to the raw reports. Our belief recovery is at the individual subject and

question level, but of course we can pool results over subjects. One could then easily stratify results by

demographic or treatment characteristics.

18 Each of the 25,000 samples of estimates of the set {s, η and ρ} generate beliefs, by definition, that
sum to 1, and we confirmed this. In principle the mean of the beliefs for each bin need not sum exactly to 1,
but in fact they do. Some intuition for this result comes from viewing the estimate for the parameters as
unimodal around the means, so that there are many individual sets of estimates of the set {s, η and ρ} from
the sample of 25,000 that are arbitrarily close to these means.
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Individual results for two subjects are presented in Figures 3 and 4, focusing on the comparison

of observed reports and recovered beliefs using the posterior mean belief. In each case we display the

reports and beliefs in the left panels, and the risk preferences for this subject in the right panels. We

also report a simple measure of the difference between reports and recovered beliefs, Ω, given by the

absolute value of the differences in reports, expressed as a percent. If beliefs were the same as reports

Ω would be 0%, and if the two were completely different Ω would be 100%. However, we know that

recovered beliefs cannot arise when there are no tokens allocated to a bin, so the upper bound for Ω is

strictly less than 100%. In Figure 3 the subject has the same type of report for each question: 50 tokens

allocated to one modal response, and 25 tokens allocated either side of that modal response, so Ω is the

same value, 29%, in both cases.

Figure 3 shows a subject that is optimistic with respect to probabilities, leading to decision

weights that favor higher value prizes by enhancing their weight above the actual probability. The

subject also has a relatively concave utility function, with s = 0.74. The way to understand behavior

here is to examine the recovered beliefs, then consider the risk preferences and infer why the subject

would then have been induced, given those risk preferences, to make the observed reports. For both

questions the subject has beliefs that lead to greater weight being placed on the report for the modal

bin, and that weight is enhanced by the decision weight for that prize being view optimistically. The

two extreme reports are not affected differently by the optimism of the subject, since they have the

same weight and hence are not distinct when viewed as monetary rewards if those outcomes are

realized. For this reason we display the decisions weights for 2 prizes as well as for 3 prizes: the

decisions weights for 2 prizes actually apply here. Then there is an effect from the concave utility

function, leading to the individual wanting, ceteris paribus any effect of probability weighting, to spread

the tokens more equally over all three outcomes that are assigned any weight at all.

In this instance the effect of optimistic probability weighting for the modal belief dominates the

-17-



effect of utility concavity, so the observed reports are significantly less uniform than the beliefs, placing

less weight on the extremes, and greater weight on the modal response. This example demonstrates the

“first-order” effect that probability weighting can have on the distribution of recovered beliefs, even if it

does not change the average belief of the subject. Since it is the distribution of this probability mass

function that matters for the evaluation of the lottery, under EUT or RDU, it is critical for inference

that we correctly recover the distribution and not just the average.

Figure 4 displays the results from a relatively rare case, in which the individual has “inverse-S”

probability weighting, leading to decision weights in which the lowest ranked and highest ranked prize

are given extra weight. This type of probability weighting occurs, but is not nearly as common as

claimed by some; again, see Wilcox [2022]. In any event, this is an interesting case for another reason,

since the effect of probability weighting on reports is not particularly pronounced. The subject has a

relatively concave utility function, with s = 0.9, and that plays much more of a factor in explaining

observed reports. Again, focus on the beliefs, and then knowing these risk preferences, explain the

observed reports. In both questions the observed reports are tending to provide less variability in

returns across the outcomes that the individual thinks has any chance of occurring.

Figure 5 displays a characterization of the posterior probability of beliefs for the individual in

relation to the true outcome of each question. Apart from being interested in how different recovered

beliefs can be from observed reports, our ultimate interest in recovering beliefs is to be able to evaluate

hypotheses about the accuracy of beliefs. This is what Figure 5 delivers. In each case the vertical axis

shows the cumulative posterior probability of the individual having a belief that is equal to or less than

the outcome indicated on the horizontal axis. The cumulative posterior mean is displayed by a solid

line, and then the 90% credible interval around that cumulative posterior mean is displayed. This

credible interval is generated directly from the 25,000 simulated values for the belief for each outcome

by that subject. For reference, in each panel of Figure 5 we also display in red the true outcome,
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allowing an easy evaluation of the accuracy of the beliefs of each individual. For further reference,

Figure 5 also displays a dashed line at cumulative posterior values of 0.5, which is one common

Bayesian metric for “the weight of the evidence.” Of course, these displays allow the use of any such

metric.

Consider the subjects in the top row of Figure 5, who are the subjects whose beliefs are

reported in detail in Figures 3 and 4. In both cases no report assigned positive density to the true

outcomes, and all reports were below those true outcomes: hence the same is true for recovered beliefs,

as a matter of theory, irrespective of the risk preferences of the subjects. Subject #4 had beliefs that

were close to being uniform over the outcomes that had any positive density. It follows that any

imprecision of the risk preference estimates for this subject would have little effect on the imprecision

of the recovered beliefs of the subject, and that is what we observe for this subject in Figure 5, with

very “thin” credible intervals around the cumulative posterior mean values. By contrast, subject #17

exhibited some variation in the density of beliefs, and we observe much “thicker” credible intervals

around the cumulative posterior mean values. Both subjects, then, exhibit clear bias with respect to the

true addictiveness of smoking, underestimating the risks of addiction for both questions.

The next two subjects, in the second line of Figure 5, exhibit reasonably accurate beliefs for one

or other of the two questions about the addictiveness of smoking, but not both questions. Subject #51

clearly underestimated the number of smokers that relapsed, but was relatively accurate with respect to

the number of quit attempts, and vice versa for subject #151. Finally, in the third line of Figure 5 we

display results for two subjects that had reasonably accurate beliefs for both questions: we can count the

number of subjects that reasonably met this criteria on one hand. 

The information in Figure 5 also allows the construction of more complete Bayesian tests of

the hypothesis of biased beliefs, using null hypotheses stated in the form of intervals around some

point-null outcome. Armed with the full posterior distribution, one can then directly calculate the
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fraction of the distribution that falls in or out of that interval. In our two cases, the null of no bias falls

on one side of the range of outcomes, so inspection of the cumulative posterior is sufficient. But these

methods generalize immediately to more complex null hypotheses.19 

Detailed results for each of the 383 subjects, such as those shown in Figures 3, 4 and 5, are

available to the researcher for use and evaluation.20 Figure 6 collates all results over all subjects for the

two questions. Perhaps remarkably, there is not a major difference between the raw reports and the

recovered beliefs at this level of aggregation, as shown by the two top panels of Figure 6. What is

happening is that differences between reports and recovered beliefs, which can be severe at the level of the

individual, are tending to cancel out. So if one was just wanting to recover beliefs from individuals to

make some statement about average beliefs of the sample, not much is gained from the recovery

exercise in these cases, as long as one does not then casually claim that all individuals have the same

beliefs as their reports. The bottom panels show that there is considerable heterogeneity in the

recovered beliefs at the level of the individual. These panels show the density of deviations Ω from the

reports, and for many individuals these deviations are quite large.

Finally, Figure 7 shows the cumulative posterior distribution of beliefs for all subjects, including

both 90% and 80% credible intervals. Considering the cumulative posterior mean values, the evidence

shows that 80% of the beliefs are less than the true addictiveness for the relapse question, and 93% of

the beliefs are less than the true addictiveness for the quit attempts question.21 The lower bound of the

90% credible intervals indicate that 55% or 75% of the beliefs are less than the true addictiveness,

respectively. We stress, again, that the results in Figure 5 vividly illustrate that stronger inferences are

19 This interval is often referred to as a “region of practical equivalence” (ROPE) from a Bayesian
perspective: see Kruschke [2017] for an exposition. In our case we could defined a ROPE as any outcome
bin either side of the bin containing the true outcome.

20 The software we provide generates all of these results for every individual, and displays them
automatically in a single PDF document for review.

21 These are exact values, which can be proximately inferred from Figure 7 as well.
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available for individuals, and in this qualitative respect the selected individuals whose beliefs are

displayed in Figure 5 are representative of the sample.

The results in Figures 5, 6 and 7 do allow us to make some substantive inferences about the

complete sample in terms of beliefs about the addictiveness of smoking. The vast majority of individual

subjects have beliefs that understate the addictiveness of cigarettes, and we can be confident about

having the sign of that bias correct.

4. Conclusion

We demonstrate how to recover latent subjective beliefs if an individual is known to distort

probabilities into decision weights using Rank Dependent Utility theory. Our specific results were for

the popular Quadratic Scoring Rule, but are proven to generalize to the complete class of proper

scoring rules. We show that the effect on recovered beliefs from probability distortions is significant,

with large changes in the location and shape of subjective belief distributions. These effects stand in

stark contrast to the minimal effects of risk preferences under Subjective Expected Utility Theory. Our

theoretical results on the recovery of beliefs map directly and exactly to the estimates of risk

preferences obtained from Bayesian methods, which are also ideally suited to estimating risk

preferences at the individual level. We have developed user-friendly software to allow these results to

be applied with ease and speed. And we provide an application by evaluating two subjective belief

questions of substantive importance with respect to the addictiveness of cigarette smoking by teenagers

and young adults. Our results allow the easy recovery of subjective belief distributions for a much

wider class of risk preferences, enhancing the practicality of inferring subjective belief distributions.
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Figure 1: Belief Elicitation Interface

Figure 2: Possible Belief Elicitation Response
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Appendix A: Proofs (Online Working Paper)

Lemma 2: Let pk represent the underlying subjective probability of an individual for outcome k
and let rk represent the reported probability for outcome k in a given scoring rule. Let θ(k) = α + β2r k -
β  i=1K (r i)

2 be the scoring rule that determines earnings θ if state k occurs. Assume that the individual
uses some probability weighting function ω(), leading to decision weights w() defined in the standard
decumulative fashion of (5a) and (5b). Assume that the individual behaves consistently with RDU,
applied to subjective probabilities. If the individual has a utility function u() that is continuous, twice
differentiable, increasing and concave and maximizes rank-dependent utility over weighted subjective
probabilities, the actual and reported probabilities must obey the following system of equations:

w(pk) × u/θ θ = θ(k)   j=1, K { w(p j) × r k × u/θ θ = θ(  j ) }  =  0,  k = 1,..., K (9)

Proof. Suppose a subjective discrete probability distribution {p1, p2 ,..., pk ,..., pK} over K states of
nature and utility function u(θ) over random wealth. If the subject is given a scoring rule determined by
θ(k) = α + β2rk - β  i=1K (r i )

2, then the optimal report r  = {r1, r2,..., rk ,..., r K} solves the following
problem:

Max{ r }  E w(p) [ u(θ) ] subject to   i=1K (r i ) = 1 (A10)
where E w(p) [ u(θ) ] = j=1K w(pj) × u[ α + β2r j - β  i=1K (r i)

2 ]. In some experimental configurations
there may be K additional constraints: r i  0 for i = 1,, K. These constraints are not included in (A10)
because they are automatically satisfied by the solution (9) for both risk-averse and risk-loving
individuals.

Problem (A10) can be solved by maximizing the Lagrangian
 =  j=1K w(pj) × u[ α + β2r j - β  i=1K (r i)

2 ]  λ [  i=1K (r i ) - 1] (A11)
The solution to the problem must satisfy K+1 conditions. The K first order conditions with respect to
report rk,  k = 1,, K, are22

/r k =  j=1K ( w(pj) × u(θ( j ))/r k  )  λ = 0,  k = 1,, K (A12)
where u(θ( j ))/r k = u/θ θ=θ(j) × (2βδ jk  2β × r k) and δ jk is equal to 1 if j = k and equal to zero if j
k. The (K+1)-th condition is the first order derivative of (A11) with respect to the Lagrangian constant:

 i=1K (r i )  1 = 0. (A13)
We can simplify the K equations in (A12) as:

2βw(pk) × ( u/θ θ=θ(k) )  2βrk  j=1K w(pj) × ( u/θ θ=θ(j) )  λ = 0,  k = 1,, K. 
or w(pk) × ( u/θ θ=θ(k) )  rk E w(p) [ u/θ ] = λ/2β,  k = 1,, K. (A12)
Summing over the K first-order conditions we get 

E w(p) [ u/θ θ=θ(k) ]   k=1K r k E w(p) [ u/θ ] = K λ/2β . (A14)
Notice that  k=1K r k E w(p) [ u/θ ] = E w(p) [ u/θ ] because the expectation term is a constant and
because of (A13). Then (A14) implies that K λ/2β = 0, which can only be satisfied if λ = 0 since K>0
and β>0. This result and (A12) implies that the solution to problem (A10) must satisfy the following K
conditions:

w(pk) × u/θ θ=θ(k) r k × E w(p) [u/θ] = 0,  k = 1,, K. 

Proposition 1: Lemma 1 generalizes to include all proper scoring rules. Hence all of the results
that flow from Lemma 1 also generalize.

22 The differentiation here is done with respect to reported values. If the reports for a set of bins are
precisely equal, the wealth outcomes are equal. In this case the bins are combined and the derived probability
is distributed equally among all members of the set.
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To prove Proposition 1 we must first prove Theorem 1, below, which is interesting in its own
right. Lemmas 1 and 2 then follow for all proper scoring rules. We follow Armantier and Treich [2013]
who proved the result for 2 elicitation bins. We prove an analogous theorem for an arbitrary number of
bins.

Define a scoring rule S where S1(r1,..., rn), S2(r1,..., rn),..., and Sn(r1,..., rn) represent the payoffs for
each of the possible states of nature 1,..., n. Sk is the payoff if state k is realized after reports r1,..., rn,
where rn = 1 -  i=1n-1 r I. Let 

f (p1,..., pn; r1,..., rn) =   i=1n piSi(r1,..., rn). 
A scoring rule is “proper” if the maximizing arguments are ri = pi for all i.  Hence a risk-neutral decision
maker will report truthfully, bypassing the need for a solution to the “recovery” problem solved by
Lemma 2.

Theorem 1: A scoring rule is proper if and only if there exists a function g (q1,..., qn-1) with
conditions on the second derivatives guaranteeing uniqueness and maximization such that 

Sn (q1,..., qn-1) = g -  j=1n-1 qj g/qj 
and Sj (q1,..., qn-1) = Sn (q1,..., qn-1) + g/qj for j [1,n-1].
Notice that qn is not an argument in the functions anymore because the latter is defined by q1,..., qn-1.

Proof: Necessity (only if).
Let  g (q1,..., qn-1) = max{r*}  f (q1,..., qn-1; r1,..., rn-1) where r*  = {r1

*, r2
*,..., rn-1

*} is the vector of
reports that maximizes the function f. By the envelope theorem, we see that
 g/qj  =  f (q1,..., qn-1; r1,..., rn-1)/qj|ri = qi  i 

  = Sj (q1,..., qn-1) - Sn (q1,..., qn-1).
Notice that Sn (q1,..., qn-1) comes from a (1-  i=1n-1 ri) Sn (r1,..., rn-1) term. Therefore

Sj (q1,..., qn-1) = Sn (q1,..., qn-1) +  g/qj.
Substituting these into the formula for g, we get 

g (q1,..., qn-1)  = max{r*}  f (q1,..., qn-1; r1,..., rn-1) = f (q1,..., qn-1; q1,..., qn-1),  
since S is a proper scoring rule. Therefore, 

g (q1,..., qn-1) =  j=1n-1 qj [Sn (q1,..., qn-1) + g/qj ] + (1-  j=1n-1 qj ) Sn (q1,..., qn-1)
      = Sn (q1,..., qn-1) +   j=1n-1 qj g/qj. 

Rearranging terms we get
Sn (q1,..., qn-1) = g(q1,..., qn-1)-   j=1n-1 qj g/qj. 

Proof: Sufficiency (if).
f (q1,..., qn-1; r1,..., rn-1) =   i=1n-1 qi Si (r1,..., rn-1) + (1 -  i=1n-1 qi) Sn (r1,..., rn-1)

        =  i=1n-1 qi [g -  j=1n-1 rj  g/rj +g/ri] 
            + (1 -  i=1n-1 qi) (g -  j=1n-1 rj  g/rj)

We maximize f by setting the n-1 first order conditions to zero:
f/rk =  i=1n-1 qi [g/rk -  j=1n-1 rj  

2g/rj rk - g/rk + 2g/ri rk]
 + (1 -  i=1n-1 qi) (g/rk -  j=1n-1 rj  

2g/rj rk - g/rk) = 0.
This gives us

-  i=1n-1 qi   j=1n-1 rj 
2g/rj rk +  i=1n-1 qi 

2g/ri rk -  j=1n-1 rj 
2g/rj rk

+  i=1n-1 qi   j=1n-1 rj 
2g/rj rk = 0.

Cancelling terms, we obtain
 i=1n-1 qi 

2g/ri rk -  j=1n-1 rj 
2g/rj rk = 0.

Changing the index from j to i in the second summation of the first order condition above we have
 i=1n-1 (qi - ri) 

2g/ri rk = 0. (A16)
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This system consists of  n-1 equations (indexed by k) in the n-1 unknowns (qi - ri) indexed by i . One
solution is clearly qi - ri = 0 (or qi = ri) for all i. Thus, the scoring rule S is proper.

There must be conditions on the second derivatives of g such that this solution is unique and
maximizes, rather than minimizes, f. 

Now we can prove Lemma 1 for general proper scoring rules.

Proof: Suppose an individual is now trying to maximize utility V(p1,..., pn-1; r1,..., rn-1) rather than
money f(p1,..., pn-1; r1,..., rn-1). Suppose a utility function of wealth u(W) and probability weights w(p). We
have

V(p1,..., pn-1; r1,..., rn-1) =  j=1n-1 w(pj ) u(Sj (p1,..., pn-1)) + w(pn ) u(Sn (p1,..., pn-1)), 
where  j=1n pj  = 1. We solve the following n-1 first-order conditions to maximize:

V/rk =   j=1n-1 w(pj ) u/W|sj  Sj /rk + w(pn ) u/W|sn  Sn /rk.
Now, since Sj = Sn + g/rj, we see

Sj/rk = Sn/rk + 2g/rjrk

and V/rk =  j=1n w(pj ) u/W|sj  Sn/rk +  j=1n-1 w(pj ) u/W|sj  
2g /rj rk = 0

= Sn/rk  j=1n w(pj ) u/W|sj   +  j=1n-1 w(pj ) u/W|sj 
2g /rj rk = 0

= Sn/rk Ew(p) [u/W] +  j=1n-1 w(pj ) u/W|sj 2g /rj rk = 0
where Ew(p) [ . ] denotes the expectations operator under probability measure w(p) = {w(p1), ... , w(pn )}. 
Now, since Sn = g -   j=1n-1 rj g/rj, we get

Sn/rk = g/rk -  j=1n-1 rj 
2g /rj rk - g/rk = -  j=1n-1 rj 

2g /rj rk, 
so V/rk = -  j=1n-1 rj 

2g /rj rk Ew(p) [u/W] +  j=1n-1 w(pj ) u/W|sj 2g /rj rk = 0.
Therefore, we obtain

 j=1n-1 [ w(pj ) u/W|sj  - rj Ew(p) [u/W]] 2g /rj rk = 0. (A17)
Equation (A17) looks just like equation (A16) except the n-1 unknowns are 

w(pj ) u/W|sj  -  rj Ew(p) [u/W]. 
As before, 

w(pj ) u/W|sj  -  rj Ew(p) [u/W] = 0  j. 
This is unique and maximizing from the convexity conditions on g. 

Since Lemma 2 follows from Lemma 1, Proposition 1, that “All results that flow from Lemma 1 also
generalize,” has been proved. This also means that Propositions 1 through 7 of Harrison,
Martínez-Correa, Swarthout and Ulm [2017], that characterize the beliefs recovered for an SEU
decision-maker, also generalize.
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Appendix B: Software (Online Working Paper)

The procedures for recovering subjective belief distributions described in the text have been
implemented in a flexible Stata program that is easy to use. The data inputs consist of two data files.

• A data file containing the M samples from a Bayesian posterior distribution of estimates
from an EUT or RDU model. The data file must have an ID for the subject, and estimates
of parameters for the specifications described below.

• A data file containing the reports that each subject ID provided for a belief question defined
over K bins.

The program that undertakes the calculations is called beliefs_recovery.do, and is called from a
shell program that constructs the data file for each subject and question, writes those data files to a
sub-directory (created by the program if it did not already exit) called recovery_room, processes all
files in that sub-directory and/or just one specified file, writes the results to a sub-directory (also
created by the program if it did not already exist) called recovered, and optionally deletes all of the
intermediate files in the recovery_room directory.

To illustrate we show the shell program Recover Numerical Example of Recovery.do
that replicates the numerical example in the text. This program has M=1 and K=10, and just one
subject. The part of the code in bold is specific to this toy application in terms of reading in the data:

/* Recovers beliefs from numerical example in text */

* log file
capture log close _all
log using "Recover Numerical Example of Recovery.log", replace name(recover)

* configure Stata
capture version 16.1
capture: version 17
set processors 4
set more off
set scheme s1color
set seed 987654321
timer clear 1
timer on 1

* graphics font
graph set window fontface "Candara"

* tell us what version ran
about

* do all the files in the dta_dir? (yes or no)
global do_all "no"

* do only the dta_file? if so, next list the name of the file, to get it done (yes or no)
global do_specific "yes"

* name of specific input and output file, only relevant if $do_specific is "yes"
global use_specific   "example"
global save_specific  "example_b"

* erase recovery_room files at the beginning and end?
global clean_room "no"

* create directories needed
capture: mkdir figures
capture: mkdir recovery_room
capture: mkdir recovered

* clean up
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if "$clean_room" == "yes" {
cd recovery_room
local dfiles : dir "$dta_dir" files "*dta"
foreach file of local dfiles {

erase "`file'"
}
cd ..

}

* load the code to recover beliefs
qui: do belief_recovery

* quiet, to speed up
qui {

* install the BHM estimates
set obs 1

generate int sid = 1
generate r = 0.77
generate gamma = 0.5

summ r
local mcmc = r(N)

save tmp_bhm, replace
noi: di "Saved posterior with risk preferences ..."

* install the beliefs data
clear
set obs 1

generate int sid = 1
generate int period = 1

generate int r_3 = 30
generate int r_4 = 45
generate int r_5 = 25
foreach x in 1 2 6 7 8 9 10 {

generate r_`x' = 0
}

generate int nbin = 10
generate int ntokens = 100
generate int alpha = 25
generate int beta  = 25

summ sid
local Nsub = r(max)

* QSR parameters specified as a global
foreach x in nbin ntokens alpha beta {

summ `x'
global `x' = r(mean)

}
di $nbin

* save data
keep sid period r_*
compress
sort sid period
save tmp_sid, replace
noi: di "Saved beliefs data, and now generating recovery files for each subject ..."

* generate for each subject
summ period
local np = r(max)
forvalues s=1/`Nsub' {

forvalues p=1/`np' {
use tmp_sid, clear
keep if period==`p' & sid==`s'
save tmp_sid_p, replace
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use tmp_bhm, clear
capture: drop _log*
keep if sid == `s'
capture: generate eta = .
capture: generate phi = .
capture: generate mu = .
generate int period = `p'
sort sid period
merge m:1 sid period using tmp_sid_p
drop _merge
generate long mcmc = `mcmc'
compress
save recovery_room/example, replace
des
summ

}
}

* recover beliefs
timer on 2

* CRRA, CARA, Power, and Expo-Power utility functions supported, the last one standing is the one
used
global ufunc "cara"
global ufunc "expo"
global ufunc "power"
global ufunc "crra"

* Four probability weighting functions are supported, the last one standing in the next few lines
is the one used if RDU is used
global pfunc "eut"
global pfunc "power"
global pfunc "prelec2"
global pfunc "inverse_s"

* control the names of the parameters for the utility function
local upars "r"
if "$ufunc" == "expo" {

local upars "r alpha"
}

* control the names of the parameters for the probability weighting function
local ppars ""
if "$pfunc" == "power" | "$pfunc" == "inverse_s" {

local ppars "gamma"
}
if "$pfunc" == "prelec2" {

local ppars "phi eta"
}

* do the belief recovery
noi: di "Recovering beliefs ..."

if "$do_all" == "yes" {

* subdirectory with data files
cd recovery_room

* use extended functions to get all the files in some data folder
local dfiles : dir "$dta_dir" files "*dta"
foreach file of local dfiles {

* load the file
use "`file'", clear

* belief recovery
beliefs_recovery `upars' `ppars'

* save the output file in the current directory
cd ..
save "recovered/`file'", replace
cd recovery_room

}
cd ..
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}

if "$do_specific" == "yes" {

* subdirectory with data files
cd recovery_room

use "$use_specific", clear
beliefs_recovery `upars' `ppars'
summ
cd ..
save "recovered/$save_specific", replace
noi: list, noobs

}

* clean up
if "$clean_room" == "yes" {

noi: di "Cleaning up the recovery_room files ..."
cd recovery_room
local dfiles : dir "$dta_dir" files "*dta"
foreach file of local dfiles {

erase "`file'"
}
cd ..

}
capture: erase tmp.dta
capture: erase tmp_bhm.dta
capture: erase tmp_sid.dta
capture: erase tmp_sid_p.dta

* end of quietly
}

* time taken overall
timer off 2
timer list
local secs = r(t2)
local mins = `secs'/60
local hrs = `mins'/60
local secs_ = string(`secs', "%10.0f")
local mins_ = string(`mins', "%4.1f")
local hrs_ = string(`hrs', "%4.2f")
di "Belief recovery calculations by themselves took `secs_' seconds, `mins_' minutes, or `hrs_'
hours."

* time taken overall
timer off 1
timer list
local secs = r(t1)
local mins = `secs'/60
local hrs = `mins'/60
local secs_ = string(`secs', "%10.0f")
local mins_ = string(`mins', "%4.1f")
local hrs_ = string(`hrs', "%4.2f")
di "Complete calculations took `secs_' seconds, `mins_' minutes, or `hrs_' hours."

log close recover

There are several options available:

• The program can process a large number of files if the global $do_all is set to “yes” and we
illustrate this option next. It can also process a single file if the global $do_selected is set to
“yes” and this option is used here for the toy example.

• If the program is to process a single file the name of the input and output file must be
specified.

• Optionally the recovery_room files can be erased after being processed by means of the
global $clean_room. For a large number of files this is usually set to “yes” since these are
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intermediate files. For the toy example we want to preserve the input file we generate, so set
this to “no”.

• Then the data must be read in, as shown in bold. For the toy example we specify the
parameter values we have assumed. These are saved in the same format that we use when we
read in Bayesian posterior estimates, as in the next example. In some cases we refer to each
belief question as a period and sometimes as a question, but that is easy to modify.

• If demographic or treatment information is to be read in, it should be saved to the beliefs
data file tmp_sid.dta, and will be carried along. This might be useful to add variables such as
a string label to identify the belief question (we use qid for that) or demographics such as
gender. These variables will then be saved to the output file. We prefer to merge these
variables in later, and keep the tmp_sid.dta file as lean as possible.

• The globals $ufunc and $pfunc document which model of risk preferences is to be used. In
each case there are four options, and the “last one standing” is used. So in the above
example we used the crra utility function and the inverse_s probability weighting function,
as explained in the main text. The command files ending in EUT with CARA, EUT with
CRRA, EUT with EP and RDU with Power illustrate some obvious variants. For us the
default with real examples is RDU with the CRRA utility functon and the Prelec probability
weighting function, used in the next example.

• The rest of the program is reasonably automatic, although one should py attention to
whether the question has been defined by the variable period or by the variable question
(or some other numeric variable). The program assumed that the variables identifying the
subject (sid here) and question (period here) are numeric integers defined sequentially with
no skips. This allows the program to write the intermediate files to the recovery_room
directly in loops.

The program generates this input file for the beliefs recovery calculations, with observed reports
from the subject in variables r_1, ..., r10:

When executed the commands are minimal, and then in this instance, since it is just one line, the
output file is displayed:

Although not in the same order, the output file contains the same variables and data as the input file
but just adds the recovered beliefs in variables b_1, ... , b_10. 

The command file for a real example is very similar, apart from the steps in bold creating hte
data. Here is the first part of the file GSU Risk and Beliefs Data on Smoking 2019.do which
process the 10-bin questions on smoking addictiveness we report in the main text:
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/* Recovers beliefs from GSU risk and beliefs data from the 2019 Smoking questions (DNH Sessions) */

* log file
capture log close _all
log using "GSU Risk and Beliefs Data on Smoking 2019.log", replace name(recover)

* configure Stata
capture version 16.1
capture: version 17
set processors 4
set more off
set scheme s1color
set seed 987654321
timer clear 1
timer on 1

* graphics font
graph set window fontface "Garamond"
graph set window fontface "Candara"

* tell us what version ran
about

* do all the files in the dta_dir? (yes or no)
global do_all "yes"

* do only the dta_file? if so, next list the name of the file, to get it done (yes or no)
global do_specific "yes"

* name of specific input and output file, only relevant if $do_specific is "yes"
global use_specific   "smoking_s1_q1"
global save_specific  "smoked_s1_q1"

* erase recovery_room files at the beginning and end?
global clean_room "yes"

* create directories needed
capture: mkdir figures
capture: mkdir recovery_room
capture: mkdir recovered

* clean up
if "$clean_room" == "yes" {

cd recovery_room
local dfiles : dir "$dta_dir" files "*dta"
foreach file of local dfiles {

erase "`file'"
}
cd ..

}

* load the code to recover beliefs
qui: do belief_recovery

* quiet, to speed up
qui {

* decide which risk model to use (eut or rdu)
local risk_model "rdu2019"

* collate the BHM estimates with beliefs
use bhm_`risk_model'_posterior
summ _loglikelihood if id==1
local mcmc = r(N)
rename _loglikelihood ll
egen int sid = group(id)
save tmp_bhm, replace
noi: di "Saved posterior with risk preferences ..."

* restart with main data containing the beliefs data
use ii_beliefs_recovery, clear
keep if belief_task==1
keep LinkID qid choice* v_* bquestion nbin alpha beta 
keep if substr(qid,1,4) == "Smok"
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tab qid
generate int question = 0
local xx = 0
generate int keep = 0
foreach x in 1_10 2_10 4_10 5_10 {

summ choice* if qid == "Smoking_`x'bin"
replace keep = 1 if qid == "Smoking_`x'bin"

}
keep if keep == 1
foreach x in 1_10 2_10 3_8 4_10 5_10 {

local xx = `xx'+1
replace question = `xx' if qid == "Smoking_`x'bin"

}
tab question

* all questions with 10 bins had 100 tokens to allocate
generate int ntokens = 100

egen int id = group(LinkID)
egen int sid = group(id)
summ sid
local Nsub = r(max)

* reports
forvalues x=1/10 {

generate int r_`x' = ntokens*choice`x'
}

* QSR parameters specified as a global
foreach x in nbin ntokens alpha beta {

summ `x'
global `x' = r(mean)

}
di $nbin

* save data
keep sid question qid r_*
compress
sort sid qid
save tmp_sid, replace
noi: di "Saved beliefs data, and now generating recovery files for each subject ..."

* generate for each subject
summ question
local nq = r(max)
forvalues s=1/`Nsub' {

forvalues q=1/`nq' {
use tmp_sid, clear
keep if question==`q' & sid==`s'
save tmp_sid_p, replace
use tmp_bhm, clear
drop _log*
keep if sid == `s'
capture: generate eta = .
capture: generate phi = .
capture: generate mu = .
generate int question = `q'
sort sid question
merge m:1 sid question using tmp_sid_p
drop _merge
generate long mcmc = `mcmc'
compress
save recovery_room/smoking_s`s'_q`q', replace
des
tab qid
summ

}
}

The particularly relevant code is again in bold:
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• We specify with the global $do_all that all of the files generated in the recovery_room are to be
processed. We have N = 383 subjects answering 4 questions in this case (we process the one 8-
bin question separately). We prefer to generate 1532 data files, one for each subject and
question, and then have all processed in sequence, since it makes it easier “downstream” for us
to collate the results – we prefer lots of smaller data files, easily read with loops, and there is no
significant computational time cost involved. Alternatively one could process these beliefs as
one data file containing all 1532 records, for some computational time cost savings.

• The Bayesian posterior distribution is read in from a pre-existing data file. Invariably these are
long, “skinny” data files. In our case there are M = 25,000 samples for each of N = 383 subjects.
In fact, the sessions from which these belief questions were drawn had 614 subjects, only 383 of
which we presented these belief questions to. So the data file contains 15,350,000 rows of data
for all 614 subjects. These data files normally have a standard set of variables: the parameters
estimated, a log-likelihood value, and a posterior density value. We retain the log-likelihood
values so that we can make inferences about what the recovered beliefs would have been if one
had employed the maximum-likelihood estimate; in general this is of no interest. Since MCMC
samples often repeat, for efficiency these files are often saved with an integer variable keeping
track of the frequency of the sample: we expand such data sets to include duplicates, so we do
not have to re-weight estimates.  

• The beliefs data is also from a pre-existing data file, matched in terms of an ID variable to the
Bayesian posterior data of course. It contains the reports of each subject to each of the
questions. In this case the format of the data may need some modest manipulations to only
contain the information needed, and this type of specificity varies from application to
application.

• Once the tmp_bhm.dta has been collated for the BHM estimates and the tmp_sid.dta collaed
for the belief task reports, the program loops through each subject and question to generate data
files for processing. This is the step that could be replaced by a single “merge” if one wanted to
run all subjects and questions in one file. The lines in this subject-and-question-specific merge
process that should be watched are in bold. In particular, the data files are given some name, in
this case the text smoking and a reference to the subject and question, that does not overwrite
other files. So the responses of subject 6 to question 5 would be in data file
smoking_s6_q5.dta, and that same name would be in the recovered directory once beliefs are
recovered.

• For quick debugging we turn off the $do_all global and just process one file with the
$do_specific global, then turn the $do_all global back on. For the example illustrated here,
with 383 subjects and 4 questions, and the RDU model with Prelec preferences, the belief
recovery phase required 43 minutes on a laptop. The overall program required 110 minutes, due
to the extra time needed to generate the 1532 data files and 1532 results files, since each file
contains 25,000 records. For a calculation of this magnitude, that is fast enough. We know of
ways to speed this up, but see no point.
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Appendix C: Instructions (Online Working Paper)

A.1. Risk Preferences

Choices Over Risky Prospects

This is a task where you will choose between prospects with varying prizes and chances of
winning. You will be presented with a series of pairs of prospects where you will choose one of them.
There are 100 pairs in the series. For each pair of prospects, you should choose the prospect you prefer
to play. You will actually get the chance to play one of the prospects you choose, and you will be paid
according to the outcome of that prospect, so you should think carefully about which prospect you
prefer.

Here is an example of what the computer display of such a pair of prospects will look like.
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The outcome of the prospects will be determined by the draw of a random number between 1
and 100. Each number between, and including, 1 and 100 is equally likely to occur. In fact, you will be
able to draw the number yourself using two 10-sided dice.

You will be told your cash endowment for each lottery at the top of the lottery. In this example
it is $35, so any earnings would be added to or subtracted from this endowment. The endowment may
change from choice to choice, so be sure to pay attention to it. The endowment you are shown only
applies for that choice.

In the above example the left prospect pays twenty-five dollars ($25) if the number drawn is
between 1 and 5, and pays negative five dollars ($-5) if the number is between 6 and 55, and pays
negative thirty-five dollars ($-35) if the number is between 56 and 100. The blue color in the pie chart
corresponds to 5% of the area and illustrates the chances that the number drawn will be between 1 and
5 and your prize will be $25. The orange area in the pie chart corresponds to 50% of the area and
illustrates the chances that the number drawn will be between 6 and 55 and your prize will be $-5. The
green area in the pie chart corresponds to 45% of the area and illustrates the chances that the number
drawn will be between 56 and 100. When you select the lottery to be played out the computer will tell
you what die throws translate into what prize.

Now look at the pie in the chart on the right. It pays twenty-five dollars ($25) if the number
drawn is between 1 and 15, negative five dollars ($-5) if the number is between 16 and 25, and negative
thirty-five dollars ($-35) if the number is between 26 and 100. As with the prospect on the left, the pie
slices represent the fraction of the possible numbers which yield each payoff. For example, the size of
the $25 pie slice is 15% of the total pie.

Even though the screen says that you might win a negative amount, this is actually a loss to be
deducted from your endowment. So if you “win” $-5, your earnings would be $30 = $35 - $5.

Each pair of prospects is shown on a separate screen on the computer. On each screen, you
should indicate which prospect you prefer to play by clicking on one of the buttons beneath the
prospects. 

After you have worked through all of the pairs of prospects, raise your hand and an
experimenter will come over. You will then roll two ten-sided die to determine which pair of the 100
prospects you chose will be played out:. Since there is a chance that any of your 100 choices could be
played out for real, you should approach each pair of prospects as if it is the one that you will play out.
Finally, you will roll the two ten-sided dice again to determine the outcome of the prospect you chose.

For instance, suppose you picked the prospect on the right in the above example. If the random
number was 7, you would win $25 in addition to your endowment; if it was 93, you would lose $35 from
your endowment. If you picked the prospect on the left and drew the number 7, you would lose $5 from
your endowment; if it was 93, you would again lose $35 from your endowment.

Therefore, your payoff is determined by three things:

• by which prospect you selected, the left or the right, for each of these 100 pairs;
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• by which prospect pair is chosen to be played out in the series of 100 such pairs using the two
ten-sided die; and

• by the outcome of that prospect when you roll the two 10-sided dice.

Which prospects you prefer is a matter of personal taste. The people next to you may be
presented with different prospects, and may have different preferences, so their responses should not
matter to you. Please work silently, and make your choices by thinking carefully about each prospect.

All payoffs are in cash, and are in addition to the show-up fee that you receive just for being
here, as well as any other earnings in other tasks.
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A.2. Subjective Beliefs

Your Beliefs

This is a task where you will be paid according to how accurate your beliefs are about certain
things. You will be presented with 15 questions and asked to place some bets on your beliefs about the
answers to each question. You will actually get the chance to be rewarded for your answers to one of the
questions, so you should think carefully about your answer to each question.

Here is an example of what the computer display of such a question might look like.

The display on your computer will be larger and easier to read. You have 10 sliders to adjust,
shown at the bottom of the screen, and you have 100 tokens to allocate. Each slider allows you to
allocate tokens to reflect your belief about the answer to this question. You must allocate all 100 tokens,
and in this example we start with 10 tokens allocated to each slider. As you allocate tokens, by adjusting
sliders, the payoffs displayed on the screen will change. Your earnings are based on the payoffs that are
displayed after you have allocated all 100 tokens.

You can earn up to $50 in this task.
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Where you position each slider depends on your beliefs about the correct answer to the
question. In the above example the tokens you allocate to each bar will naturally reflect your beliefs
about the official unemployment rate for everyone 16 and over in February 2013. The first bar
corresponds to your belief that the unemployment rate is between 0% and 1.9%. The second bar
corresponds to your belief that the unemployment rate is between 2% and 3.9%, and so on. Each bar
shows the amount of money you earn if the official unemployment rate is in the interval shown under
the bar.

To illustrate how you use these sliders, suppose you think there is a fair chance the
unemployment rate is just under 5%. Then you might allocate the 100 tokens in the following way: 50
tokens to the interval 4% to 5.9%, 40 tokens to the interval 2% to 3.9%, and 10 tokens to the interval
0% to 1.9%. So you can see in the picture below that if indeed the unemployment rate is between 4%
and 5.9% you would earn $39.50. You would earn less than $39.50 for any other outcome. You would
earn $34.50 if the unemployment rate is between 2% and 3.9%, $19.50 if it is between 0% and 1.9%,
and for any other unemployment rate you would earn $14.50. 

 You can adjust the allocation as much as you want to best reflect your personal beliefs about
the unemployment rate.

Your earnings depend on your reported beliefs and, of course, the true answer. For instance,
suppose you allocated your tokens as in the figure shown above. The true unemployment rate is actually
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7.7%, according to the Bureau of Labor Statistics. So if you had reported the beliefs shown above, you
would have earned $14.50.

Suppose you had put all of your eggs in one basket, and for example allocated 100 tokens to the
interval corresponding to unemployment rates between 4% and 5.9%. Then you would have faced the
earnings outcomes shown below.

 Note the “good news” and “bad news” here. If the unemployment rate is indeed between 4%
and 5.9%, you earn the maximum payoff, shown here as $50. But the true unemployment rate is 7.7%,
so you would have earned nothing in this task. 

It is up to you to balance the strength of your personal beliefs with the risk of them being
wrong. There are three important points for you to keep in mind when making your decisions:

    • Your belief about the correct answer to each question is a personal judgment that
depends on the information you have about the topic of the question.  

    • Depending on your choices and the correct answer you can earn up to $50.

    • Your choices might also depend on your willingness to take risks or to gamble.  
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The decisions you make are a matter of personal choice. Please work silently, and make your choices by
thinking carefully about the questions you are presented with.

When you are happy with your decisions, you should click on the Submit button and confirm
your choices. When everyone is finished we will roll a 30-sided die until a number between 1 and 15
comes up to determine which question will be played out. The experimenter will record your earnings
according to the correct answer and the choices you made.

All payoffs are in cash, and are in addition to the show-up fee that you receive just for being
here as well as any other earnings.

Are there any questions?
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