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A B S T R A C T   

Subjective belief elicitation about uncertain events has a long lineage in the economics and statistics literatures. 
Recent developments in the experimental elicitation and statistical estimation of subjective belief distributions 
allow inferences about whether these beliefs are biased relative to expert opinion, and the confidence with which 
they are held. Beliefs about COVID-19 prevalence and mortality interact with risk management efforts, so it is 
important to understand relationships between these beliefs and publicly disseminated statistics, particularly 
those based on evolving epidemiological models. The pandemic provides a unique setting over which to bracket 
the range of possible COVID-19 prevalence and mortality outcomes given the proliferation of estimates from 
epidemiological models. We rely on the epidemiological model produced by the Institute for Health Metrics and 
Evaluation together with the set of epidemiological models summarised by FiveThirtyEight to bound prevalence 
and mortality outcomes for one-month, and December 1, 2020 time horizons. We develop a new method to 
partition these bounds into intervals, and ask subjects to place bets on these intervals, thereby revealing their 
beliefs. The intervals are constructed such that if beliefs are consistent with epidemiological models, subjects are 
best off betting the same amount on every interval. We use an incentivised experiment to elicit beliefs about 
COVID-19 prevalence and mortality from 598 students at Georgia State University, using six temporally-spaced 
waves between May and November 2020. We find that beliefs differ markedly from epidemiological models, 
which has implications for public health communication about the risks posed by the virus.   

1. Introduction 

Beliefs that individuals hold about COVID-19 prevalence and mor
tality interact with efforts to manage the risks of the virus. A core 
concern is the relationships between these beliefs and publicly dissem
inated statistics, particularly statistics based on evolving epidemiolog
ical models. The COVID-19 pandemic provides an important setting to 
study this relationship because of the role that epidemiological models 
have played in public debate, and understandable biases in early edi
tions of models that became evident over a relatively short period of 
time. Public awareness of the extent to which official statistics about 

COVID-19 in the United States (U.S.) might be biased, due to political 
influences and varying recording practices in different hospitals and 
jurisdictions, poses an additional challenge when studying this rela
tionship. To what extent did the beliefs of individuals evolve with the 
forecasts of epidemiological models? To what extent did the beliefs of 
individuals evolve with the official reports from the Centers for Disease 
Control and Prevention (CDC)? To what extent did these trends affect 
the confidence of individual beliefs over time? 

We elicit the subjective beliefs of 598 students at Georgia State 
University using incentivized forecasting tasks about expected COVID- 
19 prevalence and mortality. Our methods are designed to bracket the 
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range of possible beliefs that individuals have, and assess their indi
vidual confidence in those beliefs. We also developed a method that 
allows us to directly identify the extent to which beliefs tracked forecasts 
of some publicly circulating epidemiological models, quite apart from 
the elicitation of beliefs to address the broader questions posed above. 
To ensure that we were able to observe changes over time, we admin
istered six temporally-spaced waves between May and November 2020, 
with different respondents selected at random for each wave. 

To anchor predicted COVID-19 prevalence and mortality outcomes 
for the elicitation of beliefs over horizons of one month, and over ho
rizons to December 1, 2020, we relied in part on one prominent epide
miological model, from the Institute for Health Metrics and Evaluation 
(IHME) at the University of Washington (http://www.healthdata.org). 
The IHME model has produced publicly disseminated daily forecasts of 
both infections and deaths throughout the course of the pandemic. We 
also made use of the evolving set of epidemiological models featured by 
FiveThirtyEight (fivethirtyeight.com), which ranged from 6 to 14 
models over the course of our study, to complement the IHME model. 
We develop a method to partition the possible outcomes presented to 
subjects into intervals or bins, such that if a subject were to hold beliefs 
consistent with the epidemiological models, including allowance for 
statistical error, she would bet the same amount on every bin. A notable 
feature of our method is that it allows direct inferences about the extent 
to which distributions of beliefs diverge from these model-based fore
casts. More extensive inferences, beyond testing this specific null hy
pothesis, require more structural statistical modeling, and will be 
undertaken in subsequent analyses, such as [1]. 

Epidemiological models, like any (deterministic or statistical) models, 
can be poor predictors of outcomes, even when designed according to 
accepted best practice. The IHME model that provided the basis for the 
baseline frame of bins we used in the study has been subject to specific 
criticism, with some experts arguing that its design did not reflect best 
epidemiological practice [2–4]. On the other hand, as also noted by these 
critics, the IHME model was the most prominently disseminated and cited 
source of epidemiological forecasting among the general public. This 
makes it a natural benchmark for our purposes. In this context it is also 
worth reiterating that other epidemiological models that were displayed 
on FiveThirtyEight informed additional frames for bins, beyond the 
baseline, that were used to elicit beliefs. In retrospect, the majority of 
these additional models did significantly outperform the IHME model in 
predicting U.S. COVID-19 infections and deaths. 

We find that beliefs diverge markedly from the epidemiological models 
we used for setting bins. This finding has immediate implications for public 
health communication about the risks posed by the virus if we view those 
epidemiological models as more likely to be reliable in their predictions. 
With additional assumptions that allow us to infer beliefs precisely from the 
reports that our subjects make, we can say much more. A particularly 
important lesson, developed in [1], concerns the striking evolution over the 
6 waves of elicitation of the level of confidence about cumulative deaths by 
December 1, 2020. Around August, the confidence of beliefs tightened 
significantly. Future research will explore the possible determinants of the 
changes in belief confidence, as well as any change in bias for other COVID- 
19 events covered by our elicitations in the U.S. and South Africa.1 

2. Material and methods 

2.1. Eliciting subjective belief distributions 

The importance of eliciting subjective beliefs about uncertain events 
has long been clear across many disciplines. The earliest attempts to 
measure beliefs came from survey questions [5,6]. These have become 
increasingly sophisticated, with researchers now seeking to elicit whole 

belief distributions for non-binary events [7,8], such as the levels of 
COVID-19 infections and deaths that are our focus. However, surveys do 
not incentivize the truthful revelation of beliefs, and there is substantial 
evidence that using hypothetical surveys to elicit beliefs can be unreliable 
[9]. Our use of an incentive-compatible mechanism to elicit beliefs makes 
our approach fundamentally different to survey responses, and more 
informative.2 The concept of subjective belief was formally developed in 
economics and decision theory as an extension of the notion of revealed 
preference [11]. Just as the strength of preferences for fine wine over plonk 
can be revealed by purchase decisions when the relative prices of the two 
types of wine are varied, beliefs can be revealed by betting decisions that 
depend on a particular outcome, such as the level of COVID-19 infections, 
reported by a certain source, such as the CDC, on a specific day in the future. 

A key development in the reliable elicitation of subjective beliefs was 
operationalizing this notion of beliefs revealed by betting, by observing 
changes in betting decisions as the relative odds offered by bookies are 
varied. Imagine an array of bookies, lined up in terms of their odds that 
the COVID-19 infection rate will go up in the next month, rather than 
stay the same or go down. Some bookies offer great odds that it will go 
up, and some offer great odds that it will go down, and there are many 
bookies in between. Now allow someone to place a bet of $1 with each 
bookie. If the bettor is risk neutral, the point at which they switch from 
betting that infections will go up to betting that they will not go up tells 
us the odds that this person places on these events, and from those odds 
we can infer the person’s subjective probability of infections going up. 

It is a small formal step to present this array of bookies in the form of a 
“scoring rule,” which translates different bets into payoffs for the bettor, 
depending on the realized outcome or event [12,13]. And in turn we can 
generalize these ideas to placing bets on several events, such as the event 
that infection rates go up by more than 1 percentage point, the event that 
they go up by between 0 and 1 percentage points, and the event that they 
go down. In this way we can elicit the subjective probability mass function 
over these events, or indeed the probability distribution function for 
continuous events [14]. Or we can divide a continuous event, such as the 
level of COVID-19 infections by June 30, 2020, into 10 bins that partition 
the event space over which we seek to elicit beliefs, as in the experiment 
we report. And since we are asking people to place bets with simulated 
bookies, with varying odds defined by a scoring rule, this is easy to do with 
real money, and thereby provide incentives for truthful revelation of 
beliefs cum bets by using “proper” scoring rules [15]. 

Our method is intended to be general. Consider a policy setting in 
which a statistical model provides predictions about macroeconomic 
outcomes, and policy-makers base their recommendations on those 
predictions. Most statistical models, particularly in economics, rely on 
some data that are collected with a lag, and with data that often undergo 
major revisions over time. Invariably, senior decision-makers come to 
make decisions armed with predictions from a model that they know 
misses some information. It could be that predictions made today from 
the statistical model are conditioned on interest rates or exchange rates 
that applied a month ago, since all other data needed for the model has a 
one-month lag in collection. But the decision-makers know that current 
interest rates or exchange rates have changed sharply in the last few 
weeks. In this setting the subjective beliefs of the decision-makers are 
formed by some combination of the statistical model and their beliefs 
about how that knowledge about the recent past affects the predicted 
macroeconomic outcomes. And even if the predicted macroeconomic 
outcomes are expected to be the same, knowledge of actual outcomes in 
recent weeks might affect the confidence intervals around the 

1 We conducted a parallel, multi-wave experiment using the same elicitation 
methods in South Africa, although that is not a focus of our attention here. 

2 See [10] for an example of the use of survey questions to elicit beliefs about 
COVID-19. 
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predictions.3 A comparable challenge regularly faces Chief Risk Officers 
and their forecasts of major financial risks.4 

Fig. 1 is a screenshot of the experimental software we developed to 
elicit the beliefs of each subject about COVID-19 prevalence and mor
tality. This subjective belief question was presented to subjects during 
Wave 1 of our study, which took place on May 29, 2020. Fig. 1 shows the 
actual bets, in the form of a token allocation, of subject #183, and the 
amount to be paid depending on the answer to the question. The answer 
was verified using the first public report provided by the CDC after the 
date in the question, which was explained to subjects through audio- 
visual instructions before they completed the task. 

Armed with probability mass functions over ten events, as repre
sented in Fig. 1, which characterize subjective belief distributions over 
the levels of COVID-19 prevalence and mortality, we can analyse the 

bias and confidence of those beliefs. Bias is just the familiar concept from 
statistical estimation: how different is the weighted average belief from 
the realized event, or the best available econometric or epidemiological 
model at the time [17], or the claims of prominent media or political 
leaders? All of these types of “target beliefs” to assess bias are actually 
useful metrics for different reasons, so there is not just one measure of 
bias that is of interest.5 Confidence is just the familiar concept of 
imprecision from statistical estimation, most commonly captured by the 
variance of beliefs about their mean. We prefer to think of confidence 
more broadly to reflect the variability of beliefs, so we can also consider 
skewness and kurtosis, but the point is to pay attention to more than just 
the weighted average or mode of beliefs. One can only characterize bias 
and confidence if one elicits subjective belief distributions [18], which of 
course allow for the special case of degenerate beliefs held with 

Fig. 1. Subjective Belief Task Interface and Bets of Subject #183 on May 29, 2020.  

3 In stylized form, this is exactly what happens in the opening hours of the 
important Federal Open Market Committee meetings of the U.S. Federal 
Reserve every month. Forecasts of the future economy have been distributed by 
staff of the Federal Reserve Board of Governors, and the discussion leads to a 
consensus as to what the Committee believes is likely to happen to the econ
omy. Based on that consensus, critical policy decisions by the voting members 
of the Committee are made [16]. The consensus might be the same as the 
forecasts of the statistical model, it might be different in expectation, or it might 
just be different in terms of confidence intervals. Our method may be framed as 
a formal way to characterize how these initial statistical forecasts compare to 
the views of the Committee members. In effect, it would have the Committee 
members place bets, with proceeds to a worthy charity of course, on the future 
outcomes of certain key macroeconomic variables. 

4 A comparison of models and beliefs, similar to ours but for Chief Risk Of
ficers (CRO) and a statistical model, was reported by [17]. In that case the 
predictions of the statistical model for a one-year horizon, generated just prior 
to the belief elicitation, were used to calibrate a belief elicitation task presented 
individually to the CRO subjects. Comparisons of their predictions suggested, 
inter alia, that the CRO predictions did not have the extreme “tails” of the 
statistical models. 

5 Our subjects were literally rewarded for their beliefs about the report by the 
CDC of the cumulative level of infections or deaths from COVID-19 on a certain 
date. This report, of course, was an estimate. Such reports were often revised 
over time, as more data, better data, and alternative methods of estimation 
were employed. Hence we refer generally to a “target” value against which 
elicited beliefs were compared, rather than some true, objective value. 
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certainty.6 Fully Bayesian epidemiological models of COVID-19 in
fections and deaths provide posterior predictive distributions of future 
levels, which can be used to also make determinations of whether sub
jective beliefs are “overconfident” or “insufficiently confident,” using 
the approach documented in [20]. 

Our approach here to our subjects’ elicited beliefs is Bayesian. We 
compared elicited beliefs with expert epidemiological opinion. The 
latter might be taken as reasonable priors which agents use to produce 
their own posteriors given what individual data they have. Also, we 
describe beliefs as a probability distribution over outcomes, as a 
Bayesian would. Priors here refer to already held beliefs about the 
probability of some statement; in the context of medical testing, priors 
about having a disease might start from the population base rate. Pos
teriors are revisions of those beliefs formed after obtaining new evi
dence, such as a positive disease test. However, we make no explicit use 
here of Bayesian updating from priors plus data to explain changes in 
posterior beliefs of our subjects from wave to wave. 

Fig. 2 shows the realized answer, as reported by the CDC, to the 
question from Fig. 1, and hypothetical bets that vary according to 
whether they are biased relative to the number of infections by June 30, 

2020, and the confidence with which these beliefs are held. Per the 
experimental protocol, the official reports from the CDC are treated as 
the correct answer that determine subject payments. The top left 
quadrant of the figure represents an unbiased, but relatively low confi
dence, set of bets, in the sense that the largest bet was placed on the 
correct answer, but bets were also made on other events. The bottom left 
quadrant also represents unbiased beliefs, but held with a degenerate 
level of confidence in the sense that all tokens were bet on the correct 
event. The two right quadrants represent biased beliefs because no to
kens were allocated to the correct event, but clearly differ according to 
the strength with which beliefs were held.7 

A direct implication of incentivizing bets with a proper scoring rule is 
that if someone believes that each event, as represented by the bins in a 
task, is equally likely to occur, the person will bet exactly the same 
amount on each bin, as represented in Fig. 3. Thus, when someone bets 
anything other than the same amount on every bin, this reveals that they 
do not consider every event as equiprobable. We constructed bins over 
which to elicit beliefs about the number of infections and deaths due to 
COVID-19 in the U.S. either one month in the future or by December 1, 
2020. These bins were constructed such that if a person’s bets differ 
across bins, this non-uniformity across bins reveals that the person’s 
beliefs deviate from epidemiological models of infections and deaths due 
to COVID-19. 

The first step in constructing these bins is to define the distribution of 
underlying events. We assumed that deaths and infections, scaled to the 
population of the U.S., follow a Beta distribution. The Beta distribution 
is flexible enough for our purposes, has well-defined higher moments, 
and finite support over an interval. This last property ensures that the 
number of people who will be infected or die due to COVID-19 cannot be 
negative or greater than the U.S. population. In addition, the Beta 

Fig. 2. Bias and Confidence of Subjective Belief Distributions  

6 The notion of bias is used in several different ways across various disci
plines. In statistics and econometrics it typically refers to an estimate of some 
parameter, such as the average of an estimated belief distribution. In this case, 
one would construct tests that compare the point estimate of the parameter to 
the “target” estimate, using the estimated standard error of the point estimate. 
An alternative approach that is standard for Bayesians is to define some “region 
of practical equivalence,” or ROPE, that describes differences between the 
parameter estimate and the “target” estimate, and then compare that ROPE to 
the highest density interval (HDI) of some estimated distribution. In our case 
the ROPE is the distance between the average belief and the target estimate, 
and the HDI is defined over the elicited subjective distribution of beliefs (not the 
distribution of the mean as a parameter estimate). For symmetric distributions 
the HDI is the familiar equal-tailed interval. To an economist, the ROPE refers 
to the bias that is of economic significance. To a Bayesian, the ROPE allows a 
natural statement of what classical statisticians mean by the testing of a point- 
null hypothesis [19], by turning it into an interval hypothesis appropriate for 
the inferences at hand. See Appendix A for details on the ROPE we constructed 
for our Bayesian statistical analyses. 

7 We used a quadratic scoring rule (QSR) to incentivize truthful revelation of 
beliefs. As a proper scoring rule, the QSR provides the highest expected reward if 
risk neutral subjects report their true beliefs, and therefore penalizes subjects 
for betting on events to which they do not assign positive probability. Unless a 
subject reports degenerate beliefs, as in the bottom left or right quadrant of Fig. 
2, the QSR still provides payment for bins to which no tokens have been allo
cated, as in the top left or right quadrant of Fig. 2. 
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distribution is well suited to characterizing the bias and confidence of 
subjective belief distributions. Finally, it has two sufficient statistics, and 
therefore the shape of the distribution can be defined by two points, or 
anchors, along its cumulative distribution function (CDF), if the cumu
lative density at each anchor is known or imposed. 

We therefore set out to define pairs of anchors that consist of a lower 
anchor, such that there is a probability of 0.1 that the true statistic would 
be less than this amount, and an upper anchor, such that there is a 
probability of 0.2 that the true statistic would be greater than this 
amount.8 For each pair of anchors, a Beta distribution was defined that 
uniquely satisfies these two sufficient statistics. This Beta distribution 
was then used to define 10 bins such that each bin represented 10% of 
the full distribution’s cumulative density.9 This bin construction exer
cise ensures that if a person’s beliefs were the same as the distribution 
we defined, which was based on epidemiological models, they would 
maximize their expected earnings and their expected utility by betting 
the same amount on each bin. 

Our method for designing which bins to present to subjects was 
intended to provide general information about the beliefs of individuals 
that reflected our hyper-priors about the underlying data generating 
process. Our method also served to generate a sharp, direct test of the 
specific null hypothesis that the beliefs of individuals tracked those 
informed by epidemiological models. And by the beliefs from in
dividuals and the models “tracking” each other, we mean much more 
than aligned weighted averages: we insist that they also track each other 
in terms of levels of confidence. This additional criterion allows us to 
determine if the evolution of epidemiological understanding and 
modeling, which was dramatic during the period of our elicitation, is 
matched by an evolution of individual beliefs. 

2.2. Reflecting epidemiological models 

To effect this test of the null hypothesis, we need some character
ization of the beliefs that might be arrived at by attention to “epidemi
ological models.” To do that we started with the IHME model, and used 
the forecasts that it provided to generate the bins we refer to as frame 
0.10 And, more specifically, our method generated bins that implied 
equal weight should be given to each bin, in terms of bets implemented 
with token allocations. Proper scoring rules incentivize the truthful 
revelation of beliefs of risk neutral bettors. There are deep theoretical, 
experimental, and statistical issues that arise when agents are not risk 
neutral, because then they can make bets to hedge against risk [15]. For 
example, an extremely risk averse decision-maker might bet the same 
amount on every bin in a subjective beliefs task to ensure zero variance 
in payment, regardless of the event that is realized. Thus, if the subjects 
in our experiment all bet the same amount on every bin, we would be 

unable to directly infer whether this was due to high levels of risk 
aversion or to beliefs that are consistent with epidemiologically 
informed forecasts.11 However, to the extent that subjects do not bet the 
same amount on every bin, this implies that their beliefs are not 
consistent with the epidemiologically informed forecasts regardless of 
their levels of risk aversion. This property is a powerful innovation in the 
method developed and applied here: it is apparent that risk preferences 
of individuals only matter if subjects do not bet the same amount on 
every bin. Hence we are able to test this null hypothesis by directly 
comparing the token allocations we observe from individuals, without 
any need for adjustment for their risk preferences. 

The specific epidemiologically informed model used for frame 0 was 
then used as the basis for adjustments to generate the bins reflected in 
frames 1, 2, and 3, which were also informed by consideration of 
additional publicly circulating epidemiological models. Apart from 
allowing us to test for wholesale deviations from the hyper-priors re
flected in frame 0, these frames themselves can be viewed as reflecting 
beliefs informed by wider ranges of epidemiological models. Our 
method then adds the constraint that someone holding beliefs consistent 
with those models would bet exactly the same amount on every bin. 
Thus, frame 0 gives greatest prior weight to one specific epidemiological 
model, and frames 1, 2, and 3 use bins reflecting alternative ranges of 
wider epidemiological modeling. In this sense, our complete set of 
frames is designed to reflect “epidemiological models” as a whole, 
respecting the inevitable changes in the number of such models avail
able for public scrutiny, and modeling assumptions of different experts, 
over the course of the pandemic. 

Our method to select two anchors for our belief elicitation required 
us to focus on prospective outcomes for COVID-19 statistics at various 
future time points, over which subjects could then place bets. We aimed 
to base these anchors on credible epidemiological models, presenting us 
with several challenges. 

First, when COVID-19 was declared a pandemic, epidemiologists still 
had relatively little knowledge of its transmission vector, but this 
knowledge improved rapidly and steadily over the course of our study 
frame [24]. This improvement of knowledge resulted in changes in the 
specification structure of models as our study unfolded, and the addition 
of new models that were made available between waves of our study. 

Second, no single model supported forecasts of all of the outcomes on 
which we asked subjects to report beliefs. So we were forced to sacrifice 
some consistency with respect to the set of epidemiological models 
considered over time, as well as across outcomes at a point in time. 

Third, on some of our waves the virus was spreading very quickly 
and there were lags between CDC reports and model forecast updates. 
On some occasions, when the CDC incorporated retrospective data from 
heavily affected states as jump shifts, the effects of these lags were 
substantial. Statistical efficiency implied that we not present subjects 
with bets on outcomes at the lower end of infections or deaths that had 
already become impossible. In general, our method was to use our own 
hyper-priors to construct a specific null hypothesis. This entailed using 
as much information about the pandemic as was available to us, rather 
than devising a procedure for mechanically applying epidemiological 
models. At the same time, anchoring our hyper-priors on epidemiolog
ical forecasts in a consistent way was also a crucial element of our 
method. 

In the face of these and other challenges, we adopted the following 
approach to selecting belief elicitation anchors for COVID-19 prevalence 

8 Section 2.2 discusses the bin anchoring calculations we performed for each 
wave of the study.  

9 In general, any parametric distribution with a defined CDF and S sufficient 
statistics can be defined by S points along the CDF. Let F(x | ɑ, β) be the cu
mulative density of the Beta distribution below x, with shaping parameters ɑ 
and β. For each frame, we pick (x, y), such that F(x | ɑ, β) = 0.1, and 1 - F(y | ɑ, 
β) = 0.2. We then combine these two equations such that h(ɑ, β) = F(x | ɑ, β) +
F(y | ɑ, β) – 0.9 = 0, and solve for the unique roots ɑ*, β* such that h(ɑ*, β*) =
0. Finally, we use the resulting Beta distribution F(x | ɑ*, β*) to define the bins 
for that particular frame. 
10 See [21] for a review of the historical context, modeling assumptions, ac

curacy, and criticisms of the IHME model. See [22] for an early discussion of 
susceptible-infected-recovered (SIR) model validity given human behavior in 
response to the pandemic. Finally, see [23] for an evaluation of COVID-19 
models over time. 

11 During the experimental session, we also elicited the risk attitudes of each 
subject to account for the possibility of hedging in the elicitation and estimation 
of subjective beliefs. We do not focus on risk attitudes here, because they are 
unnecessary for our inferential objective. 
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and mortality in the U.S. population.12 

To begin, for each of our six waves we selected a baseline distribution 
(BD0) based primarily on forecasts from the IHME. We selected this 
model because among those that were available from the beginning of 
our study, it uniquely provided specific projections of both case and 
death numbers for every future date through our planned time course. 
However, we allowed adjustments to this distribution wherever it was 
incompatible with the actual incidence of infection and mortality, due to 
lags. During moments of rapid transmission, mortality reports were a 
basis for estimates of infections that were more reliable than direct 
infection reports themselves, and our method called for this information 
to be incorporated into our hyper-priors. 

We did not limit anchors to the adjusted IHME-driven baseline dis
tribution for three reasons. First, we sought to reduce the likelihood that 
many subjects might place all of their tokens in one extreme bin or the 
other, thus failing to provide us with much information about the dis
tribution of their beliefs. Second, we aimed to avoid being limited to 
broad bin ranges that would fail to provide subjects with opportunities 
to report relatively precise beliefs if they indeed held such beliefs. 
Finally, we did not want to end up with uninformative responses, which 
could occur with very wide bins if subjects bet all of their tokens on the 
same bin. 

We therefore constructed three additional bin anchors (BA1 - BA3) 
that shifted forecasting anchors relative to the baseline. To connect these 
to expert observation and modeling, we drew information from addi
tional epidemiological models. The data journalism website Five
ThirtyEight consolidates models produced by leading public health 
research institutes. The number of these reported models varied during 
the course of our study, from 6 on Wave 1 to 14 by Wave 6. We used the 
mortality forecasts of these additional models to constrain construction 
of bin anchors BA1 - BA3 for each wave. Since these models, unlike the 
IHME model, do not forecast infections, when anchoring bounds for 

infections we imposed the case fatality rate (CFR) that prevailed at the 
time of the wave according to the CDC. We then assumed that this rate 
would converge linearly over time to the CFR of the IHME model for 
December 1, 2020; again, the IHME model provided the only long-range 
forecast available during early waves. 

We established anchors for BA1 in each wave by replacing the 
mortality anchor for BD0 by the bottom of the forecast range for the 
most “optimistic” model in the FiveThirtyEight suite as of the wave in 
question, where “optimistic” means the model that forecast the lowest 
number of deaths consistent with actual mortality reports on the day 
before launch of the wave in question. The upper anchor was then 
adjusted so that the probability density function (PDF) would replicate 
the baseline distribution BD0 as closely as possible, subject to the 
constraint imposed by the assumption made above about the CFR value 
for each wave. Setting bottom anchors for each BA1 was the step in the 
construction most likely to require ad hoc adjustment due to lag effects. 
In such instances, basing the top anchor on the most “optimistic” model 
in the suite required us to relax the assumption of a uniform PDF. To 
avoid suggesting implausibly over-precise estimates to subjects, such as 
50,123 deaths, all anchors were converted to integers rounded to the 
nearest multiple of 10. 

We constructed anchors for BA2 by replacing the upper anchor of 
BD0 by the upper end of the most “pessimistic” model in the Five
ThirtyEight suite, and adjusting the bottom anchor by analogous re
strictions as for the BA1 construction above. Where lag effects required 
adjustments to bottom anchors on BD0, corresponding adjustments were 
made to bottom anchors of BA1 by reference to the assumed CFR for that 
wave. 

Finally, we constructed anchors for BA3 by setting the upper anchor 
to the top of the error range of the implied BA2 model for p = 0.05, then 
shifting up the bottom anchor by again maintaining the PDF of BD0 
constrained by the assumed CFR for that wave. 

Thus, the ranges presented to study subjects were based on one set of 
bin anchors (BD0) that treated the IHME forecast as if it were the most 
informative, one set of anchors (BA1) shifted in an “optimistic” direction 
that remained within the range of expert forecasts and actual reports as 
of the day preceding the wave, and two sets of bin anchors (BA2 and 
BA3) shifted in a “pessimistic” direction, but also within the bounds of 
epidemiological modeling. The motivation for this asymmetry between 

Fig. 3. Bets for Equiprobable Events.  

12 We also asked subjects to forecast prevalence and mortality rates among 
Americans aged 65 years and older, in light of the crucial role of their far higher 
mortality in driving policy responses. The construction of anchors for this part 
of our experiment involved special problems due to progressive decline in 
available data quality over the course of our study. This aspect of the overall 
project will be discussed elsewhere. 
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optimistic and pessimistic representations reflected the fact that lag ef
fects sometimes violated optimistic, but never pessimistic, bounds of 
distributions. 

With this set of bin anchors for prevalence and mortality statistics 
over one-month and December 1, 2020 timeframes we used our Beta 
distribution algorithm to partition the event spaces and define the set of 
bins for the task. Four sets of bin anchors produced four sets of bins per 
belief question, which we refer to as the frames for that question: BD0 
defined the anchors for frame 0, and BA1, BA2, and BA3 defined the 
anchors for frames 1, 2, and 3, respectively. 

One frame per belief question was drawn randomly for each subject, 
so frames varied between subjects in the task. The construction of these 
frames allows us to draw inferences about the extent to which non- 
expert subjective beliefs differ from expert forecasts encoded in epide
miological models to the extent that bets vary from bin to bin. 

3. Results 

We focus here on subject bets implemented by token allocations for 
the one-month forecasting horizon across waves 1–6 of our study. We 
limit our analyses to this horizon for ease of exposition. This sample 
consists of 598 subjects across the six waves. Figs. 4 and 5 represent the 
data from the 112 subjects who took part in Wave 1. 

Fig. 4 shows the distribution of token allocations from May 29, 2020 
(Wave 1) for the number of COVID-19 infections in the U.S. by June 30, 
2020. The distributions differ markedly across frames, which suggests 
that the way in which event spaces are anchored and partitioned affects 
subjects’ token allocations, even though each set of anchors was 
consistent with epidemiological models of the pandemic. However, to 
draw valid inferences about differences across frames both with respect 
to each other and the number of cases reported by the CDC, it is essential 
to account for the risk attitudes of subjects [15]. This is not the focus of 
our analyses here. Despite these apparent differences across frames in 
Fig. 4, the crucial result is that subjects did not bet the same amount on 
every bin. To test this hypothesis we estimated a Bayesian model of an 
ordered logit data generating process with appropriately diffuse priors; 
see Appendix A for further details. We defined the null hypothesis in 
terms of inferred posterior probabilities for each bin between 0.9 and 
0.11 for our sample size. This “region of practical equivalence” (ROPE) 
from a Bayesian perspective [19] corresponds to the range of posterior 
estimates generated from randomly selected token allocations for each 
bin between 0 and 20. The posterior probability of the data in Fig. 4 
being in this interval is less than 0.001, calculated over all frames and 
waves.13  Thus, subjects did not bet the same amount on every bin, 
which is a necessary condition for the beliefs of subjects to be consistent 
with epidemiological models of the spread of the virus. If some of the 
token allocation distributions were more flat than others, this would 
suggest that the epidemiological modeling associated with that frame 
was more closely aligned with the beliefs of subjects, but clearly no such 
inference is valid on the basis of the distributions in Fig. 4. 

Appendix B shows the distribution of token allocations elicited in 
waves 2–6 of our study of the number of COVID-19 infections in the U.S. 
one month after the date of each wave. While there are some interesting 
differences across waves, which reflect the (rapid) evolution of the 
pandemic in the U.S., better scientific understanding of the spread of the 
virus, and the proliferation of epidemiological models that had more 
data to feed their predictions, the overall pattern is the same: subjects’ 
beliefs differ significantly from epidemiologically informed models of 

COVID-19 infections. 
Fig. 5 shows the distribution of token allocations from May 29, 2020 

(Wave 1) for the number of COVID-19 deaths in the U.S. by June 30, 
2020. Unlike infections, the distributions across frames are similar, but 
formal tests of the extent to which they differ require adjustments for 
risk attitudes. Again, the crucial result for our purposes is that subjects 
did not bet the same amount on every bin. The Bayesian posterior 
probability of this null hypothesis is, again, less than 0.001 over all 
frames and waves. Thus, the beliefs of subjects about COVID-19 deaths 
are not consistent with epidemiological modeling. 

Appendix C shows the distribution of token allocations in waves 2–6 
of the number of COVID-19 deaths in the U.S. one month after the date 
of each wave. Differences across waves are less pronounced in com
parison to beliefs about COVID-19 prevalence, but subjects’ beliefs 
clearly differ from epidemiologically informed models of deaths attrib
uted to the virus. 

4. Discussion 

A general challenge implicit in our design was that the U.S. has not, 
as we write, yet implemented large-scale randomized testing for COVID- 
19.14 Consequently, detected cases involve over-representation of 
infected people who presented with morbid symptoms. Furthermore, 
accurate tracking of prevalence and mortality in the U.S. has been 
impeded by decentralized administration and politicized conflict [25]. 
Epidemiologists universally acknowledge that undetected cases with 
lower morbidity outnumber detected cases [26]. The implication is that 
the evidence-based forecasting in which we asked our subjects to engage 
was not directly of the disease itself, but rather of the evolution of the 
processes used by public health officials to arrive at announced statistics 
and projections. It is open to question to what extent people behaviorally 
manage their health risks by responding to expert forecasts, and to what 
extent they choose behavior on the basis of their own idiosyncratic 
representations of diseases. 

Coupled with these issues were significant changes in scientific un
derstanding of the virus over the time period of our study, which pre
sumably also influenced the risk mitigation efforts of individuals. These 
changes in expert understanding can be summarized as follows: esti
mations of the frequency of fomite transmission declined; estimations of 
the frequency of aerosol transmission increased; estimations of the ef
ficacy of widespread mask use against prevalence, morbidity, and 
mortality increased; estimations of the weight of behavioral responses, 
independent of public-health policy choices, increased; and estimation 
of the extent of path-dependence in transmission geography due to 
“super-spreading” events increased. While our study does not speak 
directly to this improving scientific knowledge of the virus, the fact that 
we constructed a pseudo panel of participants means that we can track 
the evolution of beliefs about COVID-19 prevalence and mortality over 
time [1]. This will allow us to determine whether beliefs became more or 
less biased, and whether the confidence with which these beliefs were 
held varied, as more information about the virus became available. We 
will proceed with this line of investigation in subsequent analyses. 

Figs. 4 and 5, together with the complementary figures in Appen
dices B and C, show that forecasting COVID-19 infections is fraught with 
difficulty, certainly in comparison to deaths. We define the “correct” 
answer for our subjects as meaning “correctly matching the CDC’s 
estimated report.” Fig. 4 shows that this correct answer in frame 0 about 
the level of infections on June 30, 2020 fell into the last bin of the event 

13 The same conclusion applies if we only examine frame 0 (reflecting the 
IHME model), only examine frames 1, 2 and 3 (reflecting all models other than 
the IHME model), or only examine frames 2 and 3 (reflecting the best per
forming models from an ex post perspective). The same conclusions apply for 
beliefs about deaths as well as beliefs about infections, except for deaths in 
frame 0, wave 6, where the Bayesian posterior probability is less than 0.01. 

14 We refer here to randomized testing using the entire population as the 
sampling frame. Due to the clear existence of many asymptomatic cases, ran
domized testing of only people who present with symptoms, as has very help
fully characterized the public health response in a number of countries such as 
Germany and South Korea, still falls short of an adequate scientific method for 
estimating true infection prevalence. 
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Fig. 4. Beliefs about COVID-19 infections in the U.S. by June 30, 2020.  

Fig. 5. Beliefs about COVID-19 deaths in the U.S. by June 30, 2020.  
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space, despite the fact that the IHME considered the most likely level to 
fall further within the interior region of the event space. By contrast, 
Fig. 5 shows that the correct answer fell into the “middle” of the event 
space in every frame. This difference in the accuracy of forecasting in
fections and deaths is not surprising. Although methods of estimating 
infections, and reliability of data transmission, vary with the severity of 
viral spread and the geography of its concentration, deaths are less 
variable and follow infections with a predictable lag. This is arguably 
one reason why our subjects’ beliefs appear to be more closely calibrated 
on deaths than on infections. 

The potential implications of our research for educational in
terventions about COVID-19 are clear. While there is no single, well- 
confirmed consensus theory of health behavior or other-regarding 
behavior that can ground educational efforts [27], beliefs will play an 
important role in explaining health behavior, regardless of the specific 
approach adopted. Beliefs about risk to oneself and to others are 
fundamental factors in understanding behavior, and are potential levers, 
therefore, for educational intervention. Meta-analyses show that risk 
perception has a significant influence on behavior [28], including pre
cautionary reductions in aggregate consumption leading to declines in 
economic activity [29]. Moreover, the extent to which beliefs influence 
behaviors, and which beliefs are amenable to educational influence, 
depends in part on the confidence individuals have in their attitudes. 
There is also solid evidence that there is heterogeneity across groups in 
beliefs about health risks [30]. 

Our sample consists of university students with an average age of 21 
years. There is evidence [31] that mortality risks that individuals of a 
certain age group have current or prior peer experience about are better 
understood, compared to mortality risks that apply more to older age 
groups. This finding makes considerable sense, in terms of rational in
vestments in knowledge of mortality risks. However, it suggests that the 
beliefs of younger adults might not be well adjusted early in the 
pandemic, when the vast majority of mortalities occurred among (much) 
older adults. 

Our study provides rich data about beliefs and related factors that the 
literature suggests are necessary to ground educational interventions. 
Because we elicit incentivized measures of beliefs, as well as the spread 
of confidence in various COVID-19 outcomes, we have fine-grained 
detail that is seldom available in educational interventions. In
dividuals who have very focused beliefs, and discount alternative out
comes strongly, will respond to information differently than individuals 
who give more credibility to alternative degrees of COVID-19 risk. In 
Bayesian statistical terms, those with more diffuse priors should respond 
more strongly to new information than those with tighter priors. We will 
also be able to investigate how our participant’s beliefs about COVID-19 
vary according to demographic characteristics, the primary sources of 
news subjects used to inform themselves about the course of the 
pandemic, and incentivized elicitations of risk attitudes and time dis
counting, which we also included in the study. These additional vari
ables could allow one to target public health and educational 
interventions to particular groups on the basis of their beliefs, and the 
extent to which they are more or less receptive to new information about 
risks posed by the virus and attendant mitigation measures. 

Educational interventions around COVID-19 using only hypothetical 
survey information about beliefs, and no evidence about how confi
dently those beliefs are held, are likely to be unproductive. The methods 
presented here offer a more useful guide for getting the evidence needed 
to design successful educational interventions. 

5. Conclusion 

We conducted an incentivized, experimental study on the beliefs of 
individuals about COVID-19 prevalence and mortality with six 
temporally-spaced waves between May and November, 2020. Our 
experimental design allows us to draw direct, simple inferences about 
whether those beliefs differ from publicly salient epidemiological 

models of infections and deaths due to COVID-19. We find that the be
liefs of individuals about both infections and deaths differ markedly 
from epidemiologically informed models. Our study has implications for 
the dissemination of scientific information, and could be used to tailor 
public health and educational interventions to people most receptive to 
risk mitigation efforts. 
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