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1 Introduction

Individual risk preferences are heterogeneous, and inferring risk preferences for individuals can be
problematic. Sometimes it is not possible to elicit a large sample of responses from every individual,
due to time constraints or concerns with boredom. This problem arises often when risk preferences are
not the primary focus of analysis, but are still needed to control for potential confounds. Sometimes
the variety of stimuli needed to identify certain models of risk preferences makes it difficult to ask
many questions of each type of stimulus. An important example arises when considering gain frame,
mixed frame and loss frame lotteries needed to estimate risk preferences under Cumulative Prospect
Theory (CPT). In this case one might have to present a limited number of lottery choices to each
subject that sample from a wider battery of lottery choices, knowing a priori that the wider battery
may have useful information for estimation.! Sometimes the precision of estimates of risk preferences
directly affects the precision of parameters conditioned on risk preferences, placing a premium on
reliable estimates of risk preferences.” Sometimes the estimation of individual risk preferences is
needed in order to make normative evaluations of observed out-of-sample choices. We illustrate this
type of application in section 5, with welfare evaluations of decisions to purchase insurance or not.
And sometimes, there is simply no standard model of risk preferences that seems to characterize the
observed behavior of some individuals well, even if standard models do characterize the observed

behavior of mostindividuals.

These considerations motivate a derived demand for conditioning inferences about individual risk
preferences with priors from other sources, which is what Bayesian analysis allows one to do

systematically.

One natural source of priors comes from estimates of models of risk preferences that pool data
from all subjects, and then conditions inferences about each parameter on a list of observable

demographic characteristics. One can then generate predictions about the distributions of these

ITo take an extreme example, one might have elicited responses from subjects over gain frame and loss frame lotteries,
but not over mixed frame lotteries. In this case one cannot identify a key parameter of CPT, the utility loss aversion
parameter A. One might then return to a different sample from the same population and elicit responses to mixed frame
lotteries, and seek to make inferences about loss aversion from both samples with priors over the exchangeability of the two
samples.

2Section 5.2 discusses several important examples.



parameters that condition on the specific value of the characteristics of each individual, and use these
predictions as priors for Bayesian inferences that pool the sample data for that individual. The
posterior distributions that are estimated for each individual are then a reflection of the prior and the
sample. When the sample is relatively uninformative, for one reason or another, the prior will play a
greater role in conditioning the posterior. The advantage of this approach is that it will “always”
generate priors for each individual, and these priors can be conditioned on a potentially long list of
characteristics specific to each individual. We focus on the role of this class of priors, since they are

generally available.

In various forms Bayesian analysis has long been applied to condition inferences from
experimental data. Nilsson, Rieskamp and Wagenmakers (2011) employ hierarchical Bayesian
methods to make inferences about risk preferences under CPT.? They recognized the identification
problem for CPT models with certain utility specifications that allow different utility curvature for
“gains” and “losses.” They simulated data, using the popular point estimates from Tversky and
Kahneman (1992), to test the ability of their model to recover them. They found that their model
generated biased results for several key CPT parameters, and correctly concluded (p. 89) that it “... is
likely that these results are caused by a peculiarity of CPT, that is, its ability to account for loss
aversion in multiple ways.” As explained by Harrison and Swarthout (2021), what they discovered is a
well-known theoretical identification issue with CPT that requires the use of one of several dogmatic
priors about the definition of loss aversion. In any event, they estimated all models with the dogmatic
prior that the utility curvature for “gains” and “losses” was the same, to avoid this identification

problem.

We consider a simple case in which one collects data from subjects using a binary choice task in
which the subject selects one of two possible lotteries. We provide an overview of Bayesian estimation
of the parameters of the utility functions and probability weighting functions characterizing popular
models of risk preferences. A key focus of our analysis is to consider a number of model structures
that vary in the level of subject heterogeneity, and to assess the ability of Bayesian models to account
correctly for that heterogeneity. In the simplest model, the representative agent model, we assume all

subjects share the same parameters and there is no heterogeneity in their preferences whatsoever.

3Murphy and ten Brincke (2018) estimate hierarchical models of CPT using non-Bayesian random coefficient methods.



Somewhere in the middle, we consider a popular model in the literature where we only allow for
heterogeneity at the demographic level and assume two subjects’ preferences are the same as long as
they share the same demographic characteristics. In the richest model, the hierarchical model, we
assume each subject’s parameters are drawn from a hierarchical distribution with the mean of the
distribution conditioned on specific demographic characteristics, which allows for both demographic
differences and further differences at the individual level among subjects with the same demographic

characteristics.

In order to understand how to reliably apply the class of structural econometric models necessary
for inferring risk preferences at the individual level with Bayesian methods, it is essential to properly
understand the properties of the various types of specifications and estimation options available. These
models become work-horses for the applied econometricians, and they are simply not (yet) “canned,
oft-the-shelf” estimation routines. Harrison and Rutstrom (2008) illustrated how one can develop and
apply comparable structural models using classical maximum likelihood methods, as well as providing
coding “templates” that allowed others to apply and adapt the methods themselves. They generally
considered estimation of pooled models, in which observable characteristics characterized the
heterogeneity of risk preferences.* We do the same thing for Bayesian estimation methods. We provide
special attention to the demands of individual-level estimation of risk preferences, due to the derived
demand for such detail in most economic applications today. Because Bayesian methods entail novel
computational procedures for estimation, we devote considerable attention to documenting the
properties of simpler and richer specifications of the core model using simulated data. The objective is
to be able to provide the applied econometricians with confidence when applying the various templates

we develop.

The obvious advantage of using simulated data is that we can compare the estimates to the values
of parameters used to simulate the data and thus determine whether our estimation procedure is
reliable. For each specification of risk preferences we simulate a dataset, similar to the data that would
be observed by the researcher, estimate the posterior distribution of the parameters, and compare this

distribution to the true parameter values used to simulate the data. We summarize the performance of

4 An extension to consider random coefficient structural models of pooled risk preferences, to better accommodate unob-
served individual heterogeneity, was provided by Andersen et al. (2012).



our estimation procedures using simulated data, and conclude that the correctly-specified procedure
recovers the true parameters reliably. In addition, for the simulated dataset with the highest level of
heterogeneity, we investigate the consequences of using mis-specified procedures that fail to account
for some of the heterogeneity present in the simulated dataset. We find that these mis-specifications
lead to inaccurate estimates of risk preferences at the individual subject level. Finally, we apply the
procedures to estimate risk preferences for a representative sample of subjects. Surprisingly, we find no
evidence of a need to allow for demographic differences once we allow for heterogeneity at the

individual subject level with the hierarchal model.

Section 2 documents the data collected from actual subjects from controlled laboratory
experiments. This design is used as the basis of our simulations as well as the estimations with
observed choices. In section 3 we discuss the EUT theoretical specification, our assumptions on
alternative data-generating processes, and the results of our simulations and estimations designed to
evaluate alternative Bayesian estimators. A key feature of our simulation approach is to use the
observed and incentivized choices described in section 2, and key characteristics of these data with the
exact data-generating process proposed in section 3. Section 4 extends the analysis to Rank-Dependent
Utility (RDU). Section 5 briefly considers two broad types of descriptive applications of the Bayesian
econometric methods for estimating individual risk preferences that we evaluate, and then shows how

they can be used for the normative welfare evaluation of insurance choices. Section 6 concludes.

2 Experimental Data

We have N = 73 subjects each making T = 60 lottery choices. The subjects are recruited from the
undergraduate student population of Georgia State University. The 60 pairs of lottery are each in the
gain domain: for any k = 1,..., K, outcome x; > 0 and subjects receive an endowment e of $0. Use
subscript i = 1,2, ...,73 to represent the subject, r = 1,2,...,60 to represent the 1" lottery pair, and
vir = 1 to represent subject i choosing the left lottery in lottery pair t. Collect all decisions of one

subject iny; = (yi1,yi2,---,Vieo) and collect all decisions of all subjects iny = (y1,y2,...,¥73)-

Each subject was asked to make choices for pairs of lotteries designed to provide evidence of risk

aversion as well as the tendency to make decisions consistently with EUT or RDU models. The battery



of lottery choices is based on designs from Loomes and Sugden (1998) to test the Compound
Independence Axiom, designs from Harrison et al. (2015) to test the Reduction of Compound Lotteries
(ROCL) axiom, and a series of lotteries that are actuarially-equivalent versions of some separate index
insurance choices studied by Harrison et al. (2020). Each subject faced an individually randomized
sequence of choices from this battery. The typical interface used is shown in Appendix A, which

contains all instructions and lottery parameters.

The key insight of the Loomes and Sugden (1998) design is to vary the “gradient” of the
EUT-consistent indifference curves within a Marschak-Machina (MM) triangle.’ The reason for this
variation in gradient is to generate some choice patterns that are more powerful tests of EUT for any
given risk attitude. Under EUT the slope of the indifference curve within a MM triangle is a measure
of risk aversion, so choice pairs on the same slope should always generate the same observed choices
under EUT. When these choices differ, the subject is said to have exhibited Common Ratio (CR)
violations of EUT. So there always exists some risk attitude such that the subject is indifferent over CR

lottery pairs, and evidence of CR violations in that case has virtually zero power on a test of EUT.

The beauty of this design is that even if the risk attitude of the subject makes the tests of a CR
violation from some sets of lottery pairs have low power, then the tests based on other sets of lottery
pairs must have higher power for this subject. By presenting each subject with several such sets,
varying the slope of the EUT-consistent indifference curve, one can be sure of having some tests for
CR violations that have decent power for each subject, without having to know a priori what their risk
attitude is. Harrison, Johnson, McInnes and Rutstrom (2007) refer to this as a “complementary slack
experimental design,” since low-power tests of EUT in one set mean that there must be higher-power

tests of EUT in another set.

A simple variant on these tests for a CR violation allows one to detect an empirically important

pattern known as “boundary effects.” These effects arise when one nudges the lottery pairs in CR and

5In the MM triangle there are always one, two or three prizes in each lottery that have positive probability of occurring.
The vertical axis in each panel shows the probability attached to the high prize of that triple, and the horizontal axis shows
the probability attached to the low prize of that triple. So when the probability of the highest and lowest prize is zero, 100%
weight falls on the middle prize. Any lotteries strictly in the interior of the MM triangle have positive weight on all three
prizes, and any lottery on the boundary of the MM triangle has zero weight on one or two prizes.

SEUT does not, then, predict 50:50 choices, as some claim. It does say that the expected utility differences will not
explain behavior, and that then allows a variety of psychological factors to explain behavior. In effect, EUT has no prediction
in this instance, and that is not the same as predicting an even split.



related tests of EUT into the interior of the MM triangle, or moves them significantly into the interior.
The striking finding is that EUT often performs better when one does this (see Camerer (1992)(1989)
and Harless (1992)). Our battery includes 15 lottery pairs based on Loomes and Sugden (1998) and a

corresponding 15 lottery pairs that are interior variants of those 15 that are “on the border.”

Harrison, Martinez-Correa and Swarthout (2015) designed a battery to test ROCL by posing lottery
pairs that include an explicit compound lottery and a simple (non-compound) lottery. These lottery
pairs have a corresponding set of pairs that replace the explicit compound lottery with the actuarially
equivalent simple lottery. Thus a ROCL-consistent subject would make the same choices in the first

and second set.

Subjects were paid for one of their choices. Prizes ranged from $0 up to $70 across the lotteries,

with average expected earning of $27.8.7 They also received a $7 participation fee.

3 Expected Utility Theory

In section 3.1 we present six EUT specifications that vary how we generate the simulated data we
use in section 3.2. When applicable, we always use the observed covariates from the data we observed.

But we simulate the EUT risk preference parameters using the specification described.

3.1 Model and Specifications

In the evaluation of lottery prizes individuals are assumed to perfectly integrate the prizes with
their endowments.® They are also assumed to be characterized with the Constant Relative Risk
Aversion (CRRA) utility functionals u(e,x;) = (e +x;)('=") /(1 —r) for any k = 1,...,K. In our battery
K = 4. A lottery is evaluated by the weighted sum of utilities of prizes, with the weights being the

objective probabilities associated with the prizes:

EUT{(r) =Y, [pix (e+xi)" /(1 =r)], (1)
k=1,...K

(3}

"These are the earnings that the subjects would have expected given their observed choices.
8This assumption can be relaxed: see Andersen, Cox, Harrison, Lau, Rutstrom and Sadiraj (2018).



where / = L, R is the index for the two lottery options within a lottery pair ¢. Define the latent index as
the difference between the EUT of the L and R lotteries subject to a Fechner noise parameter y;, and a

random noise term €;;:

EUTE(r;)) — EUTE(r))/v;
y;'kt = VEUit(ri) + €& = ( i ( l) " it ( l))/ u +€&;, ()

where €; is a independently distributed noise that follows standard normal distribution, v is a
“contextual utility” term specific to choice i to normalize utilities of prizes between 0 and 1 following
Wilcox (2008)(2011), and r; and ; are the parameters characterizing the risk preferences of subject i
that we want to estimate. Subject i selects the L lottery in lottery pair # whenever the latent index y7, is

greater or equal to 0:

where /(.) is the indicator function.

We observe the endowments, prizes and probabilities of the lottery pairs the subject faces, as well
as the lottery she chooses in each lottery pair. We also observe a vector of demographic characteristics
for each subject: whether a subject is female, black, a business major, whether he or she has a high

GPA, and whether she owns any insurance.’

Assuming EUT for now, we estimate the two parameters for each subject, r; and y;. Six
econometric specifications are presented, with different assumptions on the heterogeneity of these two
parameters across the subjects. These models vary from the least general specification I, to most
general specification VI. Since all models are nested in the most general model that allows for
heterogeneity at both demographic and individual levels, we present it first and describe the other

models as special cases.

9We report summary statistics of demographics in our sample in Table B.1.



3.1.1 Specification VI

Assume that the individual CRRA coefficient r; is independently drawn from a normal distribution
with the mean conditional on a set of demographic covariates. That is, we have the following

specification for r;
ri ~ N (m,+B-X;,07), 4)

where X; is a vector of observed demographic covariates, and m, + - X; is the mean of the distribution
within the demographic subgroup that subject i belongs to. We assume the same variance 6> across
different demographic groups for simplicity and lack of a priori belief that this parameter is different

across demographic groups. Assume that y; is independently drawn from a log-normal prior:'©

In(u;) ~ N (Miny; Oy ) (5)

In this specification we estimate r;, y;, m,, 3, 6, mp u and oy, for each subject. We use a normal
hyperprior A(0, 100) for each of the parameters m,,  and my,, and an inverse Gamma hyperprior for
6, and Oy, ,. The same set of diffuse priors is used when applicable in subsequent specifications, unless

otherwise noted.

We use a combination of the Metropolis Hastings algorithm and Gibbs sampler to estimate the
model parameters from this posterior, using the Bayesian estimation package of Stata. The Stata
package requires only an input of the likelihood function based on equations (1)-(3) as a user-defined
function, and automatically applies the Gibbs sampler to parameters from the hierarchical structures in
(4) and (5). We consider this close connection of programing syntax to the econometric formalization
to be an advantage of the Stata package for novice users of Bayesian econometric methods, and

provide the template for this specification in Appendix C.!!

10We do not consider systematic demographic differences in the Fechner noise parameter y; for three reasons. First, we
assume homogeneity for simplicity. Second, the core parameter that characterizes the risk aversion of a subject under EUT is
the CRRA coefficient r;, which is also the parameter we use to predict or evaluate subjects’ decisions externally in other
decision environments. The Fechner noise parameter is a nuisance parameter that describes the noisiness of subjects’
decision making in this specific decision environment, i.e., choosing preferred lotteries from a pair of options. Third, a priori
we do not expect this decision noise parameter to be systematically different among different demographic subgroups.

' For all estimations the sample size is 10000 for the MCMC chain and 2500 for burn-in.
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In this specification we are essentially assuming that the parameter r; of each individual subject is

specified as:
r,':mr—l—ﬁ-Xi—l-Ei, (6)

where ¢; ~ N[(0,6%). We consider two sources of heterogeneity for r;: the demographic differences
introduced in the slope coefficients § and the individual differences within the demographic group

introduced in the error term ;.

At this point, and only for specification VI, we estimated the Bayesian hierarchical model using the
actual data from our experiment. The mean of the posterior distribution for each parameter is then used
in the simulation process described below. In this way we have “calibrated” the simulated data to
generate insights that are relevant for the target data. We choose m,., 3, 03, My, and 012n u close to their
estimated values using our observed data to allow for an efficient test of the Bayesian models in the
parameter regions where they are intended to work within, rather than in some extreme or unrealistic

regions.

When we simulate data for the parameter recovery exercise reported in section 3.2, we use the
same covariates X; that characterize the subjects in our observed data, choose values for m,, B and 62
that are close to their estimated values using our observed data, randomly draw ¢; from the normal
distribution A((0,62), and calculate r; for each simulated subject as specified in (6). We also choose
values for my,, and Glzn u that are close to their estimated values using our observed data, and draw y;
from the distribution in (5).!2 Lastly we simulate their choices for all 60 lottery pairs according to

(1)-(3). We provide the specific parameters used in the simulation later in Table 1.

For the remaining specifications, we constrain different components of specification VI, starting

with two specifications in which we allow only one of these two sources.

I2The estimated values we refer to are listed in the “Mean” column for specification VI in Table 4. The simulated values
for EUT are listed in the “True” column for the same specification VI in Table 2. The simulated values are very close to the
estimated values for all parameters except those elements of 3 that were estimated to be close to zero. We deliberately sim-
ulated these elements of  to be non-zero and small in value, to be certain that our estimators can in fact detect demographic
differences when they actually exist in the data. If we were to choose coefficients close to the estimated values, the validation
process provides little insight since it can be confounded by statistical insignificance.
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3.1.2 Specification V

In this specification, starting with (6) we impose the constraints that the demographic coefficients

in 3 are 0, and only consider differences in r; due to the error term ¢;:

ri=m,+¢€; @)

In other words, we assume that the prior means are the same across the different demographic

subgroups. Formally, we assume that the distribution for 7; is

ri ~ N (m,, ;) (8)

The assumptions on y; are the same as those in (5) in specification VI. In this specification we estimate
Yi, Mi, My, O, Mip, and oy, for each subject. We use the same diffuse priors on m,., G, My, Oiny as in

specification VL.

3.1.3 Specification IV

In this specification, starting again with (6) we impose the constraint that the standard error of ¢; is
0, so G% = 0, but allow the slope coefficients in B to be different from 0. That is, we assume the CRRA
coefficient, r;, is the same for all subjects that belong to the same demographic group, but may be

different across different demographic groups. Formally,

ri=my+B-X; 9)

The assumption that a list of observable demographic characteristics determines a subject’s CRRA
coefficient is a popular approach to model heterogeneity of samples of subjects in the older literature,

such as Harrison, Lau and Rutstrom (2007).

The assumptions on y; are the same as those in (5) in specification VI. In this specification we

estimate y;, m,, B, min, and oy, for each subject.
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3.1.4 Specification I1I

In this specification we consider neither of the two sources of heterogeneity in specification VI,
and assume that r; is the same for all subjects. We impose the constraints that the standard error and

the demographic coefficients for r are all O:

ri=r (10)

The assumptions on y; are the same as those in (5) in specification VI. In this specification we estimate

r, Wi, My, and oy, for each subject.

The four specifications introduced so far differ in the degree of individual heterogeneity of r;, but
assume the same log-normal prior for y;. We next consider two specifications used in the literature in

which y; is assumed to be the same for all subjects.

3.1.5 Specification I1

In this specification we assume y; = u for y;. This specification shares the same assumption on r; as
specification IV. In this specification we only estimate B and u. We use the same diffuse normal priors

for each parameter in [ and the Jeffreys prior for u.

3.1.6 Specification I

In this specification we assume y; = u and r; = r. This specification assumes homogeneity of both
parameters across all subjects, and is sometimes referred to as the representative agent model in which
we pool observations from all subjects as if they reflect the choices of just one agent. We use the

diffuse normal prior for r and the Jeffreys prior for u.

3.2 Data Simulation and Parameter Recovery

Prior to estimating these specifications of the EUT model using observed data, we conduct a

simulation exercise. We simulate datasets for each specification and estimate models to provide
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evidence on the performance of the correctly specified models as well as report sensitivity to models
mis-specification. In the simulation we keep all the covariates X; of the actual 73 subjects. We then
draw r; and y; for each subject based on each specification and use the EUT model described in (1)-(3)
to simulate their decisions. Since specifications I-V are nested within specification VI, we list the

parameters in simulated datasets I-V as special parameterizations of specification VI in Table 1.

3.2.1 Parameter Recovery

For each simulated dataset we first estimate the correctly specified model and report the results.
Through this exercise we evaluate the performance of the algorithms for each specification and see
whether they successfully recover the true parameters used in the simulations. We report these results

in Tables 2 and B.2.13

Table 2 presents summary statistics for parameters at the population level. The MCMC chains
converge successfully for all specifications, and we recover the true parameters for all six datasets.
With the exception of the standard deviation of the CRRA coefficient parameter for simulated dataset
VI, the true parameters are all within their 95% Highest Posterior Density (HPD) credible intervals,
which is the smallest possible 95% credible interval for a given posterior distribution.!* The standard
deviation of the CRRA coefficient parameter for simulated dataset VI is underestimated in comparison
to the true value; however, this underestimate does not affect the successful recovery of demographic

differences in this specification when these differences exist.!

For specifications that allow for some heterogeneity of r;, we also report the summary statistics of
the posterior distributions of the r; of each subject in Table B.2. For simulated datasets II and IV, based
on the posterior sample of § and the demographic characteristic X;, we estimate the posterior
distribution of each subject’s CRRA coefficient using (9). For simulated dataset VI, we sample the
posterior distributions of 3 and ¢;, and estimate the CRRA coefficient of each subject through (6). For

simulated dataset II, the correct CRRA coefficients of only 1 subjects is estimated to be outside of the

B3For ease of interpretation, in the estimation tables we report the mean and standard deviation of u whenever applicable,
rather than the my,, and Glzn u in (5).

14By default, we report the 95% HPD credible intervals rather than equal-tailed credible intervals.

151t follows that the later inference with observed data under specification VI, that no systematic demographic differences
are present among our subjects, remains valid and unaffected by the potential mis-identification of the standard deviation of
the CRRA coefficient.
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95% credible interval; for simulated dataset IV, V and VI, respectively, we only have 1, 3 and 10 such

subjects.

We can also compare the posterior means to the true values of individual CRRA coefficients. In
each panel of Figure 1 we show a scatter plot with the true value of the CRRA coefficient of each
subject on the x-axis and the estimated posterior mean on the y-axis, for simulated datasets I, IV , V
or VI. We also provide the 45 line in each scatter plot as a reference, and expect the scatter points to
be more tightly aligned around this line if the estimated posterior means are closer to the true

parameters.

The scatter points in Figure 1 are almost perfectly aligned around the 45° line for simulated
datasets II and IV, with correlation coefficients almost equal to 1. The points are very tightly aligned
around the 457 line for simulated datasets VI, with a correlation coefficient of 0.94. For simulated
dataset V the scatter points in Figure 1 are less tightly distributed around the 45° line. For the true
CRRA coefficients that are at the extremes, the estimated posterior means are generally pulled closer to
the average value of CRRA coefficients across all subjects, as one would expect with the Bayesian
Hierarchical prior. As a result, the correlation coefficient between the true values and posterior means
for this model is only 0.77 in this case. Despite these effects, the 95% credible intervals of these

individual CRRA coefficients contain the true parameter with the exception of only 3 subjects.

We conclude that the parameter recovery exercise is generally successful for all simulated datasets,
since most true parameter values are within the 95% credible interval of the corresponding posterior
distributions. For dataset V all parameters are recovered with great success, and we observe that the
posterior means of CRRA coefficients for the subjects at the tail are pulled towards the population
mean. We have excellent convergence for all parameters in the estimation of datasets I through V. For
dataset VI, where both systematic demographic difference and individual level differences of the
CRRA coefficient are present, although the quality of convergence of population parameters is slightly
slow and the mixing is less than perfect, when we use them to infer individual CRRA coefficient we

have excellent convergence on the CRRA coefficients at the individual level.
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3.2.2 Model Sensitivity to Mis-specification

For dataset VI, in addition to the estimation under the correct specification, we also estimated the
EUT models under incorrect specifications to see how sensitive the estimates are to model
mis-specification. Recall that in dataset VI we have the highest level of heterogeneity of the r;
parameter: there are systematic differences across demographic groups as well as individual
differences within the same demographic groups. Specification V fails to account for the demographic
differences, specification IV fails to account for the individual differences, and specification III fails to
account for both. Compared to specification VI or III, specifications II or I further fail to account for
the individual heterogeneity of y;. We report estimation results under these incorrect specifications in
Tables 3 and B.4. We also include estimation results under the correct specification for ease of

comparison.

In Table 3 we report the population level parameters. In specification V the standard deviation of r;
is larger, to compensate for the lack of systemic demographic differences in the prior mean. In
specification II and I'V the constant term and coefficients are correctly recovered despite the fact that
these two specifications incorrectly assume no individual heterogeneity within the same demographic
group. In specification III all subjects are assumed to have the same CRRA coefficient, and the noise in
the simulated decisions are all attributed to a larger Fechner noise parameter . We estimate a similarly
larger u as a consequence of assuming away any heterogeneity of the CRRA coefficient in specification
L. Despite these abnormalities, the cost of model mis-specification appears to be small if we only look

at estimates at the population level.

However, we find more severe effects of model mis-specification when we look at estimates at the
individual level, shown in Table B.4.'6 Scatter plots between posterior means and true values for these
four sets of estimations are shown in Figure 2. The correlation coefficient becomes larger as we move
towards the correct specification: 0.87 under specifications II and IV, 0.91 under specification V, and

0.94 under specification VI. While the correlation coefficients appear high under the incorrect

161 specifications I and 111 all subjects are assumed to have the same CRRA coefficient, which means we will not have
any variability in individual estimates. Therefore we do not report these two specifications in Table B.4.
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specifications, a closer look at the credible intervals as well as some individual estimates that are

farther off the 45° line reveals more problems with these individual estimates.

Under specification V we find that for 12 subjects out of 73 the true value of their CRRA
coefficients is outside the 95% credible intervals, with roughly the same set of subjects under
specification VI. When we look at results under specifications II and IV, however, the number becomes
51 of 73, respectively. This is due to the fact that the standard deviations of the posterior samples are
generally smaller under specifications II and IV (between 0.01 and 0.06) than under specifications V
and VI (between 0.04 and 0.23). As a result, the scatter points in Figure B.4 are less tightly aligned

along the 45° line with tight credible intervals, showing false confidence for inaccurate point estimates.

Inspecting some individuals that are well off the 45 line, simulated subject 54 is risk neutral with
a posterior mean of —0.001 under specification II, while she is actually moderately risk averse with a
true value of r54 = 0.329 (the estimated posterior mean is 0.280 under the correct specification).
Simulated subject 31 is actually risk loving with r3; = —0.203, but under specification V she is
considered risk averse with an estimated posterior mean of 0.150 (the estimated posterior mean is
—0.168 under the correct specification). In addition to these two examples of incorrect signs of the
CRRA coefficient due to model mis-specification, we also observed inaccurate levels of estimated risk
aversion among other subjects. For example, simulated subjects 9 and 10 are estimated to be more risk
averse than they actually are under specifications II and IV, and less risk averse than they are under

specification V.

3.3 EUT Inferences with Observed Data

We now report and analyze EUT estimation results using the observed choice data of the 73
subjects across the various specifications introduced above. All parameters converge successfully,
some with better mixing than the others,!” and we report the main estimates of each specification in

Table 4.

Consider the estimation results under specification VI in Table 4, where we consider both

demographic and individual differences in CRRA coefficients. We do not find systematic differences

17The demographic coefficients in specification VI converge slower than other parameters.
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across demographic groups, since the posterior means of the five demographic coefficients are all close
to 0 and the 95% credible intervals also include 0. We find substantial differences at the individual
level as the standard deviation of the prior distribution is 0.163, and provide the histogram of the
posterior mean of r; for specification VI shown in Figure 3. We conclude that 62 of the 73 subjects are
risk averse, in the sense that the estimated posterior means of their CRRA coefficients are positive, and
that the lower bounds of the 95% confidence levels are greater than 0. For the other 11 subjects, the
estimated posterior mean of the CRRA coefficient is negative for 3 subjects and positive for 8 subjects;
however, r; = 0 is within the 95% confidence levels, so they are deemed risk neutral. The Fechner
noise parameter y; follows a log-normal distribution with median of 0.184 and standard deviation of

0.058, with the histogram of the posterior means of individual y; shown in Figure B.2.

Next consider specification V, where we assumes there is no demographic difference in the prior
mean of ;. From the estimation r; follows a normal distribution with a mean of 0.512, close to the
constant term of (6) under specification VI, with a standard deviation of 0.280. We show scatter plots
to compare the individual r; under this specification with those under specification VI in the left panel
of Figure 4. The points are almost perfectly aligned along the 45 line, with a correlation coefficient of
1. The estimates of the prior of y;, as well as individual y;, are also very similar under these two

specifications as well, as shown in the left panel of Figure B.3.

Next we consider specification IV, where we assume demographic differences are the only source
of the heterogeneity of r;. Using the estimates in specification IV, we calculate each subject’s r; based
on her demographics. To compare each subject’s CRRA coefficient r; between specifications IV and
VI, we show the scatterplot of ; under these two specifications in the middle panel of Figure 4. The
plots are not at all close to the 45° line, and the linear correlation coefficient is only 0.23, indicating
very different estimates for each individual subject’s CRRA coefficient. We provide a scatterplot of y;
under these two specifications in the middle panel of Figure B.3, and find y; to be generally greater
under specification IV. Considering that specification VI allows for heterogeneity in r; to a finer level
of granularity, it seems natural that under specification IV the differences in the choices of subjects that

are unaccounted for by demographic differences would result in a larger y;.
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We undertook a similar exercise for specification II, where y; is the same for all subjects, whereas
in specification IV y; is drawn from a log normal distribution. Under specification II we find that the
estimates of r; are close to those under specification I'V. Consequently, we have the same conclusions
when we compare the individual CRRA coefficients under this specification to specification VI as we

had for the comparison between specifications IV and VI.

Under specifications I and III, where we assume there is no heterogeneity in r;, the estimates of the
Fechner noise parameter are generally larger than specifications V and VI but similar to specifications
II and IV. This observation again indicates that the individual level differences in r;, rather than the
demographic differences, are more important in the dataset. We also performed pairwise Bayesian
model comparisons of specifications I-V to specification VI. The log-Bayes Factors are 221.81,
207.44, 165.10 and 146.45 for specification VI when we use specifications I, II, III and I'V as the base

models, showing decisive support for specification VI over each of the four models.'®

The log-Bayes Factor is —6.61 when we use specification V as the base model, showing support
for specification V over specification VI. We also compute the posterior probabilities of the six models,
assuming they are equally probable a priori, and specification V has a posterior probability of
99.9%.'° This indicates that within the population from which our sample of subjects is drawn, we do
not find systematic demographic differences in their CRRA coefficients. In addition, the MCMC
sampling process takes much longer for specification VI than specification V. Although specification
VI is the most general model, considering the high cost in terms of longer computing time and low
benefit in terms of model comparison, we conclude that specification V is the better model to estimate

for samples drawn from this particular subject population.

18We assume all models are equally plausible in the prior, and the Bayes Factor is the posterior odds ratio

g, PWiM))

k — 9
5 plylMy)

where y is the observed choice data, M; represents the estimated model under specification j and My the estimated model
under specification k. As a rule of thumb, Jeftreys (1961) recommended that the evidence against M}, is decisive if the log of
Bayes Factor is greater than 2.

19The posterior probability is 0.14% for specification VI and 0 for specifications I-IV.
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4 Rank Dependent Utility Theory

In addition to the estimation of the EUT model, we extend our analysis of the observed data to the
RDU model. We first present the RDU model and specifications. We then bypass the data simulation

process, which is logically identical to the EUT case, and present results using observed data.

4.1 Model and Specifications

In the evaluation of lottery prizes, again assume that individuals perfectly integrate lottery prizes
with their endowments and behave as if they evaluate CRRA utility functionals as assumed under EUT.
A lottery is then evaluated by the weighted sum of utilities of prizes, where the weights are the
associated decision weights. RDU departs from EUT in the manner in which decision weights depend
on objective probabilities: under EUT the decision weight for each prize was the corresponding

objective probability.

Under RDU we first rank the prizes from best to worst, such that x; > x;... > xg (omitting the
index for lottery and subject for now). The decision weight associated with each prize is then

calculated as:

n(x1) = o(p1), (11)
n(x2) = @(p1 + p2) — 0(p1), (12)

(13)
n(xx) = o(1) —o(p1+..+ px-1), (14)

where o(.) is the probability weighting function (PWF): a strictly increasing and continuous function

with ©(0) =0, o(1) = 1. We use the flexible two parameter PWF from Prelec (1998):

o(p) = exp(—n(—Inp)?), (15)
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where 11 > 0 and ¢ > 0. The RDU of a lottery is then calculated as

RDUY(rini,01) = Y. [mh x (e+xi)" 0 /(1= 1), (16)
k=1,...K

which is the same as the definition of the EUT of a lottery in (1) apart from pf . being replaced by nfk.
Define the latent index as the difference on the RDU of the left and right lottery subject to a Fechner

noise parameter y; and a random noise term €;:

RDUL(r:,m;i,0;) — RDUR(r;,m;,0:)) /i
y;:VRDUit(riania¢i)+8it:( lt(rlanhq)l) " i (rlanhq)l))/ lt+8it, (17)
1

where v;; is again the term to normalize utilities of prizes between 0 and 1, and r;, 1;, ¢; and ; are the
parameters we want to estimate. The subject is again assumed to select the left lottery in a pair

whenever the latent index y;, is greater or equal to 0.

The specifications for the estimations are very similar to those of the EUT models, therefore we
skip details. In addition, we assume all parameters are independently distributed in the prior
distribution. Although we specify the prior distribution separately for each parameter, the posterior
distribution of each parameter is correlated with other parameters, both within a subject and across
subjects. In essence, the RDU model decomposes the risk premium presumed to drive the observed
choices by subject i into two components: the premium due to utility curvature governed by parameter
r;, and the premium due to probability weighting governed by parameters 1); and ¢;.2 There is a
well-understood tradeoff between the two components explaining the risk premium, which introduces

the correlation between the three parameters in the sampling of their joint posterior distribution.

For r; and y; we use exactly the same specifications from (4) to (10) as in the EUT models. The
parameters M; and ¢; must be positive, by definition, so we assume they are drawn from log-normal

distributions. So for specification VI we have

In(n;) ~ N(v-X;,03) (18)

In(¢;) ~ N (A-X;,05) (19)

201p the extreme case of EUT the risk premium is solely determined by utility curvature. In the extreme case of “dual
theory,” due to Yaari (1987), the risk premium is solely determined by the probability weighting function.
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For specification V we have

In(n;) ~ A[(1my, G7) (20)
In(9;) ~ N((1mq, 05) e2))

For specifications II and IV we have
In(m;) =v-X; (22)

4.2 RDU Inferences with Observed Data

We report estimation results of RDU models and compare them to the estimation results of EUT

models. The summary results of population parameters are reported in Table 5 for each specification.

First consider specification I, which does not allow for heterogeneity in any parameters and
estimates the preference of a representative agent. The parameters converge with excellent mixing. The
PWF has an inverse-S shape implied by the estimate of ¢ = 0.841: the inflexion point given ¢ = 0.841
andn = 1.273 is at p = 0.1, so the estimated PWF is convex when p > 0.1 and concave when p < 0.1.
In Figure 5 we graph the Prelec PWF, and the implied decision weights with equal-probable reference
lotteries. The estimated posterior mean of the CRRA coefficient is 0.412, lower than the estimated
value under the EUT model with specification I.

We also perform pairwise model comparisons using Bayes Factors, and compute posterior
probabilities of the six RDU Prelec models, and again find specification V to be the preferred model *!

Therefore, we consider in detail the results under specifications V, which allows the model parameters

to be different for each individual subject.

21Using specifications I, II, IIT, IV and VI as the base model, the log-Bayes Factor of specification V is 300.02, 264.37,
225.48, 204.88 and 12.59, respectively, showing decisive support for specification V over each of the base models. In
addition, the posterior probability of specification V is 100%, assuming equal probabilities a priori.
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All model parameters converge with excellent mixing.>> The CRRA coefficient ; follows a normal
prior with mean 0.338 and standard deviation 0.287. The PWF parameter 1); follows a log-normal prior
with a median of 1.316 and standard deviation of 0.522. The PWF parameter ¢; follows a log-normal
prior with a median of 0.836 and standard deviation of 0.268. We show the histograms of the posterior
means of 7;, 1;, 0; and y; for the 73 subjects in Figures 6 and B.4, respectively. We observe a great deal
of individual heterogeneity for all parameters. For 56 subjects we have posterior means ¢; < 1, and for
17 subjects we have posterior means ¢; > 1. In addition, we compare the posterior means of the
individual CRRA coefficients to those from specification V of EUT model in Figure 7. We observe that
the CRRA coefficients are slightly higher under EUT than under the RDU Prelec model, consistent

with what we find when comparing the two representative agent models (specification I).

We consider the estimation results under other specifications briefly, since the findings are similar
to when we compare different specifications of the EUT model. In specification VI we do not find
much difference in the mean of priors of r;, 1; or ¢; due to demographic differences, since O is within
the 95% credible interval for all coefficients of each of the demographic variables. We show the
scatterplot of r;, 1; and ¢; under specifications V and II in the left panel in Figure 8. The posterior
means of individual r; and 0; estimates are very tightly aligned along the 45° line, with correlation
coefficient of 0.95 and 0.93. The posterior means of individual 1; estimates are also aligned along the
45°¢ line, although not as tight, with correlation coefficient of 0.88. Therefore, introducing
demographic differences in the mean of the priors does not provide more information on the individual
preferences. The estimates of the prior of y; are very similar under these two specifications, as are the
individual y; shown in the left panel of Figure B.4. In specifications II and IV the individual estimates
of CRRA coefficients are not very consistent with those under specifications V or VI, as shown in the
middle and right panels of Figure 8. The individual Fechner noise parameters are estimated to be larger

under specifications I through IV.

22For ease of interpretation we report the mean and standard deviation for 1, ¢ and u in specification V in Table 5, rather
than the mean and standard deviation of In(n), In(¢) and In(u).
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S Applications

There are three reasons to be interested in estimated risk preferences at the individual level. We
briefly explain what each is, how our Bayesian analysis of risk preferences at the individual level

facilitates those applications, and demonstrate one application from behavioral welfare economics.

5.1 Characterizing Risk Preferences for Their Own Sake

Of course, there is direct interest in knowing the risk preferences of individuals. Are there
demographic effects on risk preferences? How important are each of the different pathways to the risk
premium: aversion to variability of final outcomes, probability weighting, disappointment aversion,
regret aversion, or loss aversion, to name some of the more popular? As the models become more
complex, it becomes important to be able to harness informative priors to facilitate inferences at the

individual level, and hierarchical priors allow that in a flexible manner, as we have demonstrated.

5.2 Joint Estimation of Risk Preferences and Other Preferences

Economic theory tells us that inferences about time preferences defined over time-dated monetary
amounts depend on the curvature of the atemporal utility function defined over those monetary
amounts. One of several ways to control for that dependence is to jointly estimate risk and time
preferences, so that inferences about the latter can account for the effect of the former (Andersen,
Harrison, Lau and Rutstrdm (2008)). This general point has nothing to do with assuming EUT risk
preferences: if the subject is characterized by RDU there are still inferences about the extent of
diminishing marginal utility, and that is what is important for correct identification and estimation of
time preferences. For the same reason, it is not “risk” that is correlated somehow with time preferences
over non-stochastic, temporally-dated monetary amounts, it is the curvature of the atemporal utility
function. Hence good estimates of risk preferences, as one way to get good estimates of that curvature,

are fundamental to generating good estimates of time preferences.

The need for good estimates of risk preferences is particularly important at the level of the

individual. Andersen, Harrison, Lau and Rutstrom (2014; p.25) report attempts to estimate time
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preferences at the individual level, and find that they cannot obtain Maximum Likelihood (ML)
estimates for 238 of their 413 subjects, which is 42% of the sample. The reason is simple: the ML
approach rests on numerical methods finding a set of estimates that characterizes a maximum
log-likelihood for the observed binary choices. If the likelihood function has some “flatness™ around
the maxima, standard methods, particularly derivative-based methods, can fail to converge. Critically,
there is no difficulty evaluating the log-likelihood for a wide range of possible estimates, just a
difficulty finding the one best set of estimates. A Bayesian is not bothered by this latter difficulty at all,

and just needs the likelihood function evaluations in order to derive the posterior distribution.??

The same general point applies with even greater force when making inferences about
intertemporal risk aversion, which derives from the non-additivity of the intertemporal utility function
and depends on both the curvature of the atemporal utility function and time preferences over
non-stochastic outcomes. Now there are two “nuisance parameters” from economic theory to attend to
in order to make the inferences of interest, and well-defined non-linearities connecting them.
Moreover, there can be a “cascading” effect, since one set of nuisance parameters (time preferences)
depends on the other nuisance parameters (utility curvature), generating an even greater derived
demand for good estimates of risk preferences. Andersen, Harrison, Lau and Rutstrom (2018) generate
estimates of the intertemporal risk aversion of the adult Danish population, but do not even consider
individual heterogeneity beyond including observable demographic characteristics in the pooled

model.

5.3 Inferences Based on Risk Preferences

There is a final class of applications of our approach which uses estimates of the posterior
distributions of individual risk preferences to make an inference over “different data” than were used to
estimate the posterior. This is distinct from joint estimation in the sense that the inferences over
different data do not entail estimation of core parameters of preference models. The usual application
in Bayesian modeling is to additional out-of-sample instances of the same sample data used to estimate

the posterior. Hence these are referred to as posterior predictive distributions. A typical example would

230Of course, if the likelihood function is globally flat, the posterior will just be a replica of the prior, and the data from the
subject non-informative, but that is a separate matter: there will still be a posterior, albeit derived solely from the prior.
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be to predict choices by one of our subjects if she had been offered a new, different battery of choices

over risky lotteries.

A more interesting example from behavioral welfare economics arises when making inferences
about the consumer surplus generated by observed choices of a subject over insurance. In the simplest
case, considered by Harrison and Ng (2016), subjects made a binary choice to purchase a full
indemnity insurance product or not. The actuarial characteristics of the insurance product were
controlled over 24 choices: the loss probability, the premium, the absence of a deductible, and the
absence of non-performance risk. In effect, these insurance purchase decisions are just re-framed
choices over risky lotteries. The risky lottery here is to not purchase insurance and run the risk of the
loss probability reducing income from some known endowment, and the (very) safe lottery is to

purchase insurance and deduct the known premium from the known endowment.

The same subjects that made these insurance choices also made choices over a battery of risky
lotteries. So one immediate application of our Bayesian approach to estimating individual risk
parameters is to infer the posterior predictive distribution of welfare for each insurance choice of an
individual. The predictive distribution is just a distribution of unobserved data (the expected insurance
choice given the actuarial parameters offered) conditional on estimated risk preferences based on
observed data (the actual choices in the risk lottery task). All that is involved is marginalizing the
likelihood function for the insurance choices with respect to the posterior distribution of estimated
model parameters from the risk lottery choices. The upshot is that we predict a distribution of welfare
for a given choice by a given individual, rather than a scalar (which is what one would do if just using
point estimates from an ML approach). We can then report that distribution as a kernel density, or

select some measure of central tendency such as the mean or median.

Figure 9 illustrates for one subject and four insurance purchase decisions by that subject. For
decision #1 the posterior predictive density shows a clear gain in consumer surplus, and for decision #4
a clear loss in consumer surplus. In each case, of course, there is a distribution for the inferred
consumer surplus from the observed purchase decisions, with a standard deviation of $0.76. The

prediction posterior distributions for decision #13 and decision #17 illustrate an important case, where
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we can only say that there has been a consumer surplus gain with some probability. More extensive

results of this application are provided in Gao, Harrison and Tchernis (2020).

6 Conclusions

We carefully examine the properties of a popular class of Bayesian models for the estimation of
individual risk preferences. Using hierarchical priors, information from the complete sample is used to
generate informative priors for inferences about each individual. Given the importance of models of
individual risk preferences for a wide range of inferences in economics, there is value in knowing the
properties of alternative specifications. Using simulated data, from experimental tasks that are widely
used, we consider the reliability of alternative specifications at characterizing what we know to be the
true, underlying risk preferences. The results show that a hierarchical model that assumes
unconditional exchangeability of subjects provides an excellent basis for inferences about individual

risk preferences.
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Table 1: Parameters in Simulated Datasets

Simulation Parametets

Parameters 1 i 111 v v VI
r Constant 0.5 0.4 0.5 0.4 0.5 0.4
Female - 0.2 - 0.2 - 0.2
Black - 0.2 - 0.2 - 0.2
BusinessMajor - 0.5 - 0.5 - 0.5
HighGPA - 0.1 - 0.1 - 0.1
Insured - 0.3 - 0.3 - 0.3
Std. Dev. - - - - 0.2 0.2
[ Mean 0.25 0.25 0.23 0.23 0.23 0.23
Std. Dev. - - 0.07 0.07 0.07 0.07

(1) The first six rows correspond to f from the distribution of r;, and the seventh row corresponds to 2. For ease of interpretation we

list the mean and standard deviation of y; rather than my,, and Glzn u a8 the last two rows here and in the presentation of estimation

results.

(2) Compared to specification VI, specifications I - IV assume the standard deviation of the normal distribution of r; is 0, and specifi-

cations I, IIT and V assume the demographic coefficients of the mean are 0. In addition, specifications I and II assume the standard

deviation of the log-normal distribution of y; is 0.

(3) For ease of reading, we display the simulation parameters in italics to differentiate them from estimated values in all tables.
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Figure 1: Individual CRRA Coefficients in Simulated Data Estimation
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Figure 2: Individual CRRA Coefficients Using Simulated Dataset VI

Assuming Incorrect Specifications
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Figure 3: Individual CRRA Coefficients r; from Observed Choices

under EUT Specification VI
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Figure 4: Individual CRRA Coefficients r; from Observed Choices

under Different EUT Specifications
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Figure 5: Prelec Probability Weighting and Implied Decision Weights
under Specification |

Based on equi-probable reference lotteries
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Figure 6: Posterior Means of Individual Estimates

Assuming Specification V of the RDU Prelec Model
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Figure 7: Posterior Means of Individual CRRA Coefficients

Assuming Specification V of EUT and RDU Prelec Model
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Posterior Mean Under Specification VI
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Figure 8: Individual Preferences from Observed Choices Assuming

Specifications II, IV, V and VI of RDU Prelec Model

ri

g
3
2

&
o}

<
g
<
b5}

=
g
g
2

Posterior Mean Under Speci

T T T T T
-1 1 3 5
Posterior Mean Under Specification V

Correlation Coefficient=95

7 9

T T T T T T T T T T T T
-2 0 2 4 6 8 -2 0 2 4 6
Posterior Mean Under Specification V Posterior Mean Under Specification V

Correlation Cocfficicnt=-.06 Correlation Coefficient=-.1

Ul

Posterior Mean Under Specification IV

i
= 127
21
£ 8
9 %
67
4 e e ® ®op
T T T T T T T T T T T T T T T T T T T T T : T T T T T T T T T T T T
79 11 13 15 17 19 21 23 25 27 29 31 79 1113 15 17 19 21 23 4 6 8 1 12 14 16 18 2 22 24 26
Posterior Mean Under Specification V Posterior Mean Under Specification V Posterior Mean Under Specification V
Correlation Coefficient=.88 Correlation Cocfficient=.42 Correlation Coefficient=.45

¢

= N
L I

o
I

Posterior Mean Under Specification VI

Posterior Mean Under Specification IV

T T T
5 N 9 1.1 13
Posterior Mean Under Specification V

Correlation Coefficient=.93

T T T T T T T T T T
5 7 9 1.1 1.3 5 7 9 1.1 13
Posterior Mean Under Specification V. Posterior Mean Under Specification V

Correlation Coefficient=27 Correlation Coefficient=.24



36

Figure 9: Posterior Predictive Consumer Surplus Distribution

for Each of Four Insurance Purchase Decisions by One Subject
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Appendix A Experiment Instructions and Lottery Parameters (ONLINE)

A.1 Instructions in the Gain Frame

Choices Over Risky Prospects

This is a task where you will choose between prospects with varying prizes and chances of
winning each prize. You will be presented with a series of pairs of prospects where you will choose
one of them. For each pair of prospects, you should choose the prospect you prefer. You will actually
get the chance to play one of these prospects for earnings, and you will be paid according to the
outcome of that prospect, so you should think carefully about which prospect you prefer on each

decision screen.
Here is an example of what the computer display of such a pair of prospects will look like.

You have an endowment of $35 for these choices

Left Right

$-35

Chance of winning $25 is 5% Chance of winning $25 is 15%

Select Left Select Right

The outcome of the prospects will be determined by the draw of a random number between 1 and
100. Each number between, and including, 1 and 100 is equally likely to occur. In fact, you will be

able to draw the number yourself using two 10-sided dice.

You might be told your cash endowment for each decision at the top of the screen. In this example

it is $35, so any earnings would be added to or subtracted from this endowment. The endowment may
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change from choice to choice, so be sure to pay attention to it. The endowment you are shown only

applies for that choice.

In this example the left prospect pays twenty-five dollars ($25) if the number drawn is between 1
and 5, pays negative five dollars ($-5) if the number is between 6 and 55, and pays negative thirty-five
dollars ($-35) if the number is between 56 and 100. The blue color in the pie chart corresponds to 5%
of the area and illustrates the chances that the number drawn will be between 1 and 5 and your prize
will be $25. The orange area in the pie chart corresponds to 50% of the area and illustrates the chances
that the number drawn will be between 6 and 55 and your prize will be $-5. The green area in the pie
chart corresponds to 45% of the area and illustrates the chances that the number drawn will be between
56 and 100. When you select the decision screen to be played out the computer will confirm the die

rolls that correspond to the different prizes.

Now look at the pie on the right. It pays twenty-five dollars ($25) if the number drawn is between 1
and 15, negative five dollars ($-5) if the number is between 16 and 25, and negative thirty-five dollars
($-35) if the number is between 26 and 100. As with the prospect on the left, the pie slices represent
the fraction of the possible numbers which yield each payoff. For example, the size of the $25 pie slice

is 15% of the total pie.

Even though the screen says that you might win a negative amount, this is actually a loss to be

deducted from your endowment. So if you win $-5, your earnings would be $30 = $35 - $5.

Each pair of prospects is shown on a separate screen on the computer. On each screen, you should

indicate which prospect you prefer to play by clicking on one of the buttons beneath the prospects.

Some decision screens could also have a pair of prospects in which one of the prospects will give
you the chance for “Double or Nothing.” For instance, the right prospect in this screen image pays
“Double or Nothing” if the Green area is selected, which happens if the number drawn is between 51
and 100. The right pie chart indicates that if the number is between 1 and 50 you get $10. However, if
the number is between 51 and 100 we will flip a coin with you to determine if you get either double the
amount or $0. In this example, if it comes up Heads you get $40, otherwise you get nothing. The

prizes listed underneath each pie refer to the amounts before any “Double or Nothing” coin toss.
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One prospect has a Double Or Nothing option

Double or Nothing if Green
4§20 $20
$0 §10

Chance of winning $0 is 50%

Chance of winning $10 is 50%

Chance of winning $20 is 50% Chance of winning $20 is 50%

Select Left Select Right 1

After you have worked through all of the pairs of prospects, please wait quietly until further
instructions. When it is time to play this task out for earnings, you will then roll two 10-sided dice
until a number comes up to determine which pair of prospects will be played out. If there are 40 pairs
we will roll the dice until a number between 1 and 40 comes up, if there are 80 pairs we will roll until a
number between 1 and 80 comes up, and so on. Since there is a chance that any of your choices could
be played out for real, you should approach each pair of prospects as if it is the one that you will play
out. Finally, you will roll the two ten-sided dice to determine the outcome of the prospect you chose,

and if necessary we will then toss a coin to determine if you get “Double or Nothing.”

Here is an example: suppose your first roll was 81. We would then pull up the 81st decision that
you made and look at which prospect you chose — either the left one or the right one. Let’s say that the
81st lottery was the same as the last example, and you chose the left prospect. If the random number

from your second roll was 37, you would win $0; if it was 93, you would get $20.

If you picked the prospect on the right and drew the number 37, you would get $10; if it was 93,
we would have to toss a coin to determine if you get “Double or Nothing.” If the coin comes up Heads
then you would get $40. However, if it comes up Tails you would get nothing from your chosen

prospect.
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It is also possible that you will be given a prospect in which there is a “Double or Nothing” option

no matter what the outcome of the random number. This screen image illustrates this possibility.
One prospect has a Double Or Nothing option

Double or Nothing for any outcome

$20

$0 §10

Chance of winning $0 is 50%

Select Left Select Right

In summary, your payoff is determined by five things:

e by your endowment, if there is one, shown at the top of the screen;

by which prospect you selected, the left or the right, for each of these pairs;

by which prospect pair is chosen to be played out in the series of pairs using the two

10-sided dice;

by the outcome of that prospect when you roll the two 10-sided dice; and

by the outcome of a coin toss if the chosen prospect outcome is of the “Double or Nothing” type.

Which prospects you prefer is a matter of personal choice. The people next to you may be presented
with different prospects, and may have different preferences, so their responses should not matter to
you or influence your decisions. Please work silently, and make your choices by thinking carefully

about each prospect.

All payoffs are in cash, and are in addition to the $5 show-up fee that you receive just for being

here, as well as any other earnings in other tasks from the session today.
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A.2 Lottery Parameters in the Gain Frame
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Table A.4: Text for Double or Nothing Lotteries

Also see parameters for the Right Lottery in Table A.2

Lottery ID Double or Nothing Text
rdonl Double or Nothing if outcome 2 in right lottery
rdon2 Double or Nothing if outcome 2 in right lottery
rdon3 Double or Nothing for any outcome in right lottery
rdon4 Double or Nothing for any outcome in right lottery
rdon5 Double or Nothing for any outcome in right lottery
rdon6 Double or Nothing if outcome 2 in right lottery
rdon7 Double or Nothing if outcome 2 in right lottery
rdon8 Double or Nothing if outcome 2 in right lottery
rdon9 Double or Nothing if outcome 3 in left lottery
rdon10 Double or Nothing for any outcome in right lottery
rdonl1 Double or Nothing if outcome 3 in right lottery
rdonl2 Double or Nothing if outcome 2 in right lottery
rdon13 Double or Nothing if outcome 2 in right lottery
rdonl4 Double or Nothing if outcome 2 in right lottery
rdonl15 Double or Nothing if outcome 2 in right lottery



Appendix B Additional Results (ONLINE)

Table B.1: Summary of Demographics

Variable Obs Mean Std. Dev. Min Max
young 73 .9726027 .1643677 0 1
female 73 .5479452 .5011403 0 1
black 73 .6712329 .4730162 0 1
asian 73 .1506849 .3602173 0 1
business 73 .3835616 .4896182 0 1
freshman 73 .1780822 .3852296 0 1
senior 73 .3013699 .4620285 0 1
gpaHI 73 .5616438 .4996193 0 1
christian 73 .7123288 .4558098 0 1
insured 73 .4109589 .4954127 0 1




49

Table B.2: Expected Utility Models Using Simulated Choices under Correct specifications, Individual

CRRA Coefficients
Subi Specification IT Specification IV Specification V Specification VI
e Mean  Std Dev. 95% Crod. Int. | TraeMean _ Std. Dev. 95% Cred. Int. | Trwe Mean _Std. Dev. 95% Cred. Int. | Tre Mean _ Std. Dev. 95% Cred. In.
1(0.50 0.444 0.047  0.357 0.543 | 0.50 0.465 0.038  0.392  0.537 |0.65 0.513 0.096  0.327 0.702 [0.37 0.382 0.088  0.203  0.545
2{-0.20 -0.219 0.054  -0.325 -0.113 [-0.20 -0.220 0.050  -0.326 -0.127 | 0.48 0.528 0.126  0.276  0.767 [-0.24 -0.283 0.181  -0.629 0.076
310.30 0.322 0.050  0.222  0.419 {0.30 0.296 0.046  0.206  0.383 |0.67 0.699 0.083  0.517 0.852 [0.27 0.280 0.113  0.052  0.489
410.20 0.201 0.052  0.101  0.301 {0.20 0.177 0.049  0.077 0.270 |0.18 0.367 0.105  0.154  0.568 [0.70 0.167 0.135  -0.094 0.427
510.50 0.452 0.032 0.392  0.518 {0.50 0.453 0.029  0.398 0.512 |0.56 0.405 0.093  0.221  0.589 [0.37 0.312 0.101 0.114  0.507
6[0.80 0.770 0.036  0.705 0.846 [0.80 0.789 0.032  0.726  0.854 |0.50 0.628 0.087  0.468 0.811 |0.88 0.743 0.078  0.599  0.902
710.20 0.145 0.044  0.059 0.228 {0.20 0.172 0.038  0.098 0.246 [0.47 0.370 0.117  0.130  0.585 [0.34 0.178 0.126  -0.054  0.436
8]0.70 0.658 0.033  0.595 0.723 {0.70 0.658 0.028  0.599 0.707 |0.43 0.526 0.108  0.310 0.737 [0.74 0.686 0.085  0.523  0.860
910.80 0.779 0.031 0.720  0.841 (0.80 0.777 0.027  0.722  0.828 | 0.47 0.358 0.116 ~ 0.101  0.562 [0.52 0.519 0.109  0.299 0.735
1010.70 0.686 0.036  0.613  0.755 {0.70 0.689 0.033  0.624  0.753 | 0.48 0.403 0.109  0.201  0.620 [0.35 0.323 0.114  0.100  0.548
1110.20 0.145 0.044  0.059 0.228 {0.20 0.172 0.038  0.098 0.246 [0.77 0.331 0.124  0.079  0.557 [0.08 0.165 0.124  -0.089 0.396
121 0.60 0.565 0.042  0.486  0.651 | 0.60 0.584 0.038  0.506 0.654 [0.35 0.390 0.102  0.191  0.594 [0.62 0.724 0.080  0.562 0.879
1310.20 0.229 0.049  0.130 0.324 {0.20 0.208 0.046  0.119  0.298 |0.42 0.457 0.090  0.267 0.622 | 0.45 0.443 0.100  0.241  0.639
14-0.30 -0.312 0.050  -0.408 -0.215 [-0.30 -0.308 0.047  -0.402 -0.220 [ 0.56 0.622 0.078  0.467 0.775 |-0.56 -0.401 0.157  -0.731 -0.106
15 0.00 0.015 0.049  -0.082 0.110 [0.00 0.016 0.046  -0.076  0.105 [0.50 0.441 0.107  0.218  0.642 |-0.20 -0.083 0.163  -0.408 0.224
16| 0.40 0.351 0.055  0.244  0.449 [0.40 0.377 0.043  0.293  0.459 |0.42 0.413 0.091 0.238  0.590 |0.28 0.371 0.080 0213 0.525
17|10.30 0.238 0.043  0.156  0.324 | 0.30 0.260 0.038  0.187 0.332 [0.62 0.660 0.095  0.471 0.845 [0.40 0.429 0.129  0.173  0.674
18|0.50 0.452 0.032  0.392  0.518 {0.50 0.453 0.029  0.398 0.512 |0.57 0.517 0.090  0.327 0.683 [0.65 0.578 0.089  0.399 0.751
1910.00 -0.004 0.051  -0.103 0.094 [0.00 -0.027 0.047  -0.119 0.065 [-0.07 0.437 * 0.100  0.234  0.621 |0.07 0.260 0.147  -0.036  0.529
20|0.40 0.351 0.055  0.244  0.449 |0.40 0.377 0.043  0.293  0.459 [0.50 0.331 0.114  0.103  0.547 [0.48 0.313 0.096  0.123  0.504
2110.70 0.658 0.033  0.595 0.723 {0.70 0.658 0.028  0.599 0.707 |0.68 0.658 0.101 0.472  0.861 [0.97 0.925 0.053  0.825  1.000
22{-0.710 -0.097 0.050  -0.193  0.002 [-0.70 -0.115 0.047  -0.209 -0.024 |0.36 0.378 0.107  0.157  0.578 [0.00 -0.191 0.149  -0.500 0.086
23{0.00 0.015 0.049  -0.082  0.110 {0.00 0.016 0.046  -0.076  0.105 | 0.45 0.339 0.122  0.104  0.590 {-0.02 -0.072 0.146  -0.372 0.199
2410.80 0.779 0.031 0.720  0.841 (0.80 0.777 0.027  0.722  0.828 [0.58 0.464 0.100  0.272  0.659 |7.07 0.939 * 0.047  0.847 1.000
25(0.10 0.108 0.054  0.004 0216 [0.70 0.104 0.050  0.005 0.201 [0.52 0.419 0.103  0.212  0.615 [-0.12 -0.011 0.159  -0.339  0.280
26| 0.00 -0.004 0.051  -0.103  0.094 [0.00 -0.027 0.047  -0.119  0.065 |0.57 0.345 0.106  0.139  0.548 [-0.37 -0.112 0.154  -0.431 0.177
27]-0.20 -0.219 0.054  -0.325 -0.113 [-0.20 -0.220 0.050  -0.326 -0.127 | 0.95 0.853 0.073  0.732  1.000 [-0.37 -0.260 0.146  -0.557 0.020
28| 0.50 0.528 0.043  0.440 0.607 [0.50 0.501 0.043  0.413  0.581 |0.27 0.386 0.121 0.148  0.622 [0.46 0.469 0.130  0.198  0.709
29|-0.10 -0.097 0.050  -0.193  0.002 [-0.70 -0.115 0.047  -0.209 -0.024 [ 0.65 0.734 0.095  0.554 0.923 (-0.02 -0.234 0.157  -0.546  0.057
30{-0.70 -0.097 0.050  -0.193 0.002 [-0.70 -0.115 0.047  -0.209 -0.024 | 0.69 0.513 0.122 0.265 0.743 [0.07 -0.145 0.170  -0.477 0.178
31{-0.30 -0.312 0.050  -0.408 -0.215 [-0.30 -0.308 0.047  -0.402 -0.220 | 0.50 0.409 0.094  0.228 0.601 [-0.20 -0.168 0.174  -0.501  0.166
32{0.50 0.452 0.032  0.392  0.518 | 0.50 0.453 0.029  0.398 0.512 [0.38 0.302 0.111 0.085 0.513 |0.79 0.537 * 0.105 0.328 0.743
331 0.40 0.435 0.050  0.333  0.527 {0.40 0.413 0.048 0319 0503 |0.49 0.447 0.112  0.221  0.662 | 0.48 0.393 0.130  0.132  0.642
34/0.20 0.145 0.044  0.059 0.228 [0.20 0.172 0.038  0.098 0.246 [0.59 0.492 0.107  0.277  0.700 |0.23 0.269 0.116  0.040  0.498
35[0.70 0.686 0.036  0.613  0.755 {0.70 0.689 0.033  0.624 0.753 [0.44 0.461 0.091 0.269  0.633 [0.55 0.495 0.088  0.323  0.671
36(0.70 0.658 0.033  0.595 0.723 {0.70 0.658 0.028  0.599 0.707 |0.57 0.493 0.092  0.309 0.671 [0.48 0.534 0.083  0.378 0.702
37(0.30 0.314 0.050  0.216  0.411 {0.30 0.309 0.049  0.210 0.406 [0.57 0.361 0.131 0.091  0.599 {0.20 0.071 0.160  -0.249 0.382
38(0.70 0.677 0.045  0.591  0.762 [0.70 0.701 0.038  0.630 0.777 |0.38 0.417 0.115  0.197 0.642 [ 0.67 0.625 0.083  0.457 0.780
39{0.40 0.359 0.038  0.288 0.435 |0.40 0.365 0.035  0.302  0.440 [0.53 0.490 0.118  0.251  0.719 [0.34 0.179 0.123  -0.055 0.426
40| 0.20 0.145 0.044  0.059 0.228 {0.20 0.172 0.038  0.098 0.246 [0.70 0.631 0.094  0.447 0.811 |-0.04 0.184 * 0.107 -0.021 0.386
4110.20 0.201 0.052  0.101  0.301 {0.20 0.177 0.049  0.077 0.270 [0.77 0.529 * 0.109 0315 0.742 |0.24 0.204 0.160  -0.132  0.499
421 0.00 0.015 0.049  -0.082 0.110 [0.00 0.016 0.046  -0.076 0.105 [0.34 0.374 0.107  0.172 0.591 [0.05 0.124 0.160  -0.210 0.417
4310.80 0.779 0.031  0.720  0.841 [0.80 0.777 0.027 0722 0.828 [0.75 0.811 0.083  0.651 0976 |0.76 0.916 * 0.062  0.800 1.000
4410.70 0.686 0.036  0.613  0.755 {0.70 0.689 0.033  0.624  0.753 | 0.56 0.609 0.086  0.444 0.784 [0.83 0.668 0.082  0.511  0.837
45| 0.50 0.452 0.032  0.392  0.518 [ 0.50 0.453 0.029  0.398 0.512 [0.56 0.562 0.079  0.405 0.718 [0.55 0.565 0.075  0.407 0.708
46| 0.70 0.677 0.045  0.591  0.762 [0.70 0.701 0.038  0.630 0.777 [0.52 0.584 0.107  0.375  0.794 [0.97 0.798 0.084  0.644  0.968
471 0.60 0.565 0.042  0.486  0.651 | 0.60 0.584 0.038  0.506 0.654 [0.74 0.654 0.079  0.495 0.806 [0.62 0.565 0.087  0.396  0.739
48| 0.30 0.238 0.043  0.156  0.324 {0.30 0.260 0.038  0.187 0.332 [0.53 0.494 0.100  0.299  0.696 [0.57 0.362 0.112  0.138 0.577
4910.80 0.770 0.036  0.705 0.846 {0.80 0.789 0.032  0.726  0.854 |0.86 0.749 0.089  0.570 0.921 [7.09 0.935 * 0.049  0.842 1.000
50{0.20 0.221 0.053  0.120  0.325 {0.20 0.221 0.049  0.127  0.320 [0.23 0.294 0.125  0.039  0.527 [0.27 0.133 0.141  -0.154 0.401
51{0.50 0.452 0.032  0.392  0.518 {0.50 0.453 0.029  0.398 0.512 |0.40 0.483 0.102  0.286  0.690 [0.57 0.477 0.105  0.265 0.677
52|0.40 0.359 0.038  0.288 0.435 [0.40 0.365 0.035 0302 0.440 [0.05 0.211 0.109  -0.003 0.429 |0.29 0.293 0.121 0.051  0.530
53|0.70 0.658 0.033  0.595 0.723 [0.70 0.658 0.028  0.599 0.707 |0.44 0.380 0.098  0.199  0.574 |0.64 0.541 0.088  0.369 0.716
54{0.00 -0.004 0.051  -0.103  0.094 [0.00 -0.027 0.047  -0.119  0.065 |0.75 0.699 0.078  0.544 0.853 [0.33 0.280 0.149  -0.021  0.544
55[0.50 0.452 0.032  0.392  0.518 [ 0.50 0.453 0.029  0.398 0.512 |0.67 0.459 0.108  0.235  0.662 |[0.67 0.452 * 0.115  0.207  0.657
56{0.70 0.686 0.036  0.613  0.755 {0.70 0.689 0.033  0.624  0.753 [0.47 0.390 0.103  0.181 0.578 [0.89 0.757 0.084  0.595 0.928
57{-0.30 -0.312 0.050  -0.408 -0.215 [-0.30 -0.308 0.047  -0.402 -0.220 | 0.48 0.489 0.099  0.287 0.670 [0.79 -0.187 * 0.182  -0.546 0.163
58(-0.20 -0.219 0.054  -0.325 -0.113 |-0.20 -0.220 0.050  -0.326 -0.127 | 0.68 0.693 0.108  0.489 0.921 [-0.22 -0.369 0.166  -0.697 -0.055
59{0.30 0.314 0.050  0.216  0.411 {0.30 0.309 0.049  0.210 0.406 [0.25 0.508 * 0.091 0.325  0.681 [0.76 0.419 * 0.110  0.199 0.632
60{0.20 0.221 0.053  0.120  0.325 {0.20 0.221 0.049  0.127  0.320 |0.26 0.396 0.094  0.209 0.576 [0.77 0.258 0.115  0.020  0.469
6110.40 0.351 0.055  0.244  0.449 [0.40 0.377 0.043  0.293  0.459 |0.63 0.493 0.104  0.287 0.695 |0.79 0.256 0.099  0.055 0.437
62|7.00 0.985 * 0.014  0.957 1.000 [7.00 0.982 * 0.016 0.950 1.000 [0.47 0.501 0.095  0.323  0.687 |7.02 0.944 * 0.045 0.855 1.000
63 0.70 0.658 0.033  0.595 0.723 {0.70 0.658 0.028  0.599 0.707 |0.58 0.517 0.102  0.306 0.709 |[7.03 0916 * 0.057 0.812 1.000
64 0.50 0.452 0.032  0.392  0.518 {0.50 0.453 0.029  0.398 0.512 | 0.44 0.493 0.126  0.230  0.723 [ 0.68 0.560 0.135  0.302  0.828
65(0.30 0.238 0.043  0.156  0.324 {0.30 0.260 0.038  0.187 0.332 |0.39 0.325 0.122 0.073  0.556 [0.34 0.221 0.129  -0.038 0.463
66{0.50 0.528 0.043  0.440 0.607 [0.50 0.501 0.043  0.413  0.581 |0.57 0.538 0.120  0.309 0.774 | 0.46 0.450 0.149  0.163  0.750
67 0.50 0.452 0.032  0.392  0.518 {0.50 0.453 0.029  0.398 0.512 | 0.44 0.385 0.110 ~ 0.170  0.601 [0.25 0.315 0.121 0.081  0.552
68(0.90 0.892 0.036  0.823  0.959 {0.90 0.894 0.032  0.830 0.953 |0.47 0.379 0.103  0.173  0.575 [0.86 0.924 0.055  0.819  1.000
69(0.00 -0.004 0.051  -0.103  0.094 [0.00 -0.027 0.047  -0.119  0.065 |0.50 0.399 0.104  0.199  0.604 [-0.08 -0.166 0.141  -0.451  0.098
701 0.60 0.565 0.042  0.486  0.651 [0.60 0.584 0.038 0506  0.654 |0.79 0.748 0.083  0.591  0.919 |0.40 0.528 0.097 0325  0.711
7110.70  0.686 0.036  0.613  0.755 [0.70 0.689 0.033  0.624 0.753 [0.77 0.585 0.081  0.419  0.739 |0.46 0.560 0.090 0376 0.730
72{0.40 0.359 0.038  0.288 0.435 | 0.40 0.365 0.035  0.302 0.440 |0.67 0.716 0.078  0.559  0.868 [0.74 0.720 0.078  0.564 0.872
7310.20 0.145 0.044  0.059 0.228 [0.20 0.172 0.038  0.098 0.246 |0.52 0.526 0.119  0.284 0.752 | 0.46 0.240 0.141  -0.053  0.499
Average| 0.36 0.341 0.37  0.344 0.571 0.493 0.37 0.345
Std.Dev.| 0.32 0.318 0.37 0.321 0.18 0.134 0.37 0.346

* indicates the true parameter is outside of the 95% credible interval of the posterior sample.
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Table B.3: Expected Utility Models Using Simulated Choices under Correct specifications, Individual
Fechner Noise Parameters

Specification ITT

Specification IV

Specification V

Specification VI

Subject True Mean  Std. Dev. 95% Cred. Int. | True Mean  Std. Dev. 95% Cred. Int. | True Mean  Std. Dev. 95% Cred. Int. | True Mean  Std. Dev. 95% Cred. Int.
110.36 0.209 * 0.062  0.106 0.328 |0.36 0.199 * 0.048 0.112 0.290 [0.36 0.219 * 0.061  0.114 0.342 [0.37 0.147 * 0.046  0.070 0.236
20040 0.318 0.090  0.179  0.501 [0.40 0.271 0.059  0.181 0.401 [0.40 0.319 0.094  0.179  0.499 |-0.24 0.296 * 0.080  0.169 0.450
310.13  0.209 0.062 0.108 0.330 |0.73 0.197 0.047 0.114  0.294 |0.73 0.192 0.052 0.104  0.297 [0.27 0.159 * 0.049 0.081  0.250
410.17 0.231 0.067  0.126  0.356 [0.17 0.209 0.050  0.126  0.317 [0.17 0.202 0.055  0.111  0.314 |0.70 0.202 * 0.059  0.103 0.315
5(0.20 0.198 0.056  0.100  0.306 [0.20 0.188 0.046  0.108 0.278 [0.20 0.193 0.056  0.102 0.302 [0.37 0.176 * 0.052  0.091 0.282
6[0.24 0.200 0.058  0.104 0.309 [0.24 0.199 0.044  0.115 0.283 [0.24 0.189 0.052  0.094 0.288 [0.88 0.181 * 0.054  0.095 0.296
7(0.25 0.302 0.086  0.171  0.467 [0.25 0.259 0.060  0.157 0.372 [0.25 0.288 0.084  0.156 0.452 [0.34 0.308 0.092  0.169 0.486
8/0.20 0.278 0.078  0.152  0.435 [0.20 0.239 0.053  0.150 0.349 [0.20 0.278 0.079  0.154 0.434 |0.74 0.207 * 0.059 0.112 0.328
9/0.32 0.231 0.065  0.120 0.354 [0.32 0.242 0.055  0.146  0.345 [0.32 0.258 0.073  0.142 0.393 |0.52 0.231 * 0.075 0.109 0.372
10(0.20 0.247 0.071 0.130  0.384 [0.20 0.218 0.051 0.131  0.324 [0.20 0.240 0.067 0.133  0.375 [0.35 0.208 * 0.063 0.107  0.336
1110.25  0.269 0.082  0.149  0.415 [0.25 0.259 0.061  0.162 0.379 |0.25 0.274 0.078  0.151  0.427 [0.08 0.269 * 0.078  0.149  0.426
12{0.16  0.227 0.064  0.121 0.354 [0.76 0.198 0.047  0.112  0.292 [0.76 0.209 0.059  0.110 0.322 [0.62 0.188 * 0.054  0.098 0.295
1310.16  0.161 0.050  0.073  0.256 [0.16 0.197 0.048  0.117 0.293 [0.16 0.171 0.051  0.085 0.276 |0.45 0.156 * 0.051  0.073 0.256
14/ 0.75 0.186 0.054  0.088 0.286 [0.15 0.212 0.045  0.131  0.301 [0.75 0.176 0.049  0.089 0.273 |-0.56 0.168 * 0.042  0.096 0.252
15(0.77 0.235 0.065 0.119  0.360 [0.77 0.232 0.053 0.141  0.343 [0.177 0.230 0.067 0.126  0.359 [-0.20 0.240 * 0.065 0.137  0.369
16(0.77 0.194 0.053  0.100  0.294 [0.17 0.165 0.044  0.082 0.249 [0.17 0.158 0.049  0.071 0.249 [0.28 0.140 * 0.047  0.066 0.226
17(0.31 0.279 0.081 0.156  0.439 [0.31 0.279 0.066 0.162  0.411 [0.317 0.255 0.069 0.144  0.395 [0.40 0.283 0.087 0.153  0.452
18/ 0.22 0.189 0.056  0.094 0.292 [0.22 0.187 0.046  0.098 0.275 [0.22 0.187 0.054  0.098 0.296 |0.65 0.186 * 0.056 0.093 0.295
1910.26  0.219 0.061  0.120 0.339 [0.26 0.257 0.058  0.166  0.378 [0.26 0.209 0.059  0.110 0.318 [0.07 0.213 * 0.068  0.104 0.344

20(0.23 0.285 0.082  0.157 0.444 [0.23 0.240 0.057  0.141  0.349 [0.23 0.259 0.072  0.147 0.405 |0.48 0.248 * 0.071  0.130  0.385
21(0.16 0.283 0.080  0.153  0.434 [0.16 0.241 0.054  0.145  0.347 [0.16 0.260 0.071  0.141  0.398 [0.97 0.138 * 0.037  0.072 0.210
22|0.18 0.210 0.056 0.115  0.321 [0.78 0.181 0.041 0.107  0.263 [0.18 0.216 0.059 0.110  0.326 [0.00 0.170 * 0.046 0.091  0.263
23(0.29 0.307 0.093  0.174 0.492 [0.29 0.209 0.046  0.127  0.299 [0.29 0.279 0.077  0.159  0.439 |-0.02 0.205 * 0.054 0.114 0.313
24(0.30 0.247 0.070  0.132  0.385 [0.30 0.222 0.052  0.129  0.326 [0.30 0.243 0.068  0.135 0.383 |7.07 0.141 * 0.036  0.075 0.209
25(0.25 0.223 0.062  0.121 0.352 [0.25 0.207 0.048  0.118 0.296 [0.25 0.219 0.062  0.116  0.343 |-0.72 0.239 * 0.065 0.136  0.368
26(0.23 0.222 0.061  0.116  0.339 [0.23 0.205 0.046  0.121  0.295 [0.23 0.201 0.056  0.110 0.315 |-0.37 0.176 * 0.048  0.096 0.272
27(0.13 0.162 0.050  0.079 0.257 [0.13 0.163 0.040  0.090 0.240 [0.13 0.167 0.044  0.092 0.254 |-0.37 0.142 * 0.038  0.081 0.220
28(0.27 0.287 0.082  0.159 0.457 [0.27 0.266 0.065  0.160  0.396 [0.27 0.296 0.089  0.162  0.463 |0.46 0.290 0.086  0.157  0.468
2910.19 0.294 0.084 0.160  0.458 |0.79 0.187 0.042 0.108  0.265 |0.79 0.234 0.062 0.125  0.357 |-0.02 0.187 * 0.050 0.106  0.284
30(0.26 0.295 0.087  0.163  0.452 [0.26 0.246 0.051  0.160  0.351 [0.26 0.308 0.091  0.179  0.487 |0.07 0.260 * 0.068  0.149 0.395
3110.37 0.192 * 0.056  0.103 0.300 |0.37 0.198 * 0.044 0.125 0.291 |[0.37 0.183 * 0.052  0.090 0.283 [-0.20 0.209 * 0.061  0.109 0.326
32(0.26 0.238 0.069  0.127 0.382 [0.26 0.217 0.054  0.131 0.328 [0.26 0.207 0.055  0.115 0.313 [0.79 0.222 * 0.067  0.108 0.350
330.27 0.268 0.076  0.140  0.412 [0.27 0.237 0.058  0.142  0.360 [0.27 0.254 0.074  0.136  0.398 |0.48 0.250 * 0.079  0.135 0.405
34/0.26 0.232 0.065  0.128 0.362 [0.26 0.212 0.049  0.122  0.302 [0.26 0.233 0.065  0.126  0.365 [0.23 0.183 0.053  0.094 0.287
35(0.14 0.172 0.052  0.078 0.270 [0.74 0.188 0.045  0.108 0.278 [0.14 0.172 0.052  0.090 0.278 |0.55 0.158 * 0.049  0.076  0.252
3610.24 0.175 0.051 0.089 0.273 [0.24 0.190 0.045 0.107  0.276 [0.24 0.177 0.054 0.083  0.278 [0.48 0.162 * 0.050 0.079  0.260
37(0.30 0.354 0.104  0.197 0.567 [0.30 0.285 0.073  0.163  0.420 [0.30 0.329 0.095  0.188 0.522 [0.20 0.294 0.084  0.159 0.457
38/0.78 0.217 0.062  0.110 0.338 [0.78 0.218 0.049  0.131 0.318 [0.78 0.263 0.074  0.147 0.413 [0.67 0.214 * 0.069  0.113 0.342
39(0.26 0.298 0.085  0.171 0.474 [0.26 0.268 0.064  0.166  0.398 [0.26 0.285 0.079  0.156  0.442 |0.34 0.206 * 0.062  0.102 0.322
40(0.27 0.254 0.073  0.136  0.393 [0.27 0.238 0.054  0.145 0.350 [0.27 0.225 0.065  0.127 0.354 |-0.04 0.149 * 0.044  0.072 0.236
4110.29 0.292 0.085 0.162  0.460 [0.29 0.243 0.057 0.143  0.355 [0.29 0.259 0.077 0.137  0.409 [0.24 0.289 0.085 0.155  0.464
42(0.27 0.239 0.068  0.122  0.369 [0.27 0.256 0.057  0.152  0.364 [0.27 0.229 0.062  0.128 0.351 |0.05 0.252 * 0.075  0.133  0.390
4310.29 0.274 0.078 0.154  0.432 [0.29 0.201 * 0.046 0.119  0.284 [0.29 0.205 0.052 0.116  0.307 [0.76 0.205 * 0.047 0.124  0.298
44/0.39 0204 * 0.059 0.111 0.322 [0.39 0.199 * 0.048 0.108 0.288 |0.39 0.195 * 0.055 0.105 0.308 |0.83 0.180 * 0.058 0.092 0.293
45(0.17 0.152 0.049  0.067 0.246 [0.17 0.163 0.043  0.081 0.241 [0.17 0.163 0.050  0.076  0.259 [0.55 0.144 * 0.044  0.075 0.236
46/0.26  0.280 0.081  0.154 0.440 [0.26 0.256 0.061  0.153  0.374 [0.26 0.277 0.086  0.146  0.429 [0.97 0.225 * 0.060  0.126  0.344
47(0.20 0.249 0.071  0.130  0.393 [0.20 0.192 0.047  0.104 0.282 [0.20 0.190 0.053  0.103  0.301 [0.62 0.178 * 0.057  0.087 0.283
48|0.19 0.239 0.068 0.127  0.371 |0.79 0.215 0.051 0.131  0.319 [0.79 0.229 0.067 0.119 0.358 [0.57 0.211 * 0.061 0.114  0.334
49(0.19 0.246 0.074  0.129 0.393 [0.19 0.239 0.055  0.149 0.343 [0.19 0.220 0.060  0.120 0.332 [7.09 0.141 * 0.037  0.079 0.214
50(0.22 0.247 0.068  0.129 0.374 [0.22 0.262 0.064  0.157 0.382 [0.22 0.291 0.087  0.165 0.466 [0.27 0.293 0.085  0.154 0.453
5110.29 0.216 0.059  0.115 0.333 [0.29 0.207 0.050  0.116  0.303 [0.29 0.216 0.059  0.116  0.331 |0.57 0.205 * 0.062  0.109 0.320
52|0.21 0.244 0.068  0.124 0.371 [0.21 0.224 0.055  0.137 0.338 [0.27 0.171 0.049  0.090 0.269 [0.29 0.229 0.067  0.122  0.354
53|0.75 0.196 0.059  0.095 0.305 [0.75 0.220 0.050  0.133  0.321 [0.75 0.186 0.053  0.104 0.298 |0.64 0.178 * 0.056  0.090 0.289
54/ 0.22 0.210 0.062  0.111 0.329 [0.22 0.195 0.045  0.114 0.281 [0.22 0.192 0.053  0.097 0.302 |0.33 0.204 0.065  0.093  0.330
55/0.22 0.256 0.071 0.147  0.409 [0.22 0.235 0.059 0.132  0.349 [0.22 0.233 0.065 0.118 0.359 [0.67 0.226 * 0.067 0.118  0.364
56/ 0.23 0.214 0.062  0.111 0.334 [0.23 0.262 0.068  0.152  0.387 [0.23 0.208 0.057  0.111  0.318 [0.89 0.203 * 0.059  0.104 0.317
57| 0.714 0.205 0.058  0.104 0.318 [0.74 0.203 0.045  0.123  0.290 [0.74 0.208 0.058  0.109 0.324 [0.79 0.280 0.080  0.152  0.441
58| 0.78 0.300 0.090  0.166  0.483 [0.18 0.195 0.044  0.116  0.281 [0.18 0.286 0.081  0.161 0.448 |-0.22 0.181 * 0.046  0.102 0.268
5910.29 0.244 0.068  0.134 0.375 [0.29 0.217 0.052  0.127 0.320 [0.29 0.193 0.053  0.099 0.295 [0.76 0.182 0.053  0.096  0.290
6010.22 0.177 0.055 0.085 0.278 [0.22 0.194 0.047 0.105 0.283 [0.22 0.186 0.056 0.095 0.289 [0.77 0.179 0.054 0.094  0.286
61 0.74 0.210 0.060  0.114  0.327 [0.14 0.196 0.047  0.116  0.290 [0.14 0.226 0.064  0.113  0.352 [0.19 0.205 0.062  0.107 0.326
6210.27 0.189 0.058 0.099 0305 [0.27 0.185 * 0.040 0.112  0.260 [0.27 0.190 0.055 0.097 0.295 [71.02 0.143 * 0.037 0.076  0.215
63 0.74 0.220 0.062  0.112  0.337 [0.14 0.220 0.053  0.127 0.322 [0.14 0.221 0.063  0.117 0.349 |7.03 0.130 * 0.037  0.068 0.205
64| 0.32 0.347 0.111  0.191  0.563 [0.32 0.305 0.080  0.185 0.471 [0.32 0.344 0.105  0.187 0.548 |0.68 0.365 * 0.115 0.190 0.588
65 0.28 0.268 0.077  0.147 0.411 [0.28 0.228 0.052  0.139  0.329 [0.28 0.243 0.065  0.138 0.373 |0.34 0.234 0.065  0.126  0.361
66| 0.35 0.361 0.107  0.196  0.568 |0.35 0.314 0.084  0.190 0.482 |0.35 0.364 0.112  0.202  0.587 [0.46 0.369 0.121  0.189  0.609
67|0.31 0.244 0.070 0.132  0.384 |0.37 0.228 0.058 0.136  0.342 |0.31 0.236 0.065 0.133  0.366 |0.25 0.208 0.060 0.113  0.329
68 0.75 0.153 0.049  0.074 0.247 [0.15 0.162 0.039  0.093 0.239 [0.75 0.183 0.052  0.090 0.279 [0.86 0.166 * 0.040  0.093 0.241
690.76 0.214 0.062  0.115 0.336 [0.76 0.151 0.040  0.079 0.229 [0.76 0.205 0.058  0.102  0.313 |-0.08 0.124 * 0.035  0.062 0.190
70(0.22 0.230 0.067  0.124 0.367 [0.22 0.208 0.049  0.118 0.302 [0.22 0.201 0.054  0.112  0.315 [0.40 0.205 * 0.062  0.108 0.324
710.31 0.209 0.062  0.100 0.326 [0.37 0.195 * 0.048 0.112 0.286 |0.37 0.183 * 0.052  0.091 0.284 |0.46 0.195 * 0.061  0.095 0.313
72(0.18 0.232 0.070  0.120  0.360 [0.78 0.215 0.049  0.130 0.310 [0.78 0.186 0.049  0.101 0.288 [0.74 0.169 * 0.052  0.087 0.271
73]0.33 0.336 0.098  0.181 0.525 [0.33 0.317 0.080  0.190 0.474 [0.33 0.333 0.094  0.192  0.524 [0.46 0.362 0.111  0.184 0.581
Average 0.23  0.240 0.23 0.221 0.23 0.229 0.37 0.209
Std.Dev. 0.07 0.048 0.07 0.035 0.07 0.047 0.37 0.056

* indicates the true parameter is outside of the 95% credible interval of the posterior sample.
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Table B.4: Expected Utility Models Using Simulated Dataset VI under Misspecified specifications,
Individual CRRA Coefficients

_ Tre Specification I1 Specification IV Specification V Specification VI

St Value [ Mean 5. Dev.  95% Cred Int._ | Mean St Dev. 9% Coed Int. | Mean 5l Dev.  95% Cred Int._| Mean 5. Dev. _95% Cred. Int.
1037 | 0546 = 0037 0478 0622 | 0539 * 0.038 0470 0613 | 0313 0.118 0067 0525 | 0382 0088 0205 0545
2 024 | 0170 0047 0266 -0.080 | 0160 0047 0253 -0.070 | -0.153 0229 0582 0284 | 0283 081  -0.629 0076
3027 | 0268 0044  0.183 0356 | 0290 0047 0196 0382 | 0281  0.415 0045 0499 | 0280  0.113 0052  0.489
4010 | 0207 % 0047 0116 0299 | 0215 * 0049 0021 0313 | 0182 0153 0127 0465 | 0067 0135  -0.094 0427
5037 | 0500 % 0029 0455 0565 | 0.522 * 0030 0464 0580 | 0251 0127 -0.012 0496 | 0312 0101 0014 0507
6 088 | 0815 * 0031 0757  0.875 | 0.809 * 0031 0749 0868 | 0712 * 0.081 0550 0874 | 0743 0078 0599  0.902
7034 | 0212 % 0035 0147 028 | 0199 * 0038 0021 0267 | 0211 0172 0118 0548 | 0178 0126  -0.054 0436
8 074 | 0716 0028 0663 0774 | 0.718 0028 0662 0774 | 0.664  0.093 0474 0842 | 0686 0085 0523  0.860
9 052 | 0778 % 0027 0724 0831 | 0793 * 0027 0738  0.843 | 0405 0137 0138 0661 | 0519 0109 0299 0735
100035 | 0650 * 0032 0587 0714 | 0649 * 0035 0581 0718 | 0165 0145 0113 0443 | 0323 0114 0100 0548
11008 | 0212 % 0035 0147 028 | 0199 * 0038 0121 0267 | 0.181 0187 0201 0520 | 0.165 0124 -0.089  0.396
12062 | 0608 0039 0531 0681 | 0614 0036 0541 0683 | 0726 0084 0566 0900 | 0724 0080 0562  0.879
13045 | 0441 * 0045 0049 0225 | 0146 * 0050 0045 0243 | 0487  0.093 0304 0673 | 0443 0000 0241  0.639
14056 | 0298 * 0044 0385 0212 | 0304 * 0047 0395 0210 | 0297 0198 -0.694 0065 | 0401 0157 0731  -0.106
15 020 | 0.029 * 0045 0115 0057 | -0.034 * 0051 0135 0065 | 0040 0201 -0.443 0342 | 0.083 0163 0408  0.224
16 028 | 0419 * 0042 0342 0504 | 0395 * 0043 0315 0474 | 0372 0107 0164 0579 | 0371 0080 0213  0.525
17 040 | 0330 0037 0265 0412 | 0343 0036 0274 0414 | 0510 0144 0219 0770 | 0420 0129  0.073  0.674
18 0.65 | 0500 * 0029 0455 0565 | 0.522 * 0030 0464 0580 | 0578 0098 0382 0761 | 0578 0089 0399 0751
19 001 | 0001 0045 -0.094 0085 | 0019 0046 0072 0010 | 0.389 * 0125 0127 0615 | 0260 0147  -0.036 0529
20 048 | 0419 0042 0342 0504 | 0395 * 0043 0315 0474 | 0185 0176 0149 0532 | 0313 009 0123 0504
21097 | 0716 * 0028 0663 0774 | 0718 * 0028 0662 0774 | 0937 0050 0839 1000 | 0.925 0053 0825  1.000
22000 | -0.128 * 0047 0218 0035 | 0125 * 0048 -0222 -0.035 | -0.118 0169 -0473  0.178 | -0.191 0149  -0.500  0.086
23 002 | 0029 0045 0115 0057 | -0.034 0051 -0.135 0065 | 0.033 0175 -0.382 0295 | 0.072 0146 -0.372  0.199
24107 | 0778 * 0027 0724 0831 | 0793 * 0027 0738 0843 | 0933 * 0052 0833 1000 | 0.939 * 0047 0847  1.000
25 012 | 009 * 0049 0005 0194 | 0110 * 0050 0015 0204 | 0.002 0179 0370 0322 | -0.011 0159 0339 0280
2 037 | 0001 * 0045 -0.094 0085 | 0019 * 0046 -0.072 0110 | 0.081  0.184 0447 0250 | -0.112 0154 0431 0177
27 031 | 0070 * 0047 0266 0080 | 0160 * 0047 0253 -0.070 | 0184  0.163 0527 0.08 | -0.260 0146  -0.557  0.020
28 046 | 0476 0039 0396 0550 | 0486  0.044 0398 0569 | 0420 0161 0097 0726 | 0469 0130 0198 0709
29 002 | 0128 * 0047 0218 0035 | 0125 * 0048 0222 -0.035 | 0195 0192 0596  0.54 | -0234 0157 0546  0.057
30 001 | 0128 * 0047 0218 0035 | 0125 * 0048 0222 -0.035 | 0.017 0204 0439 0347 | -0.145 0170 0477  0.178
31020 | 0298 * 0044 -0.385 0212 | 0304 * 0047 -0.395 -0.210 | 0150 * 0.147 0150 0.414 | -0.168 0174 0501  0.166
32079 | 0509 * 0029 0455 0565 | 0522 % 0030 0464 0580 | 0539 * 0118 0313 0777 | 0.537 * 0105 0328 0743
33048 | 0348 * 0047 0256 0437 | 0342 * 0050 0246 0443 | 0389 0163 0060  0.695 | 0.393 0130 0132  0.642
34023 | 0212 0035 0147 0286 | 0199 0038 0121 0267 | 0355 0120 0113 0607 | 0269 0116 0040  0.498
35055 | 0650 % 0032 0587 0714 | 0649 * 0035 0581 0718 | 0440 0102 0236  0.634 | 0495 0088 0323 0671
36 048 | 0716 % 0028 0663 0774 | 0718 * 0028 0662 0774 | 0478 0101 0281 0671 | 0534 0083 0378 0702
37020 | 0306 % 0045 0216 0388 | 0306 * 0050 0211 0405 | -0.070 0212 0532 0301 | 0071 0160 -0.249 0382
38 061 | 0688 ¢ 0036 0616 075 | 0665 0039 0585 0737 | 0.577 0102 0389 0788 | 0.625 0083 0457 0780
39 034 | 0381 0035 0312 0447 | 0378 0035 0306 0442 | 0032 0181 0311 0382 | 0179 0123  -0.055 0426
40 004 | 0212 * 0035 0147 0286 | 0199 * 0038 0121 0267 | 0210 * 0128 0037 0461 | 0184 * 0107 -0.021 0386
#1024 | 0207 0047 0116 0299 | 0215 0049 0121 0313 | 0243 019 0064  0.603 | 0.204 0160 0132 0499
42005 | 0029 0045 0115 0057 | 0034 0051 -0.135 0065 | 0276 0157 0034 0572 | 0124 0160 0210 0417
43076 | 0778 0027 0724 0831 | 0793 0027 0738 0843 | 0908 * 0064 0782 1000 | 0.916 * 0062 0800  1.000
44083 | 0.650 * 0032 0587 0714 | 0649 * 0035 0581 0718 | 0.648 * 0084 0487  0.820 | 0.668 0082 0511  0.837
45055 | 0509 0029 0455 0565 | 0522 0030 0464 0580 | 0562 0079 0411 0721 | 0.565 0075 0407 0708
46 091 | 0.688 * 0036 0616 0756 | 0.665 * 0.039 0585 0737 | 0.825 0091 0671 1000 | 0798 0084 0644  0.968
47062 | 0.608 0039 0531 0681 | 0614 0036  0.541 0683 | 0541 0098 0360 0735 | 0.565 0087 039 0739
48 051 | 0339 * 0037 0265 0412 | 0343 * 0036 0274 0414 | 0389 0130 0127  0.643 | 0362 0112 0138 0577
49 109 | 0815 * 0031 0757 0875 | 0.809 * 0031 0749 0868 | 0933 * 0052 0832 1000 | 0.935 * 0049 0842  1.000
50 027 | 078 % 0047 0088 0268 | 0162 * 0053 0055 0268 | 026 0200 -0.265 0514 | 0133 0041  -0.154 0401
510057 | 0509 % 0029 0455 0565 | 0522 0030 0464 0580 | 0448 0125 0205 0691 | 0477 0105 0265 0677
52029 | 0381 % 0035 0312 0447 | 0378 * 0035 0306 0442 | 0224 0168 0106 0550 | 0293 0421  0.051 0530
53 064 | 0716 % 0028 0663 0774 | 0718 * 0028  0.662 0774 | 0481 0110 0262 069 | 0541  0.088 0369 0716
54033 | 0001 * 0045 -0.094 0085 | 0019 * 0046 0072 0.110 | 0.407 0118 0185 0643 | 0280 0149  -0.021 0544
55 067 | 0509 % 0029 0455 0565 | 0522 * 0030 0464 0580 | 0413 0145 0125 0683 | 0452 % 0115 0207 0657
56 0.89 | 0650 * 0032  0.587 0714 | 0649 * 0035 0581 0718 | 0.748 0089 0574 0930 | 0757  0.084 0595 0928
57019 | 0208 * 0044 0385 0212 | 0304 * 0047 0395 0210 | 0188 0166 -0.137 0505 | -0.187 * 0182 -0.546  0.163
58 -022 | 0170 0047 0266 -0.080 | 0160 0047 0253 0070 | 0323 0201 0737 0064 | 0369  0.066  -0.697  -0.055
59 016 | 0306 % 0045 0216 0388 | 0306 * 0050 0211 0405 | 0452 * 0110 0222 0648 | 0419 € 0410 0199 0632
60 011 | 0178 0047 0088 0268 | 0462 0053 0055 0268 | 0300 0127 0044 0527 | 0258  0.415  0.020 0469
61 019 | 0419 * 0042 0342 0504 | 0395 * 0043 0315 0474 | 0012 0181 0325 0371 | 0256  0.099  0.055 0437
62 102 | 0985 * 0014 0958 1000 | 0989 * 0010 0968  1.000 | 0.927 * 0053 0827 1000 | 0.944 * 0045 0855 1000
63 103 | 0716 * 0028 0663 0774 | 0718 * 0028 0662 0774 | 0927 * 0054 0824 1000 | 0916 * 0057 0812 1000
64 0.68 | 0509 % 0029 0455 0565 | 0522 * 0030 0464 0580 | 0.561 0174 0235 0916 | 0560 035 0302 0828
65 034 | 0339 0037 0265 0412 | 0343 0036 0274 0414 | 0162 0186 0207 0491 | 0221 0129  -0.038 0463
66 046 | 0476 0039 0396 0550 | 0486 0044 0398 0569 | 0.396 0178 0027 0718 | 0450 0149 0163 0750
67 025 | 0509 * 0029 0455 0565 | 0522 * 0030 0464 0580 | 0219 0153 0081 0505 | 0315 0121 0081 0552
68 086 | 0.857 0032 0800 0924 | 0.845 0020 078 0898 | 0914 0061 0798 1000 | 0924 0055 0819  1.000
69 -0.08 | 0001 0045 0094 0085 | 0019 * 0046 0072 0.010 | -0.155 0157 0470 0142 | 0166 0141  -0.451  0.098
70040 | 0.608 * 0039 0531 0681 | 0614 * 0036  0.541  0.683 | 0486 0116 0243  0.694 | 0.528 0097 0325 0711
71046 | 0.650 * 0032 0587 0714 | 0649 * 0035 0.581 0718 | 0510 0102 0308 0701 | 0.560 0090 0376 0730
72074 | 0381 * 0035 0312 0447 | 0378 * 0035 0306 0442 | 0781 0082  0.634 0955 | 0720 0078 0564 0872
73046 | 0212 * 0035 0147 0286 | 0199 * 0038 0121 0267 | 0387 0201 0039 0739 | 0.240 0141 -0.053 0499

Average 037 | 0359 0.361 0.353 0.345

SdDev. 037 | 0322 0.322 0.322 0.346

* indicates the true parameter is outside of the 95% credible interval of the posterior sample.
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Figure B.1: Individual Fechner Noises Using Simulated Dataset VI under

Misspecified specifications
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Posterior Mean Under Specification VI

Figure B.2: Individual Fechner Noise y; from Observed Choices under

EUT specification VI
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Figure B.3: Individual Fechner Noise y; from Observed Choices under

Different EUT Specifications
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Appendix C Template Stata Codes (ONLINE)

In this section we provide the Stata codes for the estimation of specification VI.

C.1 Data and Variables

The data are saved in a Stata dataset with each row of observation recording all the observables of
subject i in lottery pair ¢, including a subject id, his or her demographic information, the prizes and
probabilities of the lottery pair, and the subject’s choice of left or right lottery from the pair. Table C.1
contains for a detailed explanation of each variable and its correspondence with the mathematical

notations in the text.

Table C.1: Variables in Stata Dataset

Variable Notes

female Whether a subject is female

black Whether a subject is African American

business Whether a subject is business major

gpaHI Whether a subject has a high GPA

insured Whether a subject owns any insurance

probkL The probabilities of the left lottery, pth where k=1,...,4
prizekL The prizes of the left lottery, x[Lk where k =1,...,4

probkR The probabilities of the right lottery, p{i where k =1,...,4
prizekR The prizes of the right lottery, xsc wherek=1,...,4
endowment | Endowment subjects receives, e

sid Continuously coded subject ID, i =1,2,...,73

choicel Subjects’ choices in lottery pairs, y;, equal to 1 if subject chooses the left lottery

We collect relevant variables in globals “demog_r” and “Rdata” to allow for a more succinct

presentation of the main syntax:

global demog_r "female black business gpaHI insured"
global Rdata "problL prob2L prob3L prob4L problR prob2R prob3R prob4R prizell
— prize2l prize3L prizedl prizelR prize2R prize3R prizedR endowment"

The use of a small red arrow indicates a continuation of the previous line.

C.2 Likelihood Function

The likelihood function in our model needs to be written in a user-defined function referred to as

“user-defined likelihood evaluator” in Stata. To allow for flexibility in the specifications, we use
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several globals: the “utype” global specifies the specific form of the CRRA utility function in (1), the
“contextual” global specifies whether to use contextual utilities in (2), and the “cdf” global specifies
whether to use a Probit or Logit link between the latent index and the observed choice in (3). To

replicate specification VI in its exact form in the main text, we define these globals as follows:

global utype "1-r"
global contextual "y"
global cdf "normal"

The user-defined likelihood evaluator is then

program probitEUfLN
args Inf r LNmu
tokenize $MH_extravars

local h =0
foreach par in prob prize {
forvalues i=1/4 {
local h = ‘h'+1
local ‘par’‘i’L ‘‘h’"’
}
forvalues i=1/4 {
local h = ‘h'+1
local ‘par’‘i’R ‘‘h’’

}

local h = ‘h'+1

local endowment ‘‘h’’

tempvar 1lnfj

tempvar eul euR eudiff mlL m2L m3L m4L mlR m2R m3R m4R ulL u2L u3L ud4l ulR
<~ UuZ2R u3R u4R mu

tempvar low high

quietly {
generate double ‘mu’ = exp(‘LNmu’)

* add in endowments
foreach x in L R {
forvalues i=1/4 {
generate double '‘m‘'i’ ‘x'’ = ‘endowment’ + ‘prize‘i’ ‘x’’
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* generate the utility function
foreach x in L R {
forvalues 1=1/4 {
if "Sutype" == "2" {
generate double ‘u‘i’ ‘x’'’ = (‘m‘i’ ‘x'’"(1-‘r’'))/(1-"
— ")

else {

\ NS NI N NGI T NN T

generate double ‘u‘i’ ‘x = '‘m'i’ 'x r

* evaluate the EU of each lottery
generate double ‘eul’ = 0

generate double ‘euR’ = 0
foreach x in L R {
forvalues i=1/4 {
replace ‘eu'x’’ = ‘eu'x’’ + ‘prob'i’ ‘x’’*‘u‘i’ ‘x’’
}
}
* get the Fechner index
if "Scontextual" == "y" {
generate double ‘low’ = ‘ull’

generate double ‘high’ = ‘ull’
forvalues 1i=1/4 {
foreach s in L R {

replace ‘low’ = ‘u‘i’‘s’’ if ‘u'i’ ‘s’’ < ‘low’ &
— prob'i’'s’’ > 0
replace ‘high’ = ‘u'i’‘s’’ if ‘u‘'i’‘s’’ > ‘high’ & °

— prob'i’'s’’ > 0
}
}

generate double ‘eudiff’ = ((‘eul’ - ‘euR’)/(‘high’-‘low’))
— /‘mu’
}
else {
generate double ‘eudiff’ = (‘eul’ - ‘euR’)/‘mu’

* construct the likelihood contribution

generate double ‘lInfj’ = In(Scdf( ‘eudiff’)) if SMH_yl == 1 &
—» SMH_touse

replace ‘Infj’ = In(Scdf(-‘eudiff’)) if SMH_yl == 0 & SMH_touse

summarize ‘1lnfj’, meanonly
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* check that the required evaluations are done
if r(N) < SMH_n {

scalar ‘lInf’ = .

exit
}

scalar ‘Inf’ = r(sum)

end

C.3 Main Syntax

The main Stata command for Metropolis-Hastings algorithm that allows for the use user-defined
likelihood function is “bayesmh”. The template listing is provided below. In this command we first
specify all the model parameters, with parameters related to CRRA coefficients in line 1 and those

related to the Fechner noise parameters in line 2.

In line 3 we specify the user-defined likelihood evaluator in option “llevaluator( )”, within which
we can tell Stata to input the variables in “extravars( )”. The user-defined likelihood evaluator parses

the variables into temporary variables when evaluating the likelihood.

For specification VI the Gibbs sampler can only be applied to the distribution of y;, which is
specified in lines 13-15. We use the Metropolis Hastings algorithm to sample parameters related to

CRRA coefficients, specified in lines 4-12.

In lines 16-18 we specify options for the size of the MCMC sample, display of results, saving of
the MCMC samples for later use, adaptation parameters for the adjustment of proposal steps in the MH

algorithm, etc. For documentation one can reference the Stata manual for the “bayesmh” command.

1 bayesmh (r:choicel i.sid i.sid#i. ($demog_r)) ///

2 (mu: choicel i.sid), ///

3 llevaluator (probitEUfLN, extravars ($Rdata)) ///

4 prior({r:i.sid }, normal ({rMean:constant}, {rVar})) ///

5 prior({r:i.sid#i.female}, normal ({rMean:female}, {rVar})) ///

6 prior ({r:i.sid#i.black}, normal ({rMean:black}, {rVar})) ///

7 prior ({r:i.sid#i.business}, normal ({rMean:business}, {rVar})) ///
8 prior ({r:i.sid#i.gpaHI}, normal ({rMean:gpaHI}, {rVar})) ///

9 ({r:1

prior 1.51d#1.insured}, normal ({rMean:insured}, {rVar})) ///
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10
11
12
13
14
15
16

17

18

block ({r:},split) ///
prior ({rMean:}, normal (0, 100)) block({rMean:}, split) ///

{rvar}, igamma(0.001, 0.001)) block({rVar}) ///
prior ({mu:i.sid}, normal ({muMean}, {muVar})) block ({mu:i.sid}, split) ///
prior ({muMean}, normal (0, 100)) block ({muMean},gibbs) ///
prior ({muVar}, igamma(0.001, 0.001)) block ({muVar},gibbs) ///

rseed(54321) mcmcs (10000) burnin(2500) adapt( every(10) alpha(0.75) beta(0.8)
< gamma (0.0001)) ///
nomleinitial nocons initial ({r:} {rMean:} 0 {mu:i.sid} 1 {rMean:} 0 {rVar} 1
<~ {muMean} 0 {muVar} 1) initsummary ///

saving (ChoiceEU6_SpecEU6, replace) dots(l,every(10))

(
(
prior (
(
(
(
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