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Abstract

Risk preferences play a central role in many descriptive and normative inferences about

economic behavior. It is natural to expect that risk preference are heterogeneous. We evaluate a

series of Bayesian econometric models that allow for different levels of heterogeneity of individual

risk preferences. We carefully compare inferences about risk preferences across these models using

both simulated and observed data. Using simulated data, we show the effectiveness of the Bayesian

approach in recovering the underlying true parameters and evaluate the cost of model

mis-specification. Using observed data, we evaluate the heterogeneity present in a typical subject

pool. We suggest extensions and applications of the models and illustrate the application to the

evaluation of behavioral welfare gains or losses from insurance purchases.
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1 Introduction

Individual risk preferences are heterogeneous, and inferring risk preferences for individuals can be

problematic. Sometimes it is not possible to elicit a large sample of responses from every individual,

due to time constraints or concerns with boredom. This problem arises often when risk preferences are

not the primary focus of analysis, but are still needed to control for potential confounds. Sometimes

the variety of stimuli needed to identify certain models of risk preferences makes it difficult to ask

many questions of each type of stimulus. An important example arises when considering gain frame,

mixed frame and loss frame lotteries needed to estimate risk preferences under Cumulative Prospect

Theory (CPT). In this case one might have to present a limited number of lottery choices to each

subject that sample from a wider battery of lottery choices, knowing a priori that the wider battery

may have useful information for estimation.1 Sometimes the precision of estimates of risk preferences

directly affects the precision of parameters conditioned on risk preferences, placing a premium on

reliable estimates of risk preferences.2 Sometimes the estimation of individual risk preferences is

needed in order to make normative evaluations of observed out-of-sample choices. We illustrate this

type of application in section 5, with welfare evaluations of decisions to purchase insurance or not.

And sometimes, there is simply no standard model of risk preferences that seems to characterize the

observed behavior of some individuals well, even if standard models do characterize the observed

behavior of mostindividuals.

These considerations motivate a derived demand for conditioning inferences about individual risk

preferences with priors from other sources, which is what Bayesian analysis allows one to do

systematically.

One natural source of priors comes from estimates of models of risk preferences that pool data

from all subjects, and then conditions inferences about each parameter on a list of observable

demographic characteristics. One can then generate predictions about the distributions of these

1To take an extreme example, one might have elicited responses from subjects over gain frame and loss frame lotteries,
but not over mixed frame lotteries. In this case one cannot identify a key parameter of CPT, the utility loss aversion
parameter λ. One might then return to a different sample from the same population and elicit responses to mixed frame
lotteries, and seek to make inferences about loss aversion from both samples with priors over the exchangeability of the two
samples.

2Section 5.2 discusses several important examples.
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parameters that condition on the specific value of the characteristics of each individual, and use these

predictions as priors for Bayesian inferences that pool the sample data for that individual. The

posterior distributions that are estimated for each individual are then a reflection of the prior and the

sample. When the sample is relatively uninformative, for one reason or another, the prior will play a

greater role in conditioning the posterior. The advantage of this approach is that it will “always”

generate priors for each individual, and these priors can be conditioned on a potentially long list of

characteristics specific to each individual. We focus on the role of this class of priors, since they are

generally available.

In various forms Bayesian analysis has long been applied to condition inferences from

experimental data. Nilsson, Rieskamp and Wagenmakers (2011) employ hierarchical Bayesian

methods to make inferences about risk preferences under CPT.3 They recognized the identification

problem for CPT models with certain utility specifications that allow different utility curvature for

“gains” and “losses.” They simulated data, using the popular point estimates from Tversky and

Kahneman (1992), to test the ability of their model to recover them. They found that their model

generated biased results for several key CPT parameters, and correctly concluded (p. 89) that it “... is

likely that these results are caused by a peculiarity of CPT, that is, its ability to account for loss

aversion in multiple ways.” As explained by Harrison and Swarthout (2021), what they discovered is a

well-known theoretical identification issue with CPT that requires the use of one of several dogmatic

priors about the definition of loss aversion. In any event, they estimated all models with the dogmatic

prior that the utility curvature for “gains” and “losses” was the same, to avoid this identification

problem.

We consider a simple case in which one collects data from subjects using a binary choice task in

which the subject selects one of two possible lotteries. We provide an overview of Bayesian estimation

of the parameters of the utility functions and probability weighting functions characterizing popular

models of risk preferences. A key focus of our analysis is to consider a number of model structures

that vary in the level of subject heterogeneity, and to assess the ability of Bayesian models to account

correctly for that heterogeneity. In the simplest model, the representative agent model, we assume all

subjects share the same parameters and there is no heterogeneity in their preferences whatsoever.
3Murphy and ten Brincke (2018) estimate hierarchical models of CPT using non-Bayesian random coefficient methods.
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Somewhere in the middle, we consider a popular model in the literature where we only allow for

heterogeneity at the demographic level and assume two subjects’ preferences are the same as long as

they share the same demographic characteristics. In the richest model, the hierarchical model, we

assume each subject’s parameters are drawn from a hierarchical distribution with the mean of the

distribution conditioned on specific demographic characteristics, which allows for both demographic

differences and further differences at the individual level among subjects with the same demographic

characteristics.

In order to understand how to reliably apply the class of structural econometric models necessary

for inferring risk preferences at the individual level with Bayesian methods, it is essential to properly

understand the properties of the various types of specifications and estimation options available. These

models become work-horses for the applied econometricians, and they are simply not (yet) “canned,

off-the-shelf” estimation routines. Harrison and Rutström (2008) illustrated how one can develop and

apply comparable structural models using classical maximum likelihood methods, as well as providing

coding “templates” that allowed others to apply and adapt the methods themselves. They generally

considered estimation of pooled models, in which observable characteristics characterized the

heterogeneity of risk preferences.4 We do the same thing for Bayesian estimation methods. We provide

special attention to the demands of individual-level estimation of risk preferences, due to the derived

demand for such detail in most economic applications today. Because Bayesian methods entail novel

computational procedures for estimation, we devote considerable attention to documenting the

properties of simpler and richer specifications of the core model using simulated data. The objective is

to be able to provide the applied econometricians with confidence when applying the various templates

we develop.

The obvious advantage of using simulated data is that we can compare the estimates to the values

of parameters used to simulate the data and thus determine whether our estimation procedure is

reliable. For each specification of risk preferences we simulate a dataset, similar to the data that would

be observed by the researcher, estimate the posterior distribution of the parameters, and compare this

distribution to the true parameter values used to simulate the data. We summarize the performance of

4An extension to consider random coefficient structural models of pooled risk preferences, to better accommodate unob-
served individual heterogeneity, was provided by Andersen et al. (2012).
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our estimation procedures using simulated data, and conclude that the correctly-specified procedure

recovers the true parameters reliably. In addition, for the simulated dataset with the highest level of

heterogeneity, we investigate the consequences of using mis-specified procedures that fail to account

for some of the heterogeneity present in the simulated dataset. We find that these mis-specifications

lead to inaccurate estimates of risk preferences at the individual subject level. Finally, we apply the

procedures to estimate risk preferences for a representative sample of subjects. Surprisingly, we find no

evidence of a need to allow for demographic differences once we allow for heterogeneity at the

individual subject level with the hierarchal model.

Section 2 documents the data collected from actual subjects from controlled laboratory

experiments. This design is used as the basis of our simulations as well as the estimations with

observed choices. In section 3 we discuss the EUT theoretical specification, our assumptions on

alternative data-generating processes, and the results of our simulations and estimations designed to

evaluate alternative Bayesian estimators. A key feature of our simulation approach is to use the

observed and incentivized choices described in section 2, and key characteristics of these data with the

exact data-generating process proposed in section 3. Section 4 extends the analysis to Rank-Dependent

Utility (RDU). Section 5 briefly considers two broad types of descriptive applications of the Bayesian

econometric methods for estimating individual risk preferences that we evaluate, and then shows how

they can be used for the normative welfare evaluation of insurance choices. Section 6 concludes.

2 Experimental Data

We have N = 73 subjects each making T = 60 lottery choices. The subjects are recruited from the

undergraduate student population of Georgia State University. The 60 pairs of lottery are each in the

gain domain: for any k = 1, . . . ,K, outcome xk ≥ 0 and subjects receive an endowment e of $0. Use

subscript i = 1,2, . . . ,73 to represent the subject, t = 1,2, . . . ,60 to represent the tth lottery pair, and

yit = 1 to represent subject i choosing the left lottery in lottery pair t. Collect all decisions of one

subject in yi = (yi1,yi2, . . . ,yi60) and collect all decisions of all subjects in y = (y1,y2, . . . ,y73).

Each subject was asked to make choices for pairs of lotteries designed to provide evidence of risk

aversion as well as the tendency to make decisions consistently with EUT or RDU models. The battery
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of lottery choices is based on designs from Loomes and Sugden (1998) to test the Compound

Independence Axiom, designs from Harrison et al. (2015) to test the Reduction of Compound Lotteries

(ROCL) axiom, and a series of lotteries that are actuarially-equivalent versions of some separate index

insurance choices studied by Harrison et al. (2020). Each subject faced an individually randomized

sequence of choices from this battery. The typical interface used is shown in Appendix A, which

contains all instructions and lottery parameters.

The key insight of the Loomes and Sugden (1998) design is to vary the “gradient” of the

EUT-consistent indifference curves within a Marschak-Machina (MM) triangle.5 The reason for this

variation in gradient is to generate some choice patterns that are more powerful tests of EUT for any

given risk attitude. Under EUT the slope of the indifference curve within a MM triangle is a measure

of risk aversion, so choice pairs on the same slope should always generate the same observed choices

under EUT. When these choices differ, the subject is said to have exhibited Common Ratio (CR)

violations of EUT. So there always exists some risk attitude such that the subject is indifferent over CR

lottery pairs, and evidence of CR violations in that case has virtually zero power on a test of EUT.6

The beauty of this design is that even if the risk attitude of the subject makes the tests of a CR

violation from some sets of lottery pairs have low power, then the tests based on other sets of lottery

pairs must have higher power for this subject. By presenting each subject with several such sets,

varying the slope of the EUT-consistent indifference curve, one can be sure of having some tests for

CR violations that have decent power for each subject, without having to know a priori what their risk

attitude is. Harrison, Johnson, McInnes and Rutström (2007) refer to this as a “complementary slack

experimental design,” since low-power tests of EUT in one set mean that there must be higher-power

tests of EUT in another set.

A simple variant on these tests for a CR violation allows one to detect an empirically important

pattern known as “boundary effects.” These effects arise when one nudges the lottery pairs in CR and

5In the MM triangle there are always one, two or three prizes in each lottery that have positive probability of occurring.
The vertical axis in each panel shows the probability attached to the high prize of that triple, and the horizontal axis shows
the probability attached to the low prize of that triple. So when the probability of the highest and lowest prize is zero, 100%
weight falls on the middle prize. Any lotteries strictly in the interior of the MM triangle have positive weight on all three
prizes, and any lottery on the boundary of the MM triangle has zero weight on one or two prizes.

6EUT does not, then, predict 50:50 choices, as some claim. It does say that the expected utility differences will not
explain behavior, and that then allows a variety of psychological factors to explain behavior. In effect, EUT has no prediction
in this instance, and that is not the same as predicting an even split.
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related tests of EUT into the interior of the MM triangle, or moves them significantly into the interior.

The striking finding is that EUT often performs better when one does this (see Camerer (1992)(1989)

and Harless (1992)). Our battery includes 15 lottery pairs based on Loomes and Sugden (1998) and a

corresponding 15 lottery pairs that are interior variants of those 15 that are “on the border.”

Harrison, Martı́nez-Correa and Swarthout (2015) designed a battery to test ROCL by posing lottery

pairs that include an explicit compound lottery and a simple (non-compound) lottery. These lottery

pairs have a corresponding set of pairs that replace the explicit compound lottery with the actuarially

equivalent simple lottery. Thus a ROCL-consistent subject would make the same choices in the first

and second set.

Subjects were paid for one of their choices. Prizes ranged from $0 up to $70 across the lotteries,

with average expected earning of $27.8.7 They also received a $7 participation fee.

3 Expected Utility Theory

In section 3.1 we present six EUT specifications that vary how we generate the simulated data we

use in section 3.2. When applicable, we always use the observed covariates from the data we observed.

But we simulate the EUT risk preference parameters using the specification described.

3.1 Model and Specifications

In the evaluation of lottery prizes individuals are assumed to perfectly integrate the prizes with

their endowments.8 They are also assumed to be characterized with the Constant Relative Risk

Aversion (CRRA) utility functionals u(e,xk) = (e+ xk)
(1−r)/(1− r) for any k = 1, ...,K. In our battery

K = 4. A lottery is evaluated by the weighted sum of utilities of prizes, with the weights being the

objective probabilities associated with the prizes:

EUT l
it(ri) = ∑

k=1,...,K
[pl

tk× (e+ xl
tk)

(1−ri)/(1− ri)] , (1)

7These are the earnings that the subjects would have expected given their observed choices.
8This assumption can be relaxed: see Andersen, Cox, Harrison, Lau, Rutström and Sadiraj (2018).
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where l = L, R is the index for the two lottery options within a lottery pair t. Define the latent index as

the difference between the EUT of the L and R lotteries subject to a Fechner noise parameter µi, and a

random noise term εit :

y∗it = ∇EUit(ri)+ εit =
(EUT L

it (ri)−EUT R
it (ri))/νit

µi
+ εit , (2)

where εit is a independently distributed noise that follows standard normal distribution, νit is a

“contextual utility” term specific to choice i to normalize utilities of prizes between 0 and 1 following

Wilcox (2008)(2011), and ri and µi are the parameters characterizing the risk preferences of subject i

that we want to estimate. Subject i selects the L lottery in lottery pair t whenever the latent index y∗it is

greater or equal to 0:

yit = I(y∗it ≥ 0) , (3)

where I(.) is the indicator function.

We observe the endowments, prizes and probabilities of the lottery pairs the subject faces, as well

as the lottery she chooses in each lottery pair. We also observe a vector of demographic characteristics

for each subject: whether a subject is female, black, a business major, whether he or she has a high

GPA, and whether she owns any insurance.9

Assuming EUT for now, we estimate the two parameters for each subject, ri and µi. Six

econometric specifications are presented, with different assumptions on the heterogeneity of these two

parameters across the subjects. These models vary from the least general specification I, to most

general specification VI. Since all models are nested in the most general model that allows for

heterogeneity at both demographic and individual levels, we present it first and describe the other

models as special cases.

9We report summary statistics of demographics in our sample in Table B.1.
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3.1.1 Specification VI

Assume that the individual CRRA coefficient ri is independently drawn from a normal distribution

with the mean conditional on a set of demographic covariates. That is, we have the following

specification for ri

ri ∼N (mr +β ·Xi,σ
2
r ) , (4)

where Xi is a vector of observed demographic covariates, and mr +β ·Xi is the mean of the distribution

within the demographic subgroup that subject i belongs to. We assume the same variance σ2
r across

different demographic groups for simplicity and lack of a priori belief that this parameter is different

across demographic groups. Assume that µi is independently drawn from a log-normal prior:10

ln(µi)∼N (mlnµ,σ
2
lnµ) (5)

In this specification we estimate ri, µi, mr,β, σr, mlnµ and σlnµ for each subject. We use a normal

hyperprior N (0,100) for each of the parameters mr, β and mlnµ and an inverse Gamma hyperprior for

σr and σlnµ. The same set of diffuse priors is used when applicable in subsequent specifications, unless

otherwise noted.

We use a combination of the Metropolis Hastings algorithm and Gibbs sampler to estimate the

model parameters from this posterior, using the Bayesian estimation package of Stata. The Stata

package requires only an input of the likelihood function based on equations (1)-(3) as a user-defined

function, and automatically applies the Gibbs sampler to parameters from the hierarchical structures in

(4) and (5). We consider this close connection of programing syntax to the econometric formalization

to be an advantage of the Stata package for novice users of Bayesian econometric methods, and

provide the template for this specification in Appendix C.11

10We do not consider systematic demographic differences in the Fechner noise parameter µi for three reasons. First, we
assume homogeneity for simplicity. Second, the core parameter that characterizes the risk aversion of a subject under EUT is
the CRRA coefficient ri, which is also the parameter we use to predict or evaluate subjects’ decisions externally in other
decision environments. The Fechner noise parameter is a nuisance parameter that describes the noisiness of subjects’
decision making in this specific decision environment, i.e., choosing preferred lotteries from a pair of options. Third, a priori
we do not expect this decision noise parameter to be systematically different among different demographic subgroups.

11For all estimations the sample size is 10000 for the MCMC chain and 2500 for burn-in.
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In this specification we are essentially assuming that the parameter ri of each individual subject is

specified as:

ri = mr +β ·Xi + εi , (6)

where εi ∼N (0,σ2
r ). We consider two sources of heterogeneity for ri: the demographic differences

introduced in the slope coefficients β and the individual differences within the demographic group

introduced in the error term εi.

At this point, and only for specification VI, we estimated the Bayesian hierarchical model using the

actual data from our experiment. The mean of the posterior distribution for each parameter is then used

in the simulation process described below. In this way we have “calibrated” the simulated data to

generate insights that are relevant for the target data. We choose mr, β, σ2
r , mlnµ and σ2

lnµ close to their

estimated values using our observed data to allow for an efficient test of the Bayesian models in the

parameter regions where they are intended to work within, rather than in some extreme or unrealistic

regions.

When we simulate data for the parameter recovery exercise reported in section 3.2, we use the

same covariates Xi that characterize the subjects in our observed data, choose values for mr, β and σ2
r

that are close to their estimated values using our observed data, randomly draw εi from the normal

distribution N (0,σ2
r ), and calculate ri for each simulated subject as specified in (6). We also choose

values for mlnµ and σ2
lnµ that are close to their estimated values using our observed data, and draw µi

from the distribution in (5).12 Lastly we simulate their choices for all 60 lottery pairs according to

(1)-(3). We provide the specific parameters used in the simulation later in Table 1.

For the remaining specifications, we constrain different components of specification VI, starting

with two specifications in which we allow only one of these two sources.

12The estimated values we refer to are listed in the “Mean” column for specification VI in Table 4. The simulated values
for EUT are listed in the “True” column for the same specification VI in Table 2. The simulated values are very close to the
estimated values for all parameters except those elements of β that were estimated to be close to zero. We deliberately sim-
ulated these elements of β to be non-zero and small in value, to be certain that our estimators can in fact detect demographic
differences when they actually exist in the data. If we were to choose coefficients close to the estimated values, the validation
process provides little insight since it can be confounded by statistical insignificance.
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3.1.2 Specification V

In this specification, starting with (6) we impose the constraints that the demographic coefficients

in β are 0, and only consider differences in ri due to the error term εi:

ri = mr + εi (7)

In other words, we assume that the prior means are the same across the different demographic

subgroups. Formally, we assume that the distribution for ri is

ri ∼N (mr,σ
2
r ) (8)

The assumptions on µi are the same as those in (5) in specification VI. In this specification we estimate

ri, µi, mr, σr, mlnµ and σlnµ for each subject. We use the same diffuse priors on mr, σr, mlnµ, σlnµ as in

specification VI.

3.1.3 Specification IV

In this specification, starting again with (6) we impose the constraint that the standard error of εi is

0, so σ2
r = 0, but allow the slope coefficients in β to be different from 0. That is, we assume the CRRA

coefficient, ri, is the same for all subjects that belong to the same demographic group, but may be

different across different demographic groups. Formally,

ri = mr +β ·Xi (9)

The assumption that a list of observable demographic characteristics determines a subject’s CRRA

coefficient is a popular approach to model heterogeneity of samples of subjects in the older literature,

such as Harrison, Lau and Rutström (2007).

The assumptions on µi are the same as those in (5) in specification VI. In this specification we

estimate µi, mr, β, mlnµ and σlnµ for each subject.



12

3.1.4 Specification III

In this specification we consider neither of the two sources of heterogeneity in specification VI,

and assume that ri is the same for all subjects. We impose the constraints that the standard error and

the demographic coefficients for r are all 0:

ri = r (10)

The assumptions on µi are the same as those in (5) in specification VI. In this specification we estimate

r, µi, mlnµ and σlnµ for each subject.

The four specifications introduced so far differ in the degree of individual heterogeneity of ri, but

assume the same log-normal prior for µi. We next consider two specifications used in the literature in

which µi is assumed to be the same for all subjects.

3.1.5 Specification II

In this specification we assume µi = µ for µi. This specification shares the same assumption on ri as

specification IV. In this specification we only estimate β and µ. We use the same diffuse normal priors

for each parameter in β and the Jeffreys prior for µ.

3.1.6 Specification I

In this specification we assume µi = µ and ri = r. This specification assumes homogeneity of both

parameters across all subjects, and is sometimes referred to as the representative agent model in which

we pool observations from all subjects as if they reflect the choices of just one agent. We use the

diffuse normal prior for r and the Jeffreys prior for µ.

3.2 Data Simulation and Parameter Recovery

Prior to estimating these specifications of the EUT model using observed data, we conduct a

simulation exercise. We simulate datasets for each specification and estimate models to provide
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evidence on the performance of the correctly specified models as well as report sensitivity to models

mis-specification. In the simulation we keep all the covariates Xi of the actual 73 subjects. We then

draw ri and µi for each subject based on each specification and use the EUT model described in (1)-(3)

to simulate their decisions. Since specifications I-V are nested within specification VI, we list the

parameters in simulated datasets I-V as special parameterizations of specification VI in Table 1.

3.2.1 Parameter Recovery

For each simulated dataset we first estimate the correctly specified model and report the results.

Through this exercise we evaluate the performance of the algorithms for each specification and see

whether they successfully recover the true parameters used in the simulations. We report these results

in Tables 2 and B.2.13

Table 2 presents summary statistics for parameters at the population level. The MCMC chains

converge successfully for all specifications, and we recover the true parameters for all six datasets.

With the exception of the standard deviation of the CRRA coefficient parameter for simulated dataset

VI, the true parameters are all within their 95% Highest Posterior Density (HPD) credible intervals,

which is the smallest possible 95% credible interval for a given posterior distribution.14 The standard

deviation of the CRRA coefficient parameter for simulated dataset VI is underestimated in comparison

to the true value; however, this underestimate does not affect the successful recovery of demographic

differences in this specification when these differences exist.15

For specifications that allow for some heterogeneity of ri, we also report the summary statistics of

the posterior distributions of the ri of each subject in Table B.2. For simulated datasets II and IV, based

on the posterior sample of β and the demographic characteristic Xi, we estimate the posterior

distribution of each subject’s CRRA coefficient using (9). For simulated dataset VI, we sample the

posterior distributions of β and εi, and estimate the CRRA coefficient of each subject through (6). For

simulated dataset II, the correct CRRA coefficients of only 1 subjects is estimated to be outside of the

13For ease of interpretation, in the estimation tables we report the mean and standard deviation of µ whenever applicable,
rather than the mlnµ and σ2

lnµ in (5).
14By default, we report the 95% HPD credible intervals rather than equal-tailed credible intervals.
15It follows that the later inference with observed data under specification VI, that no systematic demographic differences

are present among our subjects, remains valid and unaffected by the potential mis-identification of the standard deviation of
the CRRA coefficient.
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95% credible interval; for simulated dataset IV, V and VI, respectively, we only have 1, 3 and 10 such

subjects.

We can also compare the posterior means to the true values of individual CRRA coefficients. In

each panel of Figure 1 we show a scatter plot with the true value of the CRRA coefficient of each

subject on the x-axis and the estimated posterior mean on the y-axis, for simulated datasets II, IV , V

or VI. We also provide the 45o line in each scatter plot as a reference, and expect the scatter points to

be more tightly aligned around this line if the estimated posterior means are closer to the true

parameters.

The scatter points in Figure 1 are almost perfectly aligned around the 45o line for simulated

datasets II and IV, with correlation coefficients almost equal to 1. The points are very tightly aligned

around the 45o line for simulated datasets VI, with a correlation coefficient of 0.94. For simulated

dataset V the scatter points in Figure 1 are less tightly distributed around the 45o line. For the true

CRRA coefficients that are at the extremes, the estimated posterior means are generally pulled closer to

the average value of CRRA coefficients across all subjects, as one would expect with the Bayesian

Hierarchical prior. As a result, the correlation coefficient between the true values and posterior means

for this model is only 0.77 in this case. Despite these effects, the 95% credible intervals of these

individual CRRA coefficients contain the true parameter with the exception of only 3 subjects.

We conclude that the parameter recovery exercise is generally successful for all simulated datasets,

since most true parameter values are within the 95% credible interval of the corresponding posterior

distributions. For dataset V all parameters are recovered with great success, and we observe that the

posterior means of CRRA coefficients for the subjects at the tail are pulled towards the population

mean. We have excellent convergence for all parameters in the estimation of datasets I through V. For

dataset VI, where both systematic demographic difference and individual level differences of the

CRRA coefficient are present, although the quality of convergence of population parameters is slightly

slow and the mixing is less than perfect, when we use them to infer individual CRRA coefficient we

have excellent convergence on the CRRA coefficients at the individual level.
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3.2.2 Model Sensitivity to Mis-specification

For dataset VI, in addition to the estimation under the correct specification, we also estimated the

EUT models under incorrect specifications to see how sensitive the estimates are to model

mis-specification. Recall that in dataset VI we have the highest level of heterogeneity of the ri

parameter: there are systematic differences across demographic groups as well as individual

differences within the same demographic groups. Specification V fails to account for the demographic

differences, specification IV fails to account for the individual differences, and specification III fails to

account for both. Compared to specification VI or III, specifications II or I further fail to account for

the individual heterogeneity of µi. We report estimation results under these incorrect specifications in

Tables 3 and B.4. We also include estimation results under the correct specification for ease of

comparison.

In Table 3 we report the population level parameters. In specification V the standard deviation of ri

is larger, to compensate for the lack of systemic demographic differences in the prior mean. In

specification II and IV the constant term and coefficients are correctly recovered despite the fact that

these two specifications incorrectly assume no individual heterogeneity within the same demographic

group. In specification III all subjects are assumed to have the same CRRA coefficient, and the noise in

the simulated decisions are all attributed to a larger Fechner noise parameter µ. We estimate a similarly

larger µ as a consequence of assuming away any heterogeneity of the CRRA coefficient in specification

I. Despite these abnormalities, the cost of model mis-specification appears to be small if we only look

at estimates at the population level.

However, we find more severe effects of model mis-specification when we look at estimates at the

individual level, shown in Table B.4.16 Scatter plots between posterior means and true values for these

four sets of estimations are shown in Figure 2. The correlation coefficient becomes larger as we move

towards the correct specification: 0.87 under specifications II and IV, 0.91 under specification V, and

0.94 under specification VI. While the correlation coefficients appear high under the incorrect

16In specifications I and III all subjects are assumed to have the same CRRA coefficient, which means we will not have
any variability in individual estimates. Therefore we do not report these two specifications in Table B.4.
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specifications, a closer look at the credible intervals as well as some individual estimates that are

farther off the 45o line reveals more problems with these individual estimates.

Under specification V we find that for 12 subjects out of 73 the true value of their CRRA

coefficients is outside the 95% credible intervals, with roughly the same set of subjects under

specification VI. When we look at results under specifications II and IV, however, the number becomes

51 of 73, respectively. This is due to the fact that the standard deviations of the posterior samples are

generally smaller under specifications II and IV (between 0.01 and 0.06) than under specifications V

and VI (between 0.04 and 0.23). As a result, the scatter points in Figure B.4 are less tightly aligned

along the 45o line with tight credible intervals, showing false confidence for inaccurate point estimates.

Inspecting some individuals that are well off the 45o line, simulated subject 54 is risk neutral with

a posterior mean of −0.001 under specification II, while she is actually moderately risk averse with a

true value of r54 = 0.329 (the estimated posterior mean is 0.280 under the correct specification).

Simulated subject 31 is actually risk loving with r31 =−0.203, but under specification V she is

considered risk averse with an estimated posterior mean of 0.150 (the estimated posterior mean is

−0.168 under the correct specification). In addition to these two examples of incorrect signs of the

CRRA coefficient due to model mis-specification, we also observed inaccurate levels of estimated risk

aversion among other subjects. For example, simulated subjects 9 and 10 are estimated to be more risk

averse than they actually are under specifications II and IV, and less risk averse than they are under

specification V.

3.3 EUT Inferences with Observed Data

We now report and analyze EUT estimation results using the observed choice data of the 73

subjects across the various specifications introduced above. All parameters converge successfully,

some with better mixing than the others,17 and we report the main estimates of each specification in

Table 4.

Consider the estimation results under specification VI in Table 4, where we consider both

demographic and individual differences in CRRA coefficients. We do not find systematic differences

17The demographic coefficients in specification VI converge slower than other parameters.
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across demographic groups, since the posterior means of the five demographic coefficients are all close

to 0 and the 95% credible intervals also include 0. We find substantial differences at the individual

level as the standard deviation of the prior distribution is 0.163, and provide the histogram of the

posterior mean of ri for specification VI shown in Figure 3. We conclude that 62 of the 73 subjects are

risk averse, in the sense that the estimated posterior means of their CRRA coefficients are positive, and

that the lower bounds of the 95% confidence levels are greater than 0. For the other 11 subjects, the

estimated posterior mean of the CRRA coefficient is negative for 3 subjects and positive for 8 subjects;

however, ri = 0 is within the 95% confidence levels, so they are deemed risk neutral. The Fechner

noise parameter µi follows a log-normal distribution with median of 0.184 and standard deviation of

0.058, with the histogram of the posterior means of individual µi shown in Figure B.2.

Next consider specification V, where we assumes there is no demographic difference in the prior

mean of ri. From the estimation ri follows a normal distribution with a mean of 0.512, close to the

constant term of (6) under specification VI, with a standard deviation of 0.280. We show scatter plots

to compare the individual ri under this specification with those under specification VI in the left panel

of Figure 4. The points are almost perfectly aligned along the 45o line, with a correlation coefficient of

1. The estimates of the prior of µi, as well as individual µi, are also very similar under these two

specifications as well, as shown in the left panel of Figure B.3.

Next we consider specification IV, where we assume demographic differences are the only source

of the heterogeneity of ri. Using the estimates in specification IV, we calculate each subject’s ri based

on her demographics. To compare each subject’s CRRA coefficient ri between specifications IV and

VI, we show the scatterplot of ri under these two specifications in the middle panel of Figure 4. The

plots are not at all close to the 45o line, and the linear correlation coefficient is only 0.23, indicating

very different estimates for each individual subject’s CRRA coefficient. We provide a scatterplot of µi

under these two specifications in the middle panel of Figure B.3, and find µi to be generally greater

under specification IV. Considering that specification VI allows for heterogeneity in ri to a finer level

of granularity, it seems natural that under specification IV the differences in the choices of subjects that

are unaccounted for by demographic differences would result in a larger µi.
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We undertook a similar exercise for specification II, where µi is the same for all subjects, whereas

in specification IV µi is drawn from a log normal distribution. Under specification II we find that the

estimates of ri are close to those under specification IV. Consequently, we have the same conclusions

when we compare the individual CRRA coefficients under this specification to specification VI as we

had for the comparison between specifications IV and VI.

Under specifications I and III, where we assume there is no heterogeneity in ri, the estimates of the

Fechner noise parameter are generally larger than specifications V and VI but similar to specifications

II and IV. This observation again indicates that the individual level differences in ri, rather than the

demographic differences, are more important in the dataset. We also performed pairwise Bayesian

model comparisons of specifications I-V to specification VI. The log-Bayes Factors are 221.81,

207.44, 165.10 and 146.45 for specification VI when we use specifications I, II, III and IV as the base

models, showing decisive support for specification VI over each of the four models.18

The log-Bayes Factor is −6.61 when we use specification V as the base model, showing support

for specification V over specification VI. We also compute the posterior probabilities of the six models,

assuming they are equally probable a priori, and specification V has a posterior probability of

99.9%.19 This indicates that within the population from which our sample of subjects is drawn, we do

not find systematic demographic differences in their CRRA coefficients. In addition, the MCMC

sampling process takes much longer for specification VI than specification V. Although specification

VI is the most general model, considering the high cost in terms of longer computing time and low

benefit in terms of model comparison, we conclude that specification V is the better model to estimate

for samples drawn from this particular subject population.

18We assume all models are equally plausible in the prior, and the Bayes Factor is the posterior odds ratio

BF jk =
p(y|M j)

p(y|Mk)
,

where y is the observed choice data, M j represents the estimated model under specification j and Mk the estimated model
under specification k. As a rule of thumb, Jeffreys (1961) recommended that the evidence against Mk is decisive if the log of
Bayes Factor is greater than 2.

19The posterior probability is 0.14% for specification VI and 0 for specifications I-IV.
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4 Rank Dependent Utility Theory

In addition to the estimation of the EUT model, we extend our analysis of the observed data to the

RDU model. We first present the RDU model and specifications. We then bypass the data simulation

process, which is logically identical to the EUT case, and present results using observed data.

4.1 Model and Specifications

In the evaluation of lottery prizes, again assume that individuals perfectly integrate lottery prizes

with their endowments and behave as if they evaluate CRRA utility functionals as assumed under EUT.

A lottery is then evaluated by the weighted sum of utilities of prizes, where the weights are the

associated decision weights. RDU departs from EUT in the manner in which decision weights depend

on objective probabilities: under EUT the decision weight for each prize was the corresponding

objective probability.

Under RDU we first rank the prizes from best to worst, such that x1 ≥ x2...≥ xK (omitting the

index for lottery and subject for now). The decision weight associated with each prize is then

calculated as:

π(x1) = ω(p1) , (11)

π(x2) = ω(p1 + p2)−ω(p1) , (12)

... , (13)

π(xK) = ω(1)−ω(p1 + ..+ pK−1) , (14)

where ω(.) is the probability weighting function (PWF): a strictly increasing and continuous function

with ω(0) = 0, ω(1) = 1. We use the flexible two parameter PWF from Prelec (1998):

ω(p) = exp(−η(−lnp)φ) , (15)
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where η> 0 and φ> 0. The RDU of a lottery is then calculated as

RDU l
it(ri,ηi,φi) = ∑

k=1,...,K
[πl

tk× (e+ xl
tk)

(1−ri)/(1− ri)] , (16)

which is the same as the definition of the EUT of a lottery in (1) apart from pl
tk being replaced by πl

tk.

Define the latent index as the difference on the RDU of the left and right lottery subject to a Fechner

noise parameter µi and a random noise term εit :

y∗it = ∇RDUit(ri,ηi,φi)+ εit =
(RDUL

it (ri,ηi,φi)−RDUR
it (ri,ηi,φi))/νit

µi
+ εit , (17)

where νit is again the term to normalize utilities of prizes between 0 and 1, and ri, ηi, φi and µi are the

parameters we want to estimate. The subject is again assumed to select the left lottery in a pair

whenever the latent index y∗it is greater or equal to 0.

The specifications for the estimations are very similar to those of the EUT models, therefore we

skip details. In addition, we assume all parameters are independently distributed in the prior

distribution. Although we specify the prior distribution separately for each parameter, the posterior

distribution of each parameter is correlated with other parameters, both within a subject and across

subjects. In essence, the RDU model decomposes the risk premium presumed to drive the observed

choices by subject i into two components: the premium due to utility curvature governed by parameter

ri, and the premium due to probability weighting governed by parameters ηi and φi.20 There is a

well-understood tradeoff between the two components explaining the risk premium, which introduces

the correlation between the three parameters in the sampling of their joint posterior distribution.

For ri and µi we use exactly the same specifications from (4) to (10) as in the EUT models. The

parameters ηi and φi must be positive, by definition, so we assume they are drawn from log-normal

distributions. So for specification VI we have

ln(ηi)∼N (γ ·Xi,σ
2
η) (18)

ln(φi)∼N (λ ·Xi,σ
2
φ) (19)

20In the extreme case of EUT the risk premium is solely determined by utility curvature. In the extreme case of “dual
theory,” due to Yaari (1987), the risk premium is solely determined by the probability weighting function.
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For specification V we have

ln(ηi)∼N (mη,σ
2
η) (20)

ln(φi)∼N (mφ,σ
2
φ) (21)

For specifications II and IV we have

ln(ηi) = γ ·Xi (22)

ln(φi) = λ ·Xi (23)

4.2 RDU Inferences with Observed Data

We report estimation results of RDU models and compare them to the estimation results of EUT

models. The summary results of population parameters are reported in Table 5 for each specification.

First consider specification I, which does not allow for heterogeneity in any parameters and

estimates the preference of a representative agent. The parameters converge with excellent mixing. The

PWF has an inverse-S shape implied by the estimate of φ = 0.841: the inflexion point given φ = 0.841

and η = 1.273 is at p = 0.1, so the estimated PWF is convex when p> 0.1 and concave when p< 0.1.

In Figure 5 we graph the Prelec PWF, and the implied decision weights with equal-probable reference

lotteries. The estimated posterior mean of the CRRA coefficient is 0.412, lower than the estimated

value under the EUT model with specification I.

We also perform pairwise model comparisons using Bayes Factors, and compute posterior

probabilities of the six RDU Prelec models, and again find specification V to be the preferred model.21

Therefore, we consider in detail the results under specifications V, which allows the model parameters

to be different for each individual subject.

21Using specifications I, II, III, IV and VI as the base model, the log-Bayes Factor of specification V is 300.02, 264.37,
225.48, 204.88 and 12.59, respectively, showing decisive support for specification V over each of the base models. In
addition, the posterior probability of specification V is 100%, assuming equal probabilities a priori.
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All model parameters converge with excellent mixing.22 The CRRA coefficient ri follows a normal

prior with mean 0.338 and standard deviation 0.287. The PWF parameter ηi follows a log-normal prior

with a median of 1.316 and standard deviation of 0.522. The PWF parameter φi follows a log-normal

prior with a median of 0.836 and standard deviation of 0.268. We show the histograms of the posterior

means of ri, ηi, φi and µi for the 73 subjects in Figures 6 and B.4, respectively. We observe a great deal

of individual heterogeneity for all parameters. For 56 subjects we have posterior means φi < 1, and for

17 subjects we have posterior means φi > 1. In addition, we compare the posterior means of the

individual CRRA coefficients to those from specification V of EUT model in Figure 7. We observe that

the CRRA coefficients are slightly higher under EUT than under the RDU Prelec model, consistent

with what we find when comparing the two representative agent models (specification I).

We consider the estimation results under other specifications briefly, since the findings are similar

to when we compare different specifications of the EUT model. In specification VI we do not find

much difference in the mean of priors of ri, ηi or φi due to demographic differences, since 0 is within

the 95% credible interval for all coefficients of each of the demographic variables. We show the

scatterplot of ri, ηi and φi under specifications V and II in the left panel in Figure 8. The posterior

means of individual ri and φi estimates are very tightly aligned along the 45o line, with correlation

coefficient of 0.95 and 0.93. The posterior means of individual ηi estimates are also aligned along the

45o line, although not as tight, with correlation coefficient of 0.88. Therefore, introducing

demographic differences in the mean of the priors does not provide more information on the individual

preferences. The estimates of the prior of µi are very similar under these two specifications, as are the

individual µi shown in the left panel of Figure B.4. In specifications II and IV the individual estimates

of CRRA coefficients are not very consistent with those under specifications V or VI, as shown in the

middle and right panels of Figure 8. The individual Fechner noise parameters are estimated to be larger

under specifications I through IV.

22For ease of interpretation we report the mean and standard deviation for η, φ and µ in specification V in Table 5, rather
than the mean and standard deviation of ln(η), ln(φ) and ln(µ).
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5 Applications

There are three reasons to be interested in estimated risk preferences at the individual level. We

briefly explain what each is, how our Bayesian analysis of risk preferences at the individual level

facilitates those applications, and demonstrate one application from behavioral welfare economics.

5.1 Characterizing Risk Preferences for Their Own Sake

Of course, there is direct interest in knowing the risk preferences of individuals. Are there

demographic effects on risk preferences? How important are each of the different pathways to the risk

premium: aversion to variability of final outcomes, probability weighting, disappointment aversion,

regret aversion, or loss aversion, to name some of the more popular? As the models become more

complex, it becomes important to be able to harness informative priors to facilitate inferences at the

individual level, and hierarchical priors allow that in a flexible manner, as we have demonstrated.

5.2 Joint Estimation of Risk Preferences and Other Preferences

Economic theory tells us that inferences about time preferences defined over time-dated monetary

amounts depend on the curvature of the atemporal utility function defined over those monetary

amounts. One of several ways to control for that dependence is to jointly estimate risk and time

preferences, so that inferences about the latter can account for the effect of the former (Andersen,

Harrison, Lau and Rutström (2008)). This general point has nothing to do with assuming EUT risk

preferences: if the subject is characterized by RDU there are still inferences about the extent of

diminishing marginal utility, and that is what is important for correct identification and estimation of

time preferences. For the same reason, it is not “risk” that is correlated somehow with time preferences

over non-stochastic, temporally-dated monetary amounts, it is the curvature of the atemporal utility

function. Hence good estimates of risk preferences, as one way to get good estimates of that curvature,

are fundamental to generating good estimates of time preferences.

The need for good estimates of risk preferences is particularly important at the level of the

individual. Andersen, Harrison, Lau and Rutström (2014; p.25) report attempts to estimate time
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preferences at the individual level, and find that they cannot obtain Maximum Likelihood (ML)

estimates for 238 of their 413 subjects, which is 42% of the sample. The reason is simple: the ML

approach rests on numerical methods finding a set of estimates that characterizes a maximum

log-likelihood for the observed binary choices. If the likelihood function has some “flatness” around

the maxima, standard methods, particularly derivative-based methods, can fail to converge. Critically,

there is no difficulty evaluating the log-likelihood for a wide range of possible estimates, just a

difficulty finding the one best set of estimates. A Bayesian is not bothered by this latter difficulty at all,

and just needs the likelihood function evaluations in order to derive the posterior distribution.23

The same general point applies with even greater force when making inferences about

intertemporal risk aversion, which derives from the non-additivity of the intertemporal utility function

and depends on both the curvature of the atemporal utility function and time preferences over

non-stochastic outcomes. Now there are two “nuisance parameters” from economic theory to attend to

in order to make the inferences of interest, and well-defined non-linearities connecting them.

Moreover, there can be a “cascading” effect, since one set of nuisance parameters (time preferences)

depends on the other nuisance parameters (utility curvature), generating an even greater derived

demand for good estimates of risk preferences. Andersen, Harrison, Lau and Rutström (2018) generate

estimates of the intertemporal risk aversion of the adult Danish population, but do not even consider

individual heterogeneity beyond including observable demographic characteristics in the pooled

model.

5.3 Inferences Based on Risk Preferences

There is a final class of applications of our approach which uses estimates of the posterior

distributions of individual risk preferences to make an inference over “different data” than were used to

estimate the posterior. This is distinct from joint estimation in the sense that the inferences over

different data do not entail estimation of core parameters of preference models. The usual application

in Bayesian modeling is to additional out-of-sample instances of the same sample data used to estimate

the posterior. Hence these are referred to as posterior predictive distributions. A typical example would

23Of course, if the likelihood function is globally flat, the posterior will just be a replica of the prior, and the data from the
subject non-informative, but that is a separate matter: there will still be a posterior, albeit derived solely from the prior.
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be to predict choices by one of our subjects if she had been offered a new, different battery of choices

over risky lotteries.

A more interesting example from behavioral welfare economics arises when making inferences

about the consumer surplus generated by observed choices of a subject over insurance. In the simplest

case, considered by Harrison and Ng (2016), subjects made a binary choice to purchase a full

indemnity insurance product or not. The actuarial characteristics of the insurance product were

controlled over 24 choices: the loss probability, the premium, the absence of a deductible, and the

absence of non-performance risk. In effect, these insurance purchase decisions are just re-framed

choices over risky lotteries. The risky lottery here is to not purchase insurance and run the risk of the

loss probability reducing income from some known endowment, and the (very) safe lottery is to

purchase insurance and deduct the known premium from the known endowment.

The same subjects that made these insurance choices also made choices over a battery of risky

lotteries. So one immediate application of our Bayesian approach to estimating individual risk

parameters is to infer the posterior predictive distribution of welfare for each insurance choice of an

individual. The predictive distribution is just a distribution of unobserved data (the expected insurance

choice given the actuarial parameters offered) conditional on estimated risk preferences based on

observed data (the actual choices in the risk lottery task). All that is involved is marginalizing the

likelihood function for the insurance choices with respect to the posterior distribution of estimated

model parameters from the risk lottery choices. The upshot is that we predict a distribution of welfare

for a given choice by a given individual, rather than a scalar (which is what one would do if just using

point estimates from an ML approach). We can then report that distribution as a kernel density, or

select some measure of central tendency such as the mean or median.

Figure 9 illustrates for one subject and four insurance purchase decisions by that subject. For

decision #1 the posterior predictive density shows a clear gain in consumer surplus, and for decision #4

a clear loss in consumer surplus. In each case, of course, there is a distribution for the inferred

consumer surplus from the observed purchase decisions, with a standard deviation of $0.76. The

prediction posterior distributions for decision #13 and decision #17 illustrate an important case, where
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we can only say that there has been a consumer surplus gain with some probability. More extensive

results of this application are provided in Gao, Harrison and Tchernis (2020).

6 Conclusions

We carefully examine the properties of a popular class of Bayesian models for the estimation of

individual risk preferences. Using hierarchical priors, information from the complete sample is used to

generate informative priors for inferences about each individual. Given the importance of models of

individual risk preferences for a wide range of inferences in economics, there is value in knowing the

properties of alternative specifications. Using simulated data, from experimental tasks that are widely

used, we consider the reliability of alternative specifications at characterizing what we know to be the

true, underlying risk preferences. The results show that a hierarchical model that assumes

unconditional exchangeability of subjects provides an excellent basis for inferences about individual

risk preferences.
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Table 1: Parameters in Simulated Datasets

I II III IV V VI
r Constant 0.5 0.4 0.5 0.4 0.5 0.4

Female - 0.2 - 0.2 - 0.2
Black - -0.2 - -0.2 - -0.2
BusinessMajor - -0.5 - -0.5 - -0.5
HighGPA - 0.1 - 0.1 - 0.1
Insured - 0.3 - 0.3 - 0.3
Std. Dev. - - - - 0.2 0.2

µ Mean 0.25 0.25 0.23 0.23 0.23 0.23
Std. Dev. - - 0.07 0.07 0.07 0.07

Simulation ParametersParameters

(1) The first six rows correspond to β from the distribution of ri, and the seventh row corresponds to σ2
r . For ease of interpretation we

list the mean and standard deviation of µi rather than mlnµ and σ2
lnµ as the last two rows here and in the presentation of estimation

results.

(2) Compared to specification VI, specifications I - IV assume the standard deviation of the normal distribution of ri is 0, and specifi-
cations I, III and V assume the demographic coefficients of the mean are 0. In addition, specifications I and II assume the standard
deviation of the log-normal distribution of µi is 0.

(3) For ease of reading, we display the simulation parameters in italics to differentiate them from estimated values in all tables.
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Figure 1: Individual CRRA Coefficients in Simulated Data Estimation
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Figure 2: Individual CRRA Coefficients Using Simulated Dataset VI

Assuming Incorrect Specifications
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Figure 3: Individual CRRA Coefficients ri from Observed Choices

under EUT Specification VI
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Figure 4: Individual CRRA Coefficients ri from Observed Choices

under Different EUT Specifications
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Figure 5: Prelec Probability Weighting and Implied Decision Weights

under Specification I

Based on equi-probable reference lotteries
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Figure 6: Posterior Means of Individual Estimates

Assuming Specification V of the RDU Prelec Model
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Figure 7: Posterior Means of Individual CRRA Coefficients

Assuming Specification V of EUT and RDU Prelec Model
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Figure 8: Individual Preferences from Observed Choices Assuming

Specifications II, IV, V and VI of RDU Prelec Model
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Figure 9: Posterior Predictive Consumer Surplus Distribution

for Each of Four Insurance Purchase Decisions by One Subject
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Appendix A Experiment Instructions and Lottery Parameters (ONLINE)

A.1 Instructions in the Gain Frame

Choices Over Risky Prospects

This is a task where you will choose between prospects with varying prizes and chances of

winning each prize. You will be presented with a series of pairs of prospects where you will choose

one of them. For each pair of prospects, you should choose the prospect you prefer. You will actually

get the chance to play one of these prospects for earnings, and you will be paid according to the

outcome of that prospect, so you should think carefully about which prospect you prefer on each

decision screen.

Here is an example of what the computer display of such a pair of prospects will look like.

 

The outcome of the prospects will be determined by the draw of a random number between 1 and

100. Each number between, and including, 1 and 100 is equally likely to occur. In fact, you will be

able to draw the number yourself using two 10-sided dice.

You might be told your cash endowment for each decision at the top of the screen. In this example

it is $35, so any earnings would be added to or subtracted from this endowment. The endowment may
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change from choice to choice, so be sure to pay attention to it. The endowment you are shown only

applies for that choice.

In this example the left prospect pays twenty-five dollars ($25) if the number drawn is between 1

and 5, pays negative five dollars ($-5) if the number is between 6 and 55, and pays negative thirty-five

dollars ($-35) if the number is between 56 and 100. The blue color in the pie chart corresponds to 5%

of the area and illustrates the chances that the number drawn will be between 1 and 5 and your prize

will be $25. The orange area in the pie chart corresponds to 50% of the area and illustrates the chances

that the number drawn will be between 6 and 55 and your prize will be $-5. The green area in the pie

chart corresponds to 45% of the area and illustrates the chances that the number drawn will be between

56 and 100. When you select the decision screen to be played out the computer will confirm the die

rolls that correspond to the different prizes.

Now look at the pie on the right. It pays twenty-five dollars ($25) if the number drawn is between 1

and 15, negative five dollars ($-5) if the number is between 16 and 25, and negative thirty-five dollars

($-35) if the number is between 26 and 100. As with the prospect on the left, the pie slices represent

the fraction of the possible numbers which yield each payoff. For example, the size of the $25 pie slice

is 15% of the total pie.

Even though the screen says that you might win a negative amount, this is actually a loss to be

deducted from your endowment. So if you win $-5, your earnings would be $30 = $35 - $5.

Each pair of prospects is shown on a separate screen on the computer. On each screen, you should

indicate which prospect you prefer to play by clicking on one of the buttons beneath the prospects.

Some decision screens could also have a pair of prospects in which one of the prospects will give

you the chance for “Double or Nothing.” For instance, the right prospect in this screen image pays

“Double or Nothing” if the Green area is selected, which happens if the number drawn is between 51

and 100. The right pie chart indicates that if the number is between 1 and 50 you get $10. However, if

the number is between 51 and 100 we will flip a coin with you to determine if you get either double the

amount or $0. In this example, if it comes up Heads you get $40, otherwise you get nothing. The

prizes listed underneath each pie refer to the amounts before any “Double or Nothing” coin toss.
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After you have worked through all of the pairs of prospects, please wait quietly until further

instructions. When it is time to play this task out for earnings, you will then roll two 10-sided dice

until a number comes up to determine which pair of prospects will be played out. If there are 40 pairs

we will roll the dice until a number between 1 and 40 comes up, if there are 80 pairs we will roll until a

number between 1 and 80 comes up, and so on. Since there is a chance that any of your choices could

be played out for real, you should approach each pair of prospects as if it is the one that you will play

out. Finally, you will roll the two ten-sided dice to determine the outcome of the prospect you chose,

and if necessary we will then toss a coin to determine if you get “Double or Nothing.”

Here is an example: suppose your first roll was 81. We would then pull up the 81st decision that

you made and look at which prospect you chose – either the left one or the right one. Let’s say that the

81st lottery was the same as the last example, and you chose the left prospect. If the random number

from your second roll was 37, you would win $0; if it was 93, you would get $20.

If you picked the prospect on the right and drew the number 37, you would get $10; if it was 93,

we would have to toss a coin to determine if you get “Double or Nothing.” If the coin comes up Heads

then you would get $40. However, if it comes up Tails you would get nothing from your chosen

prospect.
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It is also possible that you will be given a prospect in which there is a “Double or Nothing” option

no matter what the outcome of the random number. This screen image illustrates this possibility.

 

In summary, your payoff is determined by five things:

• by your endowment, if there is one, shown at the top of the screen;

• by which prospect you selected, the left or the right, for each of these pairs;

• by which prospect pair is chosen to be played out in the series of pairs using the two

• 10-sided dice;

• by the outcome of that prospect when you roll the two 10-sided dice; and

• by the outcome of a coin toss if the chosen prospect outcome is of the “Double or Nothing” type.

Which prospects you prefer is a matter of personal choice. The people next to you may be presented

with different prospects, and may have different preferences, so their responses should not matter to

you or influence your decisions. Please work silently, and make your choices by thinking carefully

about each prospect.

All payoffs are in cash, and are in addition to the $5 show-up fee that you receive just for being

here, as well as any other earnings in other tasks from the session today.
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A.2 Lottery Parameters in the Gain Frame
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Table A.4: Text for Double or Nothing Lotteries

Also see parameters for the Right Lottery in Table A.2

Lottery ID Double or Nothing Text

rdon1 Double or Nothing if outcome 2 in right lottery
rdon2 Double or Nothing if outcome 2 in right lottery
rdon3 Double or Nothing for any outcome in right lottery
rdon4 Double or Nothing for any outcome in right lottery
rdon5 Double or Nothing for any outcome in right lottery
rdon6 Double or Nothing if outcome 2 in right lottery
rdon7 Double or Nothing if outcome 2 in right lottery
rdon8 Double or Nothing if outcome 2 in right lottery
rdon9 Double or Nothing if outcome 3 in left lottery

rdon10 Double or Nothing for any outcome in right lottery
rdon11 Double or Nothing if outcome 3 in right lottery
rdon12 Double or Nothing if outcome 2 in right lottery
rdon13 Double or Nothing if outcome 2 in right lottery
rdon14 Double or Nothing if outcome 2 in right lottery
rdon15 Double or Nothing if outcome 2 in right lottery
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Appendix B Additional Results (ONLINE)

Table B.1: Summary of Demographics

     insured           73    .4109589    .4954127          0          1
   christian           73    .7123288    .4558098          0          1
       gpaHI           73    .5616438    .4996193          0          1
      senior           73    .3013699    .4620285          0          1
    freshman           73    .1780822    .3852296          0          1
                                                                       
    business           73    .3835616    .4896182          0          1
       asian           73    .1506849    .3602173          0          1
       black           73    .6712329    .4730162          0          1
      female           73    .5479452    .5011403          0          1
       young           73    .9726027    .1643677          0          1
                                                                       
    Variable          Obs        Mean    Std. Dev.       Min        Max
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Table B.2: Expected Utility Models Using Simulated Choices under Correct specifications, Individual
CRRA Coefficients

True Mean Std. Dev. True Mean Std. Dev. True Mean Std. Dev. True Mean Std. Dev.
1 0.50 0.444 0.047 0.357 0.543 0.50 0.465 0.038 0.392 0.537 0.65 0.513 0.096 0.327 0.702 0.37 0.382 0.088 0.203 0.545

2 -0.20 -0.219 0.054 -0.325 -0.113 -0.20 -0.220 0.050 -0.326 -0.127 0.48 0.528 0.126 0.276 0.767 -0.24 -0.283 0.181 -0.629 0.076
3 0.30 0.322 0.050 0.222 0.419 0.30 0.296 0.046 0.206 0.383 0.67 0.699 0.083 0.517 0.852 0.27 0.280 0.113 0.052 0.489
4 0.20 0.201 0.052 0.101 0.301 0.20 0.177 0.049 0.077 0.270 0.18 0.367 0.105 0.154 0.568 0.10 0.167 0.135 -0.094 0.427
5 0.50 0.452 0.032 0.392 0.518 0.50 0.453 0.029 0.398 0.512 0.56 0.405 0.093 0.221 0.589 0.37 0.312 0.101 0.114 0.507
6 0.80 0.770 0.036 0.705 0.846 0.80 0.789 0.032 0.726 0.854 0.50 0.628 0.087 0.468 0.811 0.88 0.743 0.078 0.599 0.902
7 0.20 0.145 0.044 0.059 0.228 0.20 0.172 0.038 0.098 0.246 0.41 0.370 0.117 0.130 0.585 0.34 0.178 0.126 -0.054 0.436
8 0.70 0.658 0.033 0.595 0.723 0.70 0.658 0.028 0.599 0.707 0.43 0.526 0.108 0.310 0.737 0.74 0.686 0.085 0.523 0.860
9 0.80 0.779 0.031 0.720 0.841 0.80 0.777 0.027 0.722 0.828 0.41 0.358 0.116 0.101 0.562 0.52 0.519 0.109 0.299 0.735

10 0.70 0.686 0.036 0.613 0.755 0.70 0.689 0.033 0.624 0.753 0.48 0.403 0.109 0.201 0.620 0.35 0.323 0.114 0.100 0.548
11 0.20 0.145 0.044 0.059 0.228 0.20 0.172 0.038 0.098 0.246 0.11 0.331 0.124 0.079 0.557 0.08 0.165 0.124 -0.089 0.396
12 0.60 0.565 0.042 0.486 0.651 0.60 0.584 0.038 0.506 0.654 0.35 0.390 0.102 0.191 0.594 0.62 0.724 0.080 0.562 0.879
13 0.20 0.229 0.049 0.130 0.324 0.20 0.208 0.046 0.119 0.298 0.42 0.457 0.090 0.267 0.622 0.45 0.443 0.100 0.241 0.639
14 -0.30 -0.312 0.050 -0.408 -0.215 -0.30 -0.308 0.047 -0.402 -0.220 0.56 0.622 0.078 0.467 0.775 -0.56 -0.401 0.157 -0.731 -0.106
15 0.00 0.015 0.049 -0.082 0.110 0.00 0.016 0.046 -0.076 0.105 0.50 0.441 0.107 0.218 0.642 -0.20 -0.083 0.163 -0.408 0.224
16 0.40 0.351 0.055 0.244 0.449 0.40 0.377 0.043 0.293 0.459 0.42 0.413 0.091 0.238 0.590 0.28 0.371 0.080 0.213 0.525
17 0.30 0.238 0.043 0.156 0.324 0.30 0.260 0.038 0.187 0.332 0.62 0.660 0.095 0.471 0.845 0.40 0.429 0.129 0.173 0.674
18 0.50 0.452 0.032 0.392 0.518 0.50 0.453 0.029 0.398 0.512 0.57 0.517 0.090 0.327 0.683 0.65 0.578 0.089 0.399 0.751
19 0.00 -0.004 0.051 -0.103 0.094 0.00 -0.027 0.047 -0.119 0.065 -0.01 0.437 * 0.100 0.234 0.621 0.01 0.260 0.147 -0.036 0.529
20 0.40 0.351 0.055 0.244 0.449 0.40 0.377 0.043 0.293 0.459 0.50 0.331 0.114 0.103 0.547 0.48 0.313 0.096 0.123 0.504
21 0.70 0.658 0.033 0.595 0.723 0.70 0.658 0.028 0.599 0.707 0.68 0.658 0.101 0.472 0.861 0.97 0.925 0.053 0.825 1.000
22 -0.10 -0.097 0.050 -0.193 0.002 -0.10 -0.115 0.047 -0.209 -0.024 0.36 0.378 0.107 0.157 0.578 0.00 -0.191 0.149 -0.500 0.086
23 0.00 0.015 0.049 -0.082 0.110 0.00 0.016 0.046 -0.076 0.105 0.45 0.339 0.122 0.104 0.590 -0.02 -0.072 0.146 -0.372 0.199
24 0.80 0.779 0.031 0.720 0.841 0.80 0.777 0.027 0.722 0.828 0.58 0.464 0.100 0.272 0.659 1.07 0.939 * 0.047 0.847 1.000
25 0.10 0.108 0.054 0.004 0.216 0.10 0.104 0.050 0.005 0.201 0.52 0.419 0.103 0.212 0.615 -0.12 -0.011 0.159 -0.339 0.280
26 0.00 -0.004 0.051 -0.103 0.094 0.00 -0.027 0.047 -0.119 0.065 0.51 0.345 0.106 0.139 0.548 -0.37 -0.112 0.154 -0.431 0.177
27 -0.20 -0.219 0.054 -0.325 -0.113 -0.20 -0.220 0.050 -0.326 -0.127 0.95 0.853 0.073 0.732 1.000 -0.31 -0.260 0.146 -0.557 0.020
28 0.50 0.528 0.043 0.440 0.607 0.50 0.501 0.043 0.413 0.581 0.21 0.386 0.121 0.148 0.622 0.46 0.469 0.130 0.198 0.709
29 -0.10 -0.097 0.050 -0.193 0.002 -0.10 -0.115 0.047 -0.209 -0.024 0.65 0.734 0.095 0.554 0.923 -0.02 -0.234 0.157 -0.546 0.057
30 -0.10 -0.097 0.050 -0.193 0.002 -0.10 -0.115 0.047 -0.209 -0.024 0.69 0.513 0.122 0.265 0.743 0.01 -0.145 0.170 -0.477 0.178
31 -0.30 -0.312 0.050 -0.408 -0.215 -0.30 -0.308 0.047 -0.402 -0.220 0.50 0.409 0.094 0.228 0.601 -0.20 -0.168 0.174 -0.501 0.166
32 0.50 0.452 0.032 0.392 0.518 0.50 0.453 0.029 0.398 0.512 0.38 0.302 0.111 0.085 0.513 0.79 0.537 * 0.105 0.328 0.743
33 0.40 0.435 0.050 0.333 0.527 0.40 0.413 0.048 0.319 0.503 0.49 0.447 0.112 0.221 0.662 0.48 0.393 0.130 0.132 0.642
34 0.20 0.145 0.044 0.059 0.228 0.20 0.172 0.038 0.098 0.246 0.59 0.492 0.107 0.277 0.700 0.23 0.269 0.116 0.040 0.498
35 0.70 0.686 0.036 0.613 0.755 0.70 0.689 0.033 0.624 0.753 0.44 0.461 0.091 0.269 0.633 0.55 0.495 0.088 0.323 0.671
36 0.70 0.658 0.033 0.595 0.723 0.70 0.658 0.028 0.599 0.707 0.51 0.493 0.092 0.309 0.671 0.48 0.534 0.083 0.378 0.702
37 0.30 0.314 0.050 0.216 0.411 0.30 0.309 0.049 0.210 0.406 0.51 0.361 0.131 0.091 0.599 0.20 0.071 0.160 -0.249 0.382
38 0.70 0.677 0.045 0.591 0.762 0.70 0.701 0.038 0.630 0.777 0.38 0.417 0.115 0.197 0.642 0.61 0.625 0.083 0.457 0.780
39 0.40 0.359 0.038 0.288 0.435 0.40 0.365 0.035 0.302 0.440 0.53 0.490 0.118 0.251 0.719 0.34 0.179 0.123 -0.055 0.426
40 0.20 0.145 0.044 0.059 0.228 0.20 0.172 0.038 0.098 0.246 0.70 0.631 0.094 0.447 0.811 -0.04 0.184 * 0.107 -0.021 0.386
41 0.20 0.201 0.052 0.101 0.301 0.20 0.177 0.049 0.077 0.270 0.77 0.529 * 0.109 0.315 0.742 0.24 0.204 0.160 -0.132 0.499
42 0.00 0.015 0.049 -0.082 0.110 0.00 0.016 0.046 -0.076 0.105 0.34 0.374 0.107 0.172 0.591 0.05 0.124 0.160 -0.210 0.417
43 0.80 0.779 0.031 0.720 0.841 0.80 0.777 0.027 0.722 0.828 0.75 0.811 0.083 0.651 0.976 0.76 0.916 * 0.062 0.800 1.000
44 0.70 0.686 0.036 0.613 0.755 0.70 0.689 0.033 0.624 0.753 0.56 0.609 0.086 0.444 0.784 0.83 0.668 0.082 0.511 0.837
45 0.50 0.452 0.032 0.392 0.518 0.50 0.453 0.029 0.398 0.512 0.56 0.562 0.079 0.405 0.718 0.55 0.565 0.075 0.407 0.708
46 0.70 0.677 0.045 0.591 0.762 0.70 0.701 0.038 0.630 0.777 0.52 0.584 0.107 0.375 0.794 0.91 0.798 0.084 0.644 0.968
47 0.60 0.565 0.042 0.486 0.651 0.60 0.584 0.038 0.506 0.654 0.74 0.654 0.079 0.495 0.806 0.62 0.565 0.087 0.396 0.739
48 0.30 0.238 0.043 0.156 0.324 0.30 0.260 0.038 0.187 0.332 0.53 0.494 0.100 0.299 0.696 0.51 0.362 0.112 0.138 0.577
49 0.80 0.770 0.036 0.705 0.846 0.80 0.789 0.032 0.726 0.854 0.86 0.749 0.089 0.570 0.921 1.09 0.935 * 0.049 0.842 1.000
50 0.20 0.221 0.053 0.120 0.325 0.20 0.221 0.049 0.127 0.320 0.23 0.294 0.125 0.039 0.527 0.27 0.133 0.141 -0.154 0.401
51 0.50 0.452 0.032 0.392 0.518 0.50 0.453 0.029 0.398 0.512 0.40 0.483 0.102 0.286 0.690 0.57 0.477 0.105 0.265 0.677
52 0.40 0.359 0.038 0.288 0.435 0.40 0.365 0.035 0.302 0.440 0.05 0.211 0.109 -0.003 0.429 0.29 0.293 0.121 0.051 0.530
53 0.70 0.658 0.033 0.595 0.723 0.70 0.658 0.028 0.599 0.707 0.44 0.380 0.098 0.199 0.574 0.64 0.541 0.088 0.369 0.716
54 0.00 -0.004 0.051 -0.103 0.094 0.00 -0.027 0.047 -0.119 0.065 0.75 0.699 0.078 0.544 0.853 0.33 0.280 0.149 -0.021 0.544
55 0.50 0.452 0.032 0.392 0.518 0.50 0.453 0.029 0.398 0.512 0.61 0.459 0.108 0.235 0.662 0.67 0.452 * 0.115 0.207 0.657
56 0.70 0.686 0.036 0.613 0.755 0.70 0.689 0.033 0.624 0.753 0.47 0.390 0.103 0.181 0.578 0.89 0.757 0.084 0.595 0.928
57 -0.30 -0.312 0.050 -0.408 -0.215 -0.30 -0.308 0.047 -0.402 -0.220 0.48 0.489 0.099 0.287 0.670 0.19 -0.187 * 0.182 -0.546 0.163
58 -0.20 -0.219 0.054 -0.325 -0.113 -0.20 -0.220 0.050 -0.326 -0.127 0.68 0.693 0.108 0.489 0.921 -0.22 -0.369 0.166 -0.697 -0.055
59 0.30 0.314 0.050 0.216 0.411 0.30 0.309 0.049 0.210 0.406 0.25 0.508 * 0.091 0.325 0.681 0.16 0.419 * 0.110 0.199 0.632
60 0.20 0.221 0.053 0.120 0.325 0.20 0.221 0.049 0.127 0.320 0.26 0.396 0.094 0.209 0.576 0.11 0.258 0.115 0.020 0.469
61 0.40 0.351 0.055 0.244 0.449 0.40 0.377 0.043 0.293 0.459 0.63 0.493 0.104 0.287 0.695 0.19 0.256 0.099 0.055 0.437
62 1.00 0.985 * 0.014 0.957 1.000 1.00 0.982 * 0.016 0.950 1.000 0.47 0.501 0.095 0.323 0.687 1.02 0.944 * 0.045 0.855 1.000
63 0.70 0.658 0.033 0.595 0.723 0.70 0.658 0.028 0.599 0.707 0.58 0.517 0.102 0.306 0.709 1.03 0.916 * 0.057 0.812 1.000
64 0.50 0.452 0.032 0.392 0.518 0.50 0.453 0.029 0.398 0.512 0.44 0.493 0.126 0.230 0.723 0.68 0.560 0.135 0.302 0.828
65 0.30 0.238 0.043 0.156 0.324 0.30 0.260 0.038 0.187 0.332 0.39 0.325 0.122 0.073 0.556 0.34 0.221 0.129 -0.038 0.463
66 0.50 0.528 0.043 0.440 0.607 0.50 0.501 0.043 0.413 0.581 0.57 0.538 0.120 0.309 0.774 0.46 0.450 0.149 0.163 0.750
67 0.50 0.452 0.032 0.392 0.518 0.50 0.453 0.029 0.398 0.512 0.44 0.385 0.110 0.170 0.601 0.25 0.315 0.121 0.081 0.552
68 0.90 0.892 0.036 0.823 0.959 0.90 0.894 0.032 0.830 0.953 0.47 0.379 0.103 0.173 0.575 0.86 0.924 0.055 0.819 1.000
69 0.00 -0.004 0.051 -0.103 0.094 0.00 -0.027 0.047 -0.119 0.065 0.50 0.399 0.104 0.199 0.604 -0.08 -0.166 0.141 -0.451 0.098
70 0.60 0.565 0.042 0.486 0.651 0.60 0.584 0.038 0.506 0.654 0.79 0.748 0.083 0.591 0.919 0.40 0.528 0.097 0.325 0.711
71 0.70 0.686 0.036 0.613 0.755 0.70 0.689 0.033 0.624 0.753 0.71 0.585 0.081 0.419 0.739 0.46 0.560 0.090 0.376 0.730
72 0.40 0.359 0.038 0.288 0.435 0.40 0.365 0.035 0.302 0.440 0.67 0.716 0.078 0.559 0.868 0.74 0.720 0.078 0.564 0.872
73 0.20 0.145 0.044 0.059 0.228 0.20 0.172 0.038 0.098 0.246 0.52 0.526 0.119 0.284 0.752 0.46 0.240 0.141 -0.053 0.499

Average 0.36 0.341 0.37 0.344 0.51 0.493 0.37 0.345
Std.Dev. 0.32 0.318 0.37 0.321 0.18 0.134 0.37 0.346

Specification V Specification VI
95% Cred. Int. 95% Cred. Int. 95% Cred. Int. 95% Cred. Int.

Specification II
Subject

Specification IV

* indicates the true parameter is outside of the 95% credible interval of the posterior sample.
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Table B.3: Expected Utility Models Using Simulated Choices under Correct specifications, Individual
Fechner Noise Parameters

True Mean Std. Dev. True Mean Std. Dev. True Mean Std. Dev. True Mean Std. Dev.
1 0.36 0.209 * 0.062 0.106 0.328 0.36 0.199 * 0.048 0.112 0.290 0.36 0.219 * 0.061 0.114 0.342 0.37 0.147 * 0.046 0.070 0.236
2 0.40 0.318 0.090 0.179 0.501 0.40 0.271 0.059 0.181 0.401 0.40 0.319 0.094 0.179 0.499 -0.24 0.296 * 0.080 0.169 0.450
3 0.13 0.209 0.062 0.108 0.330 0.13 0.197 0.047 0.114 0.294 0.13 0.192 0.052 0.104 0.297 0.27 0.159 * 0.049 0.081 0.250
4 0.17 0.231 0.067 0.126 0.356 0.17 0.209 0.050 0.126 0.317 0.17 0.202 0.055 0.111 0.314 0.10 0.202 * 0.059 0.103 0.315
5 0.20 0.198 0.056 0.100 0.306 0.20 0.188 0.046 0.108 0.278 0.20 0.193 0.056 0.102 0.302 0.37 0.176 * 0.052 0.091 0.282
6 0.24 0.200 0.058 0.104 0.309 0.24 0.199 0.044 0.115 0.283 0.24 0.189 0.052 0.094 0.288 0.88 0.181 * 0.054 0.095 0.296
7 0.25 0.302 0.086 0.171 0.467 0.25 0.259 0.060 0.157 0.372 0.25 0.288 0.084 0.156 0.452 0.34 0.308 0.092 0.169 0.486
8 0.20 0.278 0.078 0.152 0.435 0.20 0.239 0.053 0.150 0.349 0.20 0.278 0.079 0.154 0.434 0.74 0.207 * 0.059 0.112 0.328
9 0.32 0.231 0.065 0.120 0.354 0.32 0.242 0.055 0.146 0.345 0.32 0.258 0.073 0.142 0.393 0.52 0.231 * 0.075 0.109 0.372

10 0.20 0.247 0.071 0.130 0.384 0.20 0.218 0.051 0.131 0.324 0.20 0.240 0.067 0.133 0.375 0.35 0.208 * 0.063 0.107 0.336
11 0.25 0.269 0.082 0.149 0.415 0.25 0.259 0.061 0.162 0.379 0.25 0.274 0.078 0.151 0.427 0.08 0.269 * 0.078 0.149 0.426
12 0.16 0.227 0.064 0.121 0.354 0.16 0.198 0.047 0.112 0.292 0.16 0.209 0.059 0.110 0.322 0.62 0.188 * 0.054 0.098 0.295
13 0.16 0.161 0.050 0.073 0.256 0.16 0.197 0.048 0.117 0.293 0.16 0.171 0.051 0.085 0.276 0.45 0.156 * 0.051 0.073 0.256
14 0.15 0.186 0.054 0.088 0.286 0.15 0.212 0.045 0.131 0.301 0.15 0.176 0.049 0.089 0.273 -0.56 0.168 * 0.042 0.096 0.252
15 0.17 0.235 0.065 0.119 0.360 0.17 0.232 0.053 0.141 0.343 0.17 0.230 0.067 0.126 0.359 -0.20 0.240 * 0.065 0.137 0.369
16 0.17 0.194 0.053 0.100 0.294 0.17 0.165 0.044 0.082 0.249 0.17 0.158 0.049 0.071 0.249 0.28 0.140 * 0.047 0.066 0.226
17 0.31 0.279 0.081 0.156 0.439 0.31 0.279 0.066 0.162 0.411 0.31 0.255 0.069 0.144 0.395 0.40 0.283 0.087 0.153 0.452
18 0.22 0.189 0.056 0.094 0.292 0.22 0.187 0.046 0.098 0.275 0.22 0.187 0.054 0.098 0.296 0.65 0.186 * 0.056 0.093 0.295
19 0.26 0.219 0.061 0.120 0.339 0.26 0.257 0.058 0.166 0.378 0.26 0.209 0.059 0.110 0.318 0.01 0.213 * 0.068 0.104 0.344
20 0.23 0.285 0.082 0.157 0.444 0.23 0.240 0.057 0.141 0.349 0.23 0.259 0.072 0.147 0.405 0.48 0.248 * 0.071 0.130 0.385
21 0.16 0.283 0.080 0.153 0.434 0.16 0.241 0.054 0.145 0.347 0.16 0.260 0.071 0.141 0.398 0.97 0.138 * 0.037 0.072 0.210
22 0.18 0.210 0.056 0.115 0.321 0.18 0.181 0.041 0.107 0.263 0.18 0.216 0.059 0.110 0.326 0.00 0.170 * 0.046 0.091 0.263
23 0.29 0.307 0.093 0.174 0.492 0.29 0.209 0.046 0.127 0.299 0.29 0.279 0.077 0.159 0.439 -0.02 0.205 * 0.054 0.114 0.313
24 0.30 0.247 0.070 0.132 0.385 0.30 0.222 0.052 0.129 0.326 0.30 0.243 0.068 0.135 0.383 1.07 0.141 * 0.036 0.075 0.209
25 0.25 0.223 0.062 0.121 0.352 0.25 0.207 0.048 0.118 0.296 0.25 0.219 0.062 0.116 0.343 -0.12 0.239 * 0.065 0.136 0.368
26 0.23 0.222 0.061 0.116 0.339 0.23 0.205 0.046 0.121 0.295 0.23 0.201 0.056 0.110 0.315 -0.37 0.176 * 0.048 0.096 0.272
27 0.13 0.162 0.050 0.079 0.257 0.13 0.163 0.040 0.090 0.240 0.13 0.167 0.044 0.092 0.254 -0.31 0.142 * 0.038 0.081 0.220
28 0.27 0.287 0.082 0.159 0.457 0.27 0.266 0.065 0.160 0.396 0.27 0.296 0.089 0.162 0.463 0.46 0.290 0.086 0.157 0.468
29 0.19 0.294 0.084 0.160 0.458 0.19 0.187 0.042 0.108 0.265 0.19 0.234 0.062 0.125 0.357 -0.02 0.187 * 0.050 0.106 0.284
30 0.26 0.295 0.087 0.163 0.452 0.26 0.246 0.051 0.160 0.351 0.26 0.308 0.091 0.179 0.487 0.01 0.260 * 0.068 0.149 0.395
31 0.31 0.192 * 0.056 0.103 0.300 0.31 0.198 * 0.044 0.125 0.291 0.31 0.183 * 0.052 0.090 0.283 -0.20 0.209 * 0.061 0.109 0.326
32 0.26 0.238 0.069 0.127 0.382 0.26 0.217 0.054 0.131 0.328 0.26 0.207 0.055 0.115 0.313 0.79 0.222 * 0.067 0.108 0.350
33 0.27 0.268 0.076 0.140 0.412 0.27 0.237 0.058 0.142 0.360 0.27 0.254 0.074 0.136 0.398 0.48 0.250 * 0.079 0.135 0.405
34 0.26 0.232 0.065 0.128 0.362 0.26 0.212 0.049 0.122 0.302 0.26 0.233 0.065 0.126 0.365 0.23 0.183 0.053 0.094 0.287
35 0.14 0.172 0.052 0.078 0.270 0.14 0.188 0.045 0.108 0.278 0.14 0.172 0.052 0.090 0.278 0.55 0.158 * 0.049 0.076 0.252
36 0.24 0.175 0.051 0.089 0.273 0.24 0.190 0.045 0.107 0.276 0.24 0.177 0.054 0.083 0.278 0.48 0.162 * 0.050 0.079 0.260
37 0.30 0.354 0.104 0.197 0.567 0.30 0.285 0.073 0.163 0.420 0.30 0.329 0.095 0.188 0.522 0.20 0.294 0.084 0.159 0.457
38 0.18 0.217 0.062 0.110 0.338 0.18 0.218 0.049 0.131 0.318 0.18 0.263 0.074 0.147 0.413 0.61 0.214 * 0.069 0.113 0.342
39 0.26 0.298 0.085 0.171 0.474 0.26 0.268 0.064 0.166 0.398 0.26 0.285 0.079 0.156 0.442 0.34 0.206 * 0.062 0.102 0.322
40 0.27 0.254 0.073 0.136 0.393 0.27 0.238 0.054 0.145 0.350 0.27 0.225 0.065 0.127 0.354 -0.04 0.149 * 0.044 0.072 0.236
41 0.29 0.292 0.085 0.162 0.460 0.29 0.243 0.057 0.143 0.355 0.29 0.259 0.077 0.137 0.409 0.24 0.289 0.085 0.155 0.464
42 0.27 0.239 0.068 0.122 0.369 0.27 0.256 0.057 0.152 0.364 0.27 0.229 0.062 0.128 0.351 0.05 0.252 * 0.075 0.133 0.390
43 0.29 0.274 0.078 0.154 0.432 0.29 0.201 * 0.046 0.119 0.284 0.29 0.205 0.052 0.116 0.307 0.76 0.205 * 0.047 0.124 0.298
44 0.39 0.204 * 0.059 0.111 0.322 0.39 0.199 * 0.048 0.108 0.288 0.39 0.195 * 0.055 0.105 0.308 0.83 0.180 * 0.058 0.092 0.293
45 0.17 0.152 0.049 0.067 0.246 0.17 0.163 0.043 0.081 0.241 0.17 0.163 0.050 0.076 0.259 0.55 0.144 * 0.044 0.075 0.236
46 0.26 0.280 0.081 0.154 0.440 0.26 0.256 0.061 0.153 0.374 0.26 0.277 0.086 0.146 0.429 0.91 0.225 * 0.060 0.126 0.344
47 0.20 0.249 0.071 0.130 0.393 0.20 0.192 0.047 0.104 0.282 0.20 0.190 0.053 0.103 0.301 0.62 0.178 * 0.057 0.087 0.283
48 0.19 0.239 0.068 0.127 0.371 0.19 0.215 0.051 0.131 0.319 0.19 0.229 0.067 0.119 0.358 0.51 0.211 * 0.061 0.114 0.334
49 0.19 0.246 0.074 0.129 0.393 0.19 0.239 0.055 0.149 0.343 0.19 0.220 0.060 0.120 0.332 1.09 0.141 * 0.037 0.079 0.214
50 0.22 0.247 0.068 0.129 0.374 0.22 0.262 0.064 0.157 0.382 0.22 0.291 0.087 0.165 0.466 0.27 0.293 0.085 0.154 0.453
51 0.29 0.216 0.059 0.115 0.333 0.29 0.207 0.050 0.116 0.303 0.29 0.216 0.059 0.116 0.331 0.57 0.205 * 0.062 0.109 0.320
52 0.21 0.244 0.068 0.124 0.371 0.21 0.224 0.055 0.137 0.338 0.21 0.171 0.049 0.090 0.269 0.29 0.229 0.067 0.122 0.354
53 0.15 0.196 0.059 0.095 0.305 0.15 0.220 0.050 0.133 0.321 0.15 0.186 0.053 0.104 0.298 0.64 0.178 * 0.056 0.090 0.289
54 0.22 0.210 0.062 0.111 0.329 0.22 0.195 0.045 0.114 0.281 0.22 0.192 0.053 0.097 0.302 0.33 0.204 0.065 0.093 0.330
55 0.22 0.256 0.071 0.147 0.409 0.22 0.235 0.059 0.132 0.349 0.22 0.233 0.065 0.118 0.359 0.67 0.226 * 0.067 0.118 0.364
56 0.23 0.214 0.062 0.111 0.334 0.23 0.262 0.068 0.152 0.387 0.23 0.208 0.057 0.111 0.318 0.89 0.203 * 0.059 0.104 0.317
57 0.14 0.205 0.058 0.104 0.318 0.14 0.203 0.045 0.123 0.290 0.14 0.208 0.058 0.109 0.324 0.19 0.280 0.080 0.152 0.441
58 0.18 0.300 0.090 0.166 0.483 0.18 0.195 0.044 0.116 0.281 0.18 0.286 0.081 0.161 0.448 -0.22 0.181 * 0.046 0.102 0.268
59 0.29 0.244 0.068 0.134 0.375 0.29 0.217 0.052 0.127 0.320 0.29 0.193 0.053 0.099 0.295 0.16 0.182 0.053 0.096 0.290
60 0.22 0.177 0.055 0.085 0.278 0.22 0.194 0.047 0.105 0.283 0.22 0.186 0.056 0.095 0.289 0.11 0.179 0.054 0.094 0.286
61 0.14 0.210 0.060 0.114 0.327 0.14 0.196 0.047 0.116 0.290 0.14 0.226 0.064 0.113 0.352 0.19 0.205 0.062 0.107 0.326
62 0.27 0.189 0.058 0.099 0.305 0.27 0.185 * 0.040 0.112 0.260 0.27 0.190 0.055 0.097 0.295 1.02 0.143 * 0.037 0.076 0.215
63 0.14 0.220 0.062 0.112 0.337 0.14 0.220 0.053 0.127 0.322 0.14 0.221 0.063 0.117 0.349 1.03 0.130 * 0.037 0.068 0.205
64 0.32 0.347 0.111 0.191 0.563 0.32 0.305 0.080 0.185 0.471 0.32 0.344 0.105 0.187 0.548 0.68 0.365 * 0.115 0.190 0.588
65 0.28 0.268 0.077 0.147 0.411 0.28 0.228 0.052 0.139 0.329 0.28 0.243 0.065 0.138 0.373 0.34 0.234 0.065 0.126 0.361
66 0.35 0.361 0.107 0.196 0.568 0.35 0.314 0.084 0.190 0.482 0.35 0.364 0.112 0.202 0.587 0.46 0.369 0.121 0.189 0.609
67 0.31 0.244 0.070 0.132 0.384 0.31 0.228 0.058 0.136 0.342 0.31 0.236 0.065 0.133 0.366 0.25 0.208 0.060 0.113 0.329
68 0.15 0.153 0.049 0.074 0.247 0.15 0.162 0.039 0.093 0.239 0.15 0.183 0.052 0.090 0.279 0.86 0.166 * 0.040 0.093 0.241
69 0.16 0.214 0.062 0.115 0.336 0.16 0.151 0.040 0.079 0.229 0.16 0.205 0.058 0.102 0.313 -0.08 0.124 * 0.035 0.062 0.190
70 0.22 0.230 0.067 0.124 0.367 0.22 0.208 0.049 0.118 0.302 0.22 0.201 0.054 0.112 0.315 0.40 0.205 * 0.062 0.108 0.324
71 0.31 0.209 0.062 0.100 0.326 0.31 0.195 * 0.048 0.112 0.286 0.31 0.183 * 0.052 0.091 0.284 0.46 0.195 * 0.061 0.095 0.313
72 0.18 0.232 0.070 0.120 0.360 0.18 0.215 0.049 0.130 0.310 0.18 0.186 0.049 0.101 0.288 0.74 0.169 * 0.052 0.087 0.271
73 0.33 0.336 0.098 0.181 0.525 0.33 0.317 0.080 0.190 0.474 0.33 0.333 0.094 0.192 0.524 0.46 0.362 0.111 0.184 0.581

Average 0.23 0.240 0.23 0.221 0.23 0.229 0.37 0.209
Std.Dev. 0.07 0.048 0.07 0.035 0.07 0.047 0.37 0.056

Specification V Specification VI
95% Cred. Int. 95% Cred. Int. 95% Cred. Int. 95% Cred. Int.

Specification III
Subject

Specification IV

* indicates the true parameter is outside of the 95% credible interval of the posterior sample.
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Table B.4: Expected Utility Models Using Simulated Dataset VI under Misspecified specifications,
Individual CRRA Coefficients

True
Value Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

1 0.37 0.546 * 0.037 0.478 0.622 0.539 * 0.038 0.470 0.613 0.313 0.118 0.067 0.525 0.382 0.088 0.203 0.545

2 -0.24 -0.170 0.047 -0.266 -0.080 -0.160 0.047 -0.253 -0.070 -0.153 0.229 -0.582 0.284 -0.283 0.181 -0.629 0.076
3 0.27 0.268 0.044 0.183 0.356 0.290 0.047 0.196 0.382 0.281 0.115 0.045 0.499 0.280 0.113 0.052 0.489
4 0.10 0.207 * 0.047 0.116 0.299 0.215 * 0.049 0.121 0.313 0.182 0.153 -0.127 0.465 0.167 0.135 -0.094 0.427
5 0.37 0.509 * 0.029 0.455 0.565 0.522 * 0.030 0.464 0.580 0.251 0.127 -0.012 0.496 0.312 0.101 0.114 0.507
6 0.88 0.815 * 0.031 0.757 0.875 0.809 * 0.031 0.749 0.868 0.712 * 0.081 0.550 0.874 0.743 0.078 0.599 0.902
7 0.34 0.212 * 0.035 0.147 0.286 0.199 * 0.038 0.121 0.267 0.211 0.172 -0.118 0.548 0.178 0.126 -0.054 0.436
8 0.74 0.716 0.028 0.663 0.774 0.718 0.028 0.662 0.774 0.664 0.093 0.474 0.842 0.686 0.085 0.523 0.860
9 0.52 0.778 * 0.027 0.724 0.831 0.793 * 0.027 0.738 0.843 0.405 0.137 0.138 0.661 0.519 0.109 0.299 0.735

10 0.35 0.650 * 0.032 0.587 0.714 0.649 * 0.035 0.581 0.718 0.165 0.145 -0.113 0.443 0.323 0.114 0.100 0.548
11 0.08 0.212 * 0.035 0.147 0.286 0.199 * 0.038 0.121 0.267 0.181 0.187 -0.201 0.520 0.165 0.124 -0.089 0.396
12 0.62 0.608 0.039 0.531 0.681 0.614 0.036 0.541 0.683 0.726 0.084 0.566 0.900 0.724 0.080 0.562 0.879
13 0.45 0.141 * 0.045 0.049 0.225 0.146 * 0.050 0.045 0.243 0.487 0.093 0.304 0.673 0.443 0.100 0.241 0.639
14 -0.56 -0.298 * 0.044 -0.385 -0.212 -0.304 * 0.047 -0.395 -0.210 -0.297 0.198 -0.694 0.065 -0.401 0.157 -0.731 -0.106
15 -0.20 -0.029 * 0.045 -0.115 0.057 -0.034 * 0.051 -0.135 0.065 -0.040 0.201 -0.443 0.342 -0.083 0.163 -0.408 0.224
16 0.28 0.419 * 0.042 0.342 0.504 0.395 * 0.043 0.315 0.474 0.372 0.107 0.164 0.579 0.371 0.080 0.213 0.525
17 0.40 0.339 0.037 0.265 0.412 0.343 0.036 0.274 0.414 0.510 0.144 0.219 0.770 0.429 0.129 0.173 0.674
18 0.65 0.509 * 0.029 0.455 0.565 0.522 * 0.030 0.464 0.580 0.578 0.098 0.382 0.761 0.578 0.089 0.399 0.751
19 0.01 -0.001 0.045 -0.094 0.085 0.019 0.046 -0.072 0.110 0.389 * 0.125 0.127 0.615 0.260 0.147 -0.036 0.529
20 0.48 0.419 0.042 0.342 0.504 0.395 * 0.043 0.315 0.474 0.185 0.176 -0.149 0.532 0.313 0.096 0.123 0.504
21 0.97 0.716 * 0.028 0.663 0.774 0.718 * 0.028 0.662 0.774 0.937 0.050 0.839 1.000 0.925 0.053 0.825 1.000
22 0.00 -0.128 * 0.047 -0.218 -0.035 -0.125 * 0.048 -0.222 -0.035 -0.118 0.169 -0.473 0.178 -0.191 0.149 -0.500 0.086
23 -0.02 -0.029 0.045 -0.115 0.057 -0.034 0.051 -0.135 0.065 -0.033 0.175 -0.382 0.295 -0.072 0.146 -0.372 0.199
24 1.07 0.778 * 0.027 0.724 0.831 0.793 * 0.027 0.738 0.843 0.933 * 0.052 0.833 1.000 0.939 * 0.047 0.847 1.000
25 -0.12 0.099 * 0.049 0.005 0.194 0.110 * 0.050 0.015 0.204 -0.002 0.179 -0.370 0.322 -0.011 0.159 -0.339 0.280
26 -0.37 -0.001 * 0.045 -0.094 0.085 0.019 * 0.046 -0.072 0.110 -0.081 0.184 -0.447 0.250 -0.112 0.154 -0.431 0.177
27 -0.31 -0.170 * 0.047 -0.266 -0.080 -0.160 * 0.047 -0.253 -0.070 -0.184 0.163 -0.527 0.108 -0.260 0.146 -0.557 0.020
28 0.46 0.476 0.039 0.396 0.550 0.486 0.044 0.398 0.569 0.429 0.161 0.097 0.726 0.469 0.130 0.198 0.709
29 -0.02 -0.128 * 0.047 -0.218 -0.035 -0.125 * 0.048 -0.222 -0.035 -0.195 0.192 -0.596 0.154 -0.234 0.157 -0.546 0.057
30 0.01 -0.128 * 0.047 -0.218 -0.035 -0.125 * 0.048 -0.222 -0.035 -0.017 0.204 -0.439 0.347 -0.145 0.170 -0.477 0.178
31 -0.20 -0.298 * 0.044 -0.385 -0.212 -0.304 * 0.047 -0.395 -0.210 0.150 * 0.147 -0.150 0.414 -0.168 0.174 -0.501 0.166
32 0.79 0.509 * 0.029 0.455 0.565 0.522 * 0.030 0.464 0.580 0.539 * 0.118 0.313 0.777 0.537 * 0.105 0.328 0.743
33 0.48 0.348 * 0.047 0.256 0.437 0.342 * 0.050 0.246 0.443 0.389 0.163 0.060 0.695 0.393 0.130 0.132 0.642
34 0.23 0.212 0.035 0.147 0.286 0.199 0.038 0.121 0.267 0.355 0.129 0.113 0.607 0.269 0.116 0.040 0.498
35 0.55 0.650 * 0.032 0.587 0.714 0.649 * 0.035 0.581 0.718 0.440 0.102 0.236 0.634 0.495 0.088 0.323 0.671
36 0.48 0.716 * 0.028 0.663 0.774 0.718 * 0.028 0.662 0.774 0.478 0.101 0.281 0.671 0.534 0.083 0.378 0.702
37 0.20 0.306 * 0.045 0.216 0.388 0.306 * 0.050 0.211 0.405 -0.070 0.212 -0.532 0.301 0.071 0.160 -0.249 0.382
38 0.61 0.688 * 0.036 0.616 0.756 0.665 0.039 0.585 0.737 0.577 0.102 0.389 0.788 0.625 0.083 0.457 0.780
39 0.34 0.381 0.035 0.312 0.447 0.378 0.035 0.306 0.442 0.032 0.181 -0.311 0.382 0.179 0.123 -0.055 0.426
40 -0.04 0.212 * 0.035 0.147 0.286 0.199 * 0.038 0.121 0.267 0.210 * 0.128 -0.037 0.461 0.184 * 0.107 -0.021 0.386
41 0.24 0.207 0.047 0.116 0.299 0.215 0.049 0.121 0.313 0.243 0.196 -0.164 0.603 0.204 0.160 -0.132 0.499
42 0.05 -0.029 0.045 -0.115 0.057 -0.034 0.051 -0.135 0.065 0.276 0.157 -0.034 0.572 0.124 0.160 -0.210 0.417
43 0.76 0.778 0.027 0.724 0.831 0.793 0.027 0.738 0.843 0.908 * 0.064 0.782 1.000 0.916 * 0.062 0.800 1.000
44 0.83 0.650 * 0.032 0.587 0.714 0.649 * 0.035 0.581 0.718 0.648 * 0.084 0.487 0.820 0.668 0.082 0.511 0.837
45 0.55 0.509 0.029 0.455 0.565 0.522 0.030 0.464 0.580 0.562 0.079 0.411 0.721 0.565 0.075 0.407 0.708
46 0.91 0.688 * 0.036 0.616 0.756 0.665 * 0.039 0.585 0.737 0.825 0.091 0.671 1.000 0.798 0.084 0.644 0.968
47 0.62 0.608 0.039 0.531 0.681 0.614 0.036 0.541 0.683 0.541 0.098 0.360 0.735 0.565 0.087 0.396 0.739
48 0.51 0.339 * 0.037 0.265 0.412 0.343 * 0.036 0.274 0.414 0.389 0.130 0.127 0.643 0.362 0.112 0.138 0.577
49 1.09 0.815 * 0.031 0.757 0.875 0.809 * 0.031 0.749 0.868 0.933 * 0.052 0.832 1.000 0.935 * 0.049 0.842 1.000
50 0.27 0.178 * 0.047 0.088 0.268 0.162 * 0.053 0.055 0.268 0.126 0.200 -0.265 0.514 0.133 0.141 -0.154 0.401
51 0.57 0.509 * 0.029 0.455 0.565 0.522 0.030 0.464 0.580 0.448 0.125 0.205 0.691 0.477 0.105 0.265 0.677
52 0.29 0.381 * 0.035 0.312 0.447 0.378 * 0.035 0.306 0.442 0.224 0.168 -0.106 0.550 0.293 0.121 0.051 0.530
53 0.64 0.716 * 0.028 0.663 0.774 0.718 * 0.028 0.662 0.774 0.481 0.110 0.262 0.696 0.541 0.088 0.369 0.716
54 0.33 -0.001 * 0.045 -0.094 0.085 0.019 * 0.046 -0.072 0.110 0.407 0.118 0.185 0.643 0.280 0.149 -0.021 0.544
55 0.67 0.509 * 0.029 0.455 0.565 0.522 * 0.030 0.464 0.580 0.413 0.145 0.125 0.683 0.452 * 0.115 0.207 0.657
56 0.89 0.650 * 0.032 0.587 0.714 0.649 * 0.035 0.581 0.718 0.748 0.089 0.574 0.930 0.757 0.084 0.595 0.928
57 0.19 -0.298 * 0.044 -0.385 -0.212 -0.304 * 0.047 -0.395 -0.210 0.188 0.166 -0.137 0.505 -0.187 * 0.182 -0.546 0.163
58 -0.22 -0.170 0.047 -0.266 -0.080 -0.160 0.047 -0.253 -0.070 -0.323 0.201 -0.737 0.064 -0.369 0.166 -0.697 -0.055
59 0.16 0.306 * 0.045 0.216 0.388 0.306 * 0.050 0.211 0.405 0.452 * 0.110 0.222 0.648 0.419 * 0.110 0.199 0.632
60 0.11 0.178 0.047 0.088 0.268 0.162 0.053 0.055 0.268 0.300 0.127 0.044 0.527 0.258 0.115 0.020 0.469
61 0.19 0.419 * 0.042 0.342 0.504 0.395 * 0.043 0.315 0.474 0.012 0.181 -0.325 0.371 0.256 0.099 0.055 0.437
62 1.02 0.985 * 0.014 0.958 1.000 0.989 * 0.010 0.968 1.000 0.927 * 0.053 0.827 1.000 0.944 * 0.045 0.855 1.000
63 1.03 0.716 * 0.028 0.663 0.774 0.718 * 0.028 0.662 0.774 0.927 * 0.054 0.824 1.000 0.916 * 0.057 0.812 1.000
64 0.68 0.509 * 0.029 0.455 0.565 0.522 * 0.030 0.464 0.580 0.561 0.174 0.235 0.916 0.560 0.135 0.302 0.828
65 0.34 0.339 0.037 0.265 0.412 0.343 0.036 0.274 0.414 0.162 0.186 -0.207 0.491 0.221 0.129 -0.038 0.463
66 0.46 0.476 0.039 0.396 0.550 0.486 0.044 0.398 0.569 0.396 0.178 0.027 0.718 0.450 0.149 0.163 0.750
67 0.25 0.509 * 0.029 0.455 0.565 0.522 * 0.030 0.464 0.580 0.219 0.153 -0.081 0.505 0.315 0.121 0.081 0.552
68 0.86 0.857 0.032 0.800 0.924 0.845 0.029 0.786 0.898 0.914 0.061 0.798 1.000 0.924 0.055 0.819 1.000
69 -0.08 -0.001 0.045 -0.094 0.085 0.019 * 0.046 -0.072 0.110 -0.155 0.157 -0.470 0.142 -0.166 0.141 -0.451 0.098
70 0.40 0.608 * 0.039 0.531 0.681 0.614 * 0.036 0.541 0.683 0.486 0.116 0.243 0.694 0.528 0.097 0.325 0.711
71 0.46 0.650 * 0.032 0.587 0.714 0.649 * 0.035 0.581 0.718 0.510 0.102 0.308 0.701 0.560 0.090 0.376 0.730
72 0.74 0.381 * 0.035 0.312 0.447 0.378 * 0.035 0.306 0.442 0.781 0.082 0.634 0.955 0.720 0.078 0.564 0.872
73 0.46 0.212 * 0.035 0.147 0.286 0.199 * 0.038 0.121 0.267 0.387 0.201 -0.039 0.739 0.240 0.141 -0.053 0.499

Average 0.37 0.359 0.361 0.353 0.345
Std.Dev. 0.37 0.322 0.322 0.322 0.346

Specification VI
95% Cred. Int.95% Cred. Int.

Specification II Specification IV
95% Cred. Int. 95% Cred. Int.

Subject
Specification V

* indicates the true parameter is outside of the 95% credible interval of the posterior sample.
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Figure B.1: Individual Fechner Noises Using Simulated Dataset VI under

Misspecified specifications
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Figure B.2: Individual Fechner Noise µi from Observed Choices under

EUT specification VI
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Figure B.3: Individual Fechner Noise µi from Observed Choices under

Different EUT Specifications
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Figure B.4: Individual Fechner Noises from Observed Choices under

Specifications III, IV, V and VI of RDU Prelec Model
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Appendix C Template Stata Codes (ONLINE)

In this section we provide the Stata codes for the estimation of specification VI.

C.1 Data and Variables

The data are saved in a Stata dataset with each row of observation recording all the observables of

subject i in lottery pair t, including a subject id, his or her demographic information, the prizes and

probabilities of the lottery pair, and the subject’s choice of left or right lottery from the pair. Table C.1

contains for a detailed explanation of each variable and its correspondence with the mathematical

notations in the text.

Table C.1: Variables in Stata Dataset

Variable Notes
female Whether a subject is female
black Whether a subject is African American
business Whether a subject is business major
gpaHI Whether a subject has a high GPA
insured Whether a subject owns any insurance
probkL The probabilities of the left lottery, pL

tk where k = 1, . . . ,4
prizekL The prizes of the left lottery, xL

tk where k = 1, . . . ,4
probkR The probabilities of the right lottery, pR

tk where k = 1, . . . ,4
prizekR The prizes of the right lottery, xR

tk where k = 1, . . . ,4
endowment Endowment subjects receives, e
sid Continuously coded subject ID, i = 1,2, . . . ,73
choiceL Subjects’ choices in lottery pairs, yit , equal to 1 if subject chooses the left lottery

We collect relevant variables in globals “demog r” and “Rdata” to allow for a more succinct

presentation of the main syntax:

global demog_r "female black business gpaHI insured"
global Rdata "prob1L prob2L prob3L prob4L prob1R prob2R prob3R prob4R prize1L

↪→ prize2L prize3L prize4L prize1R prize2R prize3R prize4R endowment"

The use of a small red arrow indicates a continuation of the previous line.

C.2 Likelihood Function

The likelihood function in our model needs to be written in a user-defined function referred to as

“user-defined likelihood evaluator” in Stata. To allow for flexibility in the specifications, we use
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several globals: the “utype” global specifies the specific form of the CRRA utility function in (1), the

“contextual” global specifies whether to use contextual utilities in (2), and the “cdf” global specifies

whether to use a Probit or Logit link between the latent index and the observed choice in (3). To

replicate specification VI in its exact form in the main text, we define these globals as follows:

global utype "1-r"
global contextual "y"
global cdf "normal"

The user-defined likelihood evaluator is then

program probitEUfLN

args lnf r LNmu

tokenize $MH_extravars

local h = 0
foreach par in prob prize {

forvalues i=1/4 {
local h = ‘h’+1
local ‘par’‘i’L ‘‘h’’

}
forvalues i=1/4 {

local h = ‘h’+1
local ‘par’‘i’R ‘‘h’’

}
}
local h = ‘h’+1
local endowment ‘‘h’’
tempvar lnfj
tempvar euL euR eudiff m1L m2L m3L m4L m1R m2R m3R m4R u1L u2L u3L u4L u1R

↪→ u2R u3R u4R mu
tempvar low high

quietly {
generate double ‘mu’ = exp(‘LNmu’)

* add in endowments
foreach x in L R {
forvalues i=1/4 {

generate double ‘m‘i’‘x’’ = ‘endowment’ + ‘prize‘i’‘x’’
}
}
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* generate the utility function
foreach x in L R {
forvalues i=1/4 {

if "$utype" == "2" {
generate double ‘u‘i’‘x’’ = (‘m‘i’‘x’’ˆ(1-‘r’))/(1-‘

↪→ r’)
}
else {

generate double ‘u‘i’‘x’’ = ‘m‘i’‘x’’ˆ‘r’
}

}
}

* evaluate the EU of each lottery
generate double ‘euL’ = 0
generate double ‘euR’ = 0
foreach x in L R {
forvalues i=1/4 {

replace ‘eu‘x’’ = ‘eu‘x’’ + ‘prob‘i’‘x’’*‘u‘i’‘x’’
}
}

* get the Fechner index
if "$contextual" == "y" {

generate double ‘low’ = ‘u1L’
generate double ‘high’ = ‘u1L’
forvalues i=1/4 {
foreach s in L R {

replace ‘low’ = ‘u‘i’‘s’’ if ‘u‘i’‘s’’ < ‘low’ & ‘
↪→ prob‘i’‘s’’ > 0

replace ‘high’ = ‘u‘i’‘s’’ if ‘u‘i’‘s’’ > ‘high’ & ‘
↪→ prob‘i’‘s’’ > 0

}
}
generate double ‘eudiff’ = ((‘euL’ - ‘euR’)/(‘high’-‘low’))

↪→ /‘mu’
}
else {

generate double ‘eudiff’ = (‘euL’ - ‘euR’)/‘mu’
}

* construct the likelihood contribution
generate double ‘lnfj’ = ln($cdf( ‘eudiff’)) if $MH_y1 == 1 &

↪→ $MH_touse
replace ‘lnfj’ = ln($cdf(-‘eudiff’)) if $MH_y1 == 0 & $MH_touse
summarize ‘lnfj’, meanonly
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}

* check that the required evaluations are done
if r(N) < $MH_n {

scalar ‘lnf’ = .
exit

}
scalar ‘lnf’ = r(sum)

end

C.3 Main Syntax

The main Stata command for Metropolis-Hastings algorithm that allows for the use user-defined

likelihood function is “bayesmh”. The template listing is provided below. In this command we first

specify all the model parameters, with parameters related to CRRA coefficients in line 1 and those

related to the Fechner noise parameters in line 2.

In line 3 we specify the user-defined likelihood evaluator in option “llevaluator( )”, within which

we can tell Stata to input the variables in “extravars( )”. The user-defined likelihood evaluator parses

the variables into temporary variables when evaluating the likelihood.

For specification VI the Gibbs sampler can only be applied to the distribution of µi, which is

specified in lines 13-15. We use the Metropolis Hastings algorithm to sample parameters related to

CRRA coefficients, specified in lines 4-12.

In lines 16-18 we specify options for the size of the MCMC sample, display of results, saving of

the MCMC samples for later use, adaptation parameters for the adjustment of proposal steps in the MH

algorithm, etc. For documentation one can reference the Stata manual for the “bayesmh” command.

1 bayesmh (r:choiceL i.sid i.sid#i.($demog_r)) ///
2 (mu: choiceL i.sid), ///
3 llevaluator(probitEUfLN, extravars($Rdata)) ///
4 prior({r:i.sid }, normal({rMean:constant},{rVar})) ///
5 prior({r:i.sid#i.female}, normal({rMean:female},{rVar})) ///
6 prior({r:i.sid#i.black}, normal({rMean:black},{rVar})) ///
7 prior({r:i.sid#i.business}, normal({rMean:business},{rVar})) ///
8 prior({r:i.sid#i.gpaHI}, normal({rMean:gpaHI},{rVar})) ///
9 prior({r:i.sid#i.insured}, normal({rMean:insured},{rVar})) ///
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10 block({r:},split) ///
11 prior({rMean:}, normal(0, 100)) block({rMean:}, split) ///
12 prior({rVar}, igamma(0.001, 0.001)) block({rVar}) ///
13 prior({mu:i.sid}, normal({muMean},{muVar})) block({mu:i.sid}, split) ///
14 prior({muMean}, normal(0, 100)) block({muMean},gibbs) ///
15 prior({muVar}, igamma(0.001, 0.001)) block({muVar},gibbs) ///
16 rseed(54321) mcmcs(10000) burnin(2500) adapt( every(10) alpha(0.75) beta(0.8)

↪→ gamma(0.0001)) ///
17 nomleinitial nocons initial({r:} {rMean:} 0 {mu:i.sid} 1 {rMean:} 0 {rVar} 1

↪→ {muMean} 0 {muVar} 1) initsummary ///
18 saving(ChoiceEU6_SpecEU6, replace) dots(1,every(10))


	Introduction
	Experimental Data
	Expected Utility Theory
	Model and Specifications
	Specification VI
	Specification V
	Specification IV
	Specification III
	Specification II
	Specification I

	Data Simulation and Parameter Recovery
	Parameter Recovery
	Model Sensitivity to Mis-specification

	EUT Inferences with Observed Data

	Rank Dependent Utility Theory
	Model and Specifications
	RDU Inferences with Observed Data

	Applications
	Characterizing Risk Preferences for Their Own Sake
	Joint Estimation of Risk Preferences and Other Preferences
	Inferences Based on Risk Preferences

	Conclusions
	Experiment Instructions and Lottery Parameters (ONLINE)
	Instructions in the Gain Frame
	Lottery Parameters in the Gain Frame

	Additional Results (ONLINE)
	Template Stata Codes (ONLINE)
	Data and Variables
	Likelihood Function
	Main Syntax




