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1. Introduction

Recent theoretical developments in behavioral economics have generated renewed interest in

the Random Preference (RP) model of choice under risk.1 Structural models of individual choice

behavior typically assume that latent preference parameters are deterministic at the individual level.

That is, these models of latent preferences assume that the parameters do not vary randomly within

an individual over different decision tasks.2 To account for unexplained variation in individual choice

behavior, the deterministic preference index function is combined with an additive error term that

varies randomly between individuals and over decision tasks. By contrast, the RP model excludes the

additive error term and treats the preference parameters per se as stochastic variables that vary

randomly between individuals and over decision tasks. The descriptor “random” in the RP model is

thus used in relation to the preference parameters rather than the additive error term. 

From an empirical perspective, the RP model of choice under risk appears to be an unwieldy

model to estimate. Structural estimation of the additive error model often proceeds by embedding a

preference index function (e.g., the difference in expected utility between two lotteries) in a tractable

link function (e.g., the logistic distribution function) to obtain analytic choice probabilities. In

general, this approach does not work with the RP model since the preference index function is not

additively separable from the source of stochastic variation, namely the random risk preference

parameters. One may apply a general purpose simulator based on the simple frequency logic to

approximate the choice probabilities with relative ease, but the simulated likelihood function is a

step function which does not lend itself to gradient-based optimization.3 Existing methods to

estimate the RP model focus on special cases that enable one to derive analytic choice probabilities.

These special cases require that the underlying decision model is Expected Utility Theory (EUT)

1 See, for example, Gul and Pesendorfer [2006] and Apesteguia and Ballester [2018]. The RP model
of risk attitudes was first presented in Becker, DeGroot and Marschak [1963; pp. 42-43].

2 This assumption still allows the preference parameters to vary deterministically within an individual
according to observed characteristics of the decision tasks; for example, Harrison, Lau and Yoo [2020] let
individual risk attitudes vary with an indicator of high and low stake lotteries in the decision tasks. This
assumption also allows the preference parameters to vary randomly between individuals to capture
unobserved preference heterogeneity in the same manner as random coefficient models.

3 Global search methods, such as differential evolution and particle swarm optimization algorithms
(e.g., Hole and Yoo [2017]), may help one maximize a step function but do not address problems with point
identification of parameter values.
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with a one-parameter utility function, thereby precluding non-EUT models as well as EUT with

more flexible utility functions; or that each observed choice is between lotteries with a common set

of three outcomes, thereby precluding modern experimental designs that specify four or more

outcomes per choice task. Empirical studies of random preferences under EUT with one-parameter

utility functions remain relatively small in numbers,4 and there are virtually no studies that combine

random preferences with more general decision models.

We propose two new methods to estimate the RP model. Our first method is applicable to

any RP model of risky choice, regardless of the underlying theory and experimental design. This

method estimates the primal representation of the RP model directly, by applying McFadden’s

[1989] perturbation strategy to construct an approximate likelihood function. This function can be

coded with relative ease and generalized to accommodate multidimensional risk preference

parameters, as well as unobserved interpersonal heterogeneity, in a tractable fashion. The main idea

is to replace indicator functions in the simple frequency simulator with smoothing kernels such as

logistic distribution functions. The simulated likelihood function is smooth in the parameters to be

estimated and can be maximized using gradient-based optimization algorithms.

The versatility of our primal method is perhaps best illustrated with comparisons to previous

efforts at estimating Quiggin’s [1982] Rank-Dependent Utility (RDU), which extends EUT by

adding a probability weighting function (PWF) that complements the utility function. Despite the

popularity of RDU, only Loomes, Moffatt and Sugden [2002] and Wilcox [2008][2011] have

estimated RP versions of this decision model. Their computational approach requires all pairwise

lottery choice tasks in the data to involve the same set of three outcomes (Loomes, Moffatt and

Sugden [2002]) or at most three different sets of three outcomes (Wilcox [2008][2011]), and also

requires the PWF to be deterministic within an individual.5 The latter constraint implies that their

models are partial RP models which only apply random preferences to the utility function and not to

the PWF. In contrast, our primal method can accommodate full RP models which apply random

4 For example, Apesteguia, Ballester and Gutierrez-Daza [2020] and Jagelka [2020] estimate a RP
model under EUT with a power utility function. 

5 The PWF is deterministic in relation to the RP model, i.e., it does not vary randomly within an
individual. Wilcox [2008][2011] allows the deterministic PWF to vary randomly between individuals to address
interpersonal heterogeneity.
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preferences to both sources of risk attitudes in RDU, and more generally to multiple sources of risk

attitudes in any given theory.

Our second estimation method is intended for RP models with unidimensional risk

preferences that satisfy the single crossing condition. This method estimates the RP model indirectly

by exploiting its dual representation as a standard regression model. While the applicable class of

decision models is limited, the dual likelihood function is exact rather than approximate with respect

to the RP component. The dual method thus complements the primal method by producing

benchmark estimates that one can use to examine the extent of approximation errors in the

corresponding primal estimates empirically. Moreover, the dual method enables one to easily

estimate advanced structural models that combine the RP model of intrapersonal heterogeneity with

the random coefficient model of interpersonal heterogeneity. For example, let ù denote a risk

preference parameter that is randomly distributed within an individual. In a binary choice task, this

parameter satisfies the single crossing condition if there is a unique value w such that the individual

chooses one lottery when ù > w, and the other lottery when ù < w. Viewing ù as a latent dependent

variable and w as a known threshold allows us to recast the RP model as a linear index model with

an additive error term, just like a standard discrete choice model. One can thus use logit and probit

regression commands for the dual standard model to estimate the primal RP model. Discrete choice

models for panel data, such as random effects logit and mixed logit, provide accessible avenues to

incorporate interpersonal heterogeneity by making the distribution of the random preference

parameter individual-specific. We are not aware of any existing study that applies standard regression

commands in structural estimation of risk attitudes, be it in the stochastic framework of the RP

model or the additive error model.

Our primal estimation method will help advance the boundaries in structural estimation of

choice under risk. Wilcox [2008; §4.5], for example, concludes that the RP model lacks

generalizability relative to other stochastic choice models because available econometric methods

only allow one to estimate special cases of the RP model. Our primal method puts the RP model on

an equal footing with other stochastic choice models in terms of generalizability. We illustrate this

point with applications to EUT which take a non-parametric approach to the utility function, by
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specifying a separate RP parameter to represent the utility level of each outcome. This specification

has been used in the theoretical formulation by Gul and Pesendorfer [2006] but cannot be estimated

by existing methods unless one imposes similar restrictions on the data as Loomes, Moffatt and

Sugden [2002] and Wilcox [2008][2011]. We also illustrate the method with applications to the full

RP version of RDU with constant relative risk aversion (CRRA) utility, as well as non-parametric

utility. These applications do not exhaust analytic opportunities that our versatile method opens up.

One may also apply our method to other non-EUT models such as Prospect Theory; to more

unconventional types of decision tasks with multinomial and rank-ordered choices; and to other

branches of behavioral economics such as the analysis of non-exponential discounting functions

with multidimensional time preference parameters. 

Our dual estimation method will be useful in studies on socio-economic determinants of risk

preferences that consider an individual’s risk attitude as a unidimensional trait (e.g., Dohmen, Falk,

Huffman and Sunde [2010], Filippin and Crosetto [2016], Guiso, Sapienza and Zingales [2018] and

Hryshko, Luengo-Prado and Sørensen [2011]). With our dual method, the RP model of

unidimensional risk preferences (e.g., EUT with CRRA utility) becomes an attractive alternative to

reduced-form regression models which are widely used. Both types of models can be estimated

using standard regression commands in software packages, but the RP model has a more solid

theoretical foundation that allows one to distinguish interpersonal preference heterogeneity from

behavioral noise.6 Large household surveys, such as the Panel Study of Income Dynamics in the

USA, Socio-Economic Panel in Germany and the UK Household Longitudinal Study, include binary

choice tasks under risk for which one-parameter formulations of EUT and Yaari’s [1987] Dual

Theory display the single crossing property, increasing the appeal of our dual method.7 

6 RP models of unidimensional risk attitudes are not necessarily more restrictive than additive error
models of multidimensional risk attitudes in structural Maximum Likelihood (ML) and Non-linear Least
Squares (NLS) estimation. The latter models usually refer to fixed coefficient specifications that either neglect
unobserved interpersonal heterogeneity or address it by applying individual-level estimations that preclude
population-level inferences. 

7 Combining the RP model with the single crossing property also plays an important analytic role in
Barseghyan, Molinari, and Thirkettle [2021], who develop a semi-nonparametric estimator of risk aversion in
market settings where the analyst does not fully observe the decision maker’s choice sets and relevant
product attributes.
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We stress that the RP model does not refer to the usual random coefficient model that has

been widely used in applied microeconomics. The two models serve quite different purposes, and

one can combine the RP model with the fixed coefficient model (e.g., Apesteguia and Ballester

[2018]) or with the random coefficient model (e.g., Wilcox [2008][2011]). The RP model uses a

statistical distribution to describe how preference parameters vary within an individual over decision

tasks, whereas the random coefficient model uses a statistical distribution to describe how

preference parameters vary between individuals.8 Suppose that the CRRA coefficient is logistically

distributed within each individual, and that the mean and log-scale of the logistic CRRA coefficient

are individual-specific and follow a joint normal distribution between individuals. The RP model

refers to the logistic distribution at the individual level, and the random coefficient model refers to

the joint normal distribution at the population level. Our primal and dual estimation methods apply

to both fixed and random coefficient versions of the RP model.

The rest of this paper is organized as follows. Section 2 summarizes the key features of the

RP model and the two data sets that we use in the empirical illustrations. Section 3 presents our dual

estimation method, which is intended for RP models with a unidimensional risk preference

parameter that displays the single crossing property. Section 4 presents our primal method which

can be applied to any RP model, regardless of the single crossing property and the dimensionality of

risk preference parameters. Section 5 concludes.

2. Preliminaries

We first discuss the key characteristics of the RP model, and outline the decision theoretic

components of the different RP model specifications that we estimate in sections 3 and 4.  We then

summarize the two data sets that we use in our empirical applications.

8 The use of the term random coefficient to describe this approach to modeling interpersonal
heterogeneity is well-established in all branches of applied microeconomics: See, for example, Revelt and
Train [1998], Layton and Brown [2000], Knittel and Metaxoglou [2014] and Harrison, Lau and Yoo [2020].
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A. Random Preference Models

Assume for now that every subject has either the same fixed risk preference parameter or the

same “urn of random risk preference parameters,” a metaphor to be clarified shortly.9 Suppose that

the subject makes a choice between two lotteries: A and B. Each lottery L 0 {A, B} is a probability

distribution over K prizes which pays prize mLk with probability pLk, where k = 1, 2, þ, K. All prizes

and probabilities in each lottery are known to the subjects when they make their decision. To

facilitate the discussion of RDU, suppose that the prizes in lottery L are ordered from worst to best,

mL1 < mL2 < þ < mLK, and let ÑLk denote the cumulative probability of prizes which are at least as

good as mLk, ÑLk = pLk + pL(k+1) + þ + pLK, with ÑL(K+1) = 0. The cumulative probability is thus a step

function that is equal to one for the worst prize and takes smaller values for better prizes.

We can maintain generality in our exposition by invoking a generic decision theory under

which the subject’s evaluation of lottery L is given by VL(á), where the parametric form of VL(.)

varies across models and á is a multidimensional vector of risk preference parameters. Nevertheless,

for concreteness, we start with a simple example where VL(.) is the expected utility of lottery L,

denoted by EUL(.), and á is a unidimensional risk preference parameter, denoted by ù. Specifically,

assume that utility of prize M is given by a CRRA function

U(M|ù) = M(1!ù)/(1!ù), (1)

where ù is the coefficient of relative risk aversion. The expected utility of lottery L 0 {A, B} is then 

EUL(ù) = 3k pLk × U(mLk|ù). (2)

Henceforth, we use n = 1, 2, þ, N to index subjects, and t = 1, 2, þ, T to index decision tasks.

EUL(ù) in (2) is subsequently indexed by n and t, since prizes and probabilities in each lottery may

vary across decision tasks and subjects.

Let ynt indicate subject n’s binary choice in task t between lottery B (ynt = 1) or lottery A (ynt

= 0), and let ÄEUnt(ù) be the difference in expected utility between the two lotteries, ÄEUnt(ù) =

EUB,nt(ù) ! EUA,nt(ù). Using the indicator function I[.], the predicted choice under EUT can be

9 In section 3 and 4, we will introduce random coefficient models to relax this representative agent
assumption.
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written as ynt = I[ÄEUnt(ù) > 0]. However, for any given value of ù, this equality may fail to hold as

some observed choices may deviate from the theoretical predictions of the decision model.

One can account for such behavioral deviations from theory by combining the preference

index function with stochastic elements to construct a latent dependent variable ynt* that determines

the observed choice, ynt = I[ynt* > 0]. In an additive error model, this is specified as

ynt* = ÄEUnt(ù) + gnt, (3)

where gnt captures zero-mean behavioral errors that are independently distributed. One can derive

choice probabilities by inserting the non-linear index into a parametric distribution function for gnt.

For example, assume that gnt is logistically distributed with standard deviation ó × 1.81 and density

function f(gnt|0, ó).10 The probability that subject n chooses lottery B in task t is

Lnt(ù, ó) = II[ÄEUnt(ù) + gnt > 0]f(gnt|0, ó)dgnt = Ë(ÄEUnt(ù)/ó), (4)

where Ë(.) = exp(.) / [1 + exp(.)] is the standard logistic distribution function.11

The Random Preference (RP) model excludes the additive error term and accommodates

stochastic choice behavior by treating the risk aversion parameter as a random variable, ùnt , that

varies across subjects and, more importantly, over decision tasks within a subject. The latent dependent

variable is

ynt* = ÄEUnt(ùnt). (5)

Suppose that the random risk aversion parameter ùnt  is logistically distributed with mean ìù and

standard deviation óù × 1.81, and let f(ùnt|ìù, óù) denote the density function. One can interpret the

density function as an “urn” that contains different values of ùnt (Wilcox [2008; p.213]), and ìù and

óù as the mean and dispersion of the urn’s contents. In each decision task, the subject makes a new

draw from the urn, with replacement, and the outcome of that draw determines the degree of

relative risk aversion in that task. The probability that subject n chooses lottery B in task t is then

10 The factor of proportionality, ó, refers to the scale parameter of the logistic distribution, which
typically is normalized to 1 to achieve identification (e.g., Wooldridge [2010; §15.3]). This is the standard
logistic distribution with a standard deviation of ð/30.5 . 1.81. The non-linear index function ÄEUnt(ù) in (4)
allows one to identify both ù and ó without this normalization.

11 This popular stochastic specification is known as the Fechner model or strong utility model.
Wilcox [2008] provides an extensive review of related stochastic choice models, including moderate utility
models that accommodate heteroskedasticity with respect to observed task characteristics.

7



Lnt(ìù, óù) = II[ÄEUnt(ùnt) > 0]f(ùnt|ìù, óù)dùnt. (6)

One can view the random risk aversion parameter, ùnt, as the sum of a core risk aversion parameter

and a random shock, where the random shock is added to the risk aversion parameter instead of the

expected utility difference. We will call ìù the risk aversion parameter and óù the noise parameter in

accordance with this interpretation.12 

The lack of separability between the index function and the stochastic component in the RP

model makes it difficult to analytically obtain choice probabilities. Without further assumptions the

choice probability in (6) cannot be simplified to a logistic distribution function like the additive error

counterpart in (4) because the index ÄEUnt(ùnt) is a non-linear function of the random variable, ùnt.

One approach is to consider Monte Carlo integration and compute a simulated analogue to (6) by

   Snt(ìù, óù) = (1/R) 3r I[ÄEUnt(ìù + óù × ent,r) > 0], (7)

where r = 1, 2, þ, R refers to pseudo-random draws from the standard logistic distribution, and ent,r

is the value of draw r for subject n in task t. The choice probability Snt(ìù, óù) is easy to simulate

once candidate values of ìù and óù are known, but it is not amenable to maximum simulated

likelihood (MSL) estimation of those two unknown parameters. Given a finite number of pseudo-

random draws, the choice probability may be equal to 0, and it is a step function which implies that

different candidate values of ìù and óù may return the same value of Snt(ìù, óù). The former

drawback implies that the sample log-likelihood value may be undefined, and the latter drawback

precludes the use of gradient-based maximization algorithms to compute ìù and óù.
13

The computational problem with the RP model is compounded by multiple integrals, once

the unidimensional risk aversion parameter ùnt is replaced with a multidimensional vector of

12 Some distributional assumptions on ùnt do not allow this type of linear decomposition unless one
adopts a contrived distribution of the random shock. For example, suppose that ùnt follows a beta
distribution which does not have a location parameter; then, there is no natural way to express ùnt as a sum of
a non-zero constant and a random variable. Whether one sees ùnt as the primitive and specifies its
distribution, or some core preference parameter as the primitive and defines ùnt as that primitive plus a
random shock, they represent two equally valid perspectives on the RP model. Apesteguia and Ballester
[2018; §V] adopt the latter perspective while Wilcox [2008; §4.5][2011; Appendix B] adopts the former.

13 Thus, one cannot use standard techniques, such as Newton-Raphson (NR) and Broyden-Fletcher-
Goldfarb-Shanno (BFGS) methods, to maximize the simulated log-likelihood function. The use of gradient-
free algorithms may help locate a maximum, but will not solve the failure of identification.
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preference parameters. Consider, for example, an EUT model where the utility of each outcome k in

lottery L is measured by a distinct parameter uLk. The expected utility index in (2) is then replaced by

EUL(uL) = 3k pLk × uLk,  (8)

where uL is a vector of K utility parameters. The additive error model in equation (4) can

incorporate this non-parametric approach to the utility function by substituting the index function

and retaining the stochastic assumption. However, in the RP model with multidimensional random

vectors uAnt and uBnt, one must use a multivariate distribution to capture within-individual

heterogeneity in choice behavior. Moreover, the random variation in utility parameters is restricted

by the maintained assumption of monotone preferences, which makes it difficult to derive analytic

choice probabilities even for seemingly tractable pairs of lotteries (Wilcox [2008; §4.5]).

Decision theoretic alternatives to EUT often incorporate complementary sources of risk

attitudes alongside utility curvature. For example, in the RDU model, the PWF generates rank-

dependent decision weights which may enhance or diminish risk aversion emanating from utility

curvature. Using Prelec’s [1998] one-parameter PWF, one can extend the EUT model with CRRA

utility in (2) to a RDU specification 

RDUL(ù, ö) = 3k (ð(PLk|ö) ! ð(PL(k+1)|ö)) × U(mLk|ù), (9)

where the PWF ð(.|ö) is given by

ð(P|ö) = exp{!(!ln(P))ö} (10)

and ö is a preference parameter that determines the shape of the PWF. This function is inverse-S

shaped when 0 < ö < 1 and S shaped when ö > 1. The EUT model with non-parametric utility can

be similarly generalized to a RDU model by replacing the outcome probabilities with rank-

dependent decision weights. 

Past studies by Loomes, Moffatt and Sugden [2002] and Wilcox [2008][2011] have focused

on a partial RP version of RDU which assumes a non-random PWF and a random utility function.

In relation to (9), this special case occurs when ö is a fixed parameter and ù is a random preference

parameter ùnt. Our primal estimation method enables us to consider a full RP model that has both

parameters vary randomly within an individual. Our method is not restricted by a particular decision
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theory or functional form, and can be extended to higher dimensions by integrating more random

preference parameters.

B. Data

To estimate the EUT and RDU models with CRRA utility, we use data from an artefactual

field experiment reported in Andersen, Harrison, Lau and Rutström [2014]. The data set includes

413 subjects from the general adult population in Denmark, and each subject was asked to make

choices from 40 distinct pairs of lotteries A and B. Each lottery pair can be written as A = {(mA1, (1

! p2)), (mA2, p2)} and B = {(mB1, (1 ! p2)), (mB2, p2)} where mB1 < mA1 < mA2 < mB2. For each set of

prizes [mA1, mA2, mB1, mB2], the probability p2 varied from 0.1 to 1 in increments of 0.1. We exclude

lottery pairs with dominant choices (i.e., with p2 = 1) which do not contribute to the identification of

risk preferences in the RP model. There were four prize sets, S1 = [1600, 2000, 100, 3850], S2 = [750,

1125, 250, 2000], S3 = [875, 1000, 75, 2000] and S4 = [1000, 2250, 50, 4500], where the amounts are

in Danish kroner; at the time of the experiment, the exchange rate was close to 5 kroner per US

dollar. At the end of the experiment, one of the subject’s 40 choices was randomly selected for

payment, and each subject had a 10% chance of actually receiving the payment.

To estimate the EUT and RDU models with non-parametric utility, we use data from a lab

experiment reported in Harrison and Rutström [2008; §2.6]. The experiment was conducted with a

sample of 63 students at the University of Central Florida, who made choices from 60 distinct pairs

of lotteries A and B. The two lotteries in each pair had the same set of three prizes [m1, m2, m3] but

different probability distributions: A = {(m1, pA1)), (m2, pA2), (m3, pA3)} and B = {(m1, pB1)), (m2, pB2

), (m3, pB3)}. Each lottery pair can thus be seen as two points in the Marschak-Machina (MM)

triangle. Each probability PLk took a value of 0, 0.13, 0.25, 0.37, 0.5, 0.62, 0.75 or 0.87, and the three

probabilities summed to one in each lottery. There were four prize sets denominated in US dollars,

S1 = [5, 10, 15], S2 = [0, 10, 15], S3 = [0, 5, 15] and S4 = [0, 5, 10]. At the end of the experiment,

three of the subject’s 60 choices were randomly selected for payment.
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3. Dual Estimation Method

Before moving to a fully versatile method, we first present a dual method to estimate

unidimensional RP models when the underlying preference index function satisfies the single

crossing condition. Studies in economic theory often use single crossing conditions to obtain

existence proofs and comparative statics results (e.g., Gans and Smart [1996], Athey [2001] and Quah

and Strulovici [2012]). We show that the single crossing condition enables one to specify the RP

model as a standard econometric model with a linear index function. Our dual estimation method

can accommodate any decision theory that represents the subject’s evaluation of lottery L by an

index function VL(á) with a unidimensional preference parameter á. We will use EUT with CRRA

utility as an example, by taking EUL(ù) in equation (2) as VL(á). The single crossing condition holds

if there is a unique value w such that subjects with ù > w choose one lottery and subjects with ù <

w choose the other lottery. By construction, lottery pairs in the popular multiple price list design by

Holt and Laury [2002] and the MM probability triangle induce single crossing in ÄEU(ù).14

The random coefficient model of interpersonal heterogeneity in choice behavior has played

a central role in advancing the empirical literature in many fields, including environmental

economics, industrial organization and labor economics (Train [2009]). This model enables one to

estimate the between-subject distribution of preferences in the population, and study the mean of

the distribution as well as the population shares of subjects fitting particular preference profiles.

With our dual method, one can easily combine this modern modeling approach with the RP model.

A. Homogeneous Risk Aversion and Noise

Assume that the random risk aversion parameter ùnt under EUT with CRRA utility satisfies

the single crossing condition, and let wnt be the indifference point where the difference in expected

14 Single crossing is a joint property of theory and data since the same utility function may have one
or more indifference points depending on the lottery pair in question. In the MPL, each binary choice task is
deliberately designed to induce a unique indifference point under EUT with CRRA utility. In the MM
triangle, EUT with CRRA utility (and any other utility function) yields linear indifference curves, and satisfies
the single crossing condition. The third-order risk apportionment task in Deck and Schlesinger [2010],
however, does not induce single crossing under EUT with CRRA utility; this task has two indifference
points, one at ù = 0 and the other at ù = !1.
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utility is equal to zero. The indifference point wnt is a function of the prizes and probabilities in each

pair of lotteries and is therefore an observed characteristic of the decision task. Suppose that ùnt >

wnt implies ÄEUnt(ùnt) < 0, and ùnt < wnt implies ÄEUnt(ùnt) > 0. For example, subject n chooses

lottery A (B) in task t if she is more (less) risk averse than wnt. Let ynt denote a choice indicator that is

equal to 1 if her choice is B and equal to 0 if it is A.

The unidimensional EUT model in (6) specifies the distribution of ùnt as logistic with mean

ìù and standard deviation óù × 1.81. We assume for now that every subject has the same “RP urn”

and refer to ìù and óù as the risk aversion parameter and the noise parameter, respectively. We can

exploit the single crossing property of ùnt and show that an analytic solution to the EUT model in

(6) is given by

Lnt(ìù, óù) = II[ÄEUnt(ùnt) > 0]f(ùnt|ìù, óù)dùnt = Ë((wnt ! ìù)/óù), (11)

where Ë(.) is the standard logistic distribution function. We can also show that this specification is

equivalent to the pooled logit model

Lnt(â0, â1) = Ë(â0 + â1wnt), (12)

which can be estimated by running a logit regression of the choice indicator ynt on the independent

variable wnt over all subjects n and decision tasks t. The steps involved in moving from the EUT

model in (11) to the pooled logit model in (12) are straightforward, at least with hindsight, but the

dual link has not been identified in the empirical literature on choice under risk. 

The probability that subject n chooses lottery B in task t, Lnt(ìù, óù), is equal to Pr(ÄEUnt(ùnt)

> 0). Given the single crossing condition, Pr(ÄEUnt(ùnt) > 0) is equal to the probability that subject

n in task t is less risk averse than the indifference point wnt, Pr(ùnt < wnt). It is useful to write out the

“risk aversion plus random shock” interpretation of ùnt explicitly

ùnt = ìù + óù × ent, (13)

where ent is a standard logistic random variable. It follows that Pr(ùnt < wnt) = Pr(ìù + óù × ent < wnt)

= Pr(ent < (wnt ! ìù)/óù). Hence, the probability that subject n chooses lottery B in task t is the

cumulative probability that the random variable ent is smaller than the standardized difference

between the indifference point and risk aversion parameter (wnt ! ìù)/óù. One can evaluate these

choice probabilities using the standard logistic distribution function Ë(.) in (11).
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The EUT model in (11) can be indirectly estimated by the pooled logit model in (12), since

the latter is equivalent to the former with â0 = !ìù/óù and â1 = 1/óù. One can thus obtain

maximum likelihood estimates (MLEs) of â0 and â1 in the pooled logit model, and use the results to

infer the risk aversion parameter ìù = !â0/â1 and noise parameter óù = 1/â1. The invariance

property of MLE implies that the transformed parameter estimates from the pooled logit model are

equivalent to the direct ML estimates of ìù and óù, which can be obtained by a user-written

likelihood evaluator. As usual, standard errors of the transformed parameters can be obtained by the

delta method.

B. Heterogeneous Risk Aversion and Homogeneous Noise

Since the logistic EUT model in (11) is dual to the pooled logit model in (12), the two

models share the same fundamental limitations. First, neither model accounts for panel correlation

across repeated choice observations on the same subject. Each choice is modeled as an independent

observation, even though it forms part of a set of choices by the same subject. Second, neither

model accounts for unobserved heterogeneity in choice behavior across subjects. In the RP model,

this translates into the representative agent assumption that every subject has the same urn of

random risk aversion parameters.

The random effects (RE) logit model for panel data addresses these two limitations of the

pooled logit model, and it is dual to an EUT model that captures between-subject heterogeneity by

replacing the fixed coefficient ìù with a random coefficient ìùn. Suppose that the random risk

aversion parameter ùnt is logistically distributed within subject n with density f(ùnt|ìùn, óù). That is, if

one compares the RP urns of two subjects, the contents of the two urns have different means but

the same standard deviation. Suppose further that the risk aversion parameter ìùn is normally

distributed between different subjects, ìùn-N(E[ìùn], SD[ìùn]
2), i.e. each subject n in the population

has her own value of ìùn, and the between-subject mean and standard deviation of those values in

the population are equal to E[ìùn] and SD[ìùn], respectively. One can interpret N(E[ìùn], SD[ìùn]
2) as

the population distribution of risk attitudes in this model.

The probability that subject n chooses lottery B in task t is specified as
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Lnt(ìùn, óù) = II[ÄEUnt(ùnt) > 0]f(ùnt|ìùn, óù)dùnt (14)

= Ë((wnt ! ìùn)/óù) with ìùn-N(E[ìùn], SD[ìùn]
2),

where E[ìùn], SD[ìùn] and óù are parameters to be estimated.15 This model is equivalent to the RE

logit model that augments the pooled logit model in (12) with a normally distributed error

component õn. The probability that subject n chooses lottery B in task t in the RE logit model is

Lnt(â0, â1, õn) = Ë(â0 + â1wnt + õn) with õn-N(0, ó0
2), (15)

where â0, â1 and ó0 are parameters to be estimated. This model has a homogeneous slope coefficient

â1 and a heterogeneous intercept, án = (â0 + õn), which is normally distributed between subjects,

án-N(â0, ó0
2). The error component õn captures between-subject heterogeneity around the mean

intercept â0, and the standard deviation ó0 measures the extent of that heterogeneity.

When the RE logit model in (15) is interpreted as a random intercept model, the dual link to

the EUT model in (14) with between-subject heterogeneity in risk aversion becomes apparent. The

slope coefficient â1 is equivalent to 1/óù, and the random intercept án = (â0 + õn) is equivalent to

!ìùn/óù. Thus, one can use the RE logit estimates of â0, â1 and ó0 to compute óù = 1/â1, E[ìù] =

!â0/â1 and SD[ìù] = ó0/â1, and apply the delta method to obtain standard errors of the transformed

parameters.

It is useful to clarify the meaning of “random” since the term has been used to describe two

different kinds of random variations. The term “random” in the RP model refers to the random

variable ùnt with density f(ùnt|ìùn, óù) that describes the seemingly unstable risk attitude of subject n

over decision tasks. It captures within-subject variation that vanishes as the noise parameter óù tends to

zero. The term “random” in the random coefficient and RE models refers to the use of random

variables ìùn and án to describe interpersonal heterogeneity in the underlying population. It captures

between-subject variation which is present even if every subject makes deterministic choices according

to the non-stochastic version of EUT. The model specification in (14) displays both kinds of

random variations.

15 As Train [2009; §6] and Wooldridge [2010; p.613] explain, the sample log-likelihood function can
be specified in terms of E[ìùn], SD[ìùn] and óì by “integrating out” ìùn.
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C. Heterogeneous Risk Aversion and Noise

The EUT model in (14) allows for between-subject heterogeneity in the risk aversion

parameter, ìùn, but not in the noise parameter, óù. We can capture between-subject heterogeneity in

the noise parameter by introducing a second random coefficient, óùn, that replaces the fixed

coefficient óù. Assume that the random risk aversion parameter ùnt is logistically distributed within

subject n with density f(ùnt|ìùn, óùn). The subject now has an individual-specific risk aversion

parameter, ìùn, and an individual-specific noise parameter, óùn. Assume further that the risk aversion

and log-noise parameters, ìùn and ln(óùn), are jointly normally distributed between subjects, [ìùn,

ln(óùn)]’ -MVN(bEUT, VEUT). Each subject n thus has a distinct pair of values ìùn and ln(óùn), and the

distribution of these bivariate parameters has between-subject mean bEUT and covariance matrix

VEUT. The probability that subject n chooses lottery B in task t is

Lnt(ìùn, óùn) = II[ÄEUnt(ùnt) > 0]f(ùnt|ìùn, óùn)dùnt (16)

= Ë((wnt ! ìùn)/óùn) with [ìùn, ln(óùn)]’ -MVN(bEUT, VEUT),

where the mean vector bEUT and covariance matrix VEUT are parameters to be estimated.

The more general EUT model in (16) is dual to the mixed logit model in the willingness-to-

pay (WTP) space (Train and Weeks [2005]). Although less known compared to pooled logit and RE

logit models, the WTP space model is a standard econometric model that one can readily estimate in

popular statistical packages.16 In the WTP space model, the probability that subject n chooses lottery

B in task t is

Lnt(án, ën) = exp((án + wnt) × ën) / [exp(0) + exp((án + wnt) × ën)] (17)

= Ë((án + wnt) × ën) with [án, ln(ën)]’ - MVN(bWTP, VWTP)

where the mean vector bWTP and the covariance matrix VWTP are parameters to be estimated.17 The

first equality in (17) is algebraically redundant but conveys useful operating advice. Since the WTP

16 The GMNL model of Fiebig, Keane, Louviere and Wasi [2010] is also a dual model since it
algebraically nests the WTP space model (Greene and Hensher [2010; p.416]). Estimation programs for the
GMNL model are also widely available in different software packages.  

17 The WTP space model originates from the non-market valuation literature. Suppose that the
independent variable wnt is equal to the price of good A minus that of good B. If the subject has constant
marginal utility of money that is proportional to the precision parameter, ën, the random intercept án may be
interpreted as subject n’s WTP for acquiring good B rather than good A.
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space model is primarily intended for multinomial choice applications, the available programs

evaluate a separate index function for each alternative in a choice set. In our dual method, one can

set the index functions for lottery A to 0 and lottery B to (án + wnt) × ën.

Comparing the EUT model in (16) to the WTP space model in (17) shows that án = !ìùn

and ën = 1/óùn. The latter implies that ln(ën) = !ln(óùn). Since [án, ln(ën)] = [!ìùn, !ln(óùn)], it follows

that bEUT = !bWTP and VEUT = VWTP. We can thus multiply the estimates of bWTP by !1 to compute

the estimates of bEUT, and use VWTP directly in place of VEUT. 

This dual link is computationally very convenient. The use of random coefficients to capture

interpersonal preference heterogeneity has become a well-established practice in environmental

economics, health economics, marketing science and transportation research because standard

estimation programs for the family of mixed logit models enable one to estimate the structural

models of interest in those fields. By contrast, the structural models of risk preferences, seemingly,

do not fit in with the mixed logit structure and the empirical analysis of those models typically relies

on fixed coefficient specifications. The dual link that we have identified provides convenient means

to apply recent advances in discrete choice methods to behavioral research.

D. Empirical Illustration of Dual Estimation

We illustrate dual estimation of the EUT model with CRRA utility using data from the field

experiment reported in Andersen, Harrison, Lau and Rutström [2014]. Prior to the estimation, we

numerically compute the indifference point, wnt, that solves ÄEUnt(wnt) = 0 for each lottery pair in

the experiment. Panel A in Table 1 reports the estimation results for the EUT model in (11), which

assumes that every subject carries the same urn of RP parameters with logistic density f(ùnt|ìù, óù).

We estimate the dual pooled logit model in (12) by using the logit command in Stata to regress the

choice indicator ynt on the indifference point wnt. The estimated intercept (â0) and coefficient on wnt

(â1) are equal to !0.932 and 1.740, respectively. Unless stated otherwise, all estimated coefficients

and transformed parameters have p-values < 0.001. We can use the estimated coefficients to derive

the relative risk aversion parameter ìù = !â0/â1 = 0.535 and noise parameter óù = 1/â1 = 0.575. We
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thus find that the representative agent generally is risk averse with significant variation in choice

behavior.

Panel B in Table 1 reports the results for the EUT model in (14) which accommodates

between-subject heterogeneity in risk aversion. The RP urn of subject n is f(ùnt|ìùn, óù) where the

risk aversion parameter ìùn is now subject-specific and assumed to be normally distributed between

subjects, with population mean E[ìùn] and standard deviation SD[ìùn]. Since this model is dual to

the RE logit model, we regress ynt on wnt using the xtlogit, re command in Stata, which applies a

Gauss-Hermite quadrature to integrate out the normal error component õn in (15). The random

intercept is normally distributed with an estimated population mean (â0) of !1.327 and a standard

deviation (ó0) of 1.778, while the estimated coefficient â1 on wnt is equal to 2.411. The transformed

parameters E[ìùn] = !â0/â1, SD[ìùn] = ó0/â1 and óù = 1/â1 are equal to 0.550, 0.737 and 0.415,

respectively. Hence, the coefficient of RRA is estimated to be 0.550 on average, with significant

between- and within-subject variation, and we find that 77.2% of the population are risk averse.18

Panel C in Table 1 reports the results for the EUT model in (16) which accommodates

between-subject heterogeneity in both risk aversion and noise. The RP urn of subject n is f(ùnt|ìùn,

óùn), where both risk aversion (ìùn) and noise (óùn) parameters are subject-specific. The model

assumes that ìùn and ln(óùn) are jointly normally distributed between subjects. We estimate the dual

mixed logit model in WTP space and use the mixlogitwtp command in Stata by Hole [2015], which

applies simulation to integrate out the joint normal random coefficients án and ln(ën) in (17). Our

simulated integrals are based on 100 Halton draws per subject. The estimated intercept án is

normally distributed between subjects with a mean (â0) of !0.519 and a standard deviation (ó0) of

0.846. The log-precision parameter ln(ën) is normally distributed between subjects with a mean (ô) of

1.304 and a standard deviation (óô) of 0.997. We can use these estimates to evaluate the between-

subject distribution of the risk aversion parameter ìùn and log-noise parameter ln(óùn) in the

population. The results suggest that E[ìùn] = !â0 = 0.519 and SD[ìùn] = ó0 = 0.846, while E[ln óùn]

18 Since the between-subject distribution of ìùn is normal, the population share of risk averse
subjects is equal to Pr(ìùn > 0) = 1!Ö(!E[ìùn]/SD[ìùn]), where Ö(.) is the standard normal distribution
function. The estimated share is significantly greater than 0.50 or 50% (one-sided p-value < 0.001).
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= !ô = !1.304 and SD[ln óùn] = ó0 = 0.997.19 Hence, the estimated population mean of relative risk

aversion is equal to 0.519, and we find that 73% of the population are risk averse.20

We next estimate the EUT model with non-parametric utility using data from the lab

experiment reported in Harrison and Rutström [2008; §2.6]. When all lottery pairs are defined over

the same set of three prizes, this model has a unidimensional parameter, which is required for dual

estimation: Since the utility function is unique up to an affine transformation, we can normalize

utility u1nt of the lowest prize to zero, set u3nt of the highest prize to one, and retain u2nt of the

medium prize as a free parameter. The indifference point û2nt then has a closed-form solution, û2nt =

(pB3nt ! pA3nt) / [(pB3nt ! pA3nt) + (pB1nt ! pA1nt)]. We assume that the RP urn for u2n is a logit-logistic

distribution, which can capture a variety of shapes: u2nt = Ë(ænt), where the inverted utility ænt is

logistically distributed within subjects with density f(ænt|ìæ, óæ).
21 Since the data set includes four sets

of three prizes, we can fit a separate model to each prize set. We focus here on the prize set with

{$0, $5, $10}. The constant distance between outcomes in the prize set allows one to associate

positive values of ìæ with diminishing marginal utility, hence risk aversion. A positive value of ìæ

implies u2nt = Ë(ìæ) > 0.5, which in turn implies (u3nt ! u2nt) < (u2nt  ! u1nt) since u1nt = 0 and u3nt =

1.22

Figure 1 displays the representative agent’s RP urn that is derived from the dual pooled logit

model. The top panel shows that the representative agent is risk averse: the estimated risk aversion

(ìæ) and noise (óæ) parameters in the logistic distribution of inverted utility ænt are equal to 1.066 and

0.693, respectively, which implies that the estimated utility of $5 is Ë(1.066) = 0.744 in the absence

of behavioral noise. The bottom panel shows that the ìæ and óæ values leads to a logit-logistic

distribution of utility u2nt = Ë(ænt) that is visibly skewed to the left. To capture between-subject

19 Using the analytic properties of the log-normal distribution, we can also evaluate the population
moments of óùn. We find that E[óùn] = 0.446, SD[óùn] = 0.582, and ñ(ìùn, óùn) = !0.042 (p-value = 0.570).

20 The between-subject correlation coefficient for án and ln(ën), ñô0, is equal to !0.055 with p-value =
0.564. Since the correlation coefficient for ìùn and ln(óùn), ñ[ìùn, ln óùn], is identical to ñô0, we do not find that
more risk averse subjects have more or less variation in risk preferences.

21 As Smithson and Shou [2017; p.423] graphically show, a logit-logistic distribution can approximate
a wide range of shapes (e.g., uniformity, unimodality, bimodality, and left and right skewness) without
imposing any particular shape restriction a priori.

22 The detailed results are reported in Table B1 in Appendix B.
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heterogeneity, the fixed coefficients ìæ and óæ can be replaced with subject-specific random

coefficients ìæn and óæn. The results from the dual RE logit and WTP space models are reported in

Appendix B, and we find again that the average subject is risk averse, and that approximately 90% of

the subjects are risk averse.

One can easily control for observed heterogeneity in risk preferences by adding explanatory

variables to the dual econometric models. One can also apply the dual estimation method to one-

parameter formulations of Yaari’s [1987] dual theory of choice under risk, and with the latent class

conditional logit model which is perhaps the most widely used alternative to the mixed logit model.

We discuss these applications in Appendix B.

4. Primal Estimation Method

We now turn to a versatile approach to estimating the primal representation of the RP

model. The estimation method can accommodate any theory that represents the subject’s evaluation

of lottery L by an index function VL(á), where the argument á is a multidimensional vector of

preference parameters. We do not impose any restrictions on the dimensionality and auxiliary

properties of the preference parameters, including the single crossing condition. The method can be

applied to RP versions of EUT with multiple utility parameters, such as the model specification in

(8) that takes a non-parametric approach to the utility function, and extensions of EUT that account

for multiple sources of risk attitudes, such as the RDU specification in (9) and (10).

The main challenge in estimating RP models is that a general purpose simulator like equation

(7) generates a step function which does not lend itself to numerical maximization.23 We solve the

problem by applying the kernel-smoothed frequency simulator that McFadden [1989] developed to

address the same issue for multinomial probit models. Our primal method requires a user-written

likelihood evaluator and does not share the remarkable accessibility of the dual method in section 3.

However, the likelihood evaluator of the RP model with fixed coefficients and kernel smoothing is

23 Simulated likelihood functions are also required when additive error models are combined with
random coefficients. As Revelt and Train [1998] explain, however, the general purpose simulator is not a step
function in those cases: When the additive error term is assumed to follow a parametric distribution which
produces a smooth link function (e.g., logit), the simulated likelihood function is a smooth function of the
parameters to be estimated.
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not harder to program than that of the additive error model with random coefficients (e.g., Harrison,

Lau and Yoo [2020]), as the two classes of evaluators share similar algebraic structures. This

similarity also helps one combine the RP and random coefficient models, by adding the “random

coefficient” integral at the subject level to complement the “RP” integral at the task level.

A. Kernel-Smoothed RP Choice Probabilities

Consider first the simple EUT model with CRRA utility in (5) and (6). This model assumes

that every subject carries the same RP urn, which follows a logistic distribution with density f(ùnt|ìù,

óù). When the single crossing condition is violated, one cannot apply the dual estimation method

and must instead rely on user-written likelihood evaluators. It is difficult, however, to obtain analytic

solutions to RP choice probabilities in general, and a general purpose simulator of choice

probabilities based on the simple frequency method generates a likelihood function that is not

amenable to numerical maximization.

We use a perturbation strategy by McFadden [1989; p.1001] to construct a kernel-smoothed

frequency simulator that more easily lends itself to numerical maximization. Let the latent dependent

variable representation of the RP model in (5), ynt* = ÄEUnt(ùnt), be perturbed by a contaminating

disturbance term that is logistically distributed with zero mean and standard deviation ê × 1.81. The

model is written as

ynt* = ÄEUnt(ùnt) + ê × vnt, (18)

where vnt is a standard logistic random variable and ê is a positive constant that is selected prior to

estimation. The disturbance ê × vnt is contaminating in the sense that it is not part of the assumed

stochastic choice process. It represents an intentional specification error which is added to obtain a

perturbed model that is easier to simulate than the target model.24 By selecting a suitably small value

of ê, one can approximate the target model to a desired degree of accuracy. McFadden and Train

[2000; p.451] provide an approximation theorem which formally supports this intuition.

24 The perturbed RP model in (18) is algebraically equivalent to a hybrid stochastic choice model that
combines the RP model with the additive behavioral error model. The hybrid model would have ê as a
behavioral noise parameter to be estimated, whereas the RP model has it as a measure of approximation error
to be selected prior to estimation.    

20



The logistic distribution of the contaminating disturbance term implies that the expected

value of I[ÄEUnt(ùnt) + ê × vnt > 0] conditional on ùnt takes the same functional form as the additive

error model in (4). Using the law of iterative expectations, the probability that subject n chooses

lottery B in task t is then equal to

Lnt(ìù, óù) =IË(ÄEUnt(ùnt)/ê)f(ùnt|ìù, óù)dùnt, (19)

which can be simulated as 

   Snt(ìù, óù) = (1/R)'r Ë(ÄEUnt(ìù + óù × ent,r)/ê),     (20)

where r = 1, 2, þ, R are pseudo-random draws from the standard logistic distribution, and ent,r is the

value of draw r. The perturbed choice probability in (19) and its simulated analogue in (20) are

identical to the RP choice probability in (6) and the general purpose simulator in (7), except that the

standard logistic distribution function, Ë(ÄEUnt(.)/ê), has replaced the indicator function, I(ÄEUnt(.)

> 0). From a computational perspective, one can consider Ë(ÄEUnt(.)/ê) as the logit kernel with

smoothing factor ê and directly motivate (20) as a kernel-smoothed version of (7), instead of seeing

it as a simulator of the perturbed choice probability.

To estimate the EUT model with homogeneous risk aversion ìù and noise óù, we can

simulate the sample likelihood function by taking the likelihood function of the pooled logit model

(e.g., Wooldridge [2010; §15.8.1]) as a template and use the kernel-smoothed simulator in (20) to

replace the standard logit probability.25 Since the kernel-smoothed simulator is a finite sum of

logistic distribution functions, it returns algebraically positive probabilities and is twice continuously

differentiable in ìù and óù. We can thus use conventional maximization algorithms to compute MSL

estimates of the two fixed coefficients. 

To account for between-subject heterogeneity, we can replace ìù and óù with subject-specific

random coefficients, as in (16), which assumes [ìùn, ln(óùn)]’ -MVN(bEUT, VEUT). We can simulate

the likelihood function of this random coefficient model by adding one more layer of simulation

that integrates the pooled RP likelihood function over the joint distribution of ìùn and ln(óùn). One

25 Since the perturbation strategy originates from the multinomial probit literature, we can adapt our
primal method to RP models for multinomial or rank-ordered choice data. We only need to replace the
binomial logit link with the multinomial logit or rank-ordered logit link, and divide each of the multiple index
functions in the model by the same smoothing factor ê. 
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can use the mixed logit likelihood for panel data (e.g., Train [2009; §6.7]) and replace the pooled

multinomial logit likelihood therein with the pooled RP likelihood. The simulated likelihood

functions for both fixed and random coefficient versions of the RP-EUT model with CRRA utility

are specified in Appendix A.

B. Multidimensional RP Models

Let ÄVnt(ánt) denote an index that represents the subject’s relative valuation of two lotteries

as a function of a multidimensional vector of RP parameters ánt, where the exact form of the index

may vary across theory and data. Suppose that ÄVnt(ánt) > 0 corresponds to the choice of lottery B,

and let f(ánt|è) denote the joint density of ánt which is characterized by the distributional parameters

in è. The probability that subject n chooses lottery B in task t is simulated by

Snt(è) = (1/R)3r Ë(ÄVnt(ánt,r)/ê), (21)

where ánt,r refers to draw r of ánt from f(ánt|è). The likelihood function of this generic RP model can

be simulated in the same way as the EUT model in (20) by using the pooled logit likelihood function

as a template. The likelihood function for the extended model with random coefficients, which

accounts for between-subject heterogeneity in è, can be simulated in similar fashion by using the

mixed logit likelihood function for panel data as a template. We describe this procedure in Appendix

A using the RDU model with CRRA utility as an example. Our primal estimation method can be

extended to other classes of RP models and distributional assumptions, and we are not aware of

other estimation methods which are equally versatile.26 

26 Our notation of ÄVnt(ánt) also allows the decision theory of interest to vary across decision tasks t.
Thus, one can apply the kernel-smoothed simulator in joint estimation of risk and time preferences, by
specifying a RP model of multidimensional risk parameters for the set of lottery choice tasks under risk and a
RP model of multidimensional discounting parameters for the set of intertemporal choice tasks, with two
different subsets of ánt becoming relevant to the two different sets of decision tasks.

Apesteguia, Ballester and Gutierrez-Daza [2020] estimate a two-dimensional RP model, which
comprises EUT with CRRA utility for choice under risk and exponential discounting (EXP) for
intertemporal choice behavior. Their likelihood evaluator replaces a continuous density function of the RP
parameters with purpose-built discrete probability masses, making it difficult to interpret the estimates in
relation to the continuous density function of interest. Jagelka [2020] estimates the same type of two-
dimensional RP model. He constructs a specialized likelihood evaluator which relies on the single crossing
condition, just like earlier RP applications in standalone estimation of EUT and EXP specifications (e.g.,
Loomes, Moffatt and Sugden [2002] and Apesteguia and Ballester [2018]).
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Given a non-parametric approach to the utility function like (8), the multidimensional RP

parameters in ánt include utility levels of alternative prizes. This type of utility specification poses a

particular challenge. Consider, for example, the EUT model with four utility levels, such that one

retains two RP parameters after normalizing the utility of the worst and best prizes. The

specification of RP urns in this case is complicated by the requirement that every realization of the

random vector ánt must satisfy monotone preferences, u1nt = 0 < u2nt < u3nt < u4nt = 1. Wilcox [2008;

§4.5] provides an analytic example which illustrates the near impossibility of finding a tractable

statistical distribution that satisfies such inter-parameter inequality constraints.

We can address this challenge by adopting a multinomial distribution. Let Äuknt = uknt !

u(k!1)nt denote the marginal utility between two prizes, k and k!1. We choose the within-subject

distribution of u2nt and u3nt indirectly by specifying the primitive joint distribution of Äu2nt and Äu3nt.

Assume that the marginal utility of prize k follows a logit-logistic distribution

Äuknt = exp(æknt) / [1 +exp(æ2nt) + exp(æ3nt)], (22)

where æknt is a logistic random variable with density f(æknt|ìæk, óæk) for k 0 {2, 3} and æ4nt = 0. The

utility of prizes k 0 {2, 3} can be then computed as a sum of marginal utilities

u2nt = Äu2nt and u3nt = Äu2nt + Äu3nt, (23)

so that u1nt = 0 < u2nt < u3nt < u4nt = 1, by construction. This RP model with non-parametric utility is

attractive because it uses logit-logistic distributions which are known for their ability to display a

variety of shapes, and also because it can be easily extended to higher dimensions by expanding the

denominator in the multinomial logit formula in (22). We can also combine the RP model with

between-subject heterogeneity, by specifying the mean and scale parameters in each density f(.|ìæk,

óæk) as random coefficients.

Selecting an appropriate smoothing factor ê is not straightforward (Train [2009; §5.6.2]).27

27 A smaller value of ê (i.e., less smoothing) makes the value of the logit kernel, Ë(ÄVnt(ánt,r)/ê), more
similar to the value of the indicator function, I(ÄVnt(ánt,r) > 0). Once they become too similar, Ë(ÄVnt(ánt,r)/ê)
will induce the same numerical problems as I(ÄVnt(ánt,r) > 0). While gradually reducing ê until the numerical
problems occurs may sound appealing, this mistakes the general purpose simulator in (7) for the target of
approximation; the kernel-smoothed simulator aims to approximate the RP choice probability in (6). When
the number of pseudo-random draws R is arbitrarily large, the general purpose simulator returns the RP
choice probability and selecting a smaller value of ê thus improves the quality of approximation. However, at
a fixed value of R, the general purpose simulator may deviate from the RP choice probability due to
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Since ê enters the smoothing kernel as a ratio, ÄVnt(ánt,r)/ê, the effect of ê is sensitive to the scale of

ÄVnt(.). We set this scale by normalizing the utility of the best prize in the sample to unity. In the

literature on semi-parametric estimation of discrete choice models, a factor of ê = 1/(N × T)0.2 is

often used to smooth the maximum score estimator (e.g., Horowitz [1992] and Yan and Yoo [2019]),

where N × T is the total number of observations. We have collated results from multiple

estimations with ê = # /(N × T)0.2, using multiplicative factors # 0 {0.01, 0.05, 0.1, 0.25, 0.5, 1, 2},

and find that values of ê between 0.01 and 0.02 work best in terms of convergence and, where

applicable, approximation of the dual estimates in section 3. While the latter results are only

available for models of unidimensional risk preferences, they provide useful benchmarks because the

dual likelihood functions do not include the contaminating disturbance term.

C. Empirical Illustration: Primal Estimation of RDU with CRRA Utility

We use our primal method to estimate the RDU model where each subject has two RP urns:

one urn with values of the random utility parameter ùnt and another urn with values of the random

probability weighting parameter önt. We first consider a representative agent model where every

subject has the same pair of RP urns. The utility urn has logistic density f(ùnt|ìù, óù) and the PWF

urn has normal density g(ln(önt)|mö, sö), where mö and sö is the mean and standard deviation of

ln(önt).
28 The upper panel in Figure 2 displays the estimated RP urns for the representative agent.

When ê = 0.015, the logistic density of the utility urn f(ùnt|ìù, óù), is generated by ìù = 0.635 and óù

= 0.643. We thus observe more concavity in the utility function (as measured by ìù) relative to the

EUT model. The normal density of the probability weighting urn g(ln(önt)|mö, sö) is generated by mö

= 0.224 (p-value = 0.004) and sö = 1.017. Since ln(1) is equal to 0, the estimated value of mö

indicates that the representative agent’s PWF is S-shaped, with the shape parameter equal to exp(mö)

simulation noise and minimal smoothing is not necessarily desirable. Some smoothing may reduce simulation
noise and improve the quality of approximation, just as a kernel density may approximate a true density
better than a histogram does.

28 We use 100 Halton draws per choice observation to simulate the RP component of each model
and, where applicable, another set of 100 Halton draws per subject to simulate the random coefficient
component. Bhat [2001] finds that 100 Halton draws provide about the same level of accuracy as 2,000
pseudo-random draws in a Monte Carlo study of discrete choice models. The difference is attributed to the
deliberate construction of Halton draws to provide good coverage of the parametric space.
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= 1.251. The two preference parameters (ìù and mö) are significantly different from zero, and we

reject the null hypotheses of linear utility and linear PWF at the 1% significance level. The two noise

parameters (óù and sö) are also significantly different from zero. We obtain qualitatively similar

findings for the two adjacent values of ê (0.037 and 0.007).29 

In the lower panel of Figure 2, we extend the RDU model to capture between-subject

heterogeneity in both RP urns. We allow each subject to have unique RP urns f(ùnt|ìùn, óùn) and

g(ln(önt)|mön, sön) and specify the four subject-specific parameters, ìùn, óùn, mön, and sön as

independent random coefficients.30 We focus on ê = 0.015, as the two adjacent values yield similar

results. The utility curvature parameter, ìùn, is normally distributed with population mean E[ìùn] =

0.558 and standard deviation SD[ìùn] = 0.697. The results imply that the average subject, along with

78.8% of the decision makers, has a concave utility function. The log shape parameter, mön, is

normally distributed with E[mön] = 0.066 (p-value = 0.469) and SD[mön] = 1.174, and we cannot

reject the hypothesis that the population is equally divided between those with inverse-S and S

shaped PWFs. The estimated between-subject distribution of mön implies that the population median

and mean of the shape parameter önt are equal to 1.068 (p-value = 0.484) and 2.163 (p-value <

0.001), respectively, where each p-value refers to the hypothesized value of unity that simplifies

RDU to EUT.31 Thus, the S-shaped weighting function in the representative agent model

qualitatively reproduces the shape of the average weighting function in the heterogenous population

rather than that of the median weighting function. 

29 The detailed results are reported in Appendix C. We also use our primal method to estimate the
unidimensional EUT models in section 3, and the estimated distributions of the risk aversion parameter are
displayed in Figure C1. The primal estimates of risk aversion and between-subject heterogeneity are similar to
the dual estimates in section 3. We observe some variation in the estimated noise parameter for different
values of ê in the simple EUT model with no between-subject heterogeneity, but the divergence in the noise
parameter between the primal and dual models disappears at ê = 0.037.

30 The numerical optimizer failed to obtain a solution to the full random coefficient model with a
4×4 covariance matrix. While it may be possible to estimate intermediate models that retain a subset of the
covariance parameters (e.g., Layton and Brown [2000]), we do not pursue this route.

31 The median is equal to exp(E[mön]) and the mean is equal to exp(E[mön] + SD[mön]
2/2).
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D. Empirical Illustration: Primal Estimation with Non-parametric Utility

We next consider the EUT model with non-parametric utility and estimate a joint model for

all available prize sets, {$5, $10, $15}, {$0, $10, $15}, {$0, $5, $15} and {$0, $5, $10}. Despite the

prominence of RP-EUT models with non-parametric utility in theoretic formulations such as Gul

and Pesendorfer [2006], there is no available method to estimate this structural model in a general

data environment.32 Our primal method provides the missing tool.

Figure 3 reports the representative agent’s RP urns for marginal utilities of $5. In relation to

(22), the inverted marginal utility from $0 to $5 ($5 to $10) in the top-left (bottom-left) panel refers

to the logistic random variable æ2nt (æ3nt), and the corresponding marginal utility in the top-right

(bottom-right) panel refers to the logit-logistic random variable Äu2nt (Äu3nt).
33 When ê = 0.010, the

estimated means of æ2nt and æ3nt in the left column of Figure 3 are equal to 1.092 and !0.143 (p-value

= 0.082). This implies that marginal utility from $0 to $5 is Äu2nt = 0.615; from $5 to $10 is Äu3nt =

0.179; and from $10 to $15 is Äu4nt = 0.206. We cannot reject the hypothesis that Äu3nt = Äu4nt at the

5% level (p-value = 0.098). Hence, the representative EUT decision maker is risk averse in the prize

set with {$0, $5, $10} and risk neutral when the prize set is {$5, $10, $15}. The EUT model with

between-subject heterogeneity in the two RP urns reinforces this finding.34 The estimated population

means of Äu2nt, Äu3nt and Äu4nt are equal to 0.580, 0.205 and 0.215, respectively, and we find that

86.3% of decision makers in the population exhibit diminishing marginal utility when comparisons

are made in relation to {$0, $5, $10}, but only 41.3% do so in relation to {$5, $10, $15}. We fail to

reject the hypothesis that the latter population share is different from 0.5 at the 5% significance level

(p-value = 0.053). 

32 We stress that three prizes per set is a feature of the data, and it is not a requirement by our primal
estimation method. In principle, we can also fit the EUT model with non-parametric utility to the Andersen,
Harrison, Lau and Rutström [2014] data, where the lottery pairs are defined over four sets of four prizes. We
do not consider this application because it would require us to report and discuss the results for 14 different
RP urns.

33 Of course, we can also restrict the EUT model to each prize set and obtain results that can be
directly compared to the dual estimates. Figure C2 and C3 in Appendix C report these results. We find that
the primal estimates are indistinguishable from the dual estimates.

34 The results are reported in the last panel of Table C3 and displayed in Figure C4. 
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Finally, we estimate the RDU model with non-parametric utility. The model combines a

logistic RP urn for the probability weighting parameter and two multinomial logit-logistic RP urns

for the utility parameters. Figure 4 displays the representative agent’s RP urns for the utility and

probability weighting parameters. When ê = 0.010, we find that all three RP urns play non-

redundant roles in explaining stochastic choice behavior, in the sense that the noise parameter of

each urn is significantly greater than zero with a p-value < 0.001. We draw similar conclusions as

before with respect to diminishing marginal utility, which suggests that probability weighting has

limited influence on the representative agent’s risk preferences. Indeed, the estimated mean of the

log-shape parameter, mö, in the bottom-left panel is !0.087 (p-value = 0.059) and we fail to reject

the hypothesis that the PWF is linear at the 5% significance level. The results thus suggest that the

representative agent is an EUT decision maker, albeit random fluctuations in the PWF may induce

choice behavior that deviates from this characterization.

Figure 5 displays the estimated distributions from the random coefficient RDU model that

accounts for between-subject heterogeneity in all three RP urns.35 Between-subject heterogeneity in

marginal utility, reported in the top and middle panels, is similar to what we find under EUT.

However, between-subject heterogeneity in probability weighting, reported in the bottom panel,

does not support the verdict in favor of EUT. When ê = 0.010, the bottom-left panel shows that the

within-subject mean of the log-shape parameter, mön, is normally distributed between subjects with

mean E[mön] = 0.013 (p-value = 0.710) and standard deviation SD[mön] = 0.482. The standard

deviation is significantly greater than zero (p-value < 0.001), which suggests that a substantial share

of decision makers in the population deviate from EUT. The bottom-right panel shows the

between-subject distribution of the shape parameter, defined as exp(mön). The population mean of

this distribution is equal to 1.477, which is significantly greater than 1 (p-value = 0.002). The average

shape of the PWF in the population is thus S-shaped rather than linear. The results for ê = 0.020

lead to qualitatively the same conclusions.

35 The results for ê = 0.002 are omitted as we could not obtain numerical solutions to the model.
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5. Conclusion

The RP model provides an integral framework for modeling within-individual heterogeneity

in choice behavior, by attributing such heterogeneity to preference parameters in the underlying

theory of risk attitudes rather than an additive error term that is external to the theory under

consideration. However, the RP likelihood function is computationally unattractive, and most

studies use additive error specifications in structural estimation of risk attitudes. We propose two

estimation methods to facilitate empirical applications of RP models. Our primal method illustrates

that the RP model does not fall behind other stochastic choice models in terms of generalizability.

By applying a kernel smoothing method, one can construct a versatile likelihood evaluator of the RP

model that can accommodate any decision theoretic structure and parametric distribution of

unobserved heterogeneity. Our dual method illustrates that the single crossing condition of

preferences can serve as a simple but powerful tool in empirical economics, as it has been in

economic theory. This property enables one to recast the RP model as a standard econometric

model and apply a standard regression command, making structural estimation of unidimensional

RP models immediately accessible to a broad audience.
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Table 1: Dual EUT Models with CRRA Utility

Standard
Parameter   Estimate Error p-value 95% Confidence Interval

A. Pooled Logit
(Log-likelihood = !7501.476)

â0     !0.932 0.069 <0.001 !1.068 !0.795
â1       1.740 0.088 <0.001   1.567   1.913

ìù = !â0/â1       0.535 0.033 <0.001   0.470   0.601
óù = 1/â1       0.575 0.029 <0.001   0.518   0.632

B. Random Effects Logit
(Log-likelihood = !6143.673)

â0     !1.327 0.114 <0.001 !1.550 !1.104
â1       2.411 0.133 <0.001   2.150   2.672
ó0       1.778 0.143 <0.001   1.498   2.058

E[ìùn] = !â0/â1
      0.550 0.038 <0.001   0.475   0.625

SD[ìùn] = ó0/â1       0.737 0.056 <0.001   0.628   0.847
óù = 1/â1       0.415 0.023 <0.001   0.370   0.460

C. Mixed Logit in WTP Space
(Log-likelihood = !5374.130)

â0     !0.519 0.022 <0.001 !0.562 !0.475
ô       1.304 0.074 <0.001   1.158   1.450
ó0       0.846 0.026 <0.001   0.794   0.898
óô       0.997 0.070 <0.001   0.859   1.135   
ñ0ô     !0.055 0.095   0.564 !0.242   0.132 

E[ìùn] = !â0       0.519 0.022 <0.001   0.475   0.562
E[ln óùn] = !ô     !1.304 0.074 <0.001 !1.450 !1.158
SD[ìùn] = ó0       0.846 0.026 <0.001   0.794   0.898
SD[ln óùn] = óô       0.997 0.070 <0.001   0.859   1.135   
ñ[ìùn, ln óùn] = ñ0ô   !0.055 0.095   0.564 !0.242   0.132 

Notes: All models have been estimated using the Andersen, Harrison, Lau and Rutström [2014] data set.
Standard errors have been adjusted for clustering at the subject level, except in panel C. The mixlogitwtp
(version 1.1.0) command in Stata does not support clustered standard errors. The coefficient ñ0ô is the
correlation coefficient between the random intercept and the random log-precision parameter. 
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Online Appendix A: Simulated Likelihood Functions

We first present simulated likelihood functions of the RP-EUT models with CRRA utility
which are discussed in section 4 of the main text. We then generalize the example to RDU models
with CRRA utility, and finally to a generic preference index function ÄVnt(ánt) of a random
preference vector ánt. Since the appendix focuses exclusively on simulated choice probabilities and
likelihood functions, we omit the descriptor “simulated” henceforth.  

A1. Expected Utility Theory with CRRA Utility
We first consider the EUT model with CRRA utility where each subject has the same RP

urn with logistic density f(ùnt|ìù, óù). The likelihood of subject n’s choice in task t is

hnt(ìù, óù) = Snt(ìù, óù)
ynt × [1 ! Snt(ìù, óù)]

(1 ! ynt), (A1)
 
where Snt(ìù, óù) refers to the choice probability in equation (20), and ynt is a binary indicator that is
equal to 1 if the observed choice is lottery B and equal to 0 if it is lottery A. The joint likelihood of
all T choices by subject n is

Hn(ìù, óù) = Jt hnt(ìù, óù), (A2)

where t = 1, 2, þ, T. The MSL estimates of ìù and óù can be computed by maximizing the sample
log-likelihood function, H(ìù, óù) = 3nln(Hn(ìù, óù)), where n = 1, 2, þ, N. Evaluating H(ìù, óù)
requires a total of N × T × R pseudo-random number draws. As specified in (20), for each tuple of
subject n and task t, one should generate R draws of ùnt from f(.|ìù, óù).

36

Next, suppose that each subject has her own RP urn with logistic density f(ùnt|ìùn, óùn).
Assume that the between-subject distribution of ìùn and ln(óùn) in the population is multivariate
normal with density ö([ìùn, ln(óùn)]’|bEUT, VEUT), where bEUT and VEUT are the mean vector and
covariance matrix, respectively. The joint likelihood of all T choices by subject n is then

Jn(bEUT, VEUT) = (1/Q)3qHn(ìùn,q, óùn,q), (A3)

where ìùn,q and óùn,q / exp{ln(óùn)} are the qth draw from the multivariate normal density ö(.|bEUT,
VEUT) and q = 1, 2, þ, Q. The MSL estimates of bEUT and VEUT can be computed by maximizing the
sample log-likelihood function, J(bEUT, VEUT) =  3nln(Jn(bEUT, VEUT)). Evaluating J(bEUT, VEUT)
requires a total of N × [Q + (Q × T × R)] sets of pseudo-random number draws. For each of the N
subjects, one should make Q sets of draws for ìùn and óùn from ö(.|bEUT, VEUT); conditional on
each of those Q subject-specific sets of draws, for each of T decision tasks, one should make R
draws of ùnt from f(.|ìùn,q, óùn,q).

37

36 We find it useful to truncate the primitive variate ent,r in (20) at the 0.5th and 99.5th percentiles of
the standard logistic distribution. The truncation precludes rare draws of outliers that can cause numerical
problems. At R = 100, we make almost 1.5 million draws of ùnt since our sample includes N × T = 413 × 36
= 14,868 choice observations. The sample log-likelihood function may display numerical problems if any of
those draws is extremely large in magnitude.

37 One can free up a substantial amount of system memory by using N × [Q + (T × R)] sets of
primitive draws to generate N × [Q + (Q × T × R)] sets of final draws. For each subject n and task t, one
can reuse the same set of primitive standard logistic variates ent,r, instead of using Q different sets of ent,r.
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A2. Rank-Dependent Utility with CRRA Utility
Consider the simple RDU model with CRRA utility where each subject has the same pair of

RP urns, and let the utility urn follow a logistic density f(ùnt|ìù, óù) and the PWF urn follow a
normal density g(ln(önt)|mö, sö). The probability that subject n chooses lottery B in task t is

Snt(ìù, óù, mö, sö) = (1/R)'rË(ÄRDUnt(ùnt,r, önt,r)/ê), (A4)

where ùnt,r and önt,r refer to the rth draws of ùnt and önt / exp{ln(önt)} from f(.|ìù, óù) and g(.|mö, sö),
respectively. The joint likelihood of all T choices by subject n is identical to (A2), except that Snt(ìù,
óù) is replaced with Snt(ìù, óù, mö, sö). Let Hn(ìù, óù, mö, sö) denote subject n’s joint likelihood
function. The MSL estimates of ìù, óù, mö, and sö can be computed by maximizing the sample log-
likelihood function, 3nln(Hn(ìù, óù, mö, sö)), which again entails N × T × R sets of draws.
  

Next, suppose that each subject has her own pair of RP urns, f(ùnt|ìùn, óùn) and
g(ln(önt)|mön, sön). Let óUN

ùn and sUN
ön denote primitive coefficients that satisfy |óUN

ùn| = óùn and
|sUN

ön| = sön. We assume that the between-subject distribution of èn = [ìùn, ó
UN

ùn, mön, s
UN

ön] in the
population is multivariate normal with density ö(èn|bRDU, VRDU).38 The joint likelihood of all T
choices by subject n is then

Jn(bRDU, VRDU) = (1/Q)3qHn(ìùn,q, óùn,q, mön,q, sön,q), (A5)

where ìùn,q, óùn,q, mön,q and sön,q refer to the qth draw of èn from ö(.|bRDU, VRDU). The MSL estimates
of bRDU and VRDU can be computed by maximizing the sample log-likelihood function, 3nln(Jn(bRDU,
VRDU)), which entails N × [Q + (Q × T × R)] sets of draws.

A3. Generalization
The EUT and RDU examples can be generalized to a generic preference index function

ÄVnt(ánt) of a random preference vector ánt. Let f(ánt|ò) denote the assumed joint density of ánt as a
function of parameters ò. The probability that subject n chooses lottery B in task t is then Snt(ò) =
(1/R)'rË(Ä(ánt,r)/ê), where ánt,r is the rth draw of ánt from f(.|ò). Subject n’s joint likelihood function,
Hn(ò), can be constructed by replacing Snt(ìù, óù) with Snt(ò) in (A2), and used subsequently in
estimation. For instance, consider a random coefficient model that replaces ò with a vector of
random coefficients òn, which has a joint density function ö(òn|Ø) of hyper-parameters Ø that
characterize its between-subject distribution. We use ö(.|Ø) to denote a generic joint density
function rather than a multivariate normal density function. Subject n’s joint likelihood in this case
can be evaluated as 

Jn(Ø) = (1/Q)3qHn(òn,q), (A6)

where òn,q is the qth draw of òn from ö(.|Ø).

38 The between-subject distributions of óùn is now folded-normal instead of log-normal. We could
not obtain a solution to the RDU specification with log-normal óùn.

-A2-



Online Appendix B: Supporting Results for Section 3

We report additional results to support our discussion in section 3 of the main paper. Tables
B1 and B2 report the dual estimates of the EUT models with non-parametric utility. Figure 1 in the
main text displays the pooled logit estimates reported in Table B1. Tables B3, B4 and B5 report the
dual estimation results for other types of model specifications, which we will explain in the
remainder of this appendix.  

B1. Variations on Model Specification
We can allow the risk aversion parameter, ìù or E[ìùn], to vary with observed characteristics

by allowing the intercept â0 in the dual logit model to vary with the same characteristics. In practice,
this simply entails adding independent variables to the logit model as usual. For example, adding the
subject’s age as an independent variable to the logit model is equivalent to replacing â0 with a linear
function (b0 + b1 × agen), where b0 and b1 are unknown parameters to be estimated. These
parameters can be transformed in the same manner as â0 itself to derive the overall intercept and
slope coefficient for the risk aversion parameter: !b0/â1 and !b1/â1 in the pooled and RE logit
models, and !b0 and !b1 in the mixed logit model in the WTP space.

We can also allow the log-noise parameter, ln(óù) or E[ln(óùn)], to vary with observed
characteristics. In the WTP space model, this is done by replacing the intercept ô in its log-precision
parameter, ln(ën) - N(ô, óô

2), with (c0 + c1 × agen) where c0 and c1 are parameters to be estimated. Just
as multiplying ô by !1 results in the log-noise parameter, multiplying c0 and c1 by !1 results in the
intercept and slope coefficient for the log-noise parameter. The pooled and RE logit models with
observed heterogeneity in the log-noise parameter can be estimated as a special case of this WTP
space model, by specifying both the overall intercept and the log-precision parameter as fixed
coefficients (pooled) or only the log-precision parameter as a fixed coefficient (RE).

Our examples for the RE logit and WTP space models use normal distributions to
accommodate between-subject heterogeneity in the dual RP urns. This distributional assumption can
be changed by using standard models for panel data which are typically estimated as alternatives to
those models. For example, most software packages support the estimation of mixed effects models
that allow the random intercept in the RE logit model to follow a non-normal parametric
distribution, and latent class logit models that use categorical distributions as non-parametric
approximation to an unknown between-subject distribution of the mixed logit coefficients.   

If one is willing to impose a priori bounds for the random risk aversion parameter ùnt, one
can exploit that restriction to apply a very flexible parametric distribution to model the RP urn for
ùnt, retaining at the same time the logit link which gives access to the mixed logit commands.39

Suppose that ùnt lies in a bounded interval (wMIN, wMAX), where wMIN is any number smaller than the
sample minimum of wnt and wMAX is any number greater than the sample maximum of wnt. Assume

39 This is not to say that the use of the logit link is essential to the dual estimation. All major software
packages support the estimation of pooled and RE binomial choice models with alternative link functions,
such as probit, cauchit and complementary log-log; they can be applied to the dual estimation in the same
manner as we have described, with suitable re-labeling of the location/mean and scale parameters. Retaining
the logit link, however, gives a distinctive advantage when it comes to modeling between-subject
heterogeneity in both risk and noise parameters: Non-logit alternatives to the mixed logit in the WTP space
or GMNL-II are not available as standard estimation commands, as they are rarely used in empirical research.
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further that the RP urn for ùnt is a logit-logistic random variable: This stochastic assumption may be
represented as either ùnt  = wMIN + (wMAX ! wMIN) × Ë(ænt) or ænt = Ë!1((ùnt ! wMIN) / (wMAX !
wMIN)), where Ë!1(.) is the inverse of the standard logistic distribution function Ë(.) and ænt is a
logistic random variable with a mean of ìæ and a standard deviation of óæ × 1.81. Denote by znt =
Ë!1((wnt ! wMIN) / (wMAX ! wMIN)) the corresponding inversion that converts the indifference point
wnt into the same units as ænt. 

The within-subject distribution of the logit-logistic ùnt resembles a beta distribution. It can
display a variety of shapes, such as bimodality and non-zero skewness, depending on the mean ìæ

and scale óæ of the underlying logistic variable. Smithson and Shou [2017; p.423] graphically illustrate
this flexibility. The probability that subject n chooses lottery B in task t is given by Pr(ùnt < wnt) =
Pr(ænt < znt), and has an analytic solution identical to equation (14), once we let ìæ, óæ and znt take the
place of ìù, óù and wnt, respectively. Thus, in the representative agent case, we can use the pooled
logit model to recover the mean and scale of the logistic component that underlies the logit-logistic
ùnt. To account for between-subject heterogeneity in the mean (and scale), we can continue using
the RE logit model (or the WTP space model) as described in the preceding sections.

Our dual estimation method can be directly applied to EUT with constant absolute risk
aversion (CARA) utility. Algebraically, we simply need to replace the CRRA utility function with the
CARA utility function, prior to finding the root of the equation ÄEUnt(wnt) = 0. Of course, in this
case, both random risk aversion parameter ùnt and indifference point wnt must be interpreted in
relation to the coefficient of ARA rather than the coefficient of RRA.

When all decision tasks in the sample involve probability distributions over the same set of
three prizes (e.g., Loomes, Moffatt and Sugden [2002]), our dual method can be adapted to estimate
a doubly flexible RP model that combines a non-parametric approach to the utility function in
equation (8) with a logit-logistic distribution of the RP component.40 As with (8), let pLk denote the
probability of prize mk in lottery L 0 {A, B} and uk denote the utility of that prize, where u1 < u2 <
u3; we have omitted the nt subscript from each of these variables and parameters to reduce
notational cluttering. Suppose that B is risky relative to A in the sense that the former offers higher
chances of the best and worst outcomes, i.e., pA1 < pB1 and pA3 < pB3. Since the utility function under
EUT is unique up to a positive affine transformation, we can normalize u1 = 0 and u3 = 1 without
the loss of generality, retaining u2 as a free parameter that lies in the unit interval. Then, the expected
utility difference can be simplified as ÄEU(u2) = (pB3 ! pA3) + (pB2 ! pA2)u2, and the indifference
point û2 that solves ÄEU(û2) = 0 has a closed-form solution of û2 = (pB3 ! pA3) / [(pB3 ! pA3) + (pB1

! pA1)], which also lies in the unit interval. The utility parameter u2 is a measure of risk aversion that
satisfies the single crossing property: Anyone with u2 < û2 chooses the risky lottery B, i.e., ÄEU(u2) >
0, and anyone with u2 > û2 chooses the safe lottery A, i.e., ÄEU(u2) < 0.

40 Our dual estimation method cannot be applied to EUT with non-parametric utility when some
decision tasks involve probability distributions over one set of three prizes and other decision tasks involve
probability distributions over another set(s) of three prizes (e.g., Harrison and Rutström [2008; §2.6]). In such
cases, the model has a multidimensional vector of preference parameters because even after normalizing the
sample maximum and minimum of the utility levels, one retains two or more utility levels as free parameters.
Therefore, to proceed with the estimation of EUT with non-parametric utility, one must apply a more
general approach that we present in section 4; alternatively, one may split the sample into different sub-
samples based on prize sets, and analyze each sub-sample separately using the dual estimation method.
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To introduce the RP component, we specify u2 as a random risk aversion parameter u2nt that
varies randomly across subjects and over choice tasks. Assume further that the RP urn for u2nt is a
logit-logistic random variable: u2nt = Ë(ænt) or ænt = Ë!1(u2nt), where Ë(.), Ë!1(.) and ænt are as defined
earlier, and the bounds for u2nt 0 (0, 1) follow from the income monotonicity of utilities. The
probability that subject n chooses lottery B in task t is given by Pr(u2nt > û2nt) = Pr(ænt > Ë!1(û2nt)),
and has an analytic solution identical to equation (14) once we set ìz = ìù, óz = óù and Ë!1(û2nt) =
wnt. The resulting EUT model is thus dual to the pooled logit model under the representative agent
assumption, and can be generalized using the RE and mixed logit models to account for between-
subject heterogeneity in ìz and óz. 

EUT does not exhaust models with potentially unidimensional risk preference parameters.41

A prominent alternative is Yaari’s [1987] Dual Theory of Choice under Risk (DT), which attributes
risk attitude to non-linear probability weighting rather than non-linear utility curvature: It can be
seen as a special case of RDU in equation (9) that constrains the utility function to be linear, by
setting U(mLk|ù) = mLk. When DT displays the single crossing property, one can apply our dual
estimation method to estimate its RP variants, just as with the EUT model. Given the Prelec PWF in
(10) or the power PWF in (B2) below, lottery pairs based on the logic of MPL induce single crossing
in the DT index function as required by our method.42

B2. Empirical Illustration: Dual Theory Models
We consider the dual estimation of a RP variant of Yaari’s [1987] Dual Theory (DT), using

data from a field experiment reported in Andersen, Harrison, Lau and Rutström [2014]. As
summarized in section 2 of our main text, the battery of choice tasks in the experiment was based
on the same logic as the multiple price list of Holt and Laury [2002]: Each lottery pair can be written
as A = {(mA1, (1 ! p2)), (mA2, p2)} and B = {(mB1, (1 ! p2)), (mB2, p2)} where mB1 < mA1 < mA2 < mB2

and the probability of the higher prize p2 is identical across the two lotteries. 

Under DT, the subject’s evaluation of lottery L 0 {A, B} in such pairs may be specified as

DTL(ç) = [(1 ! ð(p2|ç)] × mL1 +  ð(p2|ç) × mL2 (B1)

where ð(.|ç) is some probability weighting function (PWF) of a unidimensional parameter ç. Before
placing a functional form on ð(.|ç), define p! 2 = (mA1 ! mB1) / [(mB2 ! mB1) ! (mA2 !mA1)], and let
ÄDT(ç) = DTB(ç) ! DTA(ç) denote the subject’s valuation difference between the two lotteries.
Next, note that ÄDT(ç) > 0 if ð(p2|ç) > p! 2 and ÄDT(ç) < 0 if ð(p2|ç) < p! 2: That is, p! 2 measures the
threshold level of the weighted probability of the higher prize that determines whether the subject
prefers lottery B or lottery A. It follows that as long as ð(p2|ç) is monotone increasing or decreasing

41 More generally, one may also apply our approach outside the analysis of risk preferences. For
example, consider the estimation of the RP model of exponential discounting behavior that satisfies the
single crossing property (e.g., Apesteguia and Ballester [2018]). Since an exponential discounting factor lies in
the unit interval, it lends itself to the use of a logit-logistic RP urn.

42 In the MPL design, two lotteries have the same expected value if the probability of the better prize
in each lottery is equal to p!2 = (mA1 ! mB1) / [(mB2 ! mB1) ! (mA2 !mA1)] because the prizes satisfy the
inequality mB1 < mA1 < mA2 < mB2. With an abuse of notation, let ð(P|ö) denote an arbitrary PWF of a
unidimensional parameter ö, which needs not be the Prelec function in (10). The indifference point under
DT is the value of ö that solves the equation ð(p2|ö) = p!2, where p2 is the objective probability of the better
prize.
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in ç at a given p2, ÄDT(ç) displays the single crossing property as required by the dual estimation
method, and one can calculate the indifference point ç* that solves ÄDT(ç*) = 0 by inverting the
identity ð(p2|ç*) = p! 2 with respect to ç*. 

Prelec’s [1998] PWF in equation (10) is a functional form that induces single crossing in
ÄDT(ç), given the lottery pairs in question. In the present application, for the ease of interpretation,
we adopt another functional form that is consistent with the single crossing property. Specifically,
we parameterize ð(.|ç) as a power function

ð(p2|ç) = (p2)
ç (B2)

where the power coefficient ç is a risk aversion parameter, in the sense that the decision makers with
ç 0 (0, 1) display optimism (i.e., ð(p2|ç) > p2) which induces risk seeking and those with ç > 1
display pessimism (i.e., ð(p2|ç) < p2) which induces risk aversion. The indifference point ç* then has
a simple analytic solution, namely ç* = ln(p! 2) / p2.

As with the main text, let n index subjects and t index choice tasks. Let ln(çnt) denote a
primitive RP parameter that randomly varies across subjects and choice tasks, and ln(ç*nt) denote an
independent variable that records the natural log of the indifference point ç*nt. Suppose that the RP
urn for ln(çnt) is a logistic density function f(ln(çnt)|ìç, óç) of the risk aversion parameter ìç and the
noise parameter óç. Since ln(1) = 0, a positive (negative) value of ìç indicates that the subject is risk
averse (risk seeking) in the absence of behavioral noise. 

The analytic steps that we have described for the EUT model with CRRA utility can be
directly adapted to accommodate the DT model with the power PWF, once we set ùnt to ln(çnt) and
wnt to ln(ç*nt). This includes the use of the RE logit and mixed logit in the WTP space to capture
between-subject heterogeneity in the RP urn. Table B3 reports the three types of logit models which
are dual to the DT model. In brief, we draw qualitatively similar conclusions as we did with the EUT
model. We find evidence of risk aversion for the representative agent (pooled logit), as well as the
average decision maker in the subject population (RE logit and WTP space model). Between-subject
heterogeneity in the risk aversion parameter, estimated for the RE logit (WTP space) model, implies
that 81.1% (81.6%) of decision makers are risk averse; the corresponding estimate from the EUT
model is 77.2% (73.0%).

B3. Empirical Illustration: Incorporating Observed Heterogeneity
We can extend the dual estimation method to incorporate observed heterogeneity in risk

preferences, simply by adding relevant independent variables to the dual logit models in the usual
manner. To facilitate discussion, suppose that the RP model of interest is the EUT model with
CRRA utility reported in section 3, and let femalen denote a binary indicator variable that is equal to
one if subject n is female and zero otherwise. To start off with, suppose now that we add this
variable to the dual pooled logit model as follows

Lnt(b0, b1, â1) = Ë(b0 + b1femalen + â1wnt) (B3)

which can be seen as a specification that replaces a constant intercept â0 in (12) with a demographic
intercept (b0 + b1femalen). Just as the constant specification (12) is dual to the logistic EUT model
with the risk aversion parameter ìù = !â0/â1 and the noise parameter óù = 1/â1, the demographic
specification (B3) is dual to the logistic EUT model with the risk aversion parameter (m0 +
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m1femalen) = (!b0/â1 !  b1/â1) and the noise parameter óù = 1/â1. This insight extends directly to
the RE logit (15) and the mixed logit model in the WTP space in (17); in the latter model, we can
also replace a constant intercept ô in the log-precision parameter, ln(ën) - N(ô, óô

2), with a
demographic intercept, thereby inducing observed heteroskedasticity in the log-noise parameter of
the primal model. 

Table B4 reports the demographic extension of each dual logit model in Table 1. To make
the link between the two tables clearer, we use â0:base and â0:female to denote b0 and b1, and
likewise we use ìù:base and ìù:female to denote m0 and m1. Other parameter labels with base and
female suffixes can be similarly associated with the baseline intercept and the demographic slope
coefficient. As with section 3, we use the logit and xtlogit, re commands in Stata to estimate the pooled
and RE logit models. Hole’s [2016] mixlogitwtp command does not allow one to include observed
heterogeneity in the log-precision parameter of the WTP space model. We therefore use the gmnl
command by Gu, Knox and Hole [2013] and estimate the WTP space model as a special case of the
GMNL-II model (Fiebig, Keane, Louviere, and Wasi [2010]), an approach inspired by Greene and
Hensher [2010; p.416].43

 
The pooled logit model reported in the top panel of Table B4 suggests that while both men

and women are risk averse, women tend to be more risk averse than men. The coefficient of relative
risk aversion is equal to 0.416 for men (ìù:base) and 0.664 (ìù:base + ìù:female) for women; the
female-male difference of 0.248 (ìù:female) is significantly greater than zero (p-value < 0.001). We
draw qualitatively similar conclusions from the RE logit model in the middle panel and the WTP
space model in the bottom panel, which account for unobserved between-subject heterogeneity in
risk aversion on top of the observed heterogeneity. The WTP space model also includes an extra
parameter E[ln óùn]:female, which captures whether women’s risk preferences tend to show greater or
smaller random fluctuations than men’s. We do not find evidence of such demographic
heteroskedasticity: The point estimate of 0.176 is small in magnitude compared to the overall
intercept (E[ln óùn]:base = !1.139) and is not significantly different from zero at the 5% significance
level (p-value = 0.076).
 

B4. Empirical Illustration: Dual Estimation with Latent Class Models
The latent class logit model is perhaps the most widely used alternative to mixed logit

models that assume normally distributed random coefficients: See, for example, Oviedo and Yoo
[2017] and Doiron and Yoo [2020]. From an econometric perspective, the latent class logit can be
seen as a finite mixture of C different pooled logit models, where C is a number to be preset prior to
estimation and each of the component models has its own values of parameters â0 and â1. The log-
likelihood function of the latent class logit model is equal to a weighted average of the log-likelihood
functions of the pooled logit models, where the weights are parameters to be estimated alongside
the C different vectors of â0 and â1.  

We can apply the latent class logit model to the dual estimation of the RP-EUT model with
CRRA utility (for that matter, to the dual estimation of any RP model which displays the single
crossing property). The primal model can be motivated as a model which assumes that there are C
different classes or types of decision makers in the subject population, where each type of decision
maker has their own logistic RP urn, with their own values of risk aversion parameter ìù and noise

43 We thank Arne Risa Hole for alerting us to this reference.
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parameter óù. The weight on each class in the log-likelihood function can be seen as the population
share of that class. Much as the mixed logit model in the WTP space, the latent class logit model is a
model that accounts for between-subject heterogeneity in both risk aversion and noise since the ìù

and óù are allowed to vary across classes. 

The weighted average structure of the latent class logit model’s log-likelihood function opens
up another way of addressing observed heterogeneity in risk preferences. Instead of specifying ìù

and óù to vary with observed characteristics as we have illustrated in section B1, we may let the
mixture weights or class shares to vary with observed characteristics. When the observed
characteristics are demographic characteristics like femalen, the primal RP model postulates that
there are fundamentally C different types of RP urns and some types are more prevalent in certain
demographic groups than others. 

In Table B5, we use the lclogit2 command in Stata (Yoo [2020]) to fit a 3-class latent class
logit model to the Andersen, Harrison, Lau and Rutström [2014] data set. This model is dual to a 3-
class RP-EUT model with CRRA utility, and we specify the share of each class to vary between male
and female sub-populations by including femalen as an independent variable in the share equation.
The risk aversion parameter ìù (noise parameter óù) is estimated to be 0.357 (0.233) for class 1;
0.541 (0.652) for class 2 and  !0.118 (2.041) for class 3. The baseline class share estimates suggest
that class 1 makes up 61.8% of the male population; class 2 makes up 21.5%; and class 3 makes up
16.7%. Finally, we find that women are more risk averse than men in the sense that the most risk
averse class makes up a greater share of the female sub-population: the share of class 2 in the female
sub-population is 14 percentage points greater, and that of class 1 is 10.1 percentage points smaller.
While the share of the only risk seeking type, class 3, is also smaller by 3.9 percentage points in the
female sub-population, this difference is not statistically significant (p-value = 0.267).  
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1021-1051. 

Yoo, Hong Il, “lclogit2: An enhanced command to fit latent class conditional logit models,” Stata 
Journal, 20(2), 2020, 405-425.

-A8-



Table B1: EUT Model with Non-parametric Utility for {$0, $5, $10}

Standard
Parameter   Estimate Error p-value 95% Confidence Interval

A. Pooled Logit
(Log-likelihood = !746.988)

â0     !1.538 0.197 <0.001 !1.925 !1.152
â1       1.443 0.162 <0.001   1.126   1.761

ìæ = !â0/â1       1.066 0.107 <0.001   0.857   1.275
óæ = 1/â1       0.693 0.078 <0.001   0.541   0.845

B. Random Effects Logit
(Log-likelihood = !638.381)

â0     !2.066 0.257 <0.001 !2.570 !1.562
â1       1.945 0.217 <0.001   1.521   2.370
ó0       1.464 0.192 <0.001   1.086   1.841

E[ìæn] = !â0/â1
      1.062 0.109 <0.001   0.848   1.276

SD[ìæn] = ó0/â1       0.752 0.112 <0.001   0.533   0.972
óæ = 1/â1       0.514 0.057 <0.001   0.402   0.626

C. Mixed Logit in WTP Space
(Log-likelihood = !633.076)

â0     !1.012 0.083 <0.001 !1.175 !0.850
ô       0.717 0.106 <0.001     0.509   0.925
ó0       0.799 0.099 <0.001     0.604   0.994
óô       0.534 0.115 <0.001     0.759   0.310
  
E[ìæn] = !â0       1.012 0.083 <0.001   1.175   0.850
E[ln óæn] = !ô     !0.717 0.106 <0.001   !0.509 !0.925
SD[ìæn] = ó0       0.799 0.099 <0.001     0.604   0.994
SD[ln óæn] = óô       0.534 0.115 <0.001     0.759   0.310     

Notes: All models have been estimated using the Harrison and Rutström [2008] data set. Standard errors have
been adjusted for clustering at the subject level, except in panel C. The mixlogitwtp (version 1.1.0) command in
Stata does not support clustered standard errors. 
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Table B2: EUT Model with Non-parametric Utility for {$5, $10, $15}

Standard
Parameter   Estimate Error p-value 95% Confidence Interval

A. Pooled Logit
(Log-likelihood = !704.567)

â0       0.160 0.143   0.263 !0.120     0.439
â1       1.060 0.140 <0.001   0.785   1.335

ìæ = !â0/â1     !0.151 0.143   0.293 !0.431   0.130
óæ = 1/â1       0.943 0.125 <0.001   0.699   1.188

B. Random Effects Logit
(Log-likelihood = !639.532)

â0       0.204 0.178   0.251 !0.145   0.553
â1       1.310 0.174 <0.001   0.970   1.650
ó0       1.134 0.148 <0.001   0.844   1.425

E[ìæn] = !â0/â1
    !0.156 0.146   0.284 !0.441   0.129

SD[ìæn] = ó0/â1       0.866 0.145 <0.001   0.582   1.150
óæ = 1/â1       0.764 0.101 <0.001   0.565   0.962

C. Mixed Logit in WTP Space
(Log-likelihood = !639.486)

â0       0.163   0.143       0.254    !0.117      0.444
ô       0.268   0.138       0.053    !0.003      0.539
ó0       0.867   0.149      <0.001      0.575      1.159
óô       0.109   0.344       0.751    !0.564      0.783
  
E[ìæn] = !â0     !0.163   0.143       0.254                !0.444   0.117    
E[ln óæn] = !ô     !0.268   0.138       0.053    !0.539   0.003    
SD[ìæn] = ó0       0.867   0.149      <0.001      0.575      1.159
SD[ln óæn] = óô       0.109   0.344       0.751    !0.564      0.783    

Notes: All models have been estimated using the Harrison and Rutström [2008] data set. Standard errors have
been adjusted for clustering at the subject level, except in panel C. The mixlogitwtp (version 1.1.0) command in
Stata does not support clustered standard errors.
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Table B3: RDU Model with Linear Utility and Power PWF 

Standard
Parameter   Estimate Error p-value 95% Confidence Interval

A. Pooled Logit
(Log-likelihood = !7508.914)

â0     !1.096 0.063 <0.001 !1.220   !0.972
â1       1.559 0.070 <0.001   1.422   1.696

ìç = !â0/â1       0.703 0.040 <0.001   0.625   0.781
óç = 1/â1       0.641 0.029 <0.001   0.585   0.698

B. Random Effects Logit
(Log-likelihood = !6125.813)

â0     !1.587 0.112 <0.001 !1.807 !1.368
â1       2.187 0.108 <0.001   1.975   2.400
ó0       1.800 0.138 <0.001   1.530   2.070

E[ìçn] = !â0/â1
      0.726 0.044 <0.001   0.639   0.813

SD[ìçn] = ó0/â1       0.823 0.057 <0.001   0.710   0.935
óç = 1/â1       0.457 0.023 <0.001   0.413   0.502

C. Mixed Logit in WTP Space
(Log-likelihood = !5439.673)

â0     !0.782   0.030     <0.001    !0.841    !0.723
ô       1.094   0.051     <0.001      0.995      1.193
ó0       0.869   0.030      <0.001      0.810      0.927
óô       1.010   0.046     <0.001      0.920      1.101
ñ0ô       0.180 0.042 <0.001   0.098   0.262
  
E[ìçn] = !â0       0.782   0.030     <0.001                 0.723   0.841   
E[ln óçn] = !ô     !1.094   0.051     <0.001     !0.539   0.003    
SD[ìçn] = ó0       0.869   0.030      <0.001      0.575      1.159
SD[ln óçn] = óô       1.010   0.046     <0.001     !0.564      0.783
ñ[ìçn, ln óçn] = ñ0ô      0.180 0.042 <0.001 !0.242   0.132    

Notes: All models have been estimated using the Andersen, Harrison, Lau and Rutström [2014] data set.
Standard errors have been adjusted for clustering at the subject level, except in panel C. The mixlogitwtp
(version 1.1.0) command in Stata does not support clustered standard errors. The coefficient ñ0ô is the
correlation coefficient between the random intercept and the random log-precision parameter. 
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Table B4: EUT Model with CRRA Utility and Observed Heterogeneity

Standard
Parameter   Estimate Error p-value 95% Confidence Interval

A. Pooled Logit with Observed Heterogeneity in Risk Aversion
(Log-likelihood = !7442.767)

â0:base         !0.730 0.089 <0.001 !0.904 !0.556
â0:female     !0.436 0.113 <0.001 !0.658 !0.213
â1       1.756 0.089 <0.001   1.582   1.930

ìù:base         0.416 0.046 <0.001   0.326   0.505
ìù:female       0.248 0.065 <0.001   0.120   0.376
óù = 1/â1       0.569 0.029 <0.001   0.513   0.626

B. Random Effects Logit with Observed Heterogeneity in Risk Aversion
(Log-likelihood = !6137.296)

â0:base     !1.015 0.140 <0.001 !1.290 !0.740
â0:female     !0.645 0.182 <0.001 !1.001 !0.289
â1       2.411 0.133 <0.001   2.150   2.672
ó0       1.746 0.140 <0.001   1.471   2.021

E[ìùn]:base       0.421 0.053 <0.001   0.317   0.525
E[ìùn]:female       0.268 0.075 <0.001   0.120   0.415
SD[ìùn] = ó0/â1       0.724 0.055 <0.001   0.616   0.832
óù = 1/â1       0.415 0.023 <0.001   0.370   0.460

C. Mixed Logit in WTP Space with Observed Heterogeneity in Risk Aversion & Noise
(Log-likelihood = !5395.158)

â0:base     !0.366 0.038 <0.001 !0.440 !0.291
â0:female     !0.357 0.047 <0.001 !0.450 !0.264
ô:base       1.139 0.029 <0.001   1.011   1.267
ô:female     !0.176 0.099   0.076 !0.370   0.018
ó0       0.885 0.026 <0.001   0.828   0.943
óô       1.108 0.046 <0.001   1.018   1.197   

E[ìùn]:base       0.366 0.038 <0.001   0.291   0.440
E[ìùn]:female       0.357 0.047 <0.001   0.264   0.450
E[ln óùn]:base     !1.139 0.029 <0.001 !1.267 !1.011
E[ln óùn]:female       0.176 0.099   0.076   0.018   0.370
SD[ìùn] = ó0       0.724 0.055 <0.001   0.616   0.832
SD[ln óùn] = óô       0.415 0.023 <0.001   0.370   0.460

Notes: All models have been estimated using the Andersen, Harrison, Lau and Rutström [2014] data set.
Standard errors have been adjusted for clustering at the subject level, except in panel C. The gmnl (version
1.1.0) command in Stata does not support clustered standard errors.
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Table B5: Dual Latent Class Logit of EUT Model with CRRA Utility

(Log-likelihood = !5870.044)

Standard
Parameter   Estimate Error p-value 95% Confidence Interval

A. Class 1

â0     !1.536           0.098   <0.001              ! 1.727              ! 1.344
â1       4.297            0.178    <0.001                 3.948    4.646

ìù = !â0/â1       0.357      0.025    <0.001          0.309         0.406
óù = 1/â1       0.233     0.010   <0.001          0.214         0.252

Share:base       0.618     0.036      <0.001           0.547      0.690
Share:female     !0.101           0.051        0.047    !0.201      !0.001

B. Class 2

â0     !2.325           0.174              <0.001              !2.666               !1.985
â1       1.535           0.178    <0.001   1.185      1.884

ìù = !â0/â1       0.541            0.051 <0.001                 0.442                  0.640
óù = 1/â1       0.652            0.076                 <0.001   0.503     0.800

Share:base       0.215            0.033     <0.001     0.149        0.280
Share:female       0.140            0.046      0.003          0.049         0.231

C. Class 3

â0       0.507           0.140    <0.001     0.234         0.781
â1       0.490           0.094     <0.001           0.306         0.674

ìù = !â0/â1     !0.118           0.033  <0.001        !0.182      !0.054
óù = 1/â1        2.041           0.390                 <0.001      1.276     2.806

Share:base       0.167            0.026     <0.001           0.116                 0.219
Share:female     !0.039            0.035      0.267        !0.107         0.030

Notes: The model has been estimated using the Andersen, Harrison, Lau and Rutström [2014] data set.
Standard errors have been adjusted for clustering at the subject level.
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Online Appendix C: Supporting Results for Section 4

Table C1: EUT Model with CRRA Utility (ê = 0.015)

Standard
Parameter Estimate Error p-value 95% Confidence Interval

A. Representative Agent Model
(Log-likelihood = !7572.459)

ìù  0.512  0.036    <0.001  0.442  0.582
óù  0.673      0.034   <0.001    0.607   0.739

B. Random Coefficient Model
(Log-likelihood = !5380.227)

E[ìùn]  0.591  0.045                  <0.001         0.502     0.679
E[ln óùn]           !1.343                 0.057                  <0.001              !1.454               !1.231
SD[ìùn]  0.810   0.033   <0.001    0.745     0.875
SD[ln óùn]  1.208                 0.053                 <0.001  1.105     1.312  
ñ[ìùn, ln óùn]  0.129                 0.028                 <0.001  0.073  0.184

Notes: All models have been estimated using the Andersen, Harrison, Lau and Rutström [2014] data set. In
the representative agent model, standard errors have been adjusted for clustering. In the random coefficient
model, we do not adjust standard errors for clustering to make them comparable to standard errors in panel
C of Table 1.
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Table C2: RDU Model with CRRA Utility (ê = 0.015)

Standard
Parameter Estimate Error p-value 95% Confidence Interval

A. Representative Agent Model
(Log-likelihood = !7414.671)

ìù  0.635 0.051    <0.001         0.535        0.736
mö  0.224    0.078        0.004  0.071   0.377
óù  0.643      0.050 <0.001  0.544   0.742
sö  1.017   0.046   <0.001  0.926  1.108

B. Random Coefficient Model
(Log-likelihood = !-5232.844)

E[ìùn]  0.558 0.046 <0.001  0.468   0.648
E[mön]  0.066 0.091    0.469             !0.112  0.244
E[óUN

ùn]  0.309   0.049     <0.001  0.214  0.405
E[sUN

ön]  1.174   0.080    <0.001    1.017   1.331
SD[ìùn]  0.697    0.056    <0.001  0.588     0.806
SD[mön]  1.174    0.080 <0.001  1.017    1.331
SD[óUN

ùn]  0.367 0.045     <0.001  0.280  0.455
SD[sUN

ön]  0.013  0.074       0.862               !0.131  0.157
ñ[ìùn, ó

UN
ùn]      !0.308  0.065 <0.001              !0.434              !0.181

Notes: All models have been estimated using the Andersen, Harrison, Lau and Rutström [2014] data set. All
standard errors have been adjusted for clustering at the subject level. The representative model assumes that
the log-shape parameter is normally distributed: ln(önt) - N(mö, sö

2). In the random coefficient model, óUN
ùn is

a normally distributed random coefficient such that |óUN
ùn| is equal to óùn, the within-subject scale of ùnt.

sUN
ön is similarly defined with respect to sön, the within-subject standard deviation of ln(önt). 
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Table C3: EUT Model with Non-parametric Utility for {$0, $5, $10} and {$5, $10, $15}

Standard
Parameter   Estimate Error p-value 95% Confidence Interval

A. Representative Agent Model for {$0, $5, $10}
(Log-likelihood = !747.763; ê = 0.012)

ìæ       1.082      0.110  <0.001   0.866   1.297
óæ       0.727 0.078 <0.001     0.574   0.880

B. Representative Agent Model for {$5, $10, $15}
(Log-likelihood = !704.222; ê = 0.013)

ìæ     !0.157 0.153   0.303 !0.457    0.142
óæ       0.987 0.137 <0.001    0.719   1.255

C. Random Coefficient Model for {$0, $5, $10}
(Log-likelihood = !637.393; ê = 0.012)

  
E[ìæn]                    1.056 0.107                  <0.001     0.846   1.266   
E[ln óæn]     !0.630 0.119  <0.001 !0.863 !0.398
SD[ìæn]       0.753 0.094  <0.001   0.569    0.937
SD[ln óæn]       0.559 0.125  <0.001    0.315   0.804   

D. Random Coefficient Model for {$5, $10, $15}
(Log-likelihood = !640.025; ê = 0.013)

  
E[ìæn]                  !0.173 0.152       0.257     !0.471   0.126
E[ln óæn]     !0.099 0.139       0.477       !0.371    0.173  
SD[ìæn]       0.929 0.158  <0.001   0.619   1.238
SD[ln óæn]       0.023 0.220     0.918 !0.409   0.455  

Notes: All models have been estimated using the Harrison and Rutström [2008] data set. All standard errors
have been adjusted for clustering at the subject level. In the representative agent models, standard errors have
been adjusted for clustering. In the random coefficient models, we do not adjust standard errors for
clustering to make them comparable to standard errors in the bottom panels, indexed by C, in Tables B1 and
B2.
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Table C4: EUT Model with Non-parametric Utility for {$0, $5, $10, $15} (ê = 0.010)

Standard
Parameter Estimate Error p-value 95% Confidence Interval

A. Representative Agent Model
(Log-likelihood = !2357.540)

ì{æ2}  1.092  0.181     <0.001     0.738   1.446
ì{æ3}             !0.143 0.082       0.081              !0.305  0.018
ó{æ2}  0.980   0.138     <0.001  0.709    1.250
ó{æ3}  0.703     0.090    <0.001   0.526   0.881

B. Random Coefficient Model
(Log-likelihood = !2052.437)

E[ì{æ2n}]  1.254   0.114    <0.001   1.030      1.478
E[ì{æ3n}]         !0.144   0.086        0.096       !0.313    0.025
E[ln ó{æ2n}]     !0.165 0.165      0.318                !0.488   0.158
E[ln ó{æ3n}]     !1.164     0.296   <0.001   !1.744               !0.585
SD[ì{æ2n}]  1.365    0.190     <0.001           0.993      1.736
SD[ì{æ3n}]  0.531    0.075     <0.001           0.383        0.679
SD[ln ó{æ2n}]  0.611    0.120     <0.001          0.376         0.847
SD[ln ó{æ3n}]  0.851      0.220     <0.001           0.419        1.282

Notes: All models have been estimated using the Harrison and Rutström [2008] data set. All standard errors
have been adjusted for clustering at the subject level. ì{æ2} refers to the inverted utility parameter ì
subscripted by æ2. Other parameter labels can be interpreted similarly.
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Table C5: RDU Model with Non-parametric Utility for {$0, $5, $10, $15} (ê = 0.010)

Standard
Parameter Estimate Error p-value 95% Confidence Interval

A. Representative Agent Model
(Log-likelihood = !2346.771)

ì{æ2}  1.244 0.158 <0.001  0.934   1.553
ì{æ3}             !0.065     0.075      0.389               !0.212   0.083
mö             !0.087   0.046      0.059               !0.178    0.003
ó{æ2}  0.906 0.110     <0.001  0.691    1.121
ó{æ3}  0.619    0.061    <0.001    0.500   0.737
sö  0.564  0.089    <0.001   0.390  0.739

B. Random Coefficient Model
(Log-likelihood = !-2004.213)

E[ì{æ2n}]  1.097  0.101    <0.001  0.900    1.294
E[ì{æ3n}]         !0.055      0.104      0.593               !0.259  0.148
E[mön]  0.013      0.035       0.710       !0.055    0.081
E[óUN{æ2n}]  0.529 0.109   <0.001  0.316    0.743
E[óUN{æ3n}]      !0.611 0.133    <0.001               !0.871              !0.350
E[sUN

ön]  0.474   0.081     <0.001   0.316      0.632
SD[ì{æ2n}]  1.317   0.173     <0.001   0.977     1.657
SD[ì{æ3n}]  0.533      0.120   <0.001     0.297  0.770
SD[mön]  0.482     0.072    <0.001          0.340                 0.624
SD[óUN{æ2n}  0.122   0.051        0.017      0.022    0.223
SD[óUN{æ3n}]  0.566    0.145   <0.001    0.281        0.850
SD[sUN

ön]  0.428      0.072     <0.001                 0.287                 0.568

Notes: All models have been estimated using the Harrison and Rutström [2008] data set. All standard errors
have been adjusted for clustering at the subject level. The representative agent model assumes that the log-
shape parameter is normally distributed: ln(önt) - N(mö, sö

2). ì{æ2} refers to the inverted utility parameter ì
subscripted by æ2. Other parameter labels can be interpreted similarly. In the random coefficient model,
óUN{æ2n} is a normally distributed random coefficient such that |óUN{æ2n}| is equal to ó{æ2n}, the within-
subject scale of æ{2nt}. óUN{æ3n} and sUN

ön are similarly defined with respect to ó{æ3n} and sön, respectively,
where the latter refers to the within-subject standard deviation of ln(önt).
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