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 The probability weighting function of the rank-dependent  family of choice theories is 

widely believed to follow an “inverse-s” shape on the unit square—rising steeply at first 

but concave enough so that it crosses the 45 degree line from above (usually around a third 

or so though some report estimates near a half) and thereafter becoming convex and 

accelerating upward to the unit point (e.g. Tversky and Kahneman 1992, Prelec 1998). This 

belief is so widely and strongly held that many contemporary empirical scholars impose 

this shape a priori on their estimates of the weighting function (e.g. Nilsson et al. 2011, 

Scheibehenne and Pachur 2015). Occasionally contrary evidence appears in the empirical 

literature (e.g. Harrison and Swarthout, this volume), but the vast majority of researchers 

strongly believe the inverse-s shape holds with a fixed point well inside the interior of the 

(0,1) interval.  

 This inverse-s shape explains the well-known Allais phenomena, but so does a strictly 

concave “optimist” shape (Quiggin 1993). Moreover, there has long been an alternative 

explanation for the same phenomena based on similarity judgments, frequently associated 

with Rubinstein (1988) and Leland (1994) but harking back to well-known work by 

Tversky (1969). Some widely accepted aspects of the probability weighting function might 

be due to similarity-induced flattening of apparent probability weighting. If so, we might 

expect to estimate markedly different weighting functions when we confine decision 

makers’ choices to option pairs less likely to bring similarity judgments into play. I explore 

this and find support for it. 

 I perform three new risky choice experiments in which the chance device is a single 

roll of either a six-sided, four-sided or twelve-sided die. In the first two experiments this 

confines outcome probabilities to a relatively coarse grid (sixths in the first experiment, 

fourths in the second), so that option pairs rarely present subjects with easy opportunities 

to exploit similarity-based procedures that ignore small probability differences and bypass 

a full judgment that weights utilities of outcomes by probability weights. The twelve-sided 

die used for the third experiment helps to clinch this interpretation of the results. I usually 

find that the plurality type of decision maker is an optimist—a person whose probability 

weighting function exceeds all true probabilities of the high outcome used in the 

experiment (in the second experiment, using the four-sided die, they are an outright 

majority). This is not the received shape of the probability weighting function.  
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 Note that the data from these three experiments are wholly discrete choices from pairs 

of risky options. In particular, no valuation tasks or certainty equivalent elicitations are 

used here. Most evidence for the inverse-s shape and its associated fourfold pattern of risk 

aversion comes from elicited certainty equivalents (e.g. Tversky and Kahneman 1992; 

Gonzales and Wu 1999; Abdellaoui 2000; Abdellaoui, Bleichrodt and Paraschiv 2007; 

Bruhin, Fehr-Duda and Epper 2010), and Wilcox (2017) puts the interpretation of all such 

evidence in doubt. Moreover, the estimates of probability weights I report here are wholly 

free of functional form assumptions concerning both outcome utilities and probability 

weights, using an approach like that of Hey et al. (2010) and Blavatskyy (2013). As 

mentioned earlier, many studies based on discrete choice from pairs of options impose the 

inverse-s shape of the weighting function a priori. When we remove studies based on 

certainty equivalents and do not consider studies that impose it a priori, there is 

remarkably little consistent evidence for the inverse-s shape that does not also support the 

optimist shape.  

 My estimates do depend on assumptions about the probabilistic nature of discrete 

choice under risk. To guard against the possibility that the results crucially depend on 

those assumptions, I perform the estimations with three recent but different models of 

probabilistic choice under risk, all of which have been shown to perform better than older 

models. The results are, for the most part, insensitive to the choice of one of these models 

or another. Optimistic decision weights appear to be the norm in my experiments that are 

relatively free of similarity-based opportunities for choice simplification. 

 

1. Preliminaries 

 In general, the notation (𝑞𝑙, 𝑞𝑚, 𝑞ℎ) denotes an option’s probability distribution on a 

vector 〈𝑙, 𝑚, ℎ〉 of three outcomes which I call the context of a choice pair. In the first 

experiment, each choice pair is a set {𝑟𝑖𝑠𝑘𝑦, 𝑠𝑎𝑓𝑒} ≡ {(1 − 𝑞ℎ, 0, 𝑞ℎ), (0,1,0)} of two options 

on a context 〈𝑙, 𝑚, ℎ〉. The option 𝑠𝑎𝑓𝑒 = (0,1,0) pays 𝑚 dollars with certainty, while the 

option 𝑟𝑖𝑠𝑘𝑦 = (1 − 𝑞ℎ, 0, 𝑞ℎ) pays ℎ dollars with probability 𝑞ℎ and 𝑙 dollars with 

probability 1 − 𝑞ℎ, where ℎ > 𝑚 > 𝑙 ≥ US$40.  Subjects choose between 𝑟𝑖𝑠𝑘𝑦 and 𝑠𝑎𝑓𝑒 in 

each pair presented to them.  
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 The instructions to subjects in Appendix III show a pair where {𝑟𝑖𝑠𝑘𝑦, 𝑠𝑎𝑓𝑒} is 

{(5/6,0,1/6), (0,1,0)} on the context 〈40,50,90〉. Table 1 shows the 100 choice pairs used in 

the first experiment, organized into groups of four pairs (the rows of the table) by their 

shared context. All 𝑟𝑖𝑠𝑘𝑦 lotteries are chances 𝑞ℎ and 1 − 𝑞ℎ (in sixths, generated by a six-

sided die) of receiving high and low outcomes ℎ and 𝑙 on the context, respectively: Four 

values of 𝑞ℎ, shown on each row in Table 1 (𝑞ℎ
𝑎, 𝑞ℎ

𝑏, 𝑞ℎ
𝑐  and 𝑞ℎ

𝑑) create four 𝑟𝑖𝑠𝑘𝑦 lotteries on 

each context, and each of these is paired with 𝑠𝑎𝑓𝑒 (the middle outcome 𝑚 of the context, 

paid with certainty) to create four pairs on the context. There are twenty-five contexts built 

from the nine positive money outcomes $40, $50,…,$120. 

 

Table 1: The 100 option pairs of the first experiment. 

 

contexts 
〈𝑙, 𝑚, ℎ〉 

four pairs 
 contexts 

〈𝑙, 𝑚, ℎ〉 
four pairs 

 

𝑞ℎ
𝑎

 𝑞ℎ
𝑏

 𝑞ℎ
𝑐

 𝑞ℎ
𝑑

   𝑞ℎ
𝑎

 𝑞ℎ
𝑏

 𝑞ℎ
𝑐

 𝑞ℎ
𝑑

 

1 〈40,50,60〉 5/6 4/6 3/6 2/6  15 〈70,80,100〉 5/6 4/6 3/6 2/6 
2 〈40,50,70〉 5/6 4/6 3/6 2/6  16 〈70,80,110〉 4/6 3/6 2/6 1/6 
3 〈40,50,80〉 4/6 3/6 2/6 1/6  17 〈70,80,120〉 4/6 3/6 2/6 1/6 
4 〈40,50,90〉 4/6 3/6 2/6 1/6  18 〈70,90,110〉 5/6 4/6 3/6 2/6 
5 〈40,60,100〉 4/6 3/6 2/6 1/6  19 〈80,90,100〉 5/6 4/6 3/6 2/6 
6 〈40,60,110〉 4/6 3/6 2/6 1/6  20 〈80,90,110〉 5/6 4/6 3/6 2/6 
7 〈40,60,120〉 4/6 3/6 2/6 1/6  21 〈80,90,120〉 4/6 3/6 2/6 1/6 
8 〈50,60,90〉 4/6 3/6 2/6 1/6  22 〈80,100,120〉 5/6 4/6 3/6 2/6 
9 〈50,70,100〉 5/6 4/6 3/6 2/6  23 〈90,100,110〉 5/6 4/6 3/6 2/6 

10 〈50,70,110〉 4/6 3/6 2/6 1/6  24 〈90,100,120〉 5/6 4/6 3/6 2/6 
11 〈50,70,120〉 4/6 3/6 2/6 1/6  25 〈100,110,120〉 5/6 4/6 3/6 2/6 
12 〈60,70,90〉 5/6 4/6 3/6 2/6  
13 〈60,80,110〉 5/6 4/6 3/6 2/6  
14 〈60,80,120〉 4/6 3/6 2/6 1/6        

 

 The subjects in the first experiment were 80 undergraduates at the University of 

Houston, recruited widely by means of a single e-mail to all undergraduates. Each subject 

was individually scheduled for three separate sessions on three separate days of their own 

choosing, almost always finishing all three sessions within a week. Only rarely did any 

day’s session last more than an hour, and most sessions were substantially shorter than 

this. On each day, each subject made choices from the 100 choice pairs shown in Table 1, so 
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that each made 300 choices in all by the end of their third day. On each day, for each 

subject, the 100 choice pairs were randomly ordered into two halves of 50 pairs each, 

separated by about ten to fifteen minutes of other tasks (a survey and tests of arithmetic 

and problem-solving ability). A computer presented each choice pair, one pair at a time on 

each screen: Call this separated decisions or SED. 

 To conclude each subject’s third day, one of their 300 chosen options was selected at 

random (by means of the subject drawing a ticket from a bag of 300 numbered tickets) to 

determine the subject’s payment: Call this random problem selection or RPS. If the 

subject’s selected option was 𝑟𝑖𝑠𝑘𝑦, the subject picked a six-sided die from a box of six-

sided dice (rolling them until satisfied if they wished), and that die was then rolled by the 

attendant to determine the payment. A detailed explanation of this protocol, as well as 

instructions to subjects, appears in Appendix III. 

 Quiggin (1982) originally developed rank-dependent utility or RDU; later, Quiggin’s 

rank-dependent probability weighting function became a part of cumulative prospect 

theory or CPT (Tversky and Kahneman 1992). Under RDU (or CPT for pure gain options), 

the value of an option (𝑞𝑙, 𝑞𝑚, 𝑞ℎ) is  

 

(1)  𝑅𝐷𝑈(𝑞𝑙, 𝑞𝑚, 𝑞ℎ) =  𝑤(𝑞ℎ)𝑢(ℎ) + [𝑤(1 − 𝑞𝑙) − 𝑤(𝑞ℎ)]𝑢(𝑚) +      

      [1 − 𝑤(1 − 𝑞𝑙)]𝑢(𝑙), 

 

where 𝑢(𝑧) is the utility of outcome 𝑧 and 𝑤(𝑞) is the probability weighting function at 𝑞. In 

the first experiment, the RDU value difference between 𝑟𝑖𝑠𝑘𝑦 and 𝑠𝑎𝑓𝑒 is simply  

 

(2)  ∆𝑅𝐷𝑈 = 𝑅𝐷𝑈(𝑟𝑖𝑠𝑘𝑦) − 𝑅𝐷𝑈(𝑠𝑎𝑓𝑒) = 𝑤(𝑞ℎ)𝑢(ℎ)  +  [1 − 𝑤(𝑞ℎ)]𝑢(𝑙) − 𝑢(𝑚). 

 

I wish to estimate the utilities 𝑢(𝑧) and weights 𝑤(𝑞ℎ) of RDU (or CPT for pure gains) with 

no assumptions concerning their functional form, and using only binary choice data. To do 

this, I need assumptions about the nature of probabilistic discrete choice from option pairs.  
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2. The probabilistic choice models 

 Beginning with Mosteller and Nogee (1951), many experiments on discrete choice 

under risk suggest that these choices have a strong probabilistic component. Repeated 

trials of choice from pairs of risky options reveal high rates of choice switching by the same 

subject between trials of the same pair. In some cases, the repeated trials span days (e.g. 

Tversky 1969; Hey and Orme 1994; Hey 2001) and decision-relevant conditions might 

have changed between trials. Yet switching occurs even between trials separated by bare 

minutes, with no intervening change in wealth, background risk, or any other obviously 

decision-relevant variable (Camerer 1989; Starmer and Sugden 1989; Ballinger and Wilcox 

1997; Loomes and Sugden 1998).  

 To construct observation likelihoods, assumptions about the probabilistic nature of 

these choices are needed. I use three different probabilistic choice models of the form 

  

(3)  𝑃 ≡ 𝑃𝑟𝑜𝑏(𝑟𝑖𝑠𝑘𝑦 𝑐ℎ𝑜𝑠𝑒𝑛 𝑓𝑟𝑜𝑚 {𝑟𝑖𝑠𝑘𝑦, 𝑠𝑎𝑓𝑒}) =  𝐹 (𝜆
∆𝑅𝐷𝑈

𝐷(𝑟𝑖𝑠𝑘𝑦,𝑠𝑎𝑓𝑒)
), 

 

where 𝜆 is a scale (or inverse standard deviation) parameter, 𝐷(𝑟𝑖𝑠𝑘𝑦, 𝑠𝑎𝑓𝑒) adjusts the 

scale parameter, and 𝐹: 𝑋 → [0,1] is an increasing function with 𝐹(0) = 0.5 and 𝐹(𝑥)  =

 1 − 𝐹(−𝑥), where 𝑋 ⊆ ℝ. The probabilistic models are my own “contextual utility” or CU 

model (Wilcox 2011), the “decision field theory” or DFT model of Busemeyer and 

Townsend (1992, 1993) and the “stronger utility” or SU model of Blavatskyy (2014). 

Respectively, these models are:  

 

(4)  𝑃𝑐𝑢 = 𝑃𝑟𝑜𝑏(𝑟𝑖𝑠𝑘𝑦) = 𝐹 (𝜆
Δ𝑅𝐷𝑈

𝑢(ℎ)−𝑢(𝑙)
), contextual utility;  

(5)  𝑃𝑑𝑓𝑡 = 𝑃𝑟𝑜𝑏(𝑟𝑖𝑠𝑘𝑦) = 𝐹 (𝜆
Δ𝑅𝐷𝑈

[𝑢(ℎ)−𝑢(𝑙)]√𝑤(𝑞ℎ)[1−𝑤(𝑞ℎ)]
), decision field theory; and 

(6)  𝑃𝑠𝑢 = 𝑃𝑟𝑜𝑏(𝑟𝑖𝑠𝑘𝑦) = 𝐻𝜆 (
Δ𝑅𝐷𝑈

𝑤(𝑞ℎ)[𝑢(ℎ)−𝑢(𝑚)]+[1−𝑤(𝑞ℎ)][𝑢(𝑚)−𝑢(𝑙)]
), stronger utility. 

 

 In the contextual utility and decision field theory models, 𝑋 = ℝ, while in stronger 

utility 𝑋 = (−1,1). However, by way of a suitable choice of 𝐻𝜆, the stronger utility model 

can be rewritten in a form with 𝐹: ℝ → [0,1] as well (see Appendix I): 
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(7)   𝑃𝑠𝑢 = 𝑃𝑟𝑜𝑏(𝑟𝑖𝑠𝑘𝑦) = 𝐹 [𝜆 ln (
𝑤(𝑞ℎ)[𝑢(ℎ)−𝑢(𝑚)]

[1−𝑤(𝑞ℎ)][𝑢(𝑚)−𝑢(𝑙)]
)]. 

 

This means that all three of these probabilistic models may be estimated using a common 

choice for the function 𝐹. Busemeyer and Townsend (1993) give theoretical reasons for 

choosing the logistic c.d.f. Λ(𝑥) = [1 + exp(−𝑥)]−1 for use with decision field theory (see 

Appendix I) so I use it as the function 𝐹 in all estimations for all three models. 

 Until recently (e.g. Anderson et al. 2008), most applied econometric estimations would 

have been done with the simple homoscedastic latent variable model 𝑃ℎ = 𝑃𝑟𝑜𝑏(𝑟𝑖𝑠𝑘𝑦) =

𝐹(𝜆Δ𝑅𝐷𝑈): I call this the homoscedastic model. For many reasons, much professional 

opinion has turned against the homoscedastic model for discrete choice under risk. Long 

ago Luce (1959) remarked that the ratio scale nature of probabilistic models satisfying the 

Choice Axiom (for instance the homoscedastic binary logit) is deeply inconsistent with 

interval scale theories (such as EU and RDU). Since then Loomes and Sugden (1995) noted 

that the homoscedastic model does not respect stochastic dominance. Still more damaging, 

Blavatskyy (2011), Wilcox (2011), and Apesteguia and Ballester 2018) all show that this 

model cannot coherently represent comparative risk aversion across agents in different 

choice contexts. The laboratory evidence against the homoscedastic model, for choice 

under risk, is now extensive (Busemeyer and Townsend 1993; Loomes and Sugden 1998; 

Rieskamp 2008; Wilcox 2008, 2011, 2015; Butler, Isoni and Loomes 2012; Blavatskyy 

2014). Previous applied econometric users of the simple homoscedastic model have put it 

aside in favor of the newer models (e.g. Anderson et al. 2013). Appendix I presents more 

information on contextual utility, decision field theory and stronger utility. 

 There are other ways to introduce probabilistic choice into models of decision under 

risk. One of these is random preferences (Loomes and Sugden 1995; Gul and Pesendorfer 

2006): This approach treats vectors of outcome utilities and/or probability weights as 

random draws from a fixed distribution of these vectors. Random preference models also 

exhibit context dependence (Wilcox 2011, p. 101). There is, however, a difficult problem 

with considering a random preference RDU specification for the experimental data 

considered here: It is not possible to generalize an RDU random preference specification 
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across more than three outcome contexts without changing estimation techniques in 

fundamental ways (Wilcox 2008 pp. 252-256; Wilcox 2011 pp.101-102). The first 

experiment has 25 distinct outcome contexts while the second and third experiments have 

10 each. Therefore, I do not consider random preferences here. 

 

3. Estimation  

 To discuss the estimation, it is helpful to define indices for pairs, trials (days) and 

subjects, as well as some important sets of indices: 

𝑖 =  1,2, … 𝐼, indexing 𝐼 distinct pairs. Here 𝐼 =  100. 

Pairs 𝑖 are {𝑟𝑖𝑠𝑘𝑦𝑖, 𝑠𝑎𝑓𝑒𝑖} ≡ {(1 − 𝑞ℎ𝑖, 0, 𝑞ℎ𝑖), (0,1,0)} on context 〈𝑙𝑖, 𝑚𝑖, ℎ𝑖〉. 

t = 1,2,…𝜏𝑖, indexing 𝜏𝑖 distinct trials of each pair 𝑖. Here 𝜏𝑖 = 3 (three days).  

s = 1,2,…S, indexing the 𝑆 distinct subjects. Here 𝑆 =  80. 

𝑖𝑡: A double subscript indicating the 𝑡th trial of pair 𝑖. 

𝑟𝑖𝑡
𝑠 = 1 if subject 𝑠 chose 𝑟𝑖𝑠𝑘𝑦𝑖 in her 𝑡th trial of pair 𝑖, and zero otherwise. 

𝐫𝑠  = the observed choice vector of subject 𝑠 over all pairs and trials 𝑖𝑡.   

 

 Let 𝑢𝑠(𝑧)  and 𝑤𝑠(𝑞) denote utilities of outcomes 𝑧 and weights associated with 

probabilities 𝑞, respectively, of subject 𝑠. The first experiment involves nine distinct 

outcomes 𝑧 ∈ {$40, $50, … , $120} across its 100 choice pairs, but because of the affine 

transformation invariance property of RDU and EU utilities, we can choose 𝑢𝑠(40) = 0 and 

𝑢𝑠(120) = 1 for all subjects 𝑠. With this done, the unique estimable utility vector 𝐮𝑠 of the 

seven remaining outcomes is 𝐮𝑠 = 〈𝑢𝑠(50), 𝑢𝑠(60), … , 𝑢𝑠(110)〉. Function-free estimations 

make each of those seven utilities a separate parameter to be estimated.  

 The first experiment involves five distinct probabilities 𝑞ℎ  ∈ {
1

6
,

2

6
, … ,

5

6
}, so there is a 

vector 𝐰𝑠 = 〈𝑤𝑠 (
1

6
) , 𝑤𝑠 (

2

6
) , … , 𝑤𝑠 (

5

6
)〉 of five weights to estimate for each subject. 

Function-free estimations make each of those five weights a separate parameter to be 

estimated. To summarize, the function-free latent index of the RDU representation, for 

subject 𝑠 and pair 𝑖, is 

 

(8)  ∆𝑅𝐷𝑈𝑖(𝐮𝑠, 𝐰𝑠)  = 𝑤𝑠(𝑞ℎ𝑖)𝑢𝑠(ℎ𝑖)  +  [1 − 𝑤𝑠(𝑞ℎ𝑖)]𝑢𝑠(𝑙𝑖) − 𝑢𝑠(𝑚𝑖), where 
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𝐰𝑠 = 〈𝑤𝑠 (
1

6
) , 𝑤𝑠 (

2

6
) , … , 𝑤𝑠 (

5

6
)〉, and 

𝐮𝑠 = 〈𝑢𝑠(50), 𝑢𝑠(60), … , 𝑢𝑠(110)〉, with 𝑢𝑠(40) = 0 and 𝑢𝑠(120) = 1  s. 

 

Combine eq. 8 with eqs. 4, 5 and 7, let 𝛉𝑠 ≡ (𝐮𝑠, 𝐰𝑠 , 𝜆𝑠) and choose the logistic c.d.f. as F(x), 

and we have the following choice probability specifications: 

 

(9)   𝑃𝑖
𝑟𝑑𝑐𝑢(𝛉𝑠) = Λ [𝜆𝑠 Δ𝑅𝐷𝑈𝑖(𝐮𝑠,𝐰𝑠)

𝑢𝑠(ℎ𝑖)−𝑢𝑠(𝑙𝑖)
]; 

(10)  𝑃𝑖
𝑟𝑑𝑑𝑓𝑡

(𝛉𝑠) = Λ [𝜆𝑠 Δ𝑅𝐷𝑈𝑖(𝐮𝑠,𝐰𝑠)

[𝑢𝑠(ℎ𝑖)−𝑢𝑠(𝑙𝑖)]√𝑤𝑠(𝑞ℎ𝑖)[1−𝑤𝑠(𝑞ℎ𝑖)]
]; and  

(11)  𝑃𝑖
𝑟𝑑𝑠𝑢(𝛉𝑠) = Λ [𝜆𝑠ln (

𝑤𝑠(𝑞ℎ𝑖)[𝑢𝑠(ℎ𝑖)−𝑢𝑠(𝑚𝑖)]

[1−𝑤𝑠(𝑞ℎ𝑖)][𝑢𝑠(𝑚𝑖)−𝑢𝑠(𝑙𝑖)]
)]. 

 

Equations 9-11 give the probability of events 𝑟𝑖𝑡
𝑠 = 1 (subject 𝑠 chose 𝑟𝑖𝑠𝑘𝑦 in the 𝑡th trial 

of pair 𝑖). Letting 𝑃𝑖
𝑠𝑝𝑒𝑐(𝛉𝑠) denote any of those probabilities, the log likelihood of 𝐫𝑠 is 

 

(12)  ℒ 𝑠𝑝𝑒𝑐(𝐫𝑠|𝛉𝑠) = ∑ 𝑟𝑖𝑡
𝑠 ln[𝑃𝑖

𝑠𝑝𝑒𝑐(𝛉𝑠)] + (1 − 𝑟𝑖𝑡
𝑠 )ln [1 − 𝑃𝑖

𝑠𝑝𝑒𝑐(𝛉𝑠)]𝑖𝑡 . 

 

I estimate 𝛉𝑠 by a penalized maximum likelihood procedure, for each subject s; Appendix II 

contains details of this estimation. 

 

4. Some Monte Carlo results 

 The 100 choice pairs in Table 1 were in part chosen through Monte Carlo simulations 

exploring estimation performance with alternative sets of choice pairs. To gain confidence 

in the estimations reported here—and to understand their limitations—it helps to see 

some Monte Carlo results. Consider a data generating process or DGP based on one of the 

choice probability models in equations 9-11, combined with well-known parametric 

estimates of utility and weighting functions. For the utility function, I use the CRRA utility 

of money given by 𝑢𝑠(𝑧|𝜌𝑠) = 𝑧1−𝜌𝑠
/(1 − 𝜌𝑠), normalized1 so that 𝑢𝑠(40) = 0 and 

𝑢𝑠(120) = 1, and begin with the parameter value 𝜌𝑠 = 0.12 (very mild concavity of utility) 

 
1 This normalized version of  CRRA utility is simply 𝑢𝑠(𝑧|𝜌𝑠) =  (𝑧1−𝜌𝑠

− 401−𝜌𝑠
)/(1201−𝜌𝑠

− 401−𝜌𝑠
). 
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reported by Tversky and Kahneman (1992). For the weighting function, I use Prelec’s 

(1998) two-parameter function, given by 𝑤𝑠(𝑞|𝛽𝑠, 𝛾𝑠) = exp (−𝛽𝑠[−ln (𝑞)]𝛾𝑠
)  q  (0,1), 

w(0) = 0 and w(1) = 1, and begin with parameter values 𝛽𝑠 = 1 and 𝛾𝑠 = 0.65 which, 

according to Prelec, match earlier estimations of weights using other weighting functions. 

Express the parameters of this first DGP as (𝜌, 𝛾, 𝛽) = (0.12,0.65,1): These parameters are 

cumulative prospect theory as first conceived a quarter century ago, and I call this 

“Prospector I” for short. I take a more recent parametric version of cumulative prospect 

theory from Bruhin, Fehr-Duda and Epper (2010), using a second DGP (𝜌, 𝛾, 𝛽) =

(0.043,0.45,0.8). I call this “Prospector II” for short: It closely resembles Bruhin, Fehr-Duda 

and Epper’s most common subject type (that they estimated with a finite mixture model 

using all of their data). 

 For contrast, and anticipating later results, I examine two other DGPs. One of these 

DGPs is (𝜌, 𝛾, 𝛽) = (3,1.5,0.4): I call this DGP “Optimist” since its weighting function is such 

that 𝑤𝑠(𝑞) > 𝑞 for all 𝑞 in the first experiment: The decision maker overweights 

probabilities of highest outcomes. By itself such probability weighting would imply risk-

seeking, but this DGP also has a highly concave utility function which, by itself, would imply 

risk aversion. The last DGP for Monte Carlo study is (𝜌, 𝛾, 𝛽) = (1.5,3,2): The implied 

weighting function in this case is s-shaped—opposite of the inverse s-shape of received 

Cumulative Prospect Theory. This weighting function may represent a decision maker who 

sometimes rounds low probabilities to zero and high probabilities to unity, so I call this 

DGP “Rounder.”  

 Figures 1, 2, 3 and 4 show results of function-free estimations of utilities (the left 

panels) and weights (the right panels) for 80 simulated subjects, using the contextual 

utility specification of eq. 9 for the estimation. These simulated subjects all have true (DGP) 

choice probabilities given by the contextual utility model in eq. 9 with 𝜆𝑠 = 12. In Figure 1, 

the 80 simulated subjects have the “Prospector I” DGP; in Figure 2 they have the 

“Prospector II” DGP; in Figure 3 they have the “Optimist” DGP; and in Figure 4 they have 

the “Rounder” DGP. On all panels, the true (DGP) utility functions or weighting functions 

appear as a bold black curve, while the 80 functions estimated using the function-free 

method appear as thinner curves of varying greys.  
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 Figures 1, 2, 3 and 4 show that the function-free estimates cluster around the DGP 

curve with little in the way of strong biases, except occasionally near the endpoints of the 

functions where true utilities and/or weights are close to zero or one (this is expected for 

maximum likelihood estimates  of parameters lying near a boundary of an allowed 

parameter space). The variability of the estimated curves (not small) is due both to the 

inherent variability of (simulated) observed choices that is consequent to probabilistic  

choice in the DGP, and to the burden of the function-free estimation.2 Yet comparison of 

these four figures shows that collected function-free estimations track different DGPs: The 

collective impression made by the “cloud” of individual estimates matches different 

amounts of utility concavity and different weighting function shapes quite well. 

 Tables 2-A, 2-B and 2-C show distributions of five estimated weighting function shapes 

for 1000 simulated subjects, using each of the four DGPs: 

 

(1)  prospector—  there is a 𝑞∗ ∈ (
1

6
,

5

6
) such that 𝑤̂𝑠(𝑞) ≷ 𝑞 as 𝑞 ≶ 𝑞∗; 

(2)  pessimist—  𝑤̂𝑠(𝑞) < 𝑞 for all 𝑞; 

(3)  optimist—  𝑤̂𝑠(𝑞) > 𝑞 for all 𝑞; 

(4)  rounder—   there is a 𝑞∗ ∈ (
1

6
,

5

6
) such that 𝑤̂𝑠(𝑞) ≶ 𝑞 as 𝑞 ≶ 𝑞∗; and 

(5)  unclassified— estimated weights cross the identity line more than once. 

 

 

The tables show that most estimated weighting function shapes match the shape of the DGP 

(usually more than 80%, but a bit less for Prospector I). These tables also bear on later 

results. First, Cumulative Prospect Theory DGPs (that is, Prospector I and Prospector II) 

produce estimated optimist or rounder shapes less than about 8% of the time: If a sample 

of 80 subjects comes from a population composed solely of Prospector I and Prospector II, 

we expect that function-free estimation will produce about 7 subjects having estimated 

optimist or rounder shapes. Second, Cumulative Prospect Theory DGPs produce estimated 

pessimist shapes about 11% of the time: If we see 8 or so estimated pessimist shapes, these 

 
2 Parametric estimations produce estimates with about eighty to fifty percent of the variability of these function-free 

estimates (around the true DGP weighting function). 
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Figure 1: 80 function-free estimates from Monte Carlo data with ‘Prospector I’ DGP (𝜌, 𝛾, 𝛽) = (0.12,0.65,1) and contextual 
utility. 

  
  
Figure 2: 80 function-free estimates from Monte Carlo data with ‘Prospector II” DGP (𝜌, 𝛾, 𝛽) = (0.043,0.45,0.8) and contextual 
utility. 
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Figure 3: 80 function-free estimates from Monte Carlo data with ‘Optimist’ DGP (𝜌, 𝛾, 𝛽) = (3,1.5,0.4) and contextual utility. 

  
  
Figure 4: 80 function-free estimates from Monte Carlo data with ‘Rounder’ DGP (𝜌, 𝛾, 𝛽) = (1.5,3,2) and contextual utility. 
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Tables 2. Monte Carlo results: Distribution of 1000 function-free estimations of  
weighting function shapes, using 1000 simulated subjects from four different DGPs. 

 
Table 2-A. Contextual utility (𝜆𝑠 = 12) is in the DGP and also used for estimations. 

estimated 
weighting 
function 
shapes 

DGP utility and weighting function parameters (𝜌, 𝛾, 𝛽)  
Prospector I, 
as in Figure 1 
(0.12,0.65,1) 

Prospector II, 
as in Figure 2 

(0.043,0.45,0.8) 

Optimist, 
as in Figure 3 

(3,1.5,0.4) 

Rounder, 
as in Figure 4 

(1.5,3,2) 
Prospector 66.7% 84.1%   8.4%   0.0% 
Pessimist 10.9%   0.4%   0.0%   2.4% 
Optimist   4.6%   8.1% 91.0%   0.0% 
Rounder   1.8%   0.0%   0.6% 81.0% 

Unclassifiable 16.0%   7.4%   0.0% 16.6% 
 
Table 2-B. Decision field theory (𝜆𝑠 = 5) is in the DGP and also used for estimations.   

estimated 
weighting 
function 
shapes 

DGP utility and weighting function parameters (𝜌, 𝛾, 𝛽)  
Prospector I, 
as in Figure 1 
(0.12,0.65,1) 

Prospector II, 
as in Figure 2 

(0.043,0.45,0.8) 

Optimist, 
as in Figure 3 

(3,1.5,0.4) 

Rounder, 
as in Figure 4 

(1.5,3,2) 
Prospector 74.4% 89.8% 20.1%   0.0% 
Pessimist 11.7%   2.0%   0.0%   0.0% 
Optimist   3.2%   4.9% 79.1%   0.0% 
Rounder   1.4%   0.1%   0.5% 88.0% 

Unclassifiable   9.3%   3.2%   0.3% 12.0% 
 
Table 2-C. Stronger utility (𝜆𝑠 = 2) is in the DGP and also used for estimations. 

estimated 
weighting 
function 
shapes 

DGP utility and weighting function parameters (𝜌, 𝛾, 𝛽)  
Prospector I, 
as in Figure 1 
(0.12,0.65,1) 

Prospector II, 
as in Figure 2 

(0.043,0.45,0.8) 

Optimist, 
as in Figure 3 

(3,1.5,0.4) 

Rounder, 
as in Figure 4 

(1.5,3,2) 
Prospector 67.4% 88.5%   4.0%   0.0% 
Pessimist 12.6%   1.1%   0.0%   0.4% 
Optimist   4.2%   5.9% 94.2%   0.0% 
Rounder   3.3%   0.2%   1.8% 95.6% 

Unclassifiable 12.5%   4.3%   0.0%   4.0% 
  

 

may be simply the result of sampling variability and true Cumulative Prospect 

Theory types in the sampled population. Finally, Prospector I DGPs produce 

unclassified shapes about 10% to 15% of the time, so we should not be surprised to 
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estimate a small number of unclassified shapes if Prospector I DGPs  (or other DGPs 

relatively close to identity weights) are common in the sampled population. 

 I noted that until recently, the simple homoscedastic latent index model 𝑃ℎ =

𝑃𝑟𝑜𝑏(𝑟𝑖𝑠𝑘𝑦) = 𝐹(𝜆Δ𝑅𝐷𝑈) was commonly used for such estimations. Figure 5 shows 

some consequences of such a homoscedastic latent index estimation when the DGP 

in fact features any of the three probabilistic models I use here. The DGP utility and 

weighting function is in all cases the Optimist DGP, that is (𝜌, 𝛾, 𝛽) = (3,1.5,0.4), 

which also features pronounced concavity of utility. Figure 5 shows that for all three 

DGPs, this results in reliable underestimation of both utility concavity and weighting 

optimism: Almost all of the 80  estimates lie below the bold black DGP curves. The 

newer heteroscedastic probabilistic models are consequential for estimation and 

inferences concerning utility and weighting functions and, as mentioned earlier, 

there is now much evidence against the homoscedastic model. 

 

5. Results of the first experiment 

 Figures 6, 7 and 8 show most of the results of the function-free individual 

estimations: Figure 6 shows contextual utility estimations; Figure 7 shows decision 

field theory estimations; and Figure 8 shows stronger utility estimations. In each 

figure, the upper left panel shows 80 estimated utility functions while the remaining 

three panels show most (at least 68 of 80) estimated weighting functions, divided 

into the three most commonly estimated shapes—optimists, rounders and 

prospectors, generally in that order (except with decision field theory). The 

remaining 12 subjects (whose estimated weighting functions are not shown) break 

almost evenly between pessimists and unclassified,3 certainly consistent with the 

sampling variability considerations of the previous section and not strong evidence 

that these types even exist in the sampled population. Overall, by individual-level 

 
3 6 of each with contextual utility, 4 pessimists and 7 unclassified with decision field theory, and 7 

pessimists and 5 unclassified with stronger utility. 
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Figure 5: 80 function-free estimates from Monte Carlo data with ‘Optimist’ DGP (𝜌, 𝛾, 𝛽) = (3,1.5,0.4), estimated with the 
homoscedastic model, when the true DGP uses one of the three heteroscedastic models: 
 

DGP is contextual utility (CU) 
 
 

 
 
 

 
 
 
 

 

DGP is decision field theory (DFT) 
 
 

 
 
 

 
 
 
 
 

DGP is stronger utility (SU) 
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Figure 6: 80 function-free individual estimates, estimated with the contextual utility model using data from the first 
experiment. The first panel shows estimated utility functions together; the next three panels show estimated weighting 
functions of the three most common estimated shapes (68 of the 80 subjects). The median estimated 𝜆𝑠 is about 11.3. 
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Figure 7: 80 function-free individual estimates, estimated with the decision field theory model using data from the first 
experiment. The first panel shows estimated utility functions together; the next three panels show estimated weighting 
functions for the most commonly estimated shapes (69 of the 80 subjects). The median estimated 𝜆𝑠 is about 5.15. 
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Figure 8: 80 function-free individual estimates, estimated with the stronger utility model using data from the first experiment. 
The first panel shows estimated utility functions together; the next three panels show estimated weighting functions for the 
most commonly estimated shapes (68 of the 80 subjects). The median estimated 𝜆𝑠 is about 2.13.
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likelihood ratio tests, about 85% to 95% of these estimated weighting functions 

significantly differ from identity weighting at the five percent level of significance, 

depending somewhat on the probabilistic model used.  

 Figures 6 and 8, however, are clearly unusual given widely held priors 

concerning weighting functions: Both the contextual utility and stronger utility 

estimations suggest a sampled population where the plurality type of decision 

maker is an optimist rather than a prospector, and where even rounders outnumber 

prospectors. Figure 7 is an exception to this, but not a very convincing one: Decision 

field theory estimations do produce prospectors as the plurality type, but inspection 

of the upper right panel (the prospector shapes) reveals that a large number of 

these estimated weighting functions might be optimists aside from the estimated 

weight at 𝑞 = 5/6. Camerer and Ho (1994) and Wu and Gonzalez (1996) estimate 

that “the” weighting function crosses the identity line at some 𝑞 < 1/2: Very few of 

the “prospector” shapes in the upper right panel of Figure 7 do this. These previous 

estimations used the homoscedastic latent index model which, as shown in Figure 5, 

tends to bias estimated weights downward—which could account for the 

discrepancy I point out here. The prospector shapes produced by decision field 

theory don’t fit received Cumulative Prospect Theory priors. 

 

6. First discussion 

 Consider two options 𝑠𝑎𝑓𝑒 = (1 − 𝑝𝑚, 𝑝𝑚, 0) and 𝑟𝑖𝑠𝑘𝑦 = (1 − 𝑞ℎ, 0, 𝑞ℎ) where 

𝑝𝑚 > 𝑞ℎ and as usual ℎ > 𝑚 > 𝑙. Tversky (1969), Rubinstein (1988) and Leland 

(1994) have all noted that if ℎ − 𝑚 is large but 𝑝𝑚 − 𝑞ℎ is sufficiently small, so that 

𝑝𝑚 and 𝑞ℎ are deemed “similar” but ℎ and 𝑚 are not, a decision procedure might not 

bother with computing and comparing overall values of  𝑠𝑎𝑓𝑒 and 𝑟𝑖𝑠𝑘𝑦, but instead 

simply ignore the similar probabilities and choose the option 𝑟𝑖𝑠𝑘𝑦 with the 

noticeably larger “prize” ℎ. Tversky showed that such decision procedures produce 

intransitive choices, and both Rubinstein and Leland showed that such decision 

procedures account for many of the Allais phenomena. This kind of decision 

procedure would reveal “apparent weights” 𝜔 such that  𝜔(𝑝𝑚) = 𝜔(𝑞ℎ). If an 
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experiment contains many option pairs of this kind, with many paired “similar” 

probabilities 𝑝𝑚 and 𝑞ℎ in some interval [𝑎, 𝑏] ⊂ [0,1], a straightforward estimation 

of RDU or CPT will result in an estimated probability weighting function that is too 

flat on [𝑎, 𝑏]—reflecting, to some extent, similarity-based computational shortcuts 

rather than the true difference 𝑤(𝑏) − 𝑤(𝑎). The first experiment contains no 

option pairs like these, and does not often produce estimated weighting functions 

that are relatively flat on the range of low interior probabilities—a marker of 

prospector shapes. 

 However, the first experiment does contain option pairs which may lead to the 

commonly observed rounder shape. Consider the pair 𝑠𝑎𝑓𝑒 = (0,1,0) and 𝑟𝑖𝑠𝑘𝑦 =

(1/6,0,5/6) on the context 〈40,50,60〉. A decision maker might sometimes regard 

𝑟𝑖𝑠𝑘𝑦 as (0,0,1) and choose it over 𝑠𝑎𝑓𝑒. Likewise for a pair such as 𝑠𝑎𝑓𝑒 = (0,1,0) 

and 𝑟𝑖𝑠𝑘𝑦 = (5/6,0,1/6) on the context 〈50,70,110〉, a decision maker might 

sometimes regard 𝑟𝑖𝑠𝑘𝑦 as (1,0,0) and choose 𝑠𝑎𝑓𝑒 instead. I conjecture that this 

kind of decision maker produces the rounder shape. The coarse probability grid of 

the six-sided die wasn’t coarse enough to make such behavior rare, given the 

frequency of estimated rounder shapes that is apparent in Figures 6, 7 and 8: or, at 

least, this is one interpretation of the rounder shape. These considerations suggest a 

second experiment that uses fourths as a very coarse probability grid: Perhaps these 

rounding shortcuts can be made rarer still with the help of a 4-sided die.  

 Andreoni and Sprenger (2012, p. 3373) have suggested that “Subjects exhibit a 

preference for certainty when it is available…” This could have an effect on 

estimated probability weighting. Because all relatively safe options in the first 

experiment are sure outcomes, this data is not well-suited to seeing whether this is 

an issue or not in the function-free estimations of probability weights. For now I 

observe that Cheung (2013) fails to replicate this finding when using a choice list 

method rather than the budget allocation method of Andreoni and Sprenger. In the 

second experiment, I also fail to replicate it using the choice pairs method. 
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7. Design of the second experiment 

 In this second experiment, I mainly seek a replication of the prevalence of 

estimated optimism. This experiment is done with a sampled population from a 

different university, with different option pairs and a different random device, the 4-

sided die. As suggested in the previous section, the 4-sided die is an attempt to limit 

the prevalence of estimated rounder shapes. The second experiment also uses 

option pairs going beyond the sure things versus two-outcome risks of the first 

experiment. Let 𝑠𝑎𝑓𝑒 = (𝑝𝑙, 𝑝𝑚, 𝑝ℎ) and 𝑟𝑖𝑠𝑘𝑦 = (𝑞𝑙, 𝑞𝑚, 𝑞ℎ) denote vectors of 

outcome probabilities on the context 〈𝑙, 𝑚, ℎ〉. In all pairs, 𝑝𝑚 > 𝑞𝑚 while 𝑝𝑙 < 𝑞𝑙  and 

𝑝ℎ < 𝑞ℎ. As before, subjects choose between 𝑠𝑎𝑓𝑒 and 𝑟𝑖𝑠𝑘𝑦 in each pair presented 

to them. Table 3 shows the 69 option pairs used in the experiment: Some are 

repeated up to four times as indicated in the “trials” column, for a total of 100 choice 

tasks in the experiment. There are ten distinct 3-outcome contexts, all created from 

the five positive money outcomes  $15, $20, $30, $45 and $80. There is now plenty 

of variation in whether the option 𝑠𝑎𝑓𝑒 is a sure thing (0,1,0) or not, which allows a 

check on concerns raised by Andreoni and Sprenger (2012). 

 Constraining all probabilities to the set of fourths (0, 1/4, 1/2, 3/4 or 1), the 

option pairs (and number of trials of each pair) were selected by way of iterated 

Monte Carlo simulation. The iterative procedure aimed at approximately 

maximizing the average determinant of the function-free estimator’s information 

matrix for the worst 10% (lowest decile of information matrix determinants) of 

estimated parameters in a simulated population of decision makers whose 

distribution of DGPs resembled what had been previously estimated using past 

experimental data at Chapman University.  

 The subjects for the second experiment were 98 undergraduate students at 

Chapman University. Each subject participated in a single session, making choices 

from the choice tasks shown in Table 3. Sessions commenced with computerized 

instructions, including tests of understanding that returned subjects to relevant 

instruction sections in the event of test mistakes. Subjects had to correctly answer 
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 Table 3. The 69 option pairs used in the second experiment. 

pair 
# 

trials 
context 
 〈𝑙, 𝑚, ℎ〉 

safe option outcome 
probabilities 

risky option outcome 
probabilities 

𝑝𝑙  𝑝𝑚 𝑝ℎ 𝑞𝑙 𝑞𝑚 𝑞ℎ 
1 4 

〈15,20,30〉 

0 1 0 0.75 0 0.25 
2 1 0 1 0 0.25 0.5 0.25 
3 3 0 1 0 0.5 0 0.5 
4 1 0 1 0 0.25 0 0.75 
5 1 0.25 0.75 0 0.75 0 0.25 
6 1 0.25 0.75 0 0.5 0 0.5 
7 4 0 0.75 0.25 0.5 0 0.5 
8 1 0.5 0.5 0 0.75 0 0.25 
9 1 0.25 0.5 0.25 0.5 0 0.5 

10 1 0 0.5 0.5 0.25 0 0.75 
11 1 

〈15,20,45〉 

0 1 0 0.75 0 0.25 
12 1 0 1 0 0.5 0 0.5 
13 1 0.25 0.75 0 0.75 0 0.25 
14 1 0 0.75 0.25 0.5 0 0.5 
15 1 0 0.75 0.25 0.25 0 0.75 
16 1 0 0.5 0.5 0.25 0 0.75 
17 1 

〈15,20,80〉 

0 1 0 0.75 0 0.25 
18 1 0 1 0 0.5 0 0.5 
19 1 0.25 0.75 0 0.5 0 0.5 
20 2 0.5 0.5 0 0.75 0 0.25 
21 1 

〈15,30,45〉 

0 1 0 0.5 0 0.5 
22 1 0 1 0 0.25 0 0.75 
23 1 0.25 0.75 0 0.75 0 0.25 
24 2 0 0.75 0.25 0.5 0 0.5 
25 1 0 0.75 0.25 0.25 0 0.75 
26 1 0.5 0.5 0 0.75 0 0.25 
27 1 0 0.5 0.5 0.25 0 0.75 
28 3 

〈15,30,80〉 

0.25 0.75 0 0.75 0 0.25 
29 1 0.25 0.75 0 0.5 0 0.5 
30 4 0 0.75 0.25 0.25 0 0.75 
31 1 0.5 0.5 0 0.75 0 0.25 
32 4 0.25 0.5 0.25 0.5 0 0.5 
33 1 0 0.5 0.5 0.25 0 0.75 
34 1 

〈15,45,80〉 

0 1 0 0.75 0 0.25 
35 1 0 1 0 0.25 0 0.75 
36 1 0.25 0.75 0 0.75 0 0.25 
37 1 0.25 0.75 0 0.5 0 0.5 
38 2 0 0.75 0.25 0.5 0 0.5 
39 1 0 0.75 0.25 0.25 0 0.75 
40 1 0.5 0.5 0 0.75 0 0.25 
41 1 0 0.5 0.5 0.25 0 0.75 



 

 

 

Table 3 (continued). The 69 option pairs used in the second experiment. 
 

pair 
# 

trials 
context 
 〈𝑙, 𝑚, ℎ〉 

safe option outcome 
probabilities 

risky option outcome 
probabilities 

𝑝𝑙  𝑝𝑚 𝑝ℎ 𝑞𝑙 𝑞𝑚 𝑞ℎ 
42 2 

〈20,30,45〉 

0 1 0 0.75 0 0.25 
43 1 0 1 0 0.5 0.25 0.25 
44 1 0 1 0 0.25 0.5 0.25 
45 4 0 1 0 0.5 0 0.5 
46 1 0 1 0 0.25 0.25 0.5 
47 2 0 1 0 0.25 0 0.75 
48 1 0.25 0.75 0 0.75 0 0.25 
49 1 0.25 0.75 0 0.5 0 0.5 
50 1 0 0.75 0.25 0.5 0 0.5 
51 1 

〈20,30,80〉 
0.25 0.75 0 0.75 0 0.25 

52 1 0.25 0.75 0 0.5 0 0.5 
53 1 0.5 0.5 0 0.75 0 0.25 
54 1 

〈20,45,80〉 

0 1 0 0.25 0 0.75 
55 1 0.25 0.75 0 0.5 0 0.5 
56 1 0 0.75 0.25 0.5 0 0.5 
57 1 0 0.5 0.5 0.25 0 0.75 
58 4 

〈30,45,80〉 

0 1 0 0.75 0 0.25 
59 1 0 1 0 0.5 0.25 0.25 
60 1 0 1 0 0.25 0.5 0.25 
61 3 0 1 0 0.5 0 0.5 
62 1 0 1 0 0.25 0 0.75 
63 1 0.25 0.75 0 0.75 0 0.25 
64 3 0.25 0.75 0 0.5 0 0.5 
65 1 0 0.75 0.25 0.5 0 0.5 
66 1 0 0.75 0.25 0.25 0 0.75 
67 1 0.5 0.5 0 0.75 0 0.25 
68 1 0.25 0.5 0.25 0.5 0 0.5 
69 1 0 0.5 0.5 0.25 0 0.75 

 
 
 

all questions before proceeding. The 100 choice pairs were divided into two parts (a 

first part of 60 pairs and a second part of 40 pairs), separated by about ten to fifteen 

minutes of other tasks (again, a survey and tests of arithmetic and problem-solving 

ability). At the conclusion of a session, one of each subject’s 100 choice pairs was 

selected at random (by means of the subject rolling two ten-sided dice) and the 
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subject was paid according to their choice in that pair. If the subject’s choice in the 

selected pair involved chance, the subject rolled a four-sided die (using a dice cup) 

to resolve payment. Sessions rarely lasted more than 70 minutes. 

 The second experiment involves five distinct outcomes but as before we can 

choose 𝑢𝑠(15) = 0 and 𝑢𝑠(80) = 1 for all subjects s. The unique estimable utility 

vector 𝐮𝑠 for each subject s is the utilities of the three other outcomes 𝐮𝑠 =

〈𝑢𝑠(20), 𝑢𝑠(30), 𝑢𝑠(45)〉, and function-free estimation makes those three utilities 

separate parameters to estimate. The experiment also involves three distinct 

probabilities 𝑞 ∈ {
1

4
,

2

4
,

3

4
}, and so a vector 𝐰𝑠 = 〈𝑤𝑠 (

1

4
) , 𝑤𝑠 (

2

4
) , 𝑤𝑠 (

3

4
)〉 of three 

weights to be estimated for each subject. Function-free estimation makes those 

three weights separate parameters to estimate. Including the scale parameter 𝜆𝑠, 

this makes seven total parameters for the function-free estimation. I use the same 

penalized maximum likelihood procedure for this estimation (see Appendix II). 

 

8. Results of the second experiment 

 Figures 10, 11 and 12 show estimation results using the data from the second 

experiment. Figure 9 shows contextual utility estimations; Figure 10 shows decision 

field theory estimations; and Figure 11 shows stronger utility estimations. In each 

figure, the upper left panel shows 98 estimated utility functions while the remaining 

three panels show most (at least 84 of the 98) estimated weighting functions, 

divided into the three most commonly estimated shapes—optimists, rounders and 

pessimists or prospectors, generally in that order (except with contextual utility). 

Remaining subjects (estimated weighting functions not shown) include 11 or 13  

prospectors and 1 or 2 unclassified.4 Overall, by individual-level likelihood ratio  

tests, about 65% to 70% of the estimated  weighting functions significantly differ 

from identity weighting at the five percent level of significance, depending 

somewhat on the probabilistic model used.  

 
4 11 prospectors and 1 unclassified with contextual utility, 11 prospectors and 2 unclassified with stronger 

utility, and 13 prospectors and 1 unclassified with decision field theory. 
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Figure 9: 98 function-free individual estimates, estimated with the contextual utility model using data from the second 
experiment. The first panel shows estimated utility functions together; the next three panels show estimated weighting 
functions for the most commonly estimated shapes (86 of the 98 subjects). The median estimated 𝜆𝑠 is about 14.0. 
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Figure 10: 98 function-free individual estimates, estimated with the decision field theory model using data from the second 
experiment. The first panel shows estimated utility functions together; the next three panels show estimated weighting 
functions for the most commonly estimated shapes (84 of the 98 subjects). The median estimated 𝜆𝑠 is about 5.65. 
 

 
 

 

 

 
 

 

0

0.25

0.5

0.75

1

15 30 45 60 75

Estimated utilities,
all 98 subjects

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1

Estimated weights,
19 rounders

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1

Estimated weights,
48 optimists

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1

Estimated weights,
17 pessimists



 

 27 

Figure 11: 98 function-free individual estimates, estimated with the stronger utility model using data from the second 
experiment. The first panel shows estimated utility functions together; the next three panels show estimated weighting 
functions for the most commonly estimated shapes (85 of the 98 subjects). The median estimated 𝜆𝑠 is about 2.31. 
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 Estimated optimist shapes are an outright majority under contextual utility and 

stronger utility (and almost half of subjects under decision field theory) and more than 

twice as common as the second-most-common shape (rounders except with contextual 

utility, where it is pessimists). Keeping in mind that the set of outcomes, the probability 

device and the sampled population are all different in this second experiment, so the 

(tempting) conclusion that the coarser probability grid has resulted in less rounding and 

more optimism (relative to the first experiment) is not formally warranted. However, 

optimist shapes are again the most commonly observed shape. This has been replicated 

with a new sample from a different population, a new die and a new outcome set. 

 One can modify estimations to include the possibility raised by Andreoni and Sprenger 

(2012)—that subjects “exhibit a preference for certainty when it is available.” To do this, I 

multiply all 𝑠𝑎𝑓𝑒 option occurrences of 𝑢𝑠(𝑚𝑖) in equations 8, 9 and 10 by a factor 

[1 + 𝛽𝑠1(𝑝𝑚𝑖 = 1)], shifting the estimated utility of the middle outcome 𝑚𝑖 in 𝑠𝑎𝑓𝑒 by a 

multiplicative effect 𝛽𝑠 whenever 𝑠𝑎𝑓𝑒 is a sure thing. Having done this and estimated 

these models, I find no evidence that 𝛽𝑠 is systematically and significantly positive as 

suggested by the findings of Andreoni and Sprenger. Additionally, this does not change the 

qualitative findings in Figures 9 and 10 much: Optimist shapes are nearly half of the 

estimates using either decision field theory or contextual utility as the probabilistic model.5 

 

9. Second discussion 

 Optimism is again prevalent in the second experiment—even more prevalent than in 

the first experiment. I have suggested that the received prospector shape, characterized by 

relatively flat weighting functions on interior probability ranges, may frequently occur 

because close probabilities tend to be regarded as similar and ignored. Here is one 

econometric path for addressing this possibility. Begin with a design resembling that of the 

second experiment: It identifies utilities 𝐮𝑠 = 〈𝑢𝑠(20), 𝑢𝑠(30), 𝑢𝑠(45)〉 and weights 𝐰𝑠 =

 
5 With estimates 𝛽̂𝑠 in hand for the 98 subjects, the null hypothesis 𝛽𝑠 = 0 fails to be rejected at the 10% 

significance level by either a sign, signed-rank or t-test when contextual utility is the probabilistic model, and 48 of 

the 98 estimated weighting functions have optimist shapes. When decision field theory is the probabilistic model, 

estimates of 𝛽𝑠 have a weakly significantly negative location (p = 0.081) by a signed-rank test, but not by the sign or 

t-test, and 51 of the 98 estimated weighting functions have optimist shapes. Application of stronger utility to this 

case is not straightforward since it is unclear how stochastic dominance is to be defined when there is one utility 

function for certain outcomes and another for uncertain outcomes.  
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〈𝑤𝑠 (
1

4
) , 𝑤𝑠 (

2

4
) , 𝑤𝑠 (

3

4
)〉. Now replace the 4-sided die with a 12-sided die: We can still use 

the same design to identify the same weights and utilities, but suppose we wish to add 

some choice pairs to identify 𝑤𝑠 (
1

3
) as well and, in particular, the marginal weight between 

𝑞 = 1/4 and 𝑞 = 1/3. Let 𝑑𝑤𝑠 = 𝑤𝑠 (
1

3
) − 𝑤𝑠 (

1

4
) denoted this marginal weight.  

 Two routes to this identification can be imagined. The first route depends on adding 

pairs such as 𝑠𝑎𝑓𝑒 = (0,1,0) and 𝑟𝑖𝑠𝑘𝑦 = (2/3,0,1/3). In pairs like this, only the most 

aggressive rounder would view the 1/3 probability (of ℎ in 𝑟𝑖𝑠𝑘𝑦) as zero, and almost no 

one would view the 1/3 probability (of ℎ in 𝑟𝑖𝑠𝑘𝑦) as similar to certainty (of 𝑚 in 𝑠𝑎𝑓𝑒). I 

call this a “dissimilar pair” for those reasons: It does not encourage computational 

shortcuts based on either similarity judgments or rounding behavior. Add enough pairs like 

this one to the pre-existing design and we should be able to estimate 𝑤𝑠 (
1

3
) directly and 

then estimate the marginal weight 𝑑𝑤𝑠 as the difference between the estimates 𝑤̂𝑠 (
1

3
) and 

𝑤̂𝑠 (
1

4
). Call this estimate 𝑑𝑤̂𝑑𝑖𝑠

𝑠  (the subscript 𝑑𝑖𝑠 meaning “dissimilar”). 

 The second route to identification depends on adding a different sort of choice pair 

such as 𝑠𝑎𝑓𝑒 = (2/3,1/3,0) and 𝑟𝑖𝑠𝑘𝑦 = (3/4,0,1/4). Add enough pairs like this one to the 

pre-existing design and we should also be able to estimate 𝑤𝑠 (
1

3
) and hence 𝑑𝑤𝑠. But this 

is not a “dissimilar pair” as defined in the previous paragraph: I believe that many decision 

makers would regard the 1/3 probability (of 𝑚 in 𝑠𝑎𝑓𝑒) as similar to the 1/4 probability 

(of ℎ in 𝑟𝑖𝑠𝑘𝑦), and would therefore ignore that probability difference and choose 

according to most-preferred outcome (that is, choose 𝑟𝑖𝑠𝑘𝑦 since ℎ > 𝑚). For that reason, I 

will call these “similar pairs.” Although we can estimate 𝑑𝑤𝑠 by adding only such similar 

pairs, I expect that our resulting estimate—call this 𝑑𝑤̂𝑠𝑖𝑚
𝑠 —will be much smaller than we 

would estimate by adding only dissimilar pairs to the pre-existing design (that is, following 

the first identification strategy). 

 Under the hypothesis that rank-dependent weighting exists independently of 

similarity, the two identification strategies outlined above should result in equivalent 

estimates of 𝑑𝑤𝑠. The final observation is that nothing prevents us from constructing a 

design which simultaneously follows both paths to identifying 𝑑𝑤𝑠—that is, in which 𝑑𝑤𝑠 
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is overidentified, once with similar pairs and once with dissimilar pairs. The third 

experiment does this. 

 

10. Design of the third experiment 

 The option pairs in this third experiment begin with design considerations and choices 

very like those of the second experiment. As before, subjects choose between 𝑠𝑎𝑓𝑒 and 

𝑟𝑖𝑠𝑘𝑦 in each pair presented to them. There are ten distinct 3-outcome contexts, all created 

from the five positive money outcomes  $15, $20, $30, $45 and $80. Table 4-A shows 34 of 

the option pairs used in the experiment: Some of these are repeated up to four times as 

indicated in the “trials” column, for a total of 68 choice tasks. These choice tasks are the 

“trunk” of the design: The probabilities in this set of pairs are constrained to the set of 

fourths (0, 1/4, 1/2, 3/4 or 1). 

 The pairs in Tables 5-B and 5-C are the two different identification “branches” of the 

design: These pairs introduce options that contain the 1/3 probability of a highest outcome 

in various options. There are six dissimilar pairs in Table 4-B, and six similar pairs in Table 

4-C, each repeated up to four times as indicated in the “trials” column, for a total of 16 

choice tasks from each of these tables. With the 68 choice tasks from Table 4-A, this is a 

total of 100 choice tasks in the design. As with the design of the second experiment, the 68 

choice tasks in Table 4-A were chosen by an iterated Monte Carlo simulation procedure 

aimed at maximizing the efficiency of estimation for the worst decile of the sampled 

population. Then, the same kind of iterated Monte Carlo procedure was used to select 

contexts and numbers of trials for the two branches aimed at efficient estimation of 𝑑𝑤𝑠 in 

both branches.  

 The subjects for the third experiment were 92 undergraduate students, again at 

Chapman University as with the second experiment. The experimental protocol was almost 

identical to that of the second experiment, except that a twelve-sided die was used as the 

random device—this being the lowest-sided die capable of producing both fourths and 

thirds as probabilities.  

 Estimation closely resembles that undertaken for data from the second experiment. 

The third experiment now involves four distinct probabilities 𝑞 ∈ {
1

4
,

1

3
,

2

4
,

3

4
}, and hence a   
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Tables 5. Option pairs used in the third experiment. 
 
Table 4-A. 34 pairs used for both dissimilar and similar estimations (68 total trials). 
 

pair 
# 

trials 
context 
 〈𝑙, 𝑚, ℎ〉 

safe option outcome 
probabilities 

risky option outcome 
probabilities 

𝑝𝑙  𝑝𝑚 𝑝ℎ 𝑞𝑙 𝑞𝑚 𝑞ℎ 
1 4 

〈15,20,30〉 

0 1 0 0.75 0 0.25 
2 3 0 1 0 0.5 0 0.5 
3 1 0 1 0 0.25 0 0.75 
4 4 0 0.75 0.25 0.5 0 0.5 
5 1 0.25 0.5 0.25 0.5 0 0.5 
6 1 0 0.5 0.5 0.25 0 0.75 
7 1 〈15,20,45〉 0 0.5 0.5 0.25 0 0.75 
8 1 

〈15,20,80〉 
0.25 0.75 0 0.75 0 0.25 

9 1 0.25 0.75 0 0.5 0 0.5 
10 1 

〈15,30,45〉 
0.25 0.75 0 0.75 0 0.25 

11 1 0 0.75 0.25 0.5 0 0.5 
12 1 0 0.5 0.5 0.25 0 0.75 
13 4 

〈15,30,80〉 

0.25 0.75 0 0.75 0 0.25 
14 1 0.5 0.5 0 0.75 0 0.25 
15 4 0.25 0.5 0.25 0.5 0 0.5 
16 4 0 0.75 0.25 0.25 0 0.75 
17 1 

〈15,45,80〉 

0.25 0.75 0 0.75 0 0.25 
18 1 0.5 0.5 0 0.75 0 0.25 
19 1 0 1 0 0.25 0 0.75 
20 2 0 0.75 0.25 0.5 0 0.5 
21 2 0 0.5 0.5 0.25 0 0.75 
22 3 

〈20,30,45〉 

0 1 0 0.75 0 0.25 
23 1 0 1 0 0.25 0.5 0.25 
24 4 0 1 0 0.5 0 0.5 
25 2 0.25 0.75 0 0.5 0 0.5 
26 3 0 1 0 0.25 0 0.75 
27 1 0 0.75 0.25 0.5 0 0.5 
28 1 〈20,45,80〉 0 0.5 0.5 0.25 0 0.75 
29 3 

〈30,45,80〉 

0 1 0 0.75 0 0.25 
30 3 0 1 0 0.5 0 0.5 
31 3 0.25 0.75 0 0.5 0 0.5 
32 1 0 1 0 0.25 0 0.75 
33 2 0 0.75 0.25 0.5 0 0.5 
34 1 0 0.75 0.25 0.25 0 0.75 
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Tables 5 (continued). Option pairs used in the third experiment. 
 
Table 4-B. 6 “dissimilar pairs” used only for dissimilar estimations (16 trials in all). 
 

pair # trials 
context 
 〈𝑙, 𝑚, ℎ〉 

safe option outcome probabilities risky option outcome probabilities 
𝑝𝑙  𝑝𝑚 𝑝ℎ 𝑞𝑙 𝑞𝑚 𝑞ℎ 

35 3 〈15,20,30〉 0 1 0 0.67 0 0.33 
36 4 〈15,20,80〉 0 1 0 0.67 0 0.33 
37 1 〈15,45,80〉 0 1 0 0.67 0 0.33 
38 3 〈20,30,45〉 0 1 0 0.67 0 0.33 
39 1 〈20,30,80〉 0 1 0 0.67 0 0.33 
40 4 〈30,45,80〉 0 1 0 0.67 0 0.33 

 
 
Table 4-C. 6 “similar pairs” used only for similar estimations (16 trials in all). 
 

pair 
# 

trials context 
〈𝑙, 𝑚, ℎ〉 

safe option outcome 
probabilities 

risky option outcome 
probabilities 

𝑝𝑙  𝑝𝑚 𝑝ℎ 𝑞𝑙 𝑞𝑚 𝑞ℎ 
41 2 〈15,20,30〉 0.67 0.33 0 0.75 0 0.25 
42 3 〈15,20,80〉 0.67 0.33 0 0.75 0 0.25 
43 4 〈15,30,45〉 0.67 0.33 0 0.75 0 0.25 
44 4 〈15,45,80〉 0.67 0.33 0 0.75 0 0.25 
45 2 〈20,30,45〉 0.67 0.33 0 0.75 0 0.25 
46 1 〈30,45,80〉 0.67 0.33 0 0.75 0 0.25 

 
 

vector of four weights to estimate. As suggested by the second discussion in the previous 

section, we can think of the two different branches of the design as creating two possibly 

different vectors of weights 𝐰𝑑𝑖𝑠
𝑠  and 𝐰𝑠𝑖𝑚

𝑠 . The dissimilar estimation uses only the 84 

choice tasks of tables 4-A and 4-B to produce an estimate 𝐰̂𝑑𝑖𝑠
𝑠 , while the similar estimation 

uses only the 84 choice tasks of Tables 4-A and 4-C to produce an estimate 𝐰̂𝑠𝑖𝑚
𝑠 . The same 

penalized maximum likelihood procedure was used for this estimation (see Appendix II). 

With these estimates in hand, two different estimates of the marginal weight may be 

computed as  𝑑𝑤̂𝑑𝑖𝑠
𝑠 = 𝑤̂𝑑𝑖𝑠

𝑠 (
1

3
) − 𝑤̂𝑑𝑖𝑠

𝑠 (
1

4
) and 𝑑𝑤̂𝑠𝑖𝑚

𝑠 = 𝑤̂𝑠𝑖𝑚
𝑠 (

1

3
) − 𝑤̂𝑠𝑖𝑚

𝑠 (
1

4
).  

 

11. Results of experiment three 

 Figure 12 shows the results of the dissimilar estimation (the left panel) and the similar 

estimation (the right panel) side by side, using contextual utility as the probabilistic model. 
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Vertical lines at 𝑞 = 1/4 and 𝑞 = 1/3 focus attention on the change in estimated weights 

across this probability interval. The dissimilar estimations result in a handful of flat 

weighting function segments, that is 𝑑𝑤̂𝑑𝑖𝑠
𝑠 = 0.0001,6 across the interval—11 out of 92 

subjects in fact. The similar estimation shows well more than a handful of flat weighting 

function segments: In fact 57 of the 92 estimates result in 𝑑𝑤̂𝑠𝑖𝑚
𝑠 = 0.0001. This alone is 

strong evidence that the similar pairs quite commonly provoke the computational shortcut 

suggested throughout this study. Decision field  theory produces the same kind of figures. 

Stronger utility, on the other hand, only rarely produced bottom-bounded estimates. 

 Table 5 shows the sample mean value of 𝑑𝑤̂𝑑𝑖𝑠
𝑠 − 𝑑𝑤̂𝑠𝑖𝑚

𝑠 , which I will call “the similarity 

effect,” along with related statistics. In absolute terms as well as the estimated effect size, 

contextual utility estimations produce the strongest similarity effect: Across the 92 

subjects, the sample mean of 𝑑𝑤̂𝑑𝑖𝑠
𝑠 − 𝑑𝑤̂𝑠𝑖𝑚

𝑠  is 0.0791 with a standard error7 of 0.011 (a p-

value would be gratuitous). Perspective on the size of this estimated effect is provided by 

identity weights (expected utility for instance) for which 𝑑𝑤𝑠 = 1/3 – 1/4 = 0.0833. That  

 

Table 5. The estimated similarity effect 𝑑𝑤̂𝑑𝑖𝑠
𝑠 − 𝑑𝑤̂𝑠𝑖𝑚

𝑠  in the third experiment. 
 

 probabilistic model used for estimation 
 contextual utility decision field theory stronger utility 

sample mean 0.0791 0.0627 0.0462 
standard error 0.011 0.0104 0.0092 

standard deviation of 𝑑𝑤̂𝑑𝑖𝑠
𝑠   0.0855 0.0868 0.0841 

effect size 0.925 0.723 0.549 
 

Notes: The effect size is calculated as the ratio of the sample mean of 𝑑𝑤̂𝑑𝑖𝑠
𝑠 − 𝑑𝑤̂𝑠𝑖𝑚

𝑠  to the 

standard deviation of 𝑑𝑤̂𝑑𝑖𝑠
𝑠 . An effect size of 0.5 is considered moderate while an effect size 

of 0.8 is considered large. (The standard deviation of 𝑑𝑤̂𝑠𝑖𝑚
𝑠  is always smaller than that of 

𝑑𝑤̂𝑑𝑖𝑠
𝑠 , so the effect sizes would be larger if that information was used too.)  

 
6 As mentioned in Appendix II, monotonicity is imposed on estimated utilities and weights in such a manner that the 

minimum estimated value of 𝑑𝑤𝑠 is constrained to be no smaller than 0.0001. 
7 I treat each calculated value of 𝑑𝑤̂𝑑𝑖𝑠

𝑠 − 𝑑𝑤̂𝑠𝑖𝑚
𝑠 , for each subject, as an independent single observation (with 

one degree of freedom), and do simple statistics based on that. Any scalar quantity 𝑦𝑠 = 𝑓(𝐫𝑠) − 𝑔(𝐫𝑠), where 
𝐫𝑠 is an observation vector from subject 𝑠, can be represented as 𝑦𝑠 = 𝐸𝑠[𝑓(𝐫𝒔) − 𝑔(𝐫𝒔)] + 𝜀𝑠, where 
𝐸𝑠[𝑓(𝐫𝑠) − 𝑔(𝐫𝑠)] is the population mean of  𝑓(𝐫𝑠) − 𝑔(𝐫𝑠) and the 𝜀𝑠 are independent across subjects. 
Therefore, where inferences about 𝐸𝑠[𝑓(𝐫𝑠) − 𝑔(𝐫𝑠)] are concerned, the very simplest statistics can be 
applied.  
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Figure 12. 92 function-free individual estimates of weighting functions, estimated with the contextual utility model using data 
from the third experiment. The left panel shows estimations using only the “dissimilar  pairs” to identify the weight at 𝑞 =
0.33; the right panel shows estimations using only the “similar pairs” to identify the weight at 𝑞 = 0.33.  
 
Estimated weights using only the pairs in Tables 4-A and 4-B 

(the “dissimilar pairs”). 11 of 92 estimated weighting 
functions are flat on the interval [0.25,0.33] in this case. 

 
 

 
 
 
 
 
 
 
 

 
Estimated weights using only the pairs in Tables 4-A and 4-C 
(the “similar pairs”). 57 of 92 estimated weighting functions 

are flat on the interval [0.25,0.33] in this case. 
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is, the estimated size of the similarity effect would very nearly erase identity weighting. The 

sample mean of the estimated similarity effect is smaller when I perform the estimation 

with either decision field theory or stronger utility, but still significantly positive at any 

conventional significance level. This casts strong doubt on the null hypothesis that 

estimated probability weights are independent of similarity effects.   

 

12. Conclusions 

 Optimism is the most prevalent form of rank-dependent weighting functions estimated 

here—not the widely believed inverse-s shape. I attribute this to several potential factors. 

The designs of the first and second experiments deliberately set about to minimize 

opportunities for reducing decision complexity by way of computational shortcuts based 

on similarity of probabilities and rounding of probabilities. This was done by confining 

probabilities to relatively coarse grids and avoiding choice pairs that juxtapose similar 

probabilities of high outcomes. The third experiment showed that such pairs do produce 

flatter probability weighting function estimates on low to moderate interior probabilities—

a defining feature of the inverse-s prospector shape—in the predicted manner. 

 If 𝑝 and 𝑝 are the smallest and largest probabilities of the maximum lottery outcomes found 

across all lotteries in some binary choice experiment, it can always be the case that, for 

probabilities of a maximum outcome below 𝑝, or above 𝑝, that experiment will miss some bit of 

curvature or elevation different from that observed on [𝑝,𝑝] or miss a fixed point not found on 

[𝑝,𝑝]. Of course that possibility is true of my three experiments.  But if similarity-induced 

shortcuts and rounding short-circuit “normal” probability weighting of outcome utilities, pushing 

designed outcome probabilities ever closer to zero or one increasingly runs the risk that those 

probabilities get treated as zero and one, respectively. Indeed Kahneman and Tversky (1979) 

originally thought the probability weighting function was poorly behaved—maybe not a 

continuous function at all, or even a function—near its endpoints for those kinds of reasons. 

 Study of risk preferences requires a researcher to make several interrelated choices. 

Here  I chose binary discrete choice as an elicitation method. This has its virtues, not least 

of which is the fact that binary preference relations are the primitive of most axiomatic 

theories. Yet each elicitation method comes with its own econometric conundrums—for 
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instance, where and how functional form assumptions should be deployed. Here, I chose to 

minimize functional assumptions concerning the utilities and weights that are the 

structural entities of axiomatic rank-dependent representation theorems. This has costs. 

Assumptions concerning probabilistic models of binary discrete choices will be needed, 

and I have used three such models. By and large my results are not too sensitive to a choice 

of one of those models or another. Another approach might minimize assumptions about 

probabilistic models—say exploiting new semiparametric methods for discrete choice 

estimation. This has its own cost: A more parametric approach to the decision-theoretic 

entities. This would be good and useful future work.  

 Finally, others choose to elicit certainty equivalents, usually employing a choice list 

procedure to approximate certainty equivalents (e.g. Tversky and Kahneman 1992; 

Gonzalez and Wu 1999; Bruhin, Fehr-Duda and Epper 2010) and then use econometric 

methods appropriate to certainty equivalents. Such estimations generally find the 

conventional inverse-s shape. However, Wilcox (2017) describes a fundamental ambiguity 

concerning certainty equivalent evidence having to do with different sources of the 

probabilistic nature of decision and judgment. Elicitation of certainty equivalents just doesn’t 

free one from the necessary business of making probabilistic modeling assumptions. 

 Throughout this chapter I have motivated discussions in terms of “bias” in probability 

weighting estimation due to similarity-induced computational shortcuts or rounding behavior that 

short-circuit “normal” rank-dependent weighting of utilities. I argued certain kinds of 

experimental designs would more likely produce that kind of “bias.” Of course “poor” 

experimental design can result in all kinds of biased estimation. From that perspective, readers 

may think that the chapter simply points to issues that a careful experimenter can consider to 

detect and avoid bad designs. But there may be no gold standard experimental design that 

allows estimation of that one stable probability weighting function. So now I need to come 

clean about that previous “bias” rhetoric. What I fear (but do not know) is that with 

considerations of similarity, rounding, and other things in mind, an experimenter might—

by judicious selection of choice pairs—be able to demonstrate almost any rank-dependent 

probability weighting function shape. Asked what the probability weighting function looks 

like, the reply of a worldly experimenter might resemble that of the famously broad-

minded corporate accountant: What do you want it to look like?  
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Appendix I: Background on the three probabilistic choice models 

 

 The contextual utility or CU model (Wilcox 2011) makes comparative risk aversion 

properties of the RDU representation and its stochastic implications consistent within and 

across contexts. For representations such as RDU, utility functions 𝑢(𝑧) are only unique up 

to a ratio of differences: Intuitively, contextual utility exploits this uniqueness to create a 

correspondence between functional and probabilistic definitions of comparative risk 

aversion. Consider the choice pairs in the first experiment: Under RDU and contextual 

utility, eq. 4 can be rewritten as  

 

(A1)  𝑃𝑟𝑑𝑐𝑢 =  𝐹(𝜆[−𝑣(𝑙, 𝑚, ℎ) + 𝑤(𝑞ℎ)]), where  

𝑣(𝑙, 𝑚, ℎ) = [𝑢(𝑚) − 𝑢(𝑙)] [𝑢(ℎ) − 𝑢(𝑙)]⁄ . 

 

This probability is decreasing in the ratio of differences 𝑣(𝑙, 𝑚, ℎ). Consider two subjects 

Anne and Bob with identical weighting functions (this includes the case where both have 

EU preferences) and identical scale parameters , and assume that Bob is globally more 

risk averse than Anne in Pratt’s sense (Bob’s local absolute risk aversion – 𝑢"(𝑧) 𝑢′(𝑧)⁄  

exceeds that of Anne for all 𝑧). These assumptions, Pratt’s (1964) main theorem, and 

simple algebra shows that 𝑣𝐵𝑜𝑏(𝑙, 𝑚, ℎ) > 𝑣𝐴𝑛𝑛𝑒(𝑙, 𝑚, ℎ) on all contexts. As a result (A1) 

implies that Bob will have a lower probability than Anne of choosing 𝑟𝑖𝑠𝑘𝑦 on all contexts 

in the first experiment. Wilcox (2011) shows that the received homoscedastic latent index 

model cannot share this property, and this was my primary motivation for the contextual 

utility model. In the second and third experiments, the property is a somewhat weaker one 

appropriate to RDU when one or both options in a pair have nonzero probabilities of all 

three outcomes (see Wilcox 2011, p. 97, Proposition 2), reflecting the role probability 

weights play in observed risk aversion. 

 This volume focusses on Cumulative Prospect Theory (or CPT). Wilcox’s (2011) results 

concerning the contextual normalization’s good theoretical properties flow from RDU and 

EUT because the utility function 𝑢(𝑧) in those theories is an interval scale. Since CPT’s 

value function  is a ratio scale (not an interval scale), there’s no reason to think the 

contextual normalization is appropriate for CPT.  
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 Here I give a conjecture on an appropriate normalization of ∆𝐶𝑃𝑇, the overall 

difference between option values according to CPT. For the purpose of this discussion I 

adopt one bit of notation Harrison and Swarthout [this volume, eqs. 16a and 16b] use to 

define CPT: Specifically 𝑈(𝑚) is CPT’s value function. First consider what the contextual 

normalization does for interval scales. Pratt (1964) shows in his main theorem that 

suitably specified ratios of differences create unique quantities that correspond to risk 

attitudes in a one-to-one mapping. This is equivalent to the observation that, for interval 

scales, ratios of scale differences are unique. Formally the contextual normalization simply 

exploits that part of Pratt’s main theorem.  

 Similarly for ratio scales, ratios of scale values (rather than scale value differences) are 

unique. That suggests that for pure gain pairs, a suitable normalization of ∆𝐶𝑃𝑇 might be 

∆𝐶𝑃𝑇/𝑈(𝑚) where 𝑚 is the maximum outcome in such a pair. In pure loss pairs, a suitable 

normalization might be ∆𝐶𝑃𝑇/𝑈(𝑚) , where 𝑚 is the minimum outcome in such pairs. For 

mixed pairs, I conjecture that a suitable normalization would be ∆𝐶𝑃𝑇/[𝑈(𝑚) − 𝑈(𝑚)], 

resembling the contextual normalization. See Appendix C of Harrison and Swarthout [this 

volume] for a sensitivity analysis using this normalization. 

 Note that eq. 5 is the decision field theory model or DFT only for pairs like those found 

in the first experiment. For those choice pairs, DFT shares CU’s main property: Holding 

constant 𝜆 and 𝑤(𝑞ℎ), globally greater risk aversion (in the sense of Pratt) will imply a 

lower probability of choosing 𝑟𝑖𝑠𝑘𝑦 in all pairs on all contexts. The general formulation of 

𝐷(𝑟𝑖𝑠𝑘𝑦, 𝑠𝑎𝑓𝑒) in DFT, which is needed for the  estimations using data from the second and 

third experiments, depends on the underlying events that generate outcome probabilities 

as well as outcome utilities. Index events by 𝑒 = 1,2, … , 𝐸, let 𝑤𝑒 be the decision weight 

given to event 𝑒, and let 𝑢𝑒
𝑟𝑖𝑠𝑘𝑦

 and 𝑢𝑒
𝑠𝑎𝑓𝑒

 be the utilities resulting from the choice of options 

𝑟𝑖𝑠𝑘𝑦 and 𝑠𝑎𝑓𝑒, respectively, when event 𝑒 occurs. Then the general formulation of 

𝐷(𝑟𝑖𝑠𝑘𝑦, 𝑠𝑎𝑓𝑒) in decision field theory is: 

 

(A2)  𝐷(𝑟𝑖𝑠𝑘𝑦, 𝑠𝑎𝑓𝑒) = √∑ 𝑤𝑒(𝑢𝑒
𝑟𝑖𝑠𝑘𝑦

− 𝑢𝑒
𝑠𝑎𝑓𝑒

− ∆𝑅𝐷𝑈)
2

𝑒 . 
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 Busemeyer and Townsend (1992, 1993) derive DFT from a computational argument: 

The theory is one of the early “diffusion” models of probabilistic choice. A simple intuition 

can be given for the model. Suppose that a decision maker’s computational resources can 

effortlessly and quickly provide utilities of outcomes, and also suppose the decision maker 

wishes to choose according to relative RDU value; but suppose she does not have an 

algorithm for effortlessly and quickly multiplying utilities and weights together. The 

decision maker could proceed by sampling events in option pairs in proportion to their 

decision weights, keeping running sums of the sampled utility differences between the 

options, and choose when the summed differences exceed some threshold determined by 

the cost of sampling. In essence, the choice probability in eq. 5 results from this kind of 

sequential sampling decision procedure, which can be traced back to Wald (1947). 

Busemeyer and Townsend also show that, as the sampling rate gets large, the function 𝐹 

will be the logistic c.d.f.—the reason I employ the logistic c.d.f. throughout this work. 

 Because decision field theory’s 𝐷 function is defined in terms of events, with decision 

weights assigned to events rather than ranked outcomes, application of decision field 

theory to members of the rank-dependent family is only sensible if all choice options in an 

experiment are comonotonic. In this case, event weights and rank-dependent weights 

coincide, and all three experiments are structured in this way. For example, in the first 

experiment, lotteries 𝑟𝑖𝑠𝑘𝑦 all have probabilities 𝑞ℎ of receiving their high outcome that 

are in sixths, generated by the roll of a six-sided die. All lotteries are constructed so that 

𝑞ℎ = 𝑘 6⁄  is always the roll “1 or 2 or…𝑘”. So 𝑤(𝑘/6), the rank-dependent weight on the 

high outcome ℎ in risky, can always be thought of as the decision weight of the event “the 

die roll is 1 or 2 or…𝑘”, while 1 − 𝑤(𝑘/6), the rank-dependent weight on the low outcome 

𝑙 in risky, can always be thought of as the decision weight of the event “the die roll is 𝑘 + 1 

or 𝑘 + 2 or… 6.” The events and outcome ranks are identically ordered across all option 

pairs in each experiment: This is comonotonicity (see Quiggin 1993).   

 Blavatskyy’s (2014) stronger utility or SU model is a general approach to constructing 

probabilistic models of risky choice that will respect first order stochastic dominance or 

FOSD: That is, the model always attaches a zero probability to choice of first order 

stochastically dominated options. In its general form, the SU model begins with a definition 

of two important benchmark options. Let (𝑟𝑖𝑠𝑘𝑦 ⋁ 𝑠𝑎𝑓𝑒)  and  (𝑟𝑖𝑠𝑘𝑦 ⋀ 𝑠𝑎𝑓𝑒) denote the 
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least upper bound and greatest lower bound, respectively, on both 𝑟𝑖𝑠𝑘𝑦 and 𝑠𝑎𝑓𝑒 in terms 

of FOSD.8 Let 𝑉 denote the functional representation of option value for some decision 

theory. Then in the general SU model, 𝐷(𝑟𝑖𝑠𝑘𝑦, 𝑠𝑎𝑓𝑒) =  𝑉(𝑟𝑖𝑠𝑘𝑦 ⋁ 𝑠𝑎𝑓𝑒) −

𝑉(𝑟𝑖𝑠𝑘𝑦 ⋀ 𝑠𝑎𝑓𝑒), and 

 

(A3 ) 𝑃𝑟𝑑𝑏𝑓 = 𝑃𝑟𝑜𝑏(𝑟𝑖𝑠𝑘𝑦) = 𝐻𝜆 (
𝑉(𝑟𝑖𝑠𝑘𝑦)−𝑉(𝑠𝑎𝑓𝑒)

𝑉(𝑟𝑖𝑠𝑘𝑦 ⋁ 𝑠𝑎𝑓𝑒)−𝑉(𝑟𝑖𝑠𝑘𝑦 ⋀ 𝑠𝑎𝑓𝑒)
). 

 

For the choice pairs in the first experiment, (𝑟𝑖𝑠𝑘𝑦 ⋁ 𝑠𝑎𝑓𝑒) = (0,1 − 𝑞ℎ, 𝑞ℎ) and 

(𝑟𝑖𝑠𝑘𝑦 ⋀ 𝑠𝑎𝑓𝑒) = (1 − 𝑞ℎ, 𝑞ℎ, 0). Applying the RDU representation to these lotteries,   

 

 
(A4) 𝑅𝐷𝑈(𝑟𝑖𝑠𝑘𝑦 ⋁ 𝑠𝑎𝑓𝑒) − 𝑅𝐷𝑈(𝑟𝑖𝑠𝑘𝑦 ⋀ 𝑠𝑎𝑓𝑒) = 

𝑤(𝑞)𝑢(ℎ) + [1 − 𝑤(𝑞)]𝑢(𝑚) − 𝑤(𝑞)𝑢(𝑚) − [1 − 𝑤(𝑞)]𝑢(𝑙) = 

𝑤(𝑞)[𝑢(ℎ) − 𝑢(𝑚)] + [1 − 𝑤(𝑞)][𝑢(𝑚) − 𝑢(𝑙)], 

 

which is the denominator appearing in eq. 6 defining the SU model for these choice pairs.  

 Given a suitable choice of the function 𝐻𝜆, equivalence of eqs. A3 and 7 may be 

established as follows. Let 𝑅 = 𝑟𝑖𝑠𝑘𝑦 and 𝑆 = 𝑠𝑎𝑓𝑒. From eq. A3 and the definitions 𝑈 =

(𝑅 ⋁ 𝑆)  =  (0,1 − 𝑞ℎ, 𝑞ℎ) and  𝐿 = (𝑅 ⋀ 𝑆)  =  (1 − 𝑞ℎ, 𝑞ℎ, 0) for the option pairs in the first 

experiment, Blavatskyy’s model is 

 

(A5) 𝑃𝑟𝑑𝑏𝑓 = 𝑃𝑟𝑜𝑏(𝑅) = 𝐻𝜆 (
𝑉(𝑅)−𝑉(𝑆)

𝑉(𝑈)−𝑉(𝐿)
).  

 

Choose 𝐻𝜆(𝑥) = Λ [𝜆ln (
1+𝑥

1−𝑥
)]. For 𝑥 ∈ (−1,1), this has the needed properties 𝐻𝜆(0) = 0.5 

and 𝐻𝜆(𝑥) = 1 − 𝐻𝜆(−𝑥). With 𝑥 =
𝑉(𝑅)−𝑉(𝑆)

𝑉(𝑈)−𝑉(𝐿)
, we have 

 

 
8 That is, (𝑟𝑖𝑠𝑘𝑦 ⋁ 𝑠𝑎𝑓𝑒) stochastically dominates both 𝑟𝑖𝑠𝑘𝑦 and 𝑠𝑎𝑓𝑒, but is itself stochastically dominated by 

every other option that stochastically dominates both 𝑟𝑖𝑠𝑘𝑦 and 𝑠𝑎𝑓𝑒. Similarly, 𝑟𝑖𝑠𝑘𝑦 and 𝑠𝑎𝑓𝑒 both stochastically 

dominate (𝑟𝑖𝑠𝑘𝑦 ⋀ 𝑠𝑎𝑓𝑒), and every other option stochastically dominated by both 𝑟𝑖𝑠𝑘𝑦 and 𝑠𝑎𝑓𝑒 is itself 

stochastically dominated by (𝑟𝑖𝑠𝑘𝑦 ⋀ 𝑠𝑎𝑓𝑒).  
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(A6) 
1+𝑥

1−𝑥
=  

1+
𝑉(𝑅)−𝑉(𝑆)

𝑉(𝑈)−𝑉(𝐿)

1−
𝑉(𝑅)−𝑉(𝑆)

𝑉(𝑈)−𝑉(𝐿)

=
𝑉(𝑈)−𝑉(𝐿)+𝑉(𝑅)−𝑉(𝑆)

𝑉(𝑈)−𝑉(𝐿)+𝑉(𝑆)−𝑉(𝑅)
=

[𝑉(𝑈)−𝑉(𝑆)]+[𝑉(𝑅)−𝑉(𝐿)]

[𝑉(𝑈)−𝑉(𝑅)]+[𝑉(𝑆)−𝑉(𝐿)]
. 

 

Applying the RDU representation theorem to the four key options,  

 

(A7) 𝑉(𝑅)  =  𝑤(𝑞ℎ)𝑢(ℎ)  +  [1 − 𝑤(𝑞ℎ)]𝑢(𝑙),    𝑉(𝑆)  =  𝑢(𝑚),  

  𝑉(𝑈)  =  𝑤(𝑞ℎ)𝑢(ℎ)  +  [1 − 𝑤(𝑞ℎ)]𝑢(𝑚), and  

  𝑉(𝐿)  =  𝑤(𝑞ℎ)𝑢(𝑚)  + [1 − 𝑤(𝑞ℎ)]𝑢(𝑙). 

 

Substitute these into the four bracketed terms at the right end of (A6) to get 

 

(A8) [𝑉(𝑈) − 𝑉(𝑆)] = 𝑤(𝑞ℎ)[𝑢(ℎ) − 𝑢(𝑚)], 

  [𝑉(𝑅) − 𝑉(𝐿)] = 𝑤(𝑞ℎ)[𝑢(ℎ) − 𝑢(𝑚)],  

  [𝑉(𝑈) − 𝑉(𝑅)] = [1 − 𝑤(𝑞ℎ)][𝑢(𝑚) − 𝑢(𝑙)], and 

  [𝑉(𝑆) − 𝑉(𝐿)] = [1 − 𝑤(𝑞ℎ)][𝑢(𝑚) − 𝑢(𝑙)]. 

 

Clearly 
1+𝑥

1−𝑥
=

𝑤(𝑞ℎ)[𝑢(ℎ)−𝑢(𝑚)]

[1−𝑤(𝑞ℎ)][𝑢(ℎ)−𝑢(𝑚)]
, so the equivalence to eq. 7, given RDU and a suitable 

choice of 𝐻𝜆, has been established.  

 In the case of the second and third experiments, where 𝑠𝑎𝑓𝑒 = (𝑝𝑙, 𝑝𝑚, 𝑝ℎ) and 𝑟𝑖𝑠𝑘𝑦 =

(𝑞𝑙, 𝑞𝑚, 𝑞ℎ), we have (𝑟𝑖𝑠𝑘𝑦 ⋁ 𝑠𝑎𝑓𝑒) = (𝑝𝑙, 1 − 𝑝𝑙 − 𝑞ℎ, 𝑞ℎ) and  (𝑟𝑖𝑠𝑘𝑦 ⋀ 𝑠𝑎𝑓𝑒) =  (𝑞𝑙, 1 −

𝑞𝑙 − 𝑝ℎ, 𝑝ℎ). Algebraic steps resembling those from eqs. A3 to A8 lead to the following 

elaborated version of eq. 7 that is suitable for data from the second and third experiments:  

 

(A9)  𝑃𝑠𝑢 = 𝑃𝑟𝑜𝑏(𝑟𝑖𝑠𝑘𝑦) = 𝐹 [𝜆 ln (
[𝑤(𝑞ℎ)−𝑤(𝑝ℎ)][𝑢(ℎ)−𝑢(𝑚)]

[𝑤(1−𝑝𝑙)−𝑤(1−𝑞𝑙)][𝑢(𝑚)−𝑢(𝑙)]
)]. 

 

This particular instance of Blavatskyy’s (2014) stronger utility is also an instance of 

Fishburn’s (1978) incremental expected utility advantage model of probabilistic choice, so 

one might usefully refer to eq. A9 as the Blavatskyy-Fishburn model. 
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Appendix II: Estimation notes 

 

 All estimations were carried out in SAS 9.2 using the nonlinear programming 

procedure (“Proc NLP” in the SAS language) using the quasi-Newton algorithm.  For 

function-free estimations all parameters bounded in the interval [0,1], that is utilities and 

weights, were constrained to lie in [0.0001,0.9999]; additionally, monotonicity was 

imposed on estimated utilities and weights.  

 Monte Carlo simulations showed that both finite sample biases of parameter estimates 

and prediction log likelihoods could be noticeably improved by penalizing estimation that 

produced fitted probabilities very close to zero or one. By a grid search across Monte Carlo 

simulations, the following piecewise quadratic penalty function 𝑝𝑖(𝛉𝑠) was arrived at as a 

good kludge for penalizing such fitted probabilities: 

 

 𝑝𝑖(𝛉𝑠) = 0 if 𝑃𝑖
𝑠𝑝𝑒𝑐(𝛉𝑠) ∈ [0.001,0.999]; 

 𝑝𝑖(𝛉𝑠) = −10 ∙ (1 − 1000𝑃𝑖
𝑠𝑝𝑒𝑐(𝛉𝑠))

2

 if 𝑃𝑖
𝑠𝑝𝑒𝑐(𝛉𝑠) < 0.001; and 

 𝑝𝑖(𝛉𝑠) = −10 ∙ (1000𝑃𝑖
𝑠𝑝𝑒𝑐(𝛉𝑠) − 999)

2
 if 𝑃𝑖

𝑠𝑝𝑒𝑐(𝛉𝑠) > 0.999. 

 

This simply imposes a very steep but smoothly differentiable penalty on probabilities that 

wander within 0.001 of zero or one. The adjusted log likelihood function is 

 

 ℒ 𝑠𝑝𝑒𝑐(𝐫𝑠𝑒𝑡(𝑘)
𝑠 |𝛉𝑠) = ∑ ℓ𝑠𝑝𝑒𝑐(𝑟𝑖𝑡

𝑠|𝛉𝑠)𝑖𝑡∈𝑠𝑒𝑡(𝑘) + ∑ 𝜏𝑖𝑝
𝑖
(𝛉𝑠)𝑖 , 

 

where 𝜏𝑖 denotes the number of trials of pair 𝑖 in any experiment. This penalty was 

imposed on all maximum likelihood estimations. 

 For each subject and specification, estimations were started from a grid of starting 

parameter vectors to a “finalist” estimated vector from each starting vector, and the finalist 

with the best adjusted log likelihood was selected as the maximum likelihood estimate. 
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Appendix III: First experiment protocol explanation and instructions to subjects 

 

 I want to estimate utilities and weights without aggregation assumptions. Decision 

theories are about individuals, not aggregates, and aggregation mutilates and destroys 

many observable properties of decision theories (Wilcox 2008). A large amount of choice 

data from each subject is needed to reliably estimate utilities and weights at the individual 

level. A subject will become bored, and will become careless, if she makes hundreds of 

decisions at one sitting. So the decisions are divided up across three days, and on each day 

into two parts separated by unrelated tasks providing a break from decisions.  

 The separation across three days, in particular, introduces a risk that some substantial 

event altering a subjects’ wealth or background risks will occur between days, which could 

arguably undermine the assumption that utilities of outcomes and hence choice 

probabilities are stationary throughout the protocol. This is a risk I am willing to run to 

mitigate subject boredom with hundreds of choice tasks, and I can check whether 

distributions of risky choice proportions across subjects appear to be stationary across 

subjects’ three days of decisions.  No test finds any significant difference between these 

three daily distributions. Within-subject differences between risky choice proportions on 

the first and third day have zero mean by all one-sample tests. There is some evidence that 

decisions are less noisy on the second and third days versus the first day (see Wilcox 

2015). Econometric allowance for this (estimating a separate precision parameter for each 

day) has no qualitative effect on my results in Section 5. 

 Random problem selection or RPS is meant to result in truthful, motivated and 

unbiased revelation of preferences in each pair: That is, subjects should make each of their 

300 choices as if it was the only choice being made, for real, and there should be no 

portfolio or wealth effects making choices interdependent across the tasks. Both the 

independence axiom of EUT and the “isolation effect” of prospect theory would imply this. 

To see this for EUT, notice that the independence axiom in its “unreduced compounds” 

form (i.e. “compound independence”) implies 
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       (𝑟𝑖𝑠𝑘𝑦 with Prob = 1/300; 𝑍  with Prob = 299/300) 𝑟𝑖𝑠𝑘𝑦 ≽
𝑠𝑎𝑓𝑒     if and only if        ≽ 
       (𝑠𝑎𝑓𝑒 with Prob = 1/300; 𝑍  with Prob = 299/300) 
 

…where 𝑍  is any other outcome or risk, including the “grand lottery” created by the 

subject’s other 299 choices over the course of this experiment. Therefore, if subjects’ 

preferences satisfy independence in this unreduced compounds form, random problem 

selection should be incentive compatible. Some evidence suggests that preferences 

generally satisfy the independence axiom in its unreduced compounds form (Kahneman 

and Tversky 1979; Conlisk 1989), and older direct examinations of random problem 

selection in binary lottery choice experiments found no systematic choice differences 

between tasks selected with relatively low or high probabilities (Wilcox 1993) nor 

between tasks presented singly or under random problem selection (Starmer and Sugden 

1991), at least for relatively simple tasks like the pairs used here. The literature examining 

the RPS is moderately large; recent pessimistic evidence includes Harrison and Swarthout 

(2014) and Cox, Sadiraj and Schmidt (2015) while Brown and Healy (2018) found more 

optimistic evidence but only when using the SED (separated decisions) feature I use in my 

three experiments (each option pair is presented alone on its own separate screen in 

random order).  

 The choice pairs in Table 1 are on twenty-five distinct contexts, all constructed from 

nine positive money outcomes  ($40 to $120 in $10 increments). I want to estimate the 

utilities and weights in the function-free manner Hey and Orme (1994) pioneered for 

utilities, Hey et al. (2010) did for utilities and subjective probabilities, and Blavatskyy 

(2013) did for utilities and weights. Monte Carlo simulations showed that function-free 

identification of utilities, weights and scale parameters is greatly improved when the same 

events (the die rolls) are matched with many different outcomes on different contexts.  

 Finally, the choice of a six-sided die for the first experiment was deliberate. Sixths are 

well-suited for estimation given widely-held priors about the shape of weighting functions. 

Consider Prelec’s (1998) single-parameter weighting function 𝑤(𝑞|𝛾) = exp (−[−ln (𝑞)]𝛾) 

 q  (0,1), w(0)=0 and w(1)=1: Prelec proposed 𝛾 = 0.65 as a rough estimate consistent 

with other estimates using different weighting functions. At that value of 𝛾, 𝑞 − 𝑤(𝑞|0.65) 
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attains its maximum very close to q = 5/6; and at q = 1/6, 𝑞 − 𝑤(𝑞|0.65) ≈ −0.065, about 

80% of the minimum value taken by 𝑞 − 𝑤(𝑞|0.65) (this is about –0.081 at 𝑞 ≈ 0.07). So 

the differences between linear weighting (that is EU) and received priors concerning 

probability weighting are about as strong as they could be at q = 5/6 and q = 1/6.  
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Instructions [first experiment only] 
 
You will participate in 3 different sessions—one session on each of 3 different days. On each of the 
three days, you will make 100 choices from each of 100 pairs of monetary options. Some of the 
options will involve chance, in the form of a die roll. Option pairs will be presented to you as pie 
charts, on a computer screen: In each option pair you see, you will choose the option you would 
prefer to play.  
 
At the end of your third day with us, you will have made 300 choices over your three sessions. ONE 
of your 300 option choices will then be randomly selected using a bag of 300 tickets with the 
numbers 1, 2, 3,…, 299, 300 written on them. The numbers 1 to 100 correspond to the 100 choices 
you will make today, in the order you make them today. Likewise, the numbers 101 to 200 (and 201 
to 300) correspond to the 100 choices you will make on your second day (and then on your third 
day) with us, in the order you make them on those days. 
 
At the end of your third day with us, you will reach into the bag of tickets (without looking inside), 
pull one out and show us the number. We will then enter that number into the computer,  and it will 
recall that option pair and show the option you chose. That option will determine your payment for 
participation in this project. If the option you chose requires a die roll, we will then roll a six-sided 
die to determine your payment. 
 
Notice that since every option pair choice you make has a 1 in 300 chance of determining your 
payment for participation, you have a real reason to consider each option pair with equal care. Also, 
notice that only one of your 300 option pair choices will determine your payment. 
 
Please note that you won’t be able to use a calculator, or pencil and paper, to make your choices. 
That would take too long for 100 choices…our lab schedule will not accommodate this. 
 

Left Option

 
 
 
 
 
 

Right Option 
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(Instructions to subjects—continued) 
 
An example of an option pair is shown above. The left option is a 1 in 6 chance of $90 and a 5 in 6 
chance of $40: If you chose this option and it was selected to determine your payment, a die roll 
would be needed to determine the payment. The right option is a sure $50: If you chose this option 
and it was selected to determine your payment, no die roll would be needed. 
 
The option pair you just saw is only one example. The money outcomes in the option pairs you see 
will range from $40 to $120, in ten dollar increments. Also, the connection between die rolls and 
money outcomes varies a lot over those options that involve a die roll, so remember to notice those 
die rolls when new option pairs appear on the screen for your consideration. Finally, note that the 
computer will present option pairs to you in a randomized order, and will also randomly select the 
left/right placement of the options in each pair. So you do not want to assume that option pairs 
appear in any kind of patterned sequence: They do not. The computer will remember the exact 
sequence, as well as what you chose, so that you can be paid properly on your last day with us. 
 
Some questions for a break 
 
It is difficult to maintain good attention over 100 choices. Even though the amounts of money in 
option pairs are not small, almost anyone will get a bit bored with making these kinds of choices 
after awhile.  
 
Partly for that reason, the 100 option pair choices will be broken into two halves (50 pairs in each 
half) on each day. Between the halves, on each day, you will answer some survey questions and 
respond to some questionnaire items. This will go pretty quickly on all three days (a little longer on 
the second day), and will give you a break each day from the option pair choices.  
 
You'll be able to do everything at your own pace. We believe that each session will last about one 
hour for most people on most days, but remember that we expect you to have 90 minutes available 
on each day, so that you are not rushed. 
 
If there is anything you do not understand, please ask us. We will be happiest if you understand 
exactly how your decisions affect you: We want you to be able to do well for yourself, whatever you 
believe “doing well” is. We encourage you to do what you want.  
 
Finally, the money for this study comes from grants. This money is earmarked for payment to 
student participants. We have no alternative use for this money: It must be paid out to participants 
like you. We must of course make payments only in accordance with the procedure we have 
described above. But do not worry about taking that money from us: It is specifically earmarked for 
this and we cannot use it for anything else. We say this, only because some students worry about 
taking such money from professors. You should not worry about it. The money is grant money, not 
Dr. Wilcox’s money, and it is earmarked specifically for paying out to student participants like 
yourself. 




