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ABSTRACT 
 

The probability discounting model has become a popular framework for investigating 
choice under risk in psychology. But it is not clear how the model relates to standard 
theories of choice under risk, such as expected utility theory and prospect theory. I 
critically review the theoretical development of the model and argue that it rests on an 
outdated conception of reinforcement learning. I also show that it is formally 
isomorphic to the dual theory of choice under risk, but that it is limited to simple 
prospects with a specific parametric probability weighting function. I discuss the 
methodological and statistical approaches typically used in studies of probability 
discounting and develop a structural statistical framework to test the efficacy of the 
model’s implied probability weighting function in applied work. Using data from a 
widely-cited study, I show that the probability discounting model is needlessly 
restrictive since it does not allow for the simultaneous overweighting and 
underweighting of probabilities, which is a common pattern identified in the 
experimental literature on choice under risk. 

 
 
 
Keywords: probability discounting, choice under risk, risk aversion, probability 
weighting 
 

 

 

 

 

 

 

 

 

 

 

 

 

† School of Economics, University of Cape Town (South Africa) 



 -1- 

I. INTRODUCTION 

 

Probability discounting (PD) is a popular model in psychology for investigating the 

instantaneous or atemporal attitudes toward risk of individuals in experimental 

settings. It is particularly common in studies of addiction where delay discounting 

data are also often obtained.1 This model was developed by Rachlin, Logue, Gibbon 

and Frankel (RLGF) [1986], Rachlin, Castrogiovanni and Cross (RCC) [1987], and 

Rachlin, Raineri and Cross (RRC) [1991].2 As the name suggests, the PD model 

draws its inspiration from models of temporal or delay discounting, where the delay 

to a reward is replaced with the odds against receiving a reward (see Green and 

Myerson [2004] and Madden and Bickel [2010] for reviews). I explain the model in 

language familiar to computational learning theorists, statisticians, and economists; 

show how the model relates to standard theories of choice under risk; highlight the 

shortcomings of the PD approach; and provide empirical support for the claim that the 

model suffers from needless limitations. 

 

This critique of the PD model is a case study of the long-term risks associated with 

methodological silos in cognate disciplines. The technical literature on choice under 

risk has a long, impressive lineage, and theoretical, methodological, empirical, and 

statistical advances keep being made (see Harrison and Rutström [2008] for a review). 

By contrast, the PD model inadequately characterises choice under risk because it is 

based on a theoretical reformulation of the probability concept that is outdated and 

suffers from a number of methodological and statistical restrictions.  

 

It is critical that researchers investigating choice under risk cross this methodological 

divide, because the substantive topics to which the PD model has been applied, such 

as addiction, remain of paramount importance across several disciplines. Researchers 

in psychology would be better served by adopting incentive-compatible elicitation 

tasks; theories that incorporate multiple pathways to explain the risk premium, and 

not just probability weighting as in the PD model; and statistical tools that are 

 
1 See, for example, Mitchell [1999], Richards, Zhang, Mitchell and de Wit [1999] and Reynolds, 
Richards, Horn and Karraker [2004]. For a recent meta-analysis of the relationship between probability 
discounting and gambling behaviour see Kyonka and Schutte [2018]. 
2 According to Google Scholar (22 July 2020), these articles have been collectively cited 1,869 times. 
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appropriate for estimating models of choice under risk to ensure that valid inferences 

can be drawn. 

 

Section II outlines some canonical models of choice under risk. Section III discusses 

the derivation of the PD model and focusses on some theoretical, methodological, and 

statistical limitations of this approach. Section IV shows that the model is formally 

isomorphic to the dual theory of choice under risk due to Yaari [1987]. Section V 

develops a structural statistical framework to estimate the PD model’s implied 

probability weighting function, along with other functions that are commonly used in 

the literature. Section VI re-analyses data from a widely-cited study to test the 

relevance of the PD model in applied work, and Section VII concludes. 

 

II. THEORIES OF CHOICE UNDER RISK WITH SIMPLE PROSPECTS 

 

RLGF set themselves the task of translating prospect theory (PT), developed by 

Kahneman and Tversky (KT) [1979], into a behavioural model of choice inspired by 

the work of Herrnstein [1961] on the “matching law,”3 which relates behavioural 

outputs to environmental inputs. PT was developed to account for a number of 

purported anomalies in choice among lotteries4 that the canonical model of choice 

under risk, expected utility (EU) theory, allegedly could not explain. PT proposes that 

two phases take place during the choice process: an initial editing phase which 

typically yields a simpler representation of the gambles, and a subsequent evaluation 

phase where the edited gambles are evaluated and the gamble with the highest value 

is chosen. KT provide a descriptive explanation of the editing phase and develop a 

formal model of the evaluation phase. The model of the evaluation phase will be 

outlined briefly, along with other models of choice under risk, to show how the PD 

model is related to them. 

 

  

 
3 Other early contributions to the literature on the matching law are Davenport [1962], Logan [1965], 
Chung [1965], Chung and Herrnstein [1967], and Herrnstein [1970]. 
4 The terms “lottery,” “gamble,” and “prospect” refer to a probability distribution over outcomes and 
will be used interchangeably. 
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Using the notation in KT, (x, p; y, q) is a prospect yielding outcome x with probability 

p, outcome y with probability q, and 0 with probability 1 – p – q, where p + q ≤ 1. KT 

[p. 276] define a “regular” prospect as one where p + q < 1, or x ≥ 0 ≥ y, or x ≤ 0 ≤ y. 

During the evaluation phase of PT, regular prospects are evaluated by the function: 

 V(x, p; y, q) = π(p)v(x) + π(q)v(y), (1)  

where v(0) = 0, π(0) = 0, π(1) = 1, π(∙) is an increasing function of p, and π(p) Î [0, 

1].  

 

According to KT, individuals respond differently to gains and losses. This matters in 

(1) because the outcomes x and y are evaluated relative to some reference point r 

which determines whether the outcomes are perceived as gains or losses. KT were 

agnostic about the determination of r. Their subsequent model in Tversky and 

Kahneman [1992], called cumulative prospect theory, assumes that the reference 

point coincides with zero income (i.e., r = 0). I adopt the latter assumption because it 

implies that when x, y ≥ 0, the lottery is in the gain frame, and I need not complicate 

the exposition by representing the possibility that the outcomes are perceived as 

losses. 

 

For the present discussion I will be concerned with binary prospects of the form (x, p; 

0, q): prospects that pay x with probability p and 0 with probability q, where q = 1 – p. 

These simple prospects are used because the theory of probability discounting 

developed by Rachlin et al. [1986, 1987, 1991] is limited only to gambles involving 

the outcome 0 and one positive or negative outcome x. In the language of PT, I will 

only consider lotteries in the gain frame, where x > 0, to keep the discussion focussed 

on essentials. 

 

Since v(0) = 0, and we are concerned with simple prospects, (x, p; 0, q), (1) reduces 

to: 

 V(x, p; 0, q) = π(p)v(x). (2)  

In words, the prospective utility V of lottery (x, p; 0, q) is determined solely by the 

product of some function π(∙) of the probability p assigned to outcome x and some 

utility function v(∙) over the outcome x. The function π(∙) is referred to as a probability 

weighting function (PWF) in the literature because it takes probabilities as its 
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argument and returns decision weights. Consequently, the function π(∙) incorporates 

the possibility of subjective distortions of objective probabilities: the objective 

probability 0.1 may be subjectively perceived as greater or less than 0.1. Under the PT 

formulation, risk preferences in the gain frame are determined both by the shape of 

the utility function v(∙) and the shape of the PWF π(∙).  

 

By contrast, EU theory assumes π(p) = p and defines the expected utility V of lottery 

(x, p; 0, q) as: 

 V(x, p; 0, q) = pv(x). (3)  

EU is not defined relative to a reference point, so it does not treat gains and losses 

differently, and probabilities are interpreted objectively. Thus, risk preferences are 

determined solely by the shape of the utility function v(∙) because V(∙) is linear in p.5  

 

Finally, the dual theory of choice under risk developed by Yaari [1987], sometimes 

referred to as a rank-dependent expected value (RDEV) model (see Harrison and 

Rutström [2008]), defines the utility V of a simple prospect as: 

 V(x, p; 0, q) = π(p)x. (4)  

Like EU, RDEV is not defined relative to a reference point and does not treat gains 

and losses differently. As V is linear in outcome x in (4), risk preferences in this 

model are determined solely by the shape of the PWF π(p). 

 

It will be shown that risk preferences in the PD model are determined by the shape of 

the PWF, and it is therefore equivalent to RDEV, except that the PD model is limited 

to simple prospects and employs a specific parametric PWF. To establish the context 

for this result, it is useful to first discuss the theoretical and empirical development of 

the PD model.  

 

  

 
5 V(∙) is unique up to a positive affine transformation so U(∙) = a + bV(∙), for b > 0, represents the same 
preferences as (3). 
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III. THE PD MODEL: A BEHAVIOURAL THEORY OF CHOICE UNDER RISK 

 

RLGF argue that choice under risk can be tied to a temporal framework by 

interpreting the probability associated with a reward as the delay to, or rate of 

reinforcement of, this reward. To understand this reformulation of the probability 

concept, consider the following thought experiment presented in RLGF [p. 36]. A 

person is presented with a gamble (x, ⅓; 0, ⅔) that pays x with probability p = ⅓ and 

0 with probability 1 – p = ⅔. A physical randomisation device is used to determine 

whether the subject wins x and the gamble is played out repeatedly with the subject 

observing the result of each gamble.6 Suppose that the physical randomisation device 

takes c seconds to deliver a result and the intertrial interval between gambles is t 

seconds. Then, timed from the start of the first gamble, the average or expected delay 

(D) to the person’s first win is given by a waiting-time function: 

 D = [(t + c) / p] – t. (5)  

In this function t is subtracted under the assumption that there is no delay to the first 

gamble. Expression (5) shows how, at least in the repeated-gambles case, probability 

and delay are linked. As probability increases the delay to reward falls, and vice 

versa. In addition, probability affects the rate of reinforcement of a reward in a 

specific way. Using the parameters from the above formalisation (i.e., p = ⅓) over a 

long series of repeated gambles the rate at which the person would receive money is  

x / [3(t + c)] per second. Now suppose that the person is in one room and the physical 

randomisation device is in another room, so that the subject is not aware of it. If the 

person wins x then it is delivered through a trapdoor. Suppose further that there are 

two randomisation devices for two different lotteries that are placed behind two 

trapdoors, and that the person must choose between them. According to RLGF, the 

choice can be viewed as one between gambles or as one between rates of 

reinforcement.7  

 

 
6 Since the gamble is repeated and the person wins x on successful realisations of the gamble, payoffs 
in this thought experiment are cumulative. RLGF implicitly assume away the effect that cumulative 
payoffs have on choice behaviour. In other words, they assume that the person has an additively-
separable intertemporal utility function which is not affected by changes in income. 
7 Appendix A explains the behavioural model of choice developed by RLGF in more detail and 
critically discusses an experiment that was conducted to test the implications of the model. 
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RLGF [p. 36] state that the physical randomisation devices in this thought experiment 

are “… unseen by and unknown to the subject …,” implying that he or she merely 

chooses a trapdoor and then waits for it to pay out. In other words, the person only 

observes the outcome of the gamble when it is favourable rather than choosing a 

gamble and observing when it does and does not pay out. These procedural 

differences likely have a large impact on how the experiment is perceived by the 

subject. Choosing a gamble and then waiting until it pays out, without observing each 

trial, frames the task as one involving amounts and delays. Watching a gamble pay 

out or not, across repeated trials, frames the experiment as one involving risk and 

allows the subject to estimate the probability of receiving x, along with the 

complementary probability of receiving 0. In the former case, interpreting probability 

as delay to, or rate of reinforcement of, reward is valid because that is how the subject 

experiences the task. In the latter case, which is certainly empirically relevant, the link 

between probability and delay is tenuous. 

 

In addition, these procedural differences might affect the way people learn about the 

reward contingencies in this experiment. Choosing between trapdoors and waiting for 

them to pay out is suited to Rescorla-Wagner-style associative strength learning 

where prizes and probabilities are bundled together as rewards (see Rescorla and 

Wagner [1972]). As Glimcher [2011, p. 401] explains, “… when you learn the value 

of an action in this way, the probability is bundled directly into your estimate of the 

value of that action. Your estimate of the value of the action includes the probability, 

but you cannot extract the probability from this estimate.” By contrast, if a subject is 

presented with a gamble which conveys the prize-probability information directly, as 

in the first stage of the RLGF thought experiment, and then gets to observe each 

realisation of this gamble, the person is more likely to encode probability and prize 

information separately, and can estimate what Glimcher [2011, p. 402-405] refers to 

as “expected subjective value.”8  

 

Another issue with this thought experiment is that it relies on the assumption that 

individuals are exposed to repeated gambles. How then do people behave when faced 

with a one-shot gamble? RLGF [p. 38] argue that, “… the behavioral model must 

 
8 For a review of the different ways in which people learn and encode value see Clark [2016]. 
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infer the existence of past external events (events that had been paired with the stated 

probability).” Thus, the underlying theoretical assumption of RLGF appears to be that 

Rescorla-Wagner-style conditioned reinforcement provides the basis for all individual 

responses to uncertainty in choice. That is, it is assumed that people interpret the 

probability of winning a reward as the rate of reinforcement of that reward, which is 

linked to unknown past events. This is problematic because in a one-shot setting, 

probability-prize information may be available to subjects to inform choice, which 

arguably should be expected to influence the way they encode value. It would require 

a very strong, indeed metaphysical, prior assumption to license simply ignoring the 

possible effects of this information. Furthermore, RLGF must maintain the 

assumption that probability and rate of reinforcement are linked even though in a one-

shot gamble with a prize of 0 and a prize of x > 0, a simple prospect, the probability of 

receiving x represents the likelihood that one receives x and the complementary 

probability represents the likelihood of receiving nothing. Thus, if one does not 

receive x then it will not be received, regardless of the length of time that one waits. 

 

Notwithstanding these issues, RLGF and RCC9 laid the foundations for the PD model, 

but it is the method of RRC that has been replicated numerous times10 and defines the 

model as it is currently employed. RRC drew on the work of Mazur [1984], who ran a 

series of delay discounting experiments with pigeons, to further develop the 

hypothesised link between probability and delay. Mazur [1984, p. 427] argued that the 

pigeons’ delay discounting data was best explained by a hyperbolic discounting 

function: 

 V = x / (1 + δD), (6)  

where V is the present or discounted value of the delayed reward x, D is the delay to 

the reward, and δ is a parameter that captures the extent to which future values are 

discounted. As δ increases in (6) so the present value V of a delayed reward declines. 

 
9 RCC conducted an experiment with real rewards to bolster the claim of RLGF that probabilistic 
choice can be tied to a temporal framework. The experiment was based on Rachlin and Green [1972], 
who studied the behaviour of pigeons in a delay-commitment paradigm. The major difference with this 
experiment, other than that RCC used human subjects, was that delays were replaced with 
probabilities: long delays with low probabilities and short delays with high probabilities. RCC is not 
directly relevant to the development of the PD model so it is discussed in Appendix B. 
10 See, for example, Ostaszewski [1997], Mitchell [1999], Richards, Zhang, Mitchell and de Wit 
[1999], Reynolds, Richards, Horn and Karraker [2004], Ohmura, Takahashi and Kitamura [2005], 
Reynolds [2006] and Reynolds et al. [2007]. 
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RRC argue, once again, that probability is best interpreted as delay to, or rate of 

reinforcement of, reward and then use the waiting-time function (5) to derive a 

specific result. On the assumption that c, which is the time it takes for a physical 

randomisation device to deliver a result, is small relative to the intertrial interval t, the 

waiting-time function (5) can be re-written as:  

 D = (t / p) – t = t[(1 – p) / p] = tΘ, (7)  

where Θ = (1 – p) / p represents the odds against receiving a reward. Thus, if the 

probability of receiving reward x under some gamble is 0.2, the odds against receiving 

x are 4:1. As RRC [p. 235] note, in the context of repeated gambles, “odds against” is 

the average number of losses expected before a win. 

 

Adopting this logic, RRC develop a function, which they argue is analogous to the 

delay discounting function (6), to describe how people value or “discount” lotteries of 

the form (x, p; 0, q): 

 V = x / (1 + γΘ), (8)  

where γ performs the same role as δ in (6), and captures the extent to which the 

probabilistic reward x is “discounted” as a function of the odds against receiving it. 

Expression (8) defines the PD model as it is typically employed. 

 

This derivation is sensible if one accepts the premises, and (8) certainly “looks like” 

(6), with γ taking the place of δ and Θ taking the place of D. However, presumably 

the correct substitution for D in (6) is tΘ, which is the result derived in (7) under the 

assumptions that c = 0 and that there is no intertrial interval prior to the outcome of 

the first gamble in a set of repeated gambles. This latter assumption is why t is 

subtracted in the waiting-time function (5) and why Θ = (1 – p) / p represents the odds 

against receiving a reward. If t is not subtracted in (5) then Θ = 1 / p which is clearly 

not the same as odds against winning. 

 

Ignoring this issue, RRC set out to test the PD model (8) and the delay discounting 

model (6) by recruiting 80 undergraduate students to take part in experiments with 

hypothetical rewards: 40 subjects were used to obtain a PD function and 40 were used 

to obtain a delay discounting function. In the PD experiment subjects made binary 

choices between $1,000 available with different probabilities (0.95, 0.9, 0.7, 0.5, 0.3, 
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0.1, and 0.05) and an amount of money to be received with certainty.11 For each 

probability, half of the subjects in the PD experiment were presented with these 

certain amounts of money in decreasing and then increasing order, while the other 

subjects were presented with these amounts in increasing and then decreasing order. 

This elicitation procedure was used to find certainty equivalents (CEs) for the $1,000 

lotteries.12 

 

CEs were obtained by averaging the amounts of money before and after a switch was 

made. For example, if someone chose the lottery paying $1,000 with a probability of 

0.9 over $850 with certainty, and then chose $900 with certainty over the lottery 

paying $1,000 with a probability 0.9, then the CE was calculated as $875 for that 

lottery.13 The procedure in the delay discounting experiment was identical except that 

probabilities were replaced with delays: 1 month, 6 months, 1 year, 5 years, 10 years, 

25 years, and 50 years. 

 

RRC fit the hyperbolic delay discounting function (6) and hyperbolic PD function (8) 

to the median indifference points and CEs in the sample, respectively. They argue that 

these hyperbolic functions provide a better fit to these data than exponential functions, 

but do not conduct formal statistical tests of this assertion. Nevertheless, they 

conclude that, “The corresponding form of Equations [(6) and (8)] implies that odds 

against in probabilistic discounting acts like delay in delay discounting and tends to 

confirm the speculation of Rachlin et al. [1986] that stated probability and stated 

delay have corresponding effects on behaviour” (RRC [p. 239-240]). To what extent 

is this claim justified? 

 

 
11 The full set of amounts was: $1,000, $990, $980, $960, $940, $920, $900, $850, $800, $750, $700, 
$650, $600, $550, $500, $450, $400, $350, $300, $250, $200, $150, $100, $80, $60, $40, $20, $10, $5 
or $1. 
12 Loosely, a lottery’s certainty equivalent (CE) is the amount of money received with certainty such 
that a decision maker is indifferent between playing out the lottery and receiving the amount CE. I 
provide a formal definition in the next section. 
13 Taking the average of these amounts is arbitrary and discards information on the uncertainty of the 
estimate, as explained in detail below. The correct approach for analysing interval data, such as where 
a person’s CE lies in the interval ($850, $900), is interval regression (see Harrison and Rutström [2008, 
p. 62-69]) but RRC do not adopt this approach. Alternatively, one can employ a complementary full 
information maximum likelihood framework, which directly incorporates the uncertainty of the 
estimates and models it statistically, so that one can draw robust inferences about the ability of 
different PWFs to characterise PD data. 
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The link between probability and delay has been investigated in delay discounting 

experiments where researchers have varied the probability that subjects receive 

payment for one of their choices on the task. Keren and Roelofsma [1995] conducted 

an experiment, using hypothetical rewards, where subjects were offered a choice 

between 100 Dutch Guilders now or 110 Guilders in 4 weeks. When the probability of 

payment was 1, 82% of 60 subjects chose the smaller, sooner (SS) reward. When the 

payment probability was reduced to 0.9, only 54% of 70 subjects chose the SS 

reward, and when the payment probability declined to 0.5, only 39% of 100 subjects 

chose the SS reward. These results suggest that probability and delay are 

behaviourally, empirically linked. However, follow-up studies by Weber and 

Chapman [2005], using hypothetical rewards, and Andersen, Harrison, Lau and 

Rutström [2014], using real rewards, failed to replicate this result. 

 

Methodologically, the elicitation method of RRC suffers from a serious drawback. 

Suppose that someone’s CE is $850 for a lottery that pays $1,000 with a probability 

of 0.9 and $0 with a probability of 0.1. This implies that certain amounts greater than 

$850 will be preferred to the gamble but certain amounts less than $850 will not. 

Given that people cannot state indifference in these experiments, and that the amounts 

used in the procedure were typically in increments of $50, the elicitation procedure 

will always over-estimate or under-estimate this true CE.14 More generally, this 

elicitation method will always over-estimate or under-estimate a subject’s CE unless 

it lies exactly midway between two of the certain values used in the task. This 

problem is magnified in experiments with hypothetical rewards because subjects have 

no incentive to represent their preferences truthfully (see Smith [1982]). In addition, if 

people make mistakes in their decisions15 by, for example, selecting a less preferred 

option to a more preferred option then it becomes impossible to recover their “true,” 

latent CEs. 

  

 
14 For example, suppose a subject with this CE is offered the choice between $1,000 with a probability 
of 0.9 and $850 for sure. Given that the subject is indifferent between these options she may select 
either one. If the subject selects $850 for this pair but then switches to the gamble when offered $800 
with certainty, as her preferences dictate, her assumed CE will be $825. If, on the other hand, the 
subject selects $1,000 with probability 0.9 over $850 with certainty, having selected the certain $900 
previously, then her assumed CE will be $875. Thus, we derive two different and incorrect CEs for this 
subject given the algorithm that is used in the elicitation task. 
15 See Wilcox [2008] for a detailed survey of stochastic models of choice under risk that have been 
developed to account for this possibility. 
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This methodological issue raises an important statistical issue. Given that the estimate 

of a CE contains some error, one should be cognisant of the uncertainty of the 

estimate and model it statistically. In other words, every point estimate has a standard 

error and to ignore this sampling distribution is to assume it is degenerate. As the 

example above shows, this assumption cannot be the case, by design. Furthermore, to 

use some measure of central tendency, such as the median in RRC, to select the 

sample’s CE for each probability, is to ignore the distribution of CEs in the sample. 

As Figure I shows, for every probability in the experimental task there is a 

distribution of CEs, and these distributions are often skewed, bimodal, or trimodal. 

Statistical techniques that treat each choice by every subject in the elicitation 

procedure as a datum should be used so that important information is not discarded 

and the uncertainty surrounding elicited CEs is modelled appropriately. 

 

 Figure I: Distributions of Certainty Equivalents in RRC  

 

 

 

 Source: RRC [p. 237, Figure 3].  

 

Finally, even though the hyperbolic PD function may have better characterised the 

data than the exponential PD function, despite the lack of a formal statistical test 

showing this, there are a rich variety of PWFs that may better characterise these data 

and were not ruled out. For all of these reasons, it seems premature for RRC to claim 

that stated probability and stated delay have corresponding effects on behaviour. 

 

PROBABILITY AND DELAY

ative to expected value), generating a function
similar (over most of its range) to the one pro-
posed by Kahneman and Tversky (1979).
When h < 1, Equation 5 predicts underdis-
counting of probabilistic outcomes.

METHOD
Subjects

Eighty students enrolled in an undergrad-
uate psychology course at the State University
of New York at Stony Brook served as subjects.
Their participation in this experiment was a
course requirement. Forty of the subjects were
used to obtain a probability discount function,
and 40 were used to obtain a delay discount
function.
Materials

Each subject was tested individually in a
small room containing two chairs and a table.
Cards were presented in pairs to all subjects.
One card stated an amount of money to be
paid for sure ($1,000, $990, $980, $960, $940,
$920, $900, $850, $800, $750, $700, $650,
$600, $550, $500, $450, $400, $350, $300,
$250, $200, $150, $100, $80, $60, $40, $20,
$10, $5, or $1). For subjects in the probability
discount group, the other card stated a prob-
ability of $1,000 as a percentage (95%, 90%,
70%, 50%, 30%, 10%, and 5% chances of win-
ning $1,000), whereas for subjects in the delay
discount group, the other card stated a delay
of $1,000 (1 month, 6 months, 1 year, 5 years,
10 years, 25 years, and 50 years).
Procedure

Subjects in both probability and delay dis-
count groups were asked to state a preference
between the two cards. The probabilistic or
delayed $1,000 card remained in front of the
subject while the certain-immediate cards were
presented one by one next to it. Subjects in-
dicated their preference by pointing to one of
the cards.
The order in which both probabilistic $1,000

and delayed $1,000 cards were presented was
from highest valued to lowest valued. Thus,
the highest probabilities and lowest delays were
tested first. For each probability or delay, the
set of certain-immediate amounts was titrated
up and then down for 20 subjects and down
and then up for the other 20. A subject was
considered to have switched to the initially dis-
preferred alternative after two choices in a row

PROBABILITY

.05 _=_= -

.1 = =_

.3

.5 - =

.7

.9 -

.95-

0 200 400 600 800 1000

AMOUNT
Fig. 3. Distributions of individual certain-immediate

amounts equivalent to $1,000 with various probabilities.

of that alternative. Points of equivalence were
obtained by averaging the amounts just before
and just after the switch.
The following instructions were read to all

subjects in the probability discount groups:
The purpose of this experiment is to compare

your preferences for different amounts of money.
In this experiment you will be asked to make

a series of hypothetical decisions between mon-
etary alternatives. The experimenter will pre-
sent two sets of cards to you. The cards on your
left will offer you an amount of money that
will vary, but will always be given to you for
sure. On the cards on your right the amount
of money will be $1,000, but its payment will
be uncertain. That is, there will be a specified
chance that you get the 51,000. The chance of
winning the $1,000 will be written as a per-
centage. Please ask the experimenter to show
you an example of both sets of cards and clarify
any questions you might have.
You must always choose one of the two cards

by pointing to it with your hand.
Thanks for your cooperation.

RESULTS AND DISCUSSION
Figure 3 shows, for all 40 subjects (pooled),

distributions of amounts of money, available
with certainty, between which, and $1,000

237
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IV. THE PD MODEL AND OTHER THEORIES OF CHOICE UNDER RISK 

 

To show how the PD model relates to other theories of choice under risk it is 

important to recognise the lotteries to which the theory applies. The PD model is 

limited to a particular class of lotteries: simple prospects that take the form (x, p; 0, q).  

While the class of simple prospects is undoubtedly interesting, the PD model does not 

address gambles involving two non-zero outcomes (i.e., gambles with rewards x > 0 

and y > 0), nor gambles with mixed domains (i.e., gambles with rewards x > 0 and y < 

0), nor gambles involving more than two outcomes (i.e., gambles of the form (x, p; y, 

q; z, 1 – p – q). The last characteristic requires that one move to a “rank dependent” 

specification, as proposed by Quiggin [1982] and incorporated by Tversky and 

Kahneman [1992] into cumulative prospect theory. 

 

An issue that has been neglected in the literature on the PD model is that it employs 

the implicit assumption that the utility of a lottery is linear in outcomes. To see this, 

note that under the PD approach, researchers use an elicitation procedure to find the 

CE for the simple gamble (x, p; 0, q). Formally, the CE of a gamble is defined as the 

outcome or amount of money Z received with certainty that provides the same utility 

as the prospective utility of the gamble. In the case of a simple gamble: 

 v(Z) = π(p)v(x). (9)  

Compare equation (9) to equation (8) for the PD function: V = x / (1 + γΘ) = π(Θ)x = 

π(p)x since Θ = (1 – p) / p. What this comparison shows is that PD researchers use a 

task to elicit V = v(Z) but when they estimate γ they assume that the utility assigned to 

outcome x, v(x) in (9), can be replaced with the nominal amount x in (8). In effect, 

they assume that the utility of a lottery is linear in outcome x such that v(Z) = π(p)x. A 

large body of empirical research16 suggests that v is typically concave in outcomes. 

To assume that v is linear in x implies that risk preferences in the PD model are 

determined solely by the function π(p) where π(p) = 1 / (1 + γΘ) and Θ = (1 – p) / p.  

 

Thus, apart from the specific functional form for π(p), the PD model is therefore 

exactly the dual theory of choice under risk due to Yaari [1987], the RDEV model, 

 
16 See, for example, Harless and Camerer [1994], Hey and Orme [1994], Holt and Laury [2002], 
Andersen, Harrison, Lau and Rutström [2008] and Harrison and Rutström [2008]. 
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limited to simple prospects. Recall that RDEV incorporates the potential for non-

linear transformations of probabilities while assuming that utility is linear in 

outcomes. This model is more general than the PD approach to risk preferences, 

however, because it admits different PWFs, lotteries with more than two prizes17, and 

lotteries that incorporate both positive and negative prizes. Thus, the RDEV model is 

arguably the preferable theory if one insists on assuming linear utility. 

 

When one recognises that the PD model is just the dual theory of choice under risk 

with a specific functional form for the PWF, the question of interest changes to 

whether this function is useful in applied research. Writing the PWF π(p) in terms of 

probabilities p rather than odds against Θ, this function takes the following form:  

 π(p) = p / [p + γ(1 – p)] (10)  

Figure II plots this PWF for different values of γ. When γ = 1, π(p) is linear. When γ < 

1, π(p) is concave, which represents probability optimism and risk seeking, and when 

γ > 1, π(p) is convex, which represents probability pessimism and risk aversion. This 

function is linear, concave, or convex throughout its range, so it is very similar to the 

power PWF used in some economic contexts: π(p) = pγ. 

 

KT [p. 280-284] argue on the basis of empirical evidence that people tend to 

overweight low probabilities (π(p) > p for small p) and underweight moderate to high 

probabilities (π(p) < p for moderate to high probabilities). This overweighting and 

underweighting yields an “inverse S-shaped” PWF π(∙) with the following properties: 

subcertainty, subproportionality, and subadditivity.18 These properties do not define 

the PT model, but are simply common assumptions within the model. To the extent 

that these assumptions are valid, the PWF of the PD model might be too restrictive 

because it cannot incorporate this inverse S-shape. To test this hypothesis, one can 

 
17 In these cases, the RDEV model applies rank-dependent non-linear transformations of probabilities 
so that first-order stochastic dominance is not violated. 
18 Subcertainty (see KT [p. 281-282]) means that the sum of decision weights, for 0 < p < 1, is less than 
1: π(p) + π(1 – p) < 1. Subproportionality (see KT [p. 282]) means, for a fixed ratio of probabilities, 
that the ratio of the corresponding decision weights is closer to 1 with low probabilities as opposed to 
high probabilities. Finally, subadditivity (see KT [p. 282]) arises if subproportionality holds and low 
probabilities are overweighted. Specifically, if π(p) > p, π(・) is monotone over (0, 1), and 
subproportionality holds, then π(αp) > απ(p), when 0 < α < 1. 
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compare the PWF of the PD model to two functions commonly used in the economics 

literature.19  

 

 
 

Tversky and Kahneman (TK) [1992] popularised the PWF: 

 π(p) = pγ / [pγ + (1 – p)γ]1/γ, (11)  

which is defined for 1 > p > 0. This function permits linear, inverse S-shaped, and S-

shaped forms. Gonzalez and Wu [1999] review some early empirical evidence on this 

function and find that 1 > γ > 0 in the bulk of the studies, most of which, 

unfortunately, used hypothetical rewards.20 This range of γ gives the function21 an 

inverse S-shape with overweighting of low probabilities up to a crossover point where 

 
19 Stott [2006] reviews the “menagerie” of PWFs that have been developed for models that incorporate 
subjective distortions of probabilities.  
20 By contract, Wilcox [2019], using real rewards and three different experiments, finds that probability 
optimism, i.e., overweighting of all interior probabilities, is the most common pattern of probability 
weighting exhibited by his experimental subjects. Three experiments employing different prizes and 
probabilities were used to test the sensitivity of his results to the lottery pairs presented to subjects, and 
evidence of the inverse S-shape was most prominent in his third experiment (see Wilcox [2019, p. 30-
35]). This leads to Wilcox [2019, p. 36] to conclude that, “Asked what the probability weighting 
function looks like, the reply of a worldly experimenter might resemble that of the famously broad-
minded corporate accountant: What do you want it to look like?” 
21 Ingersoll [2008] shows that this function is not monotonic at very small values of γ. However, these 
low values of γ are not empirically relevant. 
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π(p) = p, and then underweighting of moderate to high probabilities, thereby 

supporting the empirical hypothesis of KT. 

 
Prelec [1998] axiomatically derived a flexible two-parameter PWF: 

 π(p) =  exp[ -η(-ln p)γ ], (12)  

which is defined for 1 > p > 0, η > 0, and γ > 0.22 This function admits linear, inverse 

S-shaped, and S-shaped forms when η = 1, and incorporates objective weighting, 

underweighting, or overweighting of all probabilities when γ = 1. Thus, the Prelec 

[1998] function incorporates the qualitative properties of both the PD and TK 

functions for different parameter values. 

 

The data from Richards, Zhang, Mitchell and de Wit (RZMW)23 [1999] will be used 

to test the relevance of the PWF of the PD model in applied research in comparison to 

those provided by TK and Prelec [1998]. 

 

V. AN EMPIRICAL ANALYSIS OF THE PWF OF THE PD MODEL 

 

RZMW recruited 24 subjects to take part in a within-subject experimental study, 

using real as opposed to hypothetical rewards, of the acute effects of moderate doses 

of alcohol on delay and probability discounting; I only discuss the probability 

discounting task here. A titration procedure was used to elicit CEs for simple 

prospects of the form ($10, p; 0, q) where p took on the values: 1, 0.9, 0.75, 0.5, and 

0.25. Participants attended four experimental sessions or treatments (a pre-placebo 

session, a post-placebo session, a pre-ethanol session, and a post-ethanol session) so 

each person provides 20 CEs for analysis. Appendix C of RZMW [p. 140] includes all 

of these elicited CEs, which can be used to determine the empirical validity of the 

PWF of the PD model.24 These data are used because they are readily available, the 

 
22 Prelec [1998, proposition 1, part C, p. 503] provides these parameter restrictions. Prelec [1998, 
proposition 1, part B, p. 503] constrains 1 > γ > 0, but this constraint can be quite restrictive in practice 
because it restricts the PWF to be inverse S-shaped. 
23 According to Google Scholar (22 July 2020), this article has been cited 794 times. 
24 Unfortunately RZMW do not provide the choice data that was used to derive the CEs and one is 
therefore obliged to analyse the CEs rather than the choice data itself. Nevertheless, the statistical 
approach adopted here is the appropriate method for analysing these data. 
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experiment was incentivised, and the experimental methodology of RZMW has been 

replicated numerous times.25 

 

RZMW convert the five probabilities listed above into odds against winning and then 

use non-linear least squares (NLLS) estimation to find the best fitting hyperbolic 

function (8) for the CE data. RZMW [Appendix A, p. 138] estimate the value of γ in 

(8) for each subject in each experimental session. They also average the CEs in the 

pre-placebo and pre-ethanol sessions, and then estimate the value of γ for each subject 

(see RZMW [Table 1, p. 131]). Finally, they use the median CE of the sample for 

each probability to estimate a grand value of γ over all subjects (see RZMW [Figure 

4, p. 132]).26,27 

 

I adopt a different approach to data analysis that uses all of the data, elicited CEs and 

not statistics such as the mean or median of elicited CEs, provided by all of the 

subjects across all of the sessions to estimate the parameters of PWFs at the level of 

the sample. In addition, I formally incorporate the fact that each subject made 

multiple choices in the task and across the sessions by clustering the standard errors 

of the estimates. By using all of the information that the data provide while 

accounting for the lack of independence of observations, I am able to draw valid 

statistical inferences from these data. Note that NLLS and maximum likelihood (ML) 

estimators are consistent as the sample size n tends toward infinity. All of the RZMW 

estimates rely on 5 observations, so it is highly questionable whether any of the 

asymptotic properties of the estimators can be invoked to support the inferences they 

draw. 

 

To compare the PWF of the PD model to those provided by TK and Prelec [1998], 

probabilities rather than odds against are used for estimation. Expressions (8) and (10) 

can be used derive the non-linear equation for estimating γ when odds against has 

been transformed back into probability: 

 
25 For example Mitchell [1999], Reynolds, Karraker, Horn and Richards [2003] and Reynolds, 
Richards, Horn and Karraker [2004] used this approach in incentivised studies, and Ohmura, Takahashi 
and Kitamura [2005] and Sheffer et al. [2013] used this approach in non-incentivised studies. 
26 As noted earlier, using the average and/or the median of elicited CEs discards information on the 
distribution of these data and does not allow one, therefore, to draw valid statistical inferences from 
these data. 
27 I have replicated these results but do not present them here because they are available in RZMW. 
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 Vi/x = (pi / [pi + γ(1 – pi)]) + εi, (13)  

where the subscript i denotes each observation, V is the elicited CE that has been 

normalised by the reward x = $10 for a probability p, and ε is the regression error 

term assumed to be a Normal distribution with mean zero and variance σ2. 

 

To estimate this model in a ML framework one must explicitly identify the log-

likelihood by expanding (13): 

ln Li(γ, σ; y, X) = ln Φ {[Vi/x – (pi / [pi + γ(1 – pi)])] / σi} – ln σi, (14)  

where Φ is the standard Normal density with mean 0 and variance 1, y represents the 

data that are used to estimate γ and σ (i.e., V, x, and p), and X is a vector of individual 

characteristics and task parameters such as age, gender, and experimental treatment. 

 

A ML framework is attractive because it is straightforward to allow for multiple 

responses by the same subject (i.e., clustering), perform non-nested model selection 

tests which rely on comparisons of the log-likelihoods of each observation in each 

model, make the parameter of interest, γ in (14), a linear function of observable 

characteristics, and estimate a mixture model of the different PWFs.28 It is also a 

simple matter to adjust (14) to incorporate the TK and Prelec [1998] PWFs. 

 
VI. RESULTS 

 

Table I presents homogenous preference29 estimates of the PD, TK and Prelec [1998] 

PWFs, which account for multiple responses by the same subject. The estimate of γ = 

1.303 for the PD function implies underweighting of all probabilities, but γ is not 

statistically significantly greater than 1 (p = 0.094) so the function is effectively 

linear. By contrast, the estimate of γ = 0.754 for the TK PWF, which is significantly 

less than 1 (p < 0.001), implies overweighting of low probabilities and 

underweighting of moderate to high probabilities. Similarly, the estimates of η = 

1.039 and γ = 0.793 for the Prelec [1998] PWF, where the former is not significantly 

different to 1 (p = 0.637) but the latter is significantly different to 1 (p < 0.001), also 

 
28 With NLLS it is also straightforward to incorporate clustering and to make the parameter of interest a 
linear function of observable characteristics. Thus, one benefits differentially from using a ML 
approach if one wants to conduct non-nested model selection tests or estimate mixture models. 
29 Homogenous preferences means that the models are estimated at the level of the sample without 
admitting heterogeneity in the coefficient estimates by incorporating observable characteristics such as 
age, gender, etc. 
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yields an inverse S-shaped function. Figure III plots the PWFs for the estimates in 

Table I.30 

 
TABLE I: PROBABILITY WEIGHTING FUNCTION ML ESTIMATES 

HOMOGENOUS PREFERENCES 

 Model 1 Model 2 Model 3 
  PD TK Prelec [1998] 
PWF parameter γ 1.303*** 0.754*** 0.739*** 
 (0.181) (0.053) (0.062) 
PWF parameter η   1.039*** 
   (0.082) 
Sigma (σ) 0.141*** 0.136*** 0.136*** 
  (0.016) (0.014) (0.014) 
N 480 480 480 
log-likelihood 257.853 274.844 278.315 
Results account for clustering at the individual level 
Standard errors in parentheses 
* p<0.05, ** p<0.01, *** p<0.001 

 
The log-likelihoods for the TK and Prelec [1998] functions exceed the log-likelihood 

for the PD function, suggesting that the TK and Prelec [1998] functions better 

characterise the data. This hypothesis can be tested formally using Vuong [1989] and 

Clarke [2007] non-nested model selection tests.31 The Clarke test is more appropriate 

for these data (see Appendix D for more details) and leads to the following transitive 

ranking of PWFs: the Prelec [1998] function finds the most support in the data, 

followed by the TK function, and then the PD function. That the PD function finds the 

least support in the data is not surprising given the presence of inverse S-shaped 

probability weighting: in effect, the PD function is “confused” because it has to be 

linear, concave, or convex throughout its range. 

 

Clarke [2007] tests are based on the implicit assumption that the observations are 

produced by only one data generating process (DGP), e.g., the PD, TK, or Prelec 

[1998] PWFs, when more may be present in the data. In other words, the PD function 

 
30 In Appendix C heterogenous preference models are estimated by making the parameters of interest a 
linear function of observable characteristics and task parameters. 
31 RZMW fit hyperbolic and exponential PD functions to each participant’s elicited CEs, after 
probabilities are transformed into odds against winning. R2 values are saved for each function and for 
each participant, and then used as data to construct tests of whether the hyperbolic or exponential 
functions provide better fits to the risk preference data. Using the point estimate of a statistic such as R2 
as a datum ignores the statistical imprecision of this point estimate and, thus, does not produce a valid 
test of one function’s ability to better explain subject choices. Ignoring this issue, RZMW use 
Wilcoxon matched-pairs signed-rank tests on these estimated R2 values and “find” that the hyperbolic 
PD functions explain the subject’s choices significantly better than the exponential PD functions. These 
statistical procedures are, to be blunt, incoherent. 
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may explain some choices in the data better than the TK function whereas the TK 

function may explain other choices in the data better than the PD function. The 

assumption that only one DGP characterises all of the data clearly precludes such a 

possibility.  

 

 
 

Mixture models32 allow two or more DGPs to account for the data and also provide a 

measure of the proportion of the data that is explained by each process. In the current 

context one can estimate a mixture model of, say, the PD and TK PWFs and then ask 

the data to determine how much support each function has. To do so, one specifies a 

“grand likelihood” function which is just a probability-weighted average of the 

likelihoods of the two models. 

 

Letting πPD represent the probability that the PWF of the PD model is correct, and πTK 

= (1 – πPD) the probability that the TK function is correct, the grand likelihood is the 

probability-weighted average of the two conditional likelihoods LPD and LTK for the 

 
32 For detailed discussions of mixture models see McLachlan and Peel [2000], and for economic 
applications see Harrison and Rutström [2009] and Conte, Hey and Moffatt [2011]. 
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PD and TK models, respectively. Thus, the likelihood for the mixture model is given 

by: 

 ln Li(γPD, γTK, σ, κ; y, X) = Σi ln [(πPD × LPD) + (πTK × LTK)], (15)  

where κ is a parameter that defines the log odds of the probability of the PD model: 

πPD = 1 / (1 + exp(κ)). Note that this transformation allows the parameter κ to take on 

any value during the maximisation process but constrains the probabilities πPD and 

πTK to lie within the unit interval. The grand likelihood in (15) is maximised to 

estimate the parameters of each model and the weight accorded to each model in the 

data. 

 
TABLE II: MIXTURE MODEL ML ESTIMATES 

PD AND TK FUNCTIONS 

 Estimate Std error p-value 95% Confidence interval 
      

PD probability weighting function 
      

PWF parameter (γPD) 4.802* 2.163 0.026 0.563 9.042 
      
Mixture probability (πPD) 0.130 0.089 0.146 -0.045 0.304 
      

TK probability weighting function 
      

PWF parameter (γTK) 0.855*** 0.052 0.000 0.752 0.957 
      
Mixture probability (πTK) 0.870*** 0.089 0.000 0.696 1.045 
      

Sigma 
      

Constant (σ) 0.110*** 0.016 0.000 0.079 0.141 
            
N 480     
log-likelihood 298.681         
      

H0: πTK = 1, p-value = 0.146 
            
Results account for clustering at the individual level    
* p<0.05, ** p<0.01, *** p<0.001     

 

Table II presents estimates of the mixture model of the PD and TK PWFs. The 

estimate of γPD = 4.802 is large and implies extreme underweighting of probabilities, 

but the 95% confidence interval shows that it is estimated very imprecisely. The 

mixture probability πPD = 0.130 implies that approximately 13% of the data are best 

characterised by the PWF of the PD model, but this estimate is not significantly 
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different to zero (p = 0.146).33 The estimate of γTK =  0.855, which is significantly less 

than 1 (p = 0.005) implies overweighting of low probabilities and underweighting of 

moderate to high probabilities. Finally, the estimate of πTK = 0.870 implies that 

approximately 87% of the data are best characterised by the TK PWF, but I cannot 

reject the hypothesis that this estimate is equal to 1 (p = 0.146). Thus, the PWF of the 

PD model finds almost no support in the data, even when it is allowed to account for 

only a fraction of the choices in the experiment. 

 

The preceding results suggest that the PD model is too restrictive when used to 

classify risk preferences in the RZMW data. According to Clarke [2007] tests, the TK 

and Prelec [1998] PWFs find more support in the data than the PD function. A 

mixture model of the PD and TK PWFs confirms this result and shows that there is 

almost no support for the PD model.  

 

VII. DISCUSSION AND CONCLUSIONS 

 

The theoretical justification for the PD model is that choice under risk can be tied to a 

temporal framework by reinterpreting the probability of a reward as the delay to, or 

rate of reinforcement of, that reward. This reformulation of the probability concept is 

based on a behaviourist foundation of learning and conditioned reinforcement that the 

latest research in cognitive science, artificial intelligence, and neuroscience has called 

into question. For example, Daw et al. [2011, p. 1204] argue that, “… it has long been 

known that the reinforcement principle offers at best an incomplete account of learned 

action.” Thus, Daw et al. [2011] discuss two different strategies for encoding value: a 

model-free strategy, which employs a temporal difference learning mechanism 

associated with the midbrain dopamine system and reward prediction errors, that is 

linked to habitual responses; and a model-based strategy, which is more closely 

associated with cortical regions and state prediction errors, that drives goal-directed 

actions. However, the latest research in this literature34 suggests that this theoretical 

 
33 The lower bound of the 95% confidence interval for the mixture probability πPD is less than 0 and the 
upper bound of the 95% confidence interval for the mixture probability πTK is greater than 1, even 
though the log odds transformation constrains these probabilities to lie within the unit interval. These 
values lie outside the unit interval due to the use of the delta method (see Oehlert [1992]), which is an 
approximation, much like a Taylor series, to transform κ into the mixture probabilities. 
34 See Daw et al. [2011], Gershman and Daw [2012], Decker et al. [2016], Fleming and Daw [2017], 
Momennejad et al. [2017], and Russek et al. [2017]. 



 -22- 

dichotomy of two strategies is fast giving way to a more integrated view that, 

according to Clark [2016, p. 254], “combine[s] dense enabling webs of habit with 

sporadic bursts of genuine prospection.” 

 

The upshot is that the brain does appear to encode probability information directly 

under certain circumstances (see the review in Bach and Dolan [2012]) so reducing 

probability to delay to, or rate of reinforcement of, reward can be unnecessarily 

restrictive. Glimcher [2011] argues that this reduction is only justified in some 

contexts and the literature on the description-experience gap in choice under risk (see 

Hertwig et al. [2004] and Hertwig and Erev [2009]) is relevant in this regard.  

 

The description-experience gap refers to the finding that people make different 

choices when presented with lotteries symbolically (i.e., ones that are described in 

terms of probabilities and associated prizes) as opposed to lotteries where subjects 

have to learn the probabilities of the prizes through experience (i.e., by choosing and 

playing out the lotteries repeatedly). In the former case, which is the approach that 

RRC and RZMW used, people sometimes exhibit inverse S-shaped PWFs and thereby 

overweight low probabilities, while in the latter case, which is closest to the thought 

experiment in RLGF, people apparently tend to underweight low probabilities instead.  

 

Glimcher [2011] attributes these divergent results to the ways in which the brain 

represents probability information. In the experiential task, the brain employs a 

temporal difference learning mechanism that encodes probability and prize 

information in a single variable. It therefore embeds probability information but in a 

non-invertible way through reward prediction errors in the midbrain dopamine 

system, the learning rate of which leads to the underweighting of low probabilities. In 

the symbolic task, by contrast, the probability information is encoded directly, and in 

an invertible way, in parts of the prefrontal cortex and ventral striatum, leading to the 

overweighting of low probabilities. 

 

To the extent that the argument of Glimcher [2011] is valid35 it seems misguided to 

reinterpret probability as delay to, or rate of reinforcement of, reward, particularly in 

 
35 See the review in Clark [2016] that provides further evidence to support it. 
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experiments that represent lotteries symbolically. Given these theoretical issues with 

the PD model, should it still be used in applied research? 

 

The PD model is formally isomorphic to the dual theory of choice under risk due to 

Yaari [1987], but limited to a certain class of lotteries and with a specific functional 

form for the PWF, implying that it is an unnecessarily restrictive theory for use in 

empirical work. In addition, there are separate issues with the ways in which PD data 

are typically elicited and analysed. With regard to elicitation, experimental procedures 

used in this literature have the unfortunate feature that they will always over-estimate 

or under-estimate a subject’s true CE, unless it lies exactly halfway between two of 

the certain values used in the task. In addition, the data derived from these procedures 

(i.e., midpoints of an interval) are inherently noisy and this has to be, but seldom is, 

taken into account when drawing inferences from these data. Thus, statistically, 

researchers need to be cognisant of the DGP and build this into their framework for 

analysis. 

 

This is the approach adopted in re-analyses of the RZMW data: all of the data 

provided by all the subjects are used to estimate ML models at the level of the sample, 

while clustering the standard errors of the estimates to incorporate the fact that 

participants made multiple choices in the task. This allows one to conduct formal 

Clarke [2007] tests of the ability of the different PWFs to characterise the RZMW 

data. The PWF of the PD model found the least support in the data because it could 

not account for the simultaneous overweighting and underweighting of probabilities 

which is a feature of these data. Furthermore, in a complementary mixture model 

analysis, the PWF of the PD model found virtually no support, even when it was 

allowed to account only for a portion of the data. 

 

The preceding discussion suggests that the PD model inadequately characterises 

choice under risk. It is based on a theoretical reformulation of the probability concept 

that is outdated and suffers from a host of methodological and statistical limitations. If 

one insists on assuming linear utility then the model of Yaari [1987], which admits 

different PWFs, lotteries with more than two prizes, and lotteries that incorporate both 

positive and negative prizes, is clearly the preferable theory. But researchers 

interested in choice under risk would arguably be better served by adopting incentive-
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compatible elicitation tasks; theories that incorporate multiple pathways to explain the 

risk premium, not just probability weighting; and statistical tools that respect the DGP 

and incorporate the possibility of multiple DGPs.  
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APPENDIX A 
[ONLINE WORKING PAPER] 

 

RLGF [p. 35] explain that a behavioural model of choice is one where an animal’s behaviour 

in a specific environment is described by two sets of rules. The first consists of reinforcement 

schedules that are independent of the animal’s behaviour while the second describes an 

animal’s behaviour as a function of exposure to environmental stimuli. The following 

behavioural model of choice has been used to explain a large proportion of animal choice 

data: 

 B1/B2 = (A1/A2)a(R1/R2)r(D2/D1)d, (1)  

where B1 and B2 are rates of responding on two levers, buttons etc., during a particular time 

interval, A1 and A2 are the respective reinforcement amounts that are delivered over that 

interval, R1 and R2 are the respective rates of reinforcement over that interval, D1 and D2 are 

the respective delays to the rewards, and a, r and d represent an animal’s sensitivity to 

amount, rate and delay, respectively. 

 

This function occupies a venerable space in the experimental literature on animals’ choice 

behaviour between different schedules of reinforcement. It is a generalised version of 

Herrnstein’s (1961) matching law and it has been used to explain the commonly found 

tendency of animals to sharply discount delayed rewards (see RLGF [p. 36]).1  

 

Although this function was derived to provide an account of animals’ delay discounting 

behaviour, RLGF employ it to explain how people value probabilistic rewards. As discussed 

in the main text, the crucial step in this reformulation is to interpret the probability associated 

with a reward as the delay to, or the rate of reinforcement of, this reward.  

 

In experiments where people choose between lotteries, the two effects of probability (i.e., on 

the rate of reinforcement of a reward and the delay to a reward) are confounded. Following 

RLGF [p. 39], to see how this affects the generalised matching law equation (1), let R1 = 1/D1 

 
1 Kagel, Battalio and Green [1995] critique the matching law and its implications for the commodity-choice 
behaviour [p. 51-71], labour-supply behaviour [p. 110-128], and time discounting [p. 178-180] of animals, 
predominantly rats and pigeons, under experimental conditions. They argue in favour of an economic account of 
animal choice behaviour that relies on maximising, i.e., the comparison of marginal rates of return, rather than 
matching, i.e., the comparison of average rates of return. 
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and R2 = 1/D2 so that rate and delay are perfectly confounded. This yields the following 

equation: 

 B1/B2 = (A1/A2)a(D2/D1)r+d (2)  

Using (5) in the main text and assuming that c1 = c2 = c and t1 = t2 = t, (2) becomes: 

 B1/B2 = (A1/A2)a([p1(t(1 – p2) + c)] / [p2(t(1 - p1) + c)])r+d (3)  

Expression (3) represents the matching law for probabilistic rewards when the rate of 

reinforcement of a reward is perfectly confounded with the delay to that reward. 

 

RLGF derive this expression to provide a behavioural account of choice among gambles: 

preference for lottery 1 over lottery 2, as measured by rate of responding (B1/B2) over a time 

interval, is a function of the rewards in these lotteries (A1 and A2), the probabilities associated 

with these rewards (p1 and p2), the reward delivery period c, the ITI length t, and the 

sensitivity exponents a, r, and d. RLGF use (3) and set p2 = 1, t = 1, c = 0.2, and A1 = A2, in 

an attempt to replicate KT’s assertion that people overweight low probabilities and 

underweight moderate to high probabilities. Under these assumptions, (3) becomes: 

 B1/B2 = [(0.2p1) / (1.2 - p1)]r+d (4)  

 

Plotting B1/B2 as a function of p1/p2 (where p2 = 1) for different values of r + d, yields Figure 

A:I. In the figure, sR = r and sD = d according to the notation that I have used. RLGF [p. 39] 

argue that when r + d = 0.5, the plotted function is their model’s counterpart to the inverse S-

shaped PWF of KT which is based on the overweighting of low probabilities and the 

underweighting of moderate to high probabilities.2 Note that a PWF relates stated 

probabilities (i.e., p1 and p2) to subjective decision weights: π(p1) and π(p2). Figure A:I, by 

contrast, plots relative rate of responding (B1/B2) as a function of relative probabilities (p1/p2). 

While the shape of the curve in Figure A:I when r + d = 0.5 resembles an inverse S-shaped 

PWF, it does not relate probabilities to decision weights and hence it is inaccurate for RLGF 

to claim that they have translated KT’s model into a behavioural model of choice.  

 

Furthermore, Figure A:I was plotted on the assumptions that A1 = A2 and p2 = 1. In other 

words, the rewards under both lotteries are the same but reward A2 is received with certainty 

 
2 As stated previously under expression (1) in the main text, π(0) = 0 and π(1) = 1, which, when coupled with 
the properties of subadditivity, subcertainty, and subproportionality, means the KT PWF has jump 
discontinuities at p = 0 and p = 1. KT [p. 282-283] suggest that these discontinuities may capture the distinction 
between certainty and uncertainty and conclude that their function is not well-behaved near the end points of the 
probability interval [0, 1]. Figure A:I does not incorporate these jump discontinuities. 
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under lottery 2. Over almost its entire range, Figure A:I has p1 < 1 but the figure suggests that 

lottery 1 will still be chosen some of the time (i.e., B1/B2 ≠ 0). This means that a lottery which 

pays, say, $100 with a probability less than one and $0 otherwise will be chosen over a 

degenerate lottery which pays $100 for sure. While KT [p. 284] recognise that their model 

can lead to violations of stochastic dominance, and subsequently developed cumulative 

prospect theory to account for this, they argued that such violations were unlikely because 

dominated prospects would be removed during the initial editing phase. Clearly this is not the 

case in the model of RLGF because Figure A:I implies that the stochastically dominated 

lottery will be chosen at least some of the time. 

 

 Figure A:I  

 

 

 

 Source: RLGF [p. 40, Figure 4].  

 

 

A testable implication of (3) is whether a longer ITI t will affect choice among probabilistic 

rewards. RLGF conducted an experiment to test this hypothesis, one which was replicated by 

Silberberg, Murray, Christensen and Asano (SMCA) [1988]. Both studies used hypothetical 

rewards so their results should be treated with caution. In the experiment, subjects chose 

between two spinners, each of which rotated over a circle made up of 18 pie-shaped wedges 

(see Figure A:II). The wedges were black on one side and white on the other. If the spinner 

landed on a white wedge, the subject was told that she had won, if it landed on a black 
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the left one saying $100, the right one saying $250. The initial
expected value of the sure thing was thus $ 100 X l7/is, or $94.44.
The initial expected value of the risky gamble was $250 X '/is,
or $97.22.2 The experimenter read the following instructions to
each subject:

The purpose of this experiment is to see how you subjectively judge various
imaginary gambles. A gamble takes place when I spin one of the spinners
in front of you. Your job is to choose which of the two spinners you
prefer. If the pointer of the spinner lands on white, you win. On your
left the hypothetical amount would be $100. On your right the hypo-
thetical amount would be $250. If the pointer lands on black you win
nothing. After each gamble I may change the odds by turning over one
or more chips from black to white or white to black. Please do not try
to calculate odds or plan ahead. Just judge the gamble that most appeals
to you in each individual case. You must make your choice within five
seconds after I ask you to.

Then, the subject was asked to choose a spinner (which all
subjects did immediately), and the chosen spinner was spun by
the experimenter. The choice and spin together took about 5 s.
If the pointer landed on white, the experimenter said, "you won."
If on black, the experimenter said, "you lost." This constituted
a trial. Each subject was given 10 trials. (Subjects were not told
how many trials there would be.) After each trial the experimenter
removed the apparatus (to her lap) and turned over a chip on
the risky side. If the subject had chosen the sure-thing side on
the previous trial, a black chip was turned over to white on the
risky side for the next trial (making that side less risky, hence
more attractive, we presumed). If the subject had chosen the
risky side on the previous trial, a white chip was turned over to
black for the next trial (making that side more risky, hence less
attractive, we presumed). This is, technically, a titration proce-
dure. Over trials, it adjusts the risky gamble's odds so that, at

1.0

.2 .4 .6 .8 1.0

Figure 5. The experimental apparatus.

equilibrium, the subject is indifferent between it and the sure
thing.

For all 30 subjects, the first trial was the same. After that, for
one group of 15 subjects, the experiment was conducted as
quickly as possible, consistent with accurate recording and subject
readiness. For these subjects the sessions (not counting instruc-
tions) lasted about 5 min (30 s per trial). For the other 15 subjects,
the experimenter kept the spinners on her lap, out of view of the
subject, until 1.5 min had elapsed since the start of the previous
trial. Then the spinners were presented and the subject made her
choice. (Several subjects in this group spontaneously complained
about the delay.) For these subjects, sessions lasted about 20 min.

The two groups were treated identically except for the time
between trials. If, as the cognitive theory implies, each probability
is independently converted to a decision weight, then (unless
some supplementary mechanism is invoked) one might expect
this difference in treatment to have no effect on performance.
If, on the other hand, a stated (in this case, visually perceived)
probability represents a delay of reward, then the actual expe-
rienced delay should supplant whatever stereotypical delay the
subjects' reinforcement history might have supplied and the two
groups should behave differently. Specifically, if risk aversion with
gains is, as we suspect, a form of impulsiveness (a lack of self-
control), then the subjects with the longer delay (the greater values
of / in Equation 2) should avoid the risky choice more.

To see this prediction roughly in terms of Equations 2 and 3,
suppose AI = 100; Pi is about equal to 1.0; A2 = 250; ct = c2 =
5 s; f i = /j = t, as in the present experiment; and for simplicity,
SA = SK + SD - ' -0. The experimental procedure assures Bt =
82 at equilibrium. Substituting in Equations 2 and 3, pz = (t +
5) -r (t + 12.5). If t were zero, p2 at equilibrium (after the 10
trials) would equal 0.4. As t increases, PI approaches 1.0 (which
in the above experiment would represent complete avoidance of
the risky choice). Thus, the higher t (the intertrial interval) is,
the greater p2 should be at equilibrium. (In our experiment, a
high PI corresponds to more white chips for the risky gamble.)
In other words, the greater the intertrial interval (ITI), the more

Figure 4. Preference (B|/52) for uncertainty (p\ < I ) relative to certainty
(Pi = 1) for various sensitivities (SK + SD) to rate and delay.

2 These values were selected so as to make it difficult to calculate ex-
pected values. Subjects interviewed after the experiment said that they
had not performed such calculations. Furthermore, subjects did not ap-
pear to learn the rule by which probability was varied; they thought that
probability changes depended on whether they won or lost rather than
on which gamble they chose.
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wedge, the subject was told that she had lost. One spinner, referred to as the “sure thing,” had 

17 white wedges and 1 black wedge whereas the other spinner, referred to as the “risky 

gamble,” had 7 white wedges and 11 black wedges. The hypothetical payoff for the sure 

thing was $100 and the hypothetical payoff for the risky gamble was $250. 

 

 Figure A:II  

 

 

 

 Source: RLGF [p. 40, Figure 4].  

 

The number of white wedges on the sure thing spinner remained constant throughout the 

experiment. However, the number of white wedges on the risky gamble spinner was adjusted 

depending on the subject’s previous choice: a choice of the sure thing resulted in one more 

white wedge on the risky gamble (i.e., an increase in the odds of winning on the risky 

gamble) whereas a choice of the risky gamble led to one less white wedge on the risky 

gamble (i.e., a decrease in the odds of winning on that spinner). This titration procedure3 was 

used so that, at equilibrium, the subject would be indifferent between the sure thing and the 

risky gamble (i.e., B1 and B2 in (3) would be equal at equilibrium). Subjects made 10 choices 

in total in the experiment.4 

 

To see the effect of a longer ITI on choice between the two gambles, note that A1 = 100, A2 = 

250, p1 is approximately equal to 15, c1 = c2 = 5s, t1 = t2 = t and, for simplicity, a = r + d = 1. 

 
3 Titration procedures are susceptible to being “gamed” by subjects and do not, therefore, promote truthful 
revelation of preferences, i.e., they lack incentive compatibility. For example, subjects may disproportionately 
choose the sure thing spinner on the first few trials so as to increase the odds of winning on the risky gamble in 
the final trials of the experiment. This point is moot for studies involving hypothetical rewards as these lack 
incentive compatibility to begin with, but should be taken into account for studies with titration procedures and 
real rewards. 
4 Whether 10 choices are enough to reach equilibrium is an open question and one which is not taken up by 
RLGF. 
5 KT [p. 265] argue that people respond differently to certain outcomes as opposed to near-certain outcomes. 
RLGF ignore this point by assuming that when p = 17/18 this is the same as p = 1. In other words, they treat an 
inherently risky prospect as one involving no risk. 
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the left one saying $100, the right one saying $250. The initial
expected value of the sure thing was thus $ 100 X l7/is, or $94.44.
The initial expected value of the risky gamble was $250 X '/is,
or $97.22.2 The experimenter read the following instructions to
each subject:
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in front of you. Your job is to choose which of the two spinners you
prefer. If the pointer of the spinner lands on white, you win. On your
left the hypothetical amount would be $100. On your right the hypo-
thetical amount would be $250. If the pointer lands on black you win
nothing. After each gamble I may change the odds by turning over one
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equilibrium, the subject is indifferent between it and the sure
thing.

For all 30 subjects, the first trial was the same. After that, for
one group of 15 subjects, the experiment was conducted as
quickly as possible, consistent with accurate recording and subject
readiness. For these subjects the sessions (not counting instruc-
tions) lasted about 5 min (30 s per trial). For the other 15 subjects,
the experimenter kept the spinners on her lap, out of view of the
subject, until 1.5 min had elapsed since the start of the previous
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choice. (Several subjects in this group spontaneously complained
about the delay.) For these subjects, sessions lasted about 20 min.
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is independently converted to a decision weight, then (unless
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To see this prediction roughly in terms of Equations 2 and 3,
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5 s; f i = /j = t, as in the present experiment; and for simplicity,
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trials) would equal 0.4. As t increases, PI approaches 1.0 (which
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had not performed such calculations. Furthermore, subjects did not ap-
pear to learn the rule by which probability was varied; they thought that
probability changes depended on whether they won or lost rather than
on which gamble they chose.
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Substituting these values into (3), remembering that at equilibrium B1 = B2, and solving for 

p2:  

 p2 = (t + 5) / (t + 12.5) (5)  

When the ITI t = 0, p2 = 0.4. In other words, a person choosing between the spinners would 

be indifferent between the sure thing and the risky gamble when the probability of receiving 

$250 under the risky gamble is 0.4. However, as t increases so p2 ® 1. Thus, with a long ITI, 

a subject is only indifferent between the sure thing and the risky gamble when the likelihood 

of receiving $250 under the risky gamble is approximately 1. This is precisely the implication 

that RLGF and SMCA set out to test.6 

 

RLGF found evidence in support of this hypothesis in a between-subject experimental design 

involving 30 subjects, where one group’s (n1 = 15) ITI was 30s and the other group’s (n2 = 

15) ITI was 90s.7 Specifically, the group with the longer ITI selected the sure thing spinner 

more often, which means that the odds of winning on the risky gamble was higher, than the 

group with the shorter ITI. This comparison used the number of risky gamble choices of each 

subject over the course of the experiment as the data on which to conduct a t-test. Subjects in 

the 30s ITI group selected the risky gamble an average of 5.87 times, whereas the subjects in 

the 90s ITI group selected the risky gamble an average of 3.93 times, over the course of the 

experiment; this difference was statistically significant, t = 4.65, df = 28, p < 0.01. 

 

SMCA replicated RLGF’s experiment, albeit with three procedural differences: SMCA used 

a computer, rather than an experimenter, to present and record subjects’ choices; SMCA 

added an additional experimental treatment: some of the subjects began the experiment with a 

choice trial while others8 started the experiment with an ITI; and one group had an ITI of 25s 

as compared to the RLGF study where the comparable group had an ITI of 30s.  

 

 
6 This implication is at odds with the literature on the matching law applied to choice among delayed rewards. 
This literature, cited previously, suggests that as the delay to all rewards increases, the likelihood of selecting 
the larger, more delayed reward, rather than the smaller, more immediate reward, increases. If people 
understand probability as delay then a low probability is equivalent to a long delay. So as the ITI increases (i.e., 
as the delay to both rewards increases), subjects should be more likely to select the larger, more uncertain 
reward (viz., the larger, more delayed reward). This works against the hypothesis that RLGF sought to test. 
7 With different ITIs, temporal discounting behaviour could drive the results in the experiment. RLGF implicitly 
assume that their subjects did not discount delayed rewards. 
8 Unfortunately SMCA do not provide the exact number of subjects in each experimental treatment. 
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SMCA recruited 101 subjects to take part in the experiment. They compared the number of 

white wedges on the risky gamble spinner in the final round of the experiment across the 

groups (choice trial vs. ITI × 25s vs. 90s), using a Kruskal-Wallis test, and found a significant 

between-group difference: H(3) = 15.8, p < 0.05. Using pairwise post hoc contrasts, they 

found no statistically significant differences9 between subjects who began the experiment 

with a choice trial and subjects who began the experiment with an ITI. However, subjects in 

the short ITI group, regardless of whether they started the experiment with a choice trial or 

ITI, selected the risky gamble spinner significantly more often than subjects in the long ITI 

group. Thus, SMCA replicated the result of RLGF. 

 

In a follow-up experiment, SMCA decided to test the robustness of this result by telling 

subjects how many choices (i.e., 10) they would make in the experiment; this information 

was not provided in SMCA’s original experiment nor the experiment of RLGF. Using a 

sample of 20 students, SMCA found that there was no significant difference in the number of 

risky gamble choices between the group with the short ITI and the group with the long ITI, 

although they did not provide test statistics or p-values for their comparisons.10 

 

Finally, SMCA conducted another experiment with 40 students where, in addition to the 

different ITIs, they told one group of subjects that they had been endowed with $10 of 

hypothetical money and the other group was told that they had been endowed with $10,000 

of hypothetical money. This information was given to subjects at the start of the experiment 

and they were also told that the experiment consisted of 10 choice trials. They found 

differences between the group endowed with $10 and the group endowed with $10,000 but 

no differences between the short ITI and the long ITI groups. In sum, SMCA replicated the 

result in RLGF but found that the ITI effect disappeared as soon as subjects were told how 

many choices they would have to make in the experiment. Thus, the results reported by 

RLGF appear to be very sensitive to the information provided to subjects.  

 

Ignoring the sensitivity of these results for the moment, what does the RLGF model imply 

when these different ITIs are used? Using (5), when t = 30s, p2 ≈ 0.82 ≈ 15/18 white wedges 

on the risky gamble. When t = 90s, p2 ≈ 0.84 ≈ 15/18 white wedges on the risky gamble. So, 

 
9 SMCA do not report the test statistics nor p-values for the pairwise post hoc contrasts. 
10 SMCA dropped the treatment where one group of subjects started the experiment with a choice trial while the 
other group started with an ITI. 
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for these parameters, the RLGF model implies very little difference in the choice behaviour 

of the two groups.11 RLGF [p. 41] found that, at the end of the experiment, the group with the 

longer ITI had an average of 9 white wedges on the risky gamble whereas the group with the 

shorter ITI had an average of 6 white wedges on the risky gamble. Thus, the model of RLGF 

not only predicts very little difference between the groups it also vastly overestimates the 

number of white wedges on the risky gamble spinner. 

 
Finally, note what the RLGF model implies for the relationship between risk aversion and the 

length of the ITI. A person is risk averse if she prefers the certain outcome x to a gamble with 

an expected value of x. From (5) it is clear that as the ITI increases, p2 increases, which 

means that as the ITI increases, risk aversion increases too. Pushing this logic to its natural 

conclusion, a long enough ITI would generate an aversion to risk that would make a small, 

certain reward preferable to a far larger, near-certain reward. While this may apply to some 

agents in some circumstances, empirical evidence supporting the general validity of this 

prediction is not provided by RLGF. 
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APPENDIX B 
[ONLINE WORKING PAPER] 

 

RCC (1987): Probability and Delay in Commitment 

 

RCC conducted an experiment with real rewards to bolster RLGF’s claim that probabilistic 

choice can be tied to a temporal framework. The experiment was based on Rachlin and Green 

[1972] who studied the behaviour of pigeons in a delay-commitment paradigm. The major 

difference with this experiment, other than that RCC used human subjects, was that delays 

were replaced with probabilities: long delays with low probabilities and short delays with 

high probabilities. 

 

To understand the RCC experiment, it helps to discuss the original experiment of Rachlin and 

Green [1972]. Figure B:Ia shows the experimental design of Rachlin and Green [1972] 

whereas Figure B:Ib shows the experimental design of the RCC study. Rachlin and Green 

[1972] gave pigeons a choice, at point B, between the path leading to point A or the path 

leading to point C; pigeons pecked at illuminated keys to make this choice. If pigeons chose 

the path leading to point A, they made a subsequent choice between a smaller, sooner (SS) 

reward (a = 2s, d = 0s) and a larger, later (LL) reward (a = 4s, d = 4s).12 Thus, choice of the 

path leading to point A gave pigeons flexibility in their choice in the second stage. If pigeons 

chose the path leading to point C, there was no subsequent choice and the pigeons 

automatically received the LL reward (a = 4s, d = 4s). Thus, choice of the path leading to 

point C committed pigeons to the LL reward. 

 

Rachlin and Green [1972] manipulated the delay t to points A and C from a choice at B to 

determine whether this delay affected choice behaviour at point B. They found that when t 

was short (t < 4s), pigeons at point B predominantly chose the path leading to point A and 

then subsequently chose the SS reward (a = 2s, d = 0s) over the LL reward (a = 4s, d = 4s) on 

almost every trial (i.e., more than 90% of the time). By contrast, when t was relatively long (t 

> 4s), pigeons at point B predominantly chose the path leading to point C where only the LL 

reward was available (a = 4s, d = 4s). This is a delay-commitment paradigm because it tests 

whether commitment (i.e., choice of the path leading to point C over the path leading to point 

 
12 Note that the reward a is measured in seconds because this is the amount of time that pigeons were given 
access to food. 
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A) increases as the delay to all rewards increases. Rachlin and Green [1972] found that 

longer delays lead to a preference for commitment. 

 
 B:I  

 

 

 

 Source: RCC [Figure 1, p. 348].  

 

As mentioned previously, RCC replaced delays with probabilities, and pigeons with humans. 

Their experiment played out across two stages. In the first stage, subjects had to choose 

whether to allocate a blue chip (probability q = 3/18 of advancing to stage 2) or red chip 

(probability q = 15/18 of advancing to stage 2) to one of two cards: X or Y. Card X 

corresponds to point A and card Y corresponds to point C in Figure B:Ib. After allocating a 

red or blue chip to card X or Y, a spinner, programmed with the relevant probability (i.e., q = 

3/18 for the blue chip or q = 15/18 for the red chip), was used to determine whether the 

subject proceeded to stage 2.  

 

If a subject allocated her chip to card X and was successful, she moved on to stage 2 (point 

A) where she had to choose whether to play a low reward, high probability gamble (i.e., $1 

reward with probability 17/18) or a high reward, low probability gamble (i.e., $4 reward with 

probability 5/18). Thus, if the subject allocated a chip to card X and was successful, she had 

flexibility in her choice at stage 2. If, by contrast, she placed her chip on card Y during stage 

38HOWARD RACHLIN et al.
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EXPERIMENTER
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Fig. 2. Arrangement of cards and spinner. The num-
bers in parentheses correspond to numbers on the sections
of the 18-section spinner.

subject and the spinner were five cards ar-
ranged as in Figure 2, a lower rank of two
cards, X and Y, and an upper rank of dollar

S5 4/18 11 cards. The cards were labeled as in the figure.
The numbers in parentheses on the cards refer
to the numbers on the spinner.

Fig. 1. Part (a) shows a paradigm of the choice struc-
ture for a delay-commitment paradigm (Rachlin & Green,
1972), Part (b) shows the analogous paradigm for the
present experiment with human subjects choosing among
monetary rewards of various probabilities.

q were a high probability (corresponding to a
short delay) the subjects, at B, would prefer
the path leading to A, thence to choose the
small, highly probable, reward. However, if q
were a low probability (corresponding to a
long delay) the subjects, at B, would prefer the
path leading to C over that leading to A and,
like the pigeons, commit themselves to the
larger reward.

METHOD
Subjects

Eleven Stony Brook undergraduates, 9 wo-
men and 2 men, volunteered as subjects. The
experiment was run individually for each sub-
ject.
Apparatus
The subject stood in front of a spinner with

18 white sectors labeled 1 through 18. The
spinner provided a way to unpredictably select
one of the 18 numbers. The experimenter sat
across the table from the subject. Between the

Procedure
At the beginning of the experiment each

subject was given 20 poker chips, 10 red and
10 blue, and the experimenter read the in-
structions (included below). Each choice was
indicated by putting a chip on a card. In the
first stage the subject could put a red or a blue
chip on Card X or Card Y. Then the exper-
imenter spun the spinner. If the spinner did
not land within the range of numbers on the
card that corresponded to the color of the chip
played, the experimenter took the chip and a
new trial began immediately with another chip.
If the spinner did land within the winning
range, the trial proceeded to the next stage. If,
in the first stage, the subject had chosen X and
won, the subject could choose either the $1 or
the $4 bet by moving the chip from Card X
to either of the dollar cards above it. If in the
first stage, the subject had chosen Y and won,
the chip could be moved from Card Y to the
$5 card above it. Then the experimenter spun
the spinner again. After a win on one of the
dollar cards, the experimenter took the red or
blue chip and gave the subject a number of
white chips equal to the dollar amount won.
After a loss, the experimenter simply took the
chip. Thus each trial consisted of one or two
spins corresponding to the first and second

C

348
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1 and was successful, she then played a high reward, low probability gamble (i.e., $5 reward 

with probability 4/18) in stage 2 (point C). Thus, by allocating a chip to card Y, the subject 

was committed to the high reward, low probability gamble in stage 2, if it was reached. As 

mentioned previously, the rewards used in this study were real, rather than hypothetical, and 

subjects were paid their winnings at the end of the experiment.  

 

At the start of the experiment each subject was given 10 blue chips and 10 red chips which 

they could allocate, in any order, to card X or Y across 20 trials. This differs from the design 

in Rachlin and Green (1972) because pigeons could not choose the delays themselves; the 

pigeons were exposed to the different delay treatments. RCC provide a strange justification 

for this difference: 

 

“This method of having the subjects themselves select trial order was chosen because 

pilot experiments of ours as well as published accounts of human laboratory analogs 

to animal experiments … indicate that corresponding results are more likely when 

people’s tasks are made more complicated and varied than corresponding animal 

tasks. For similar reasons, the two larger rewards ($5 and $4) were not identical 

(although their expected values were identical).” (see RCC [p. 349]). 

 

RCC argue that their experiment is the probabilistic choice analogue of the experiment in 

Rachlin and Green [1972]. Rather than manipulate the delay t to points A and C from B, RCC 

manipulated the probability q of reaching points A and C from B. Choice of the path leading 

to point A (i.e., allocating a token to card X) gives a subject flexibility in her choice in the 

second stage of the experiment, if it is reached. By contrast, choice of the path leading to 

point C (i.e., allocating a token to card Y) commits the subject to a high reward, low 

probability gamble in the second stage of the experiment, if it is reached. By varying q, RCC 

could test whether a low continuation probability, which RCC argue is analogous to a long 

delay, is associated with more commitment choices than a high continuation probability. 

 

RCC found that at point A (i.e., after allocating a token to card X and successfully proceeding 

to stage 2), 28% of choices were for the high reward, low probability gamble, as represented 

by the bar on the far left of Figure B:II. Note that this fraction of choices was significantly 

less (t = 3.28, df = 10, one-tailed test) than 50%. In other words, if point A was reached, there 

was a preference for the low reward, high probability gamble. Note that this result does not 
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line up perfectly with Rachlin and Green [1972], who found an almost exclusive preference 

for the smaller, sooner reward at point A. 

 

 Figure B:II  

 

 

 

 Source: RCC [Figure 3, p. 351].  

 

In stage 1, approximately 18% of the high continuation probability chips (i.e., red chips 

where q = 15/18) and 53% of the low continuation probability chips (i.e., blue chips where q 

= 3/18) were placed on card Y, as represented by the bars on the right of Figure B:II.13 Note 

that the allocation of red chips to card Y was significantly less than the allocation of blue 

chips to card Y (t = 5.42, df = 10, two-tailed test). RCC interpret the preceding set of results 

as evidence that a preference for the low reward, high probability gamble changed to 

indifference when the continuation probability q fell from 15/18 to 3/18.  

 

The conclusion which RCC reached relies on a strange and dubious comparison: the 

allocation, approximately 53%, of low continuation probability blue chips to card Y during 

stage 1, as shown by the bar on the far right of Figure B:II, and the choice of the $4 low 

probability gamble during stage 2 of card X (approximately 28%), as shown by the bar on the 

far left of Figure B:II. In other words, the comparison is between the choice of gambles after 

the resolution of stage 1 uncertainty, and the initial stage 1 choice between cards prior to the 

resolution of uncertainty.  

 

 
13 RCC do not provide standard deviations for these estimates but these are represented by the whiskers in 
Figure B:II. 

COMIMITMENT

that the low-amount reinforcer was almost im-
mediately available to pigeons, but not certainly
available to our human subjects (p = 17/18).
Occasionally, subjects did not win the $1 when
they chose this alternative.
The matching law (Herrnstein, 1961) easily

explains the shift in an organism's choices (Bl /
B2) when, as in the Rachlin and Green (1972)
experiment, a constant delay (t) is added to
two alternatives differing in amount (a1 and
a2) and delay (d1 and d2):

B la1 (t+d2)
B2 a2 (t + dl)

100-

I
0
Ux a

z 50-
I.

(1)

If the ratio of the amounts is less than the ratio
of the delays, and t is small, the Equation 1
predicts that animals will prefer the alternative
with the shorter delay. As t grows, however,
the addition of a constant to both d1 and d2
brings the delay term of the matching equation
closer to unity although the amount term is
unchanged. Thus, regardless of how small the
difference of amount originally was, at some
point, as t increases, that difference will come
to predominate, no matter how large the dif-
ference of delay originally was. As t increases,
an animal that originally chose the alternative
with the smaller delay ("impulsiveness") will
come to choose the alternative with the larger
amount ("self-control"). The matching law
thus predicts that, with the commitment par-
adigm of Figure la, as t increases, an animal
at B will come to choose C, commitment.

Although the matching law easily accounts
for the results of the Rachlin-Green experi-
ment in which time was varied, when prob-
abilities are substituted for delays the matching
law no longer accounts for the change in pref-
erence:

B1
=

a, (q x pi) (2)
B2 a2 (q x P2)

The difference between Equation 1 and Equa-
tion 2 is that whereas delays must be added to
calculate overall delay, probabilities must be
multiplied to calculate overall (conditional)
probability. Thus, in Equation 2, the value of
q is irrelevant-the q's cancel out-and the
matching law cannot account for the shift in
choice with different values of q. (This is just
a restatement of the "independence axiom" of
decision theory. The fact that q does affect

0

Choice at
A of
Large

Reward

Choice at
B of

Commitment

q-15/l8 q-3/18

Fig. 3. Percentage of choices of larger reward at A
and of commitment to larger reward at B for q = 15/18
and q = 3/18 (see Figure 1). The brackets indicate one
standard deviation.

choice is one of the several violations of that
axiom found in studies of choice; see Machina,
1987.) Because the concepts of matching and
utility maximization both necessitate conform-
ity to the matching law (Rachlin, Green, Ka-
gel, & Battalio, 1976) and reflect our most
fundamental conceptions of choice (Rachlin,
1971), the fact that Equation 2 does not ex-
plain the results of the current experiment is
a matter of concern.

However, if we assume that delay, not prob-
ability, is the effective independent variable in
humans' rule-governed choice as well as in
animals' contingency-governed choice, then the
present results are easily explainable by
matching. If delay were the effective indepen-
dent variable, then, where probabilities are
concatenated, it would be proper to convert
probabilities to delays and add the delays rather
than multiply the probabilities.

In a series of trials with constant probability
outcomes, the relationship between the arith-
metic-mean-delay-to-outcome and probabil-
ity-of-outcome is (from Rachlin et al., 1986):

i + cd = _~l
p

where i is the interval between trials, c is trial
duration, and p is the probability of the out-
come. When p = 1.0 (certainty) the delay is

351

(3)
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A more appropriate comparison would be with the allocation of red and blue chips to cards X 

and Y in stage 1. Subjects allocated significantly more red chips than blue chips to card X (t 

= 5.42, df = 10, two-tailed test). This means that subjects had a preference for flexibility in 

stage 2, rather than commitment in stage 2, when using the high continuation probability red 

chips.14 This does not imply the converse though: that subjects had a preference for 

commitment over flexibility when using low continuation probability blue chips. Subjects 

were practically and statistically indifferent between flexibility and commitment when 

allocating blue chips. RCC [p. 350] simply state that the 53% allocation of blue chips to card 

Y is not significantly different to 50% without providing test statistics, although this can be 

seen to be true by looking at the whiskers of the box on the far right of Figure B:II. 

 

Thus, RCC replicated the Rachlin and  Green [1972] result of a preference for flexibility at 

short delays (viz., high probabilities), but failed to replicate the result of a preference for 

commitment at long delays (viz., low probabilities). While the fraction of commitment 

choices was greater with low probabilities than with high probabilities, this fraction was not 

significantly different to 0.5. Thus, it is not valid for RCC [p. 350] to claim that, “these 

results parallel those obtained with pigeons choosing among rewards of various amounts and 

delays.”  

 

A major experimental design issue of the RCC study was the sequential allocation of tokens: 

subjects had to allocate a token, observe the result of the ensuing gamble, and then allocate 

another token, until all of their red and blue tokens were finished. Consequently, each 

person’s idiosyncratic payoff history may have influenced her subsequent choices. In other 

words, this design is not immune to order or wealth effects across trials.15 This is a point 

which RCC [p. 350] acknowledge, but their approach to the problem is not satisfactory.  

 

RCC focussed on the last four trials of the experiment to see whether choices during these 

trials were markedly different to the choices made in previous trials. At the level of the 

sample as a whole, there was an equal number of red and blue tokens left for allocation over 

 
14 Recall that allocating a chip to card X gives one freedom of choice (viz., flexibility) in stage 2, if it is reached. 
By contrast, allocating a chip to card Y commits one to playing the high reward, low probability gamble in stage 
2, if it is reached. 
15 A cleaner experimental design would be to ask subjects to allocate their red and blue tokens across the cards 
and across the gambles at stage 2 at the outset of the experiment, as if they were constructing a portfolio of risky 
assets, and then play out all of the gambles. 
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the last four trials. Thus, the last four trials, at least in terms of the proportion of red and blue 

tokens in the sample, were comparable to the trials at the start of the experiment. RCC found 

that the allocation of tokens to cards X and Y was very similar in the last four trials as in the 

experiment as a whole.16 In addition, they found that choices in stage 2 of card X (i.e., 

between the high reward, low probability gamble and the low reward, high probability 

gamble) were very similar in the last four trials as in the experiment as a whole.  

 

While these results suggest that order and wealth effects were unlikely to be driving RCC’s 

findings, one should heed the warning of Harrison [2007] that appropriate statistical 

techniques need to be used to draw inferences from experimental data when there is the 

potential for correlation of responses at the level of the individual and over time. RCC ignore 

these possibilities by treating the K choices of each subject as independent and by not taking 

into account the time path of choices in the experiment. 

 

In addition to the issues outlined above, only 11 subjects took part in the experiment so there 

was minimal power for the statistical tests that were conducted. Furthermore, RCC 

specifically asked their subjects not to make any mathematical calculations even though they 

were presented with options that had real financial consequences. Thus, the experiment of 

RCC does little to support their contention that probability is best interpreted as delay. 

 

ADDITIONAL REFERENCES 

 

HARRISON, G. W. (2007): “House Money Effects in Public Good Experiments: Comment,” 
Experimental Economics, 10, 429-437. 

 
16 RCC compared the last four trials to the full twenty trials. Ideally they should have compared the last four 
trials to the first sixteen trials of the experiment. 
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APPENDIX C 
[ONLINE WORKING PAPER] 

 

As mentioned in the main text, it is straightforward to make the parameter(s) of interest in our 

models a linear function of observable characteristics and thereby admit heterogeneity in the 

PWF estimates. RZMW collected each participant’s gender and Appendix C (see RZMW [p. 

140]) groups the elicited certainty equivalents by experimental session and divides 

participants by whether they received a low or high dose of ethanol. Table C:I presents 

estimates of the three models that incorporate these variables. 

 
TABLE C:I: PROBABILITY WEIGHTING FUNCTION ML ESTIMATES 

HETEROGENOUS PREFERENCES 

 Model 1 Model 2 Model 3 
  PD TK Prelec 
PWF parameter (γ)    
Male 0.035 -0.011 0.007 
 (0.341) (0.096) (0.130) 
Ethanol - high dose 0.45 -0.08 0.023 
 (0.378) (0.107) (0.130) 
Post-placebo session -0.006 -0.002 -0.002 
 (0.048) (0.018) (0.027) 
Pre-ethanol session 0.223** -0.045 0.005 
 (0.108) (0.031) (0.045) 
Post-ethanol session 0.062 0.005 0.044 
 (0.099) (0.036) (0.042) 
Constant 1.003*** 0.811*** 0.715*** 
  (0.184) (0.073) (0.118) 
PWF parameter (η)    
Male   0.027 
   (0.172) 
Ethanol - high dose   0.215 
   (0.172) 
Post-placebo session   0.001 
   (0.021) 
Pre-ethanol session   0.111** 
   (0.045) 
Post-ethanol session   0.056 
   (0.052) 
Constant   0.880*** 
      (0.116) 
Sigma (σ)    
Constant 0.138*** 0.135*** 0.132*** 
  (0.016) (0.014) (0.014) 
N 480 480 480 
log-likelihood 269.434 278.331 289.727 
Results account for clustering at the individual level 
Standard errors in parentheses 
* p<0.10, ** p<0.05, *** p<0.01 
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Gender and ethanol dose are not statistically significant in any of the models and none of the 

experimental treatment variables are statistically significant in the TK model. However, the 

estimate of γ in the PD model is significantly higher in the pre-ethanol session than in the 

pre-placebo session (the omitted base category). Wald tests show that the estimate in the pre-

ethanol session is also significantly greater than the estimates in the post-placebo (p = 0.038) 

and the post-ethanol (p = 0.034) sessions. This result is contrary to the hypothesis that 

ethanol increases probabilistic discounting, which the researchers set out to test, and differs to 

RZMW who found no statistically significant difference between the estimates of γ in the 

pre-ethanol and post-ethanol sessions.17 Note that RZMW used estimates of γ as data to 

conduct t-tests of potential differences across the pre- and post-ethanol sessions. The valid 

approach to analysis that I have adopted uses all of the information that a dataset imparts to 

estimate the parameters of a model and conduct hypothesis tests on these estimates. These 

differences in analysis likely explain the contradictory findings. 

 

The estimates of γ for the Prelec PWF do not differ significantly according to observable 

characteristics and task parameters but the estimate of η in the pre-ethanol session is 

significantly higher than in the pre-placebo session (the omitted base category). In addition, 

Wald tests show that the estimate of η in the pre-ethanol session is significantly higher than 

estimates in the post-placebo (p = 0.017) and post-ethanol (p < 0.038) sessions. These results 

mirror those for γ in the PD model. 

  

 
17 RZMW did not compare the estimate of γ in the pre-ethanol session to the estimates of γ in the pre-placebo 
and post-placebo sessions. 
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APPENDIX D 
[ONLINE WORKING PAPER] 

 

As discussed in the main text, the log-likelihoods for the TK and Prelec (1998) functions 

exceed the log-likelihood for the PD function, suggesting that the TK and Prelec (1998) 

functions better characterise the data. This hypothesis can be tested formally using Vuong 

[1989] and Clarke [2007] non-nested model selection tests. The Clarke test is asymptotically 

more efficient and has greater power in discriminating between models than the Vuong test 

when the distribution of the models’ individual log-ratios is highly peaked. Thus, when the 

distribution of these log-ratios is leptokurtic18, the Clarke test is superior, from both statistical 

efficiency and power perspectives, to the Vuong test. 

 

 
 

Figure D:I plots the distribution of the individual log-ratios, with a normal density overlay, for 

the three PWF comparisons. The distribution of these log-ratios is leptokurtic (i.e., highly 

peaked) which suggests that the Clarke test is more appropriate for these data. The Clarke test 

yields a test statistic based on the binomial distribution which must be compared to a critical 

value to determine which model, in a pairwise comparison, receives the most support in the 

 
18 The normal distribution is the quintessential mesokurtic distribution. A distribution which has positive excess 
kurtosis (i.e., a highly peaked distribution) is leptokurtic.  
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Figure D:I: Distribution of Individual Log-ratios
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data. A Clarke test comparing the PD and TK functions yields a test statistic of 197, which is 

below the critical value of 240, implying that the TK function better characterises the data (p 

< 0.001).  

 

A Clarke test comparing the PD PWF and the Prelec (1998) PWF finds in favour of the Prelec 

(1998) function (p < 0.001). Finally, a Clarke test of the TK and Prelec (1998) PWFs suggests 

that the Prelec (1998) function finds more support in the data (p < 0.001). Based on these tests 

the following transitive ranking of PWFs emerges: the Prelec (1998) function finds the most 

support in the data, followed by the TK function, and then the PD function. 
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