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Abstract

Accurately estimating risk preferences is of critical importance when
evaluating data from many economic experiments or behavioral interactions.
I conduct power analyses over two lottery batteries designed to classify
individual subjects as one of a number of alternative specifications of risk
preference models. I propose a conservative case in which there are only two
possible alternatives for classification and find that the statistical methods
employed to conduct this classification result in type I and type II errors
at rates far beyond traditionally acceptable levels. Following a Bayesian
approach, I additionally find that the proportion of agents in a population
that employ each model critically informs the probability that subjects are
correctly classified.
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1 Introduction

In response to growing evidence that some subjects in economic experiments

violate one or more axioms of Expected Utility Theory (EUT), several alternative

models were proposed which allow for the apparent violations. Prospect Theory

(Kahneman and Tversky 1979), Rank Dependent Utility (RDU) (Quiggin 1982),

and Regret Theory (Bell 1982; Loomes and Sugden 1982) are among the best known

of these alternative models. Many of the newly proposed theoretical explanations

of the apparent violations of EUT have been tested experimentally. A well known

example is the experiment of Hey and Orme (1994) (HO) to test if any of a variety

of generalizations (and one restriction) of EUT can explain experimentally collected

data significantly better than EUT. HO picked “winning” model specifications for

each of their subjects on the basis of the estimates of each model and whether each

model can be statistically distinguished from EUT using information criteria that

punished the use of additional parameters. They conclude, “our study indicates that

behavior can be reasonably well modeled (to what might be termed a ‘reasonable

approximation’) as ‘EU plus noise.’”

However, HO raise concerns that as the number of alternative specifications

being tested increases, the probability that EUT will be selected as the “winning”

model will decline, even if EUT is the correct specification. These concerns relate

to statistical power, and to the weight economists should place on type I versus

type II errors. The degree of confidence in the process employed by HO to pick

winning models, and indeed most statistical tests in the economics literature, can

be assessed through power analyses.

Power analyses are rarely conducted in parallel with econometric estimation.
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McCloskey and Ziliak (1996, p. 105) find that only 4.4% of the 182 papers published

in The American Economic Review in the 1980s reported the power of the test they

were performing. Zhang and Ortmann (2013, p. 6) review all papers published in

Experimental Economics for the years 2010-2012, and find that no paper stated

the optimal sample size for their analyses, and only one paper mentions power as

an issue.

Retroactive power analyses of published research and attempted replication of

experiments has led to a recent reconsideration of claims of statistical significance

in published research across many fields. De Long and Lang (1992) propose a

measure of the fraction of unrejected null hypotheses that are, in fact, false, in

economic journal articles, and infer that less than one third of unrejected null

hypotheses are true. Ioannidis (2005) bluntly notes that in the medical sciences “It

can be proven that most claimed research findings are false.” Gelman and Loken

(2014, p. 460) write, “There is a growing realization that reported ‘statistically

significant’ claims in scientific publications are routinely mistaken.”

Continuing the scrutiny around claims of statistical significance, I conduct

power analyses of the ability of two risky lottery batteries to correctly distinguish

between two possible data generating processes (DGPs), an EUT model and an

RDU model. I analyze the original lottery battery proposed by HO and the battery

proposed by Harrison and Ng (2016) (HN). The subjects in both studies made

choices across many lottery pairs, a “winning” model was selected for each subject

on the basis of that subject’s choices, and the selected model was critical to the

inferential objective of the study.

HO was directly concerned with whether their subjects systematically deviated

from EUT, while HN was directly concerned with inferences about the consumer
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surplus for each of their subjects. The effect of deviations from EUT are of critical

importance to the evaluation of subjective beliefs (Andersen, Fountain, Harrison

and Rutström 2014), the calculation of consumer surplus (Harrison and Ng 2016),

the calculation of discount factors (Andersen, Harrison, Lau and Rutström 2008),

the applicability of the reduction of compound lotteries axiom (Harrison, Martínez-

Correa and Swarthout 2015), and behavior in strategic interactions.

I begin by briefly describing the EUT and RDU DGPs, followed by a description

of the power analysis process. I then discuss the experimental designs and inferential

objectives of HO and HN. Finally, I present the results of a power analysis of the

ability of the two experimental batteries used in HO and HN to classify subjects

as either EUT or RDU, and apply these results to a hypothetical population using

Bayes’ Theorem.

2 The Data Generating Processes

HO and HN select a “winning” model specification for each of their subjects

from 11 and 4 different candidate specifications, respectively. As noted by HO,

as the number of alternatives increase, the frequency at which EUT is rejected

as the true DGP will also increase, even if EUT is the true DGP. Accordingly, a

conservative case for model classification is presented in which choice data produced

by subjects can only be generated by two possible DGPs and experimenters seek

only to discern which of these two DGPs an individual subject employs. The

first of these two DGPs is an EUT model and the other is an RDU model with

a probability weighting function (PWF) due to Prelec (1998). Since RDU nests
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EUT as a special case, both DGPs can be defined using the RDU framework:

RDU =
C∑
c=1

[wc(p)× u(xc)] (1)

where c indexes the outcomes, xc, of a lottery from {1, . . . , C} with c = 1 being the

smallest outcome in the lottery and c = C being the greatest outcome in the lottery,

u(·) is a standard utility function, wc(·) is a decision weight function associated

the probability of outcome c given the distribution of probabilities in the lottery

ranked by outcome, p. The decision weight function, wc(·), takes the form:

wc(p) =


ω

(
C∑
k=c

pk

)
− ω

 C∑
k=c+1

pk

 for c < C

ω(pc) for c = C

(2)

where the PWF, ω(·), can take a variety of parametric or non-parametric forms.

The special case of EUT, where the PWF gives the objective probabilities, is used

as the first DGP:

ω(pc) = pc (3)

and an RDU model with the two parameter PWF proposed by Prelec (1998) as

the second DGP:

ω(pc) = exp(−η(− ln(pc))φ) (4)

where φ, η > 0.

To complete the model in (1), the utility function is defined as the constant

relative risk aversion (CRRA) function:

u(x) = x1−r

1− r (5)

To account for randomness in the choices of real subjects, the RDU model in
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(1) is combined with a stochastic specification in which the preference of A over B

is related to the probability of A being chosen over B:

A � B ⇒ Pr(A) ≥ Pr(B) (6)

The Contextual Utility (CU) stochastic model of Wilcox (2011) is used to relate

the RDU of an option to its choice probability. Thus the probability that option

A is chosen is given by:

Pr(A) = Pr
(
ε ≥ 1

λ
[RDU (A)−RDU(B)]

)
= F

(
RDU(A)−RDU(B)

D(A,B)λ

) (7)

where ε is a mean 0 error term, F is a symmetric cumulative distribution function

(cdf) and λ is a precision parameter. The function D(·) provides the “contextual-

ization” that gives CU its namesake and is defined as the difference between the

utility of the maximum and minimum possible outcomes across lotteries A and B:

D(A,B) = max [u(x)]−min[u(x)], st. w(p) 6= 0 (8)

The logistic cdf is used for F for all calculations. Given that each choice

considered here only involves two options, the probability of choosing option A can

be defined as a multinomial logit function:

Pr(A) =
exp

(
RDU(A)
D(A,B)λ

)

exp
(
RDU(A)
D(A,B)λ

)
+ exp

(
RDU(B)
D(A,B)λ

) (9)

The two data generating processes therefore consist of an EUT model and an

RDU model which have the utility function and stochastic specification in common,
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and differ only by the treatment of decision weights in (1).

3 The Studies Under Consideration

3.1 Hey and Orme (1994)

HO conducted an experiment over four days in which 80 subjects completed

a single task on each day. In two of these tasks, Circles 1 and Circles 2, subjects

were presented with 100 lottery pairs on a computer screen and asked whether

they would prefer to play out the lottery on the left, the lottery on the right, or if

they didn’t care which lottery would be played out. Subjects were told that once

they had answered all 100 questions, one would be chosen at random and their

choice played out for money. If they selected “don’t care” the experimenter selected

which lottery was played out. The 100 lottery pairs comprised 25 lottery pairs

repeated 4 times with the order of the pairs presented to the subjects at random.

The same lotteries were used in Circles 1 and Circles 2, with the order of the pairs

re-randomized and the position of the lottery on the screen randomly reversed.

HO estimate 11 different model specifications of choice under risk using max-

imum likelihood (ML) on the data from Circles 1, Circles 2, and Circles 1 and

Circles 2 combined (Circles 3 ) for each subject. Of these specifications, one was a

risk neutral (expected value) model, one was an EUT model, and two were RDU

specifications. Of the remaining seven specifications, all but one nested EUT and

expected value as special cases.

The process of choosing a “winner” across all 11 model specifications involved

testing for a statistical difference from nested models using a likelihood ratio test,
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and then ranking the specifications on the basis of the Akaike information criteria

(AIC).1 First, all of the models were tested to see if they were statistically different

from expected value at the 1% level; if none were, expected value won. If EUT and

at least one of the 8 specifications that nested EUT significantly deviated from

expected value, then the non-EUT models were tested to see if they deviated from

EUT; if none did, EUT won. If only one deviated from EUT, it won, but if two or

more specifications were different from EUT, the winner was chosen on the basis

of the AIC.

HO report that the EUT model generally wins across more subjects in the

Circles 1 and Circles 2 datasets than any other model, though it does not win for

a majority of subjects across any single dataset. HO also report that for any given

binary test of EUT and a specification that nests EUT, EUT cannot be rejected at

the 1% level as the DGP for more than half of their subjects using any data set.

3.2 Harrison and Ng (2016)

HN conduct an experiment in which 111 subjects responded to two tasks. In

the first task subjects were asked to make binary choices over 80 lottery pairs. In

the second task subjects were asked to make 24 binary choices in an insurance task.

A “winning” model specification estimated from the first task was then used to

calculate the consumer surplus of the choices made in the insurance task.

The battery of lotteries was specifically designed to establish whether experimen-

tal subjects’ behavior was more consistent with EUT or some RDU specification.

HN follow the design of Loomes and Sugden (1998) in this regard, with 40 lottery
1The Akaike information criteria is given by AIC = −2logL(α̂)/T + 2k/T , where L(α̂) is the

log-likelihood of the model at its estimated maximum, k is the number of parameters for that
model, and T is the number of observations.
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pairs on the border of a Marschak-Machina (MM) triangle, and 40 lottery pairs in

the interior. HN estimate three RDU and one EUT specification for every subject.

All four specifications employed the CRRA function defined in (5) as the utility

function, and the CU stochastic function defined in (7) and (8). For the three RDU

specifications, HN employed as the PWFs the “power” function, the “Inverse-S”

function, and the two parameter function described in (4).

To select a winner, HN first used a non-linear Wald test to determine if the

PWF of each RDU specification was significantly different from a linear function,

the special case of EUT. If not, the RDU model was dropped from consideration.

Of those RDU models remaining, the model with the greatest log-likelihood was

selected as the “winner.” Using this process, HN found that EUT won for nearly

half of their subjects, with the RDU model employing the Prelec (1998) PWF a

close second, and the RDU models employing the “Inverse-S” and “Power” PWFs

distant runners up.

4 Power Analysis Procedure

HO and HN both classified their subjects by first testing if the RDU specification

was statistically different from EUT, and then selected a “winner” on the basis of

either the log-likelihood for HN or the AIC criterion for HO. The null hypothesis

for both studies was that the subject did not employ probability weighting. The

following power analyses estimate the probability that a subject with an EUT DGP

is falsely classified as employing an RDU DGP, a type I error, and the probability

that a subject with an RDU DGP is falsely classified as employing an EUT DGP,
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a type II error.2 With two possible DGPs, and two models to estimate, there are

four possible results of a classification when both models have converged, shown in

Table 1.

Table 1: Possible Results of Classification

EUT DGP RDU DGP
Classified EUT Null correctly unrejected Type II error
Classified RDU Type I error Null correctly rejected

Simulation methods similar to those described by Feiveson (2002) are used to

analyze the power of the batteries used by HO and HN. Feiveson (2002, p. 108)

briefly describes a simulation method for determining the power of an experiment

by repeatedly generating hypothetical data, and then calculating the proportion of

rejections of the null hypothesis as an estimate of power.

A simulated subject is represented by an assigned DGP and an associated set

of parameters. Each DGP uses the CRRA utility function defined in (5) and the

CU stochastic model in equations (7) and (8), with the RDU model additionally

employing the PWF defined in (4). For EUT subjects, the parameter set consists

of {r, λ}, and for RDU subjects {r, φ, η, λ}, where r gives the CRRA parameter, λ

the CU precision parameter, and φ and η the probability weighting parameters.

Each DGP’s parameter sets are drawn from a joint uniform distribution with

uncorrelated marginal distributions over the parameters needed. For the EUT
2Typically, when a test indicates the probability of a type I error to be less than 5%, social

scientists consider this result “statistically significant,” and when researchers engage in ex ante
power analysis, they typically aim for a probability of a type II error less than 20% (Cohen 1988;
Gelman and Loken 2014). These values are based on convention, and are somewhat arbitrary.
Ronald Fisher disagreed with picking the same level of statistical significance for every analysis:
“[. . .] no scientific worker has a fixed level of significance at which from year to year, and in all
circumstances, he rejects hypotheses; he rather gives his mind to each particular case in the light
of his evidence and his ideas” (Fisher 1956).
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DGP, the marginal distribution for r is r ∈ [0, 1] and for λ is λ ∈ [0.05, 0.30].

For the RDU DGP the marginal distributions are r ∈ [0.4, 0.6], λ ∈ [0.1, 0.15],

φ ∈ [0.5, 2.5] and η ∈ [0.5, 2.5]. These values roughly conform to the ranges of

parameter estimates on data generated by real, human subjects.3 The marginal

distributions of the r and λ distributions are narrower for the RDU DGP in order

to focus on how the probability weighting parameters affect the classification of

RDU subjects.

The simulation process is as follows. First, a simulated subject is assigned a

DGP, either EUT or RDU, and a set of parameters is drawn from the associated

joint distribution defined above. Second, for each battery, the choice probability of

lottery A and lottery B is calculated for every lottery pair using the assigned DGP

and the associated parameter set drawn for the subject. Finally, a random number

is then drawn from an univariate uniform distribution. If the choice probability

calculated for the A option exceeds the random number the subject “chooses” A,

otherwise they choose B. This ensures that choices are made probabilistically with

respect to the subject’s assigned DGP and drawn parameter set.4

The EUT and RDU models are then estimated over the simulated subject’s

choices. Any model that does not converge with a gradient close to 0 and a positive

definite Hessian matrix is dropped. Subjects are then classified as one of the two

possible models following the HN classification process. To classify subjects, the

probability weighting parameters are jointly tested for equality to 1, and then the

log-likelihoods of the EUT and RDU model are compared. If the p-value of the
3See the Appendix of HN for estimates of typical university students in the United States,

and Harrison and Rutström (2008) for additional reviews of studies with real human subjects.
4Consider a choice probability calculated to be 0.90 for option A, and therefore 0.10 for option

B. A random number drawn from an univariate uniform distribution has a 90% chance of being
less than or equal to 0.90, so option A would be chosen 90% of the time by the simulated subject.
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test of the probability weighting parameters is not less than 5%, the subject is

classified as EUT. If it is less than 5%, the subject is classified as the model with

the greatest log-likelihood. If only one of the two models converge, the subject

is classified as the converged model, if neither model converge, the subject is not

classified and is dropped from the dataset.

5 Results

For each DGP, the probabilities of being correctly classified are presented for

the HO and HN batteries For the EUT DGP the simulated {r, λ} parameter space

is partitioned into a 16× 16 equally spaced grid. For the RDU DGP the simulated

{φ, η} parameter space is partitioned into a 16× 16 equally spaced grid. For the

EUT DGP this grid represents the entire parameter space needed to define the

model, but for the RDU DGP this grid only shows variation across the probability

weighting parameters.

5.1 EUT DGP

Figures 1 and 2 show how the probability of being correctly classified varies

across r and λ for the HO and HN batteries, respectively. In both figures, darker

colors represent lower probabilities of correct classification and lighter colors repre-

sent higher probabilities of correct classification. The probability that a subject is

correctly classified is displayed numerically every third cell.

Figures 1 and 2 show that the HO and HN batteries have similar patterns of

correct classification across the r and λ parameters. As expected, as λ increases, the

probability that a subject with an EUT DGP is correctly classified monotonically
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decreases. The “noisiness” of the data is directly influenced by λ; as λ rises, so

does the noise. As the noise in any data increases, we expect the probability of a

type I error to increase.

For both batteries, the probability correct classification peaks for values of r

between 0.4 and 0.6, the middle of the range of r values considered. In other

words, the power of these batteries to correctly classify a subject as EUT is lower

for subjects that are either very risk averse or not risk averse at all compared to

subjects that are moderately risk averse, though not by much in the considered

range of parameters.

In general, the affect of the r and λ parameters on the probability of correctly

classifying a subject are as expected. There is every reason to believe that as data

gets noisier, the probability of type I errors increases (the effect of the λ parameter),

and that the power of an battery to identify risk aversion is greatest in the ranges

indicating moderate risk aversion (the effect of the r parameter). However, of

greater interest are the absolute probabilities of correct classification.

Consider the range of parameters for the EUT DGP where r ∈ (0.31, 0.37) and

λ ∈ (0.10, 0.11).5 Subjects in this range would fall in the cell four columns from the

left and six rows from the bottom in Figures 1 and 2, outlined by a red square in

each figure. Subjects in this range have a 92% chance of being correctly classified

as EUT with the HO battery and an 85.22% chance with the HN battery. This

implies a type I error rate of 8% for the HO battery and 14.78% for the HN battery.

Both batteries have wide ranges of parameter values where the probability of a

type I error exceeds the typically required 5%. The probability of a type I error

can be as high as 23.51% for the HO battery and 35.43% for the HN battery at the
5The r parameter of subject 8 given as an example in HN (pg. 104) would fall in this range.
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extreme edges of the parameter ranges considered here. But within the range of r

values that give both batteries their greatest power, r ∈ [0.31, 0.62], and the range

of λ values that are generally estimated from human subject data, λ ∈ [0.10, 0.16],

the probability of a type I error is 7.74–14.82% for HO and 13.73–25.6% for HN.

Both batteries have rates above the 5% typically cited as the threshold for statistical

significance in the social sciences.

5.2 RDU DGP

Now presenting the results for the RDU DGP, the relevant parameter space is

again partitioned into an equally sized 16× 16 grid. This time, however, Figures

3 and 4 show how the probability of an RDU subject being correctly classified

changes with the probability weighting parameters, φ and η.

In contrast to the r and λ parameters in Figures 1 and 2, the φ and η parameters

in Figures 3 and 4 show more interaction in determining the probability of RDU

subjects being correctly classified. When φ = η = 1, the PWF becomes linear

and the RDU model reduces to EUT. As expected, the probability of correctly

classifying RDU subjects is extremely low near these values for both batteries, and

at it greatest for values of φ or η much larger, or much smaller than 1.

Even when excluding parameter values 0.75 < φ, η < 1.38, i.e. excluding values

near the special case where RDU reduces to EUT, the probability of a type II

error6 can be up to 93.44% and is never lower than 24.11% for the HO battery and

up to 88.58% and never lower than 37.51% for the HN battery.

For a subject with φ = .74 and η = .70,7, outlined in red in Figures 3 and 4,
6Recall that a type II error in this analysis is 1 minus the probability of correctly classifying

an RDU subject.
7These are the values estimated for subject 8 in HN (p. 104).
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Figure 1: Hey and Orme (1994)
Probability of Correct Classification, EUT DGP
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Figure 2: Harrison and Ng (2016)
Probability of Correct Classification, EUT DGP
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Figure 3: Hey and Orme (1994)
Percentage of RDU Winners, RDU DGP
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Figure 4: Harrison and Ng (2016)
Percentage of RDU Winners, RDU DGP
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the probability of a type II error is 63.25% for the HO battery, and 58.61% for the

HN battery. These rates of error are also far beyond the 20% typically referenced

as a target limit for type II errors.

6 Power in a Hypothetical Sample

The previous analyses show how the probability that a subject with a given DGP

will be correctly classified depends on the parameters they employ. Bayes’ Theorem

can be used to additionally infer the probability that a subject is correctly classified

given their observed classification and knowledge of the subject’s population. Bayes’

Theorem stipulates:

P (A|B) = P (B|A)P (A)
P (B) (10)

Applying Bayes’ Theorem to this problem, A indicates a subject actually

employs a particular DGP, and B indicates the subject is classified as a particular

DGP. Consider the case where A indicates a subject employs EUT and B that the

subject is classified as RDU. P (A) is therefore the probability that a subject actually

employs the EUT, and P (B) is the probability that a subject is classified as RDU.

P (B|A) gives the probability of a subject being classified as RDU given that they

actually employ EUT. Finally P (A|B) is the probability that a subject actually

employs EUT given that they are classified as RDU. The conditional probability

P (A|B) is important because the classification of the subject is observed, while

the actually employed DGP is unobserved.

P (A) and P (B) can be calculated by assuming a hypothetical sample. Consider

a population made of 70% EUT and 30% RDU agents. P (AEUT) would therefore

be 0.7 and P (ARDU) 0.3. P (B) can be calculated using the law of total probability
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as P (B) = P (B|AEUT )P (AEUT ) + P (B|ARDU)P (ARDU), where P (B|A) is given

by the analyses in the previous sections.

In the following, parameters grounded in the real data produced by the subjects

in the HN laboratory experiments are used to calculate P (B|A). The EUT and

RDU models are estimated for each real, human subject in the HN data and used

to classify the subject as either EUT or RDU. Then, all subjects classified as EUT

(RDU) are pooled together and an unconditional, representative agent EUT (RDU)

model is estimated over these pooled data. The estimated parameters from each

pooled model are used to define a hypothetical joint distribution of parameters for

the EUT and RDU DGPs. For the both DGPs, the r parameter is distributed as

r ∼ N (0.5, 0.1) and the λ parameter as λ ∼ Lognormal(0.1, 0.02). For the RDU

DGP, the φ and η parameters are additionally defined as φ ∼ Lognormal(1.5, 0.1)

and η ∼ Lognormal(0.7, 0.1).

Two hypothetical populations of EUT and RDU subjects are proposed, one that

is 70% EUT and 30% RDU subjects, and one that is 70% RDU subjects and 30%

EUT subjects. These values give P (A) for each model. With the joint distributions

of parameter sets defined for each of the EUT and RDU DGPs, each distribution is

sampled 10,000 times, and the average P (B), P (B|A), and P (A|B) are calculated

for each population and each battery. Tables 2 and 3 show the results for the HO

and HN batteries for the 70% EUT population. Tables 4 and 5 show the results

for the HO and HN batteries for the 70% RDU population.

This Bayesian exercise presents a more complex picture than the simple power

calculations. Take for instance, Tables 2 and 4, showing the HO battery with a 70%

EUT population and a 70% RDU population, respectively. The probability that a

subject employing RDU is correctly classified is the same across both populations,
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P (B|A) = 0.282. However, since the classification of the subject, B, is observed

and not the DGP they employ, A, these tables make clear that the proportion of

subjects that employ the DGP in the general population, P (A), critically informs

whether the observed classification matches the DGP the subject actually employs.

There is a 29% difference in the probability of the subject employing RDU given

they have been classified as RDU, P (A|B), solely due to the difference in the

proportion of subjects that actually employ the RDU DGP in the two populations.

Table 2: Hey and Orme (1994), 100 choices, 70% EUT Sample

Model P (A) P (B) P (B|A) P (A|B)
EUT 0.7 0.861 0.922 0.750
RDU 0.3 0.139 0.282 0.608

Table 3: Harrison and Ng (2016), 80 choices, 70% EUT Sample

Model P (A) P (B) P (B|A) P (A|B)
EUT 0.7 0.812 0.863 0.744
RDU 0.3 0.188 0.307 0.490

Table 4: Hey and Orme (1994), 100 choices, 70% RDU Sample

Model P (A) P (B) P (B|A) P (A|B)
EUT 0.3 0.779 0.922 0.355
RDU 0.7 0.221 0.282 0.894
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Table 5: Harrison and Ng (2016), 80 choices, 70% RDU Sample

Model P (A) P (B) P (B|A) P (A|B)
EUT 0.3 0.744 0.863 0.348
RDU 0.7 0.256 0.307 0.840

7 Conclusions

Accurate estimates of risk preferences are of critical importance when seeking

to explain choice behavior of agents in a wide variety of economic environments. I

present a conservative case to test the statistical power of two lottery batteries to

distinguish between two possible DGPs. I conduct power analyses to estimate the

probability of type I and type II errors when classifying subjects as either EUT or

RDU and come to two general conclusions.

First, the probability of type I and type II errors are much greater than the

5% and 20% significance levels often cited in the social sciences as indicating

statistically significant results. My analyses shows that the probability of a type

I error for the HO battery is often above 10%, and often above 20% for the HN

battery. The probability of a type II error can be as high as 95.21% for the HO

battery and 89.89% for the HN battery.

Secondly, the conditional probability that a subject classified as EUT or RDU

actually employs the EUT or RDU model critically depends on the percentage of

subjects who actually employ each model in the population. This should be of no

surprise to Bayesians, but analyses of individual level risk preferences are almost

never conditioned on priors about the population. These analyses show that even
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when the probability of a type I error is low (1 − P (AEUT|BEUT) < 10%), the

conditional probability that a subject classified as EUT employs the EUT DGP can

be less than 40% depending on the percentage of EUT subjects in the population.8

It is hard not to conclude that the effort of HO to determine if there was

substantial evidence that subjects in experiments employed DGPs other than EUT

was fraught with the statistical power issues that they suspected lingered behind

their analyses. In comparing both the HO and HN batteries it is apparent that

the lack of statistical power was not unique to HO, and may be a general problem

when estimating risk preference models at the individual level.

What cannot be concluded from this analysis is the extent to which the lack

of power in classifying the DGP of subjects leads to other inferential problems.

Drawing inferences about subjective beliefs, consumer surplus, discount factors, and

the applicability of the reduction of compound lotteries axiom all depend on the

accuracy of risk preference estimates, and critically on whether the independence

axiom of EUT is systematically violated by subjects. Additional analyses are needed

to determine the rates of type I and type II errors in these extended inferential

objectives, and the cost of these errors, that are due to the propagation of type I

and type II errors in the model classification stage.

The paths available to improve the statistical power of batteries in identifying

underlying DGP are somewhat unclear. A standard frequentist prescription might

be to increase the sample size until sufficient statistical power is reached. While this

may be appropriate if experimenters were concerned with inferences over a pooled

sample, in which case only the number of subjects in an experiment would need to

be increased, increasing the number of choices required by each subject to the degree
8Shown in Table 4.
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needed is likely not feasible.9 Increasing the statistical power of individual level

classification will require the investigation of qualitative aspects of the batteries

used and potentially the application of different econometric techniques.
9Analyses in Appendix A show that even increasing the size of the batteries to several hundred

lottery pairs per subject is of limited value.
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Appendix A: Scaled Batteries

The analyses in Section 5 show the differences in the rates of type I and type

II errors for the EUT and RDU DGP across the HO and HN batteries. There are

some mild differences in the error rates across the batteries for the EUT DGP and

some more pronounced differences for the RDU DGP. However, the absolute rates

of error across the two batteries are similar. Both have rates of type I errors in

an acceptable range if the noise in the data is sufficiently low, and both batteries

have exceedingly high rates of type II errors for the given parameter ranges.

Some of these differences in rates of error might be explained by the batteries

having different numbers of choices per subjects. The simulation analysis described

previously is repeated, but with each simulated subject responding to the HO

battery 4 times and the HN battery 5 times. This results in each simulated subject

making 400 choices for each battery. I refer to the scaled HO battery as HO400

and the scaled HN battery as HN400. The results for the EUT DGP are presented

in Figure A.1 for the HO400 battery, and Figure A.2 for the HN400 battery. The

results for the RDU DGP are presented in Figure A.3 for the HO400 battery, and

Figure A.4 for the HN400 battery.

As might be expected, the same patterns relating the parameters of interest

and the probability a subject is correctly classified that was seen when subjects

responded to the original HO and HN batteries are observed for the HO400 and

HN400 batteries. For both the HO400 and HN400 batteries, the probability of a type

I error increases monotonically with the λ parameter for the EUT DGP, and the

probability of a type I error is lower for the range of r values in middle of the

considered range, roughly r ∈ (.3, .6). The probability of a type II error is greatest

26



for the parameter values near φ = η = 1, where the RDU model reduces to EUT.

The probability of type I and type II errors are lower for the HO400 and

HN400 batteries than for the HO and HN batteries for the entire parameter ranges

considered. This suggests, unsurprisingly, that the probability of type I and II

errors monotonically decrease as the number of choices per subject increases. For

the HO400 battery, the probability of a type I error is less than or equal to 14.31%

for the entire range of parameters considered and the probability of a type I error

for the HN400 battery is below 24.96% for the entire range of parameters. Both

batteries show considerable increases in power over their original implementations.

However, the probability of a type I error is still greater than 5% for both batteries

across most of the parameter ranges considered, particularly when values of λ are

large.

For parameter values such that φ, η > 1.38 and φ, η < 0.75, values far from the

EUT special case, the probability of a type II error is always less than or equal

to 68.62% for the HO400 battery and 67.9% for the HN400 battery. The median

rate of a type II error in this range of φ and η values is 7.36% and 18.14% for the

HO400 and HN400 batteries, respectively. Generally, the probability of correctly

classifying RDU subjects is much greater than the original implementation of the

HO and HN batteries.

It is intuitively sensible that the relationships between the values of the param-

eters and the probability that subjects are correctly classified should be similar

between the HO and HN batteries and the HO400 and HN400 batteries. In scaling

the batteries, the salient aspects of the lottery pairs remain unchanged for either

battery, the only difference is the number of likelihood scores in the likelihood

function. Thus, it is also sensible that there are large increases in the probability

27



of correct classification (and therefore large decreases in the rates of type I and

type II errors) for the HO400 and HN400 batteries given the additional likelihood

scores.

However, these results present additional questions for experimenters concerned

with statistical power. Firstly, while it is clear that one can improve the statistical

power of these batteries by requiring subjects to respond to more questions, these

results show that increasing the sample size is not a panacea. For both batteries,

the RDU DGP with 400 choices per subject still produces type II errors with

greater than 20% probability for large portions of the parameter ranges considered,

even when the parameters are relatively far from φ = η = 1. Subjects with an RDU

DGP and parameters in the range of 1.37 < φ < 1.5 and .6 < η < .75, outlined in

red in Figures A.3 and A.4, still have a 50.18% chance of producing a type II error

with the HO400 battery and a 55.07% chance with the HN400 batteries.10

Secondly, 400 choices is generally beyond what many experimenters consider

reasonable to ask subjects in a single experimental session, especially when accurate

estimates of risk preferences are only a part of the inferential objectives of a study.

Hey (2001) conducted an experiment in which subjects make choices over 500

lottery pairs, but do so over the course of 5 days. Background risk factors salient to

subjects’ choices over lottery pairs may change from day to day and experimenters

may want subjects to make all of their choices in one session to help mitigate the

effect of background risks.

The analysis of these batteries, both scaled so that they have the same number

of lottery pairs, also raise additional questions about what qualitative aspects of

the battery improve statistical power. Even when both batteries have the same
10The estimated parameters of subject 74 from HN falls in this range.
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number of lottery pairs, it appears that the HO battery has increased statistical

power in the parameter ranges considered over the HN battery. This suggests

that qualitative differences in the construction of the lottery pairs used in the two

batteries are what determine the differences in statistical power. As was stated

previously, the HN battery was designed specifically with the intention of being

able to distinguish between EUT and RDU subjects using the rationale of Loomes

and Sugden (1998). It appears, however, that the HO battery performs better in

this regard when comparing either the original battery, shown in Figure 3, or the

scaled battery, shown in Figure A.3.
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Figure A.1: Hey and Orme (1994), 4 Repetitions
Percentage of EUT Winners, EUT DGP
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Figure A.2: Harrison and Ng (2016), 5 Repetitions
Percentage of EUT Winners, EUT DGP
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Figure A.3: Hey and Orme (1994), 4 Repetitions
Percentage of RDU Winners, RDU DGP
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Figure A.4: Harrison and Ng (2016), 5 Repetitions
Percentage of RDU Winners, RDU DGP
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