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Abstract

We provide a novel explanation for the low volume of securitization in catastrophe risk transfer
using a signaling model. Relative to securitization, reinsurance features lower adverse selection costs
because reinsurers possess superior underwriting resources than ordinary capital market investors.
Reinsurance premia, however, reflect markups over actuarially fair premia due to the additional
costs of underwriting. Insurers’ risk transfer choices trade off the costs and benefits of reinsurance
relative to securitization. In equilibrium, low risks are transferred via reinsurance, while interme-
diate and high risks are transferred via partial and full securitization, respectively. An increase in
the loss size increases the trigger risk level above which securitization is chosen. Hence, catastrophe
exposures, which are characterized by lower probabilities and higher severities, are more likely to
be retained or reinsured rather than securitized.
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1 Introduction

Insurers with limited capital to completely cover the risks in their portfolios often exploit external risk

transfer mechanisms such as reinsurance and securitization. Although these risk-sharing mechanisms

are used for all types of insurable risks, they are especially important in the case of catastrophe (CAT)

risks because of the large potential losses involved. A strand of literature argues that securitization

has a significant advantage over reinsurance and retention because of the substantially higher available

capital and risk-bearing capacity of capital markets (Durbin (2001)). Nevertheless, an enduring puzzle

is that reinsurance is still the dominant risk transfer mechanism for catastrophe risks (see http:

//www.naic.org/capital_markets_archive/140930.htm).

According to the Aon Benfield Research Report (2017), total reinsurance capital grew steadily to

$595 billion at the end of 2016 (Figure 1a). In contrast, the total outstanding capital of insurance-

linked securities (ILS) increased slowly since their inception in 1992 to $81 billion in 2016 (Figure

1b). Most of the increase in the volume of insurance-linked securities is, however, due to collateralized

reinsurance that protects smaller losses. Hence, large losses are still primarily either retained or

transferred through traditional reinsurance. To explain the low volume of securitization relative to

reinsurance and retention, it is often argued that CAT bonds are too expensive, thereby suggesting

that they are somehow “mispriced” relative to the risks they protect. Given that prices are endogenous

equilibrium outcomes, however, it is problematic to argue that CAT bond prices are the cause of the

low volume of securitization.

We show that the above puzzles can be reconciled using a signaling model of insurers’ risk trans-

fer choices. When an insurer with private information about its portfolio faces a choice between

reinsurance and securitization, its choice represents a signal of the nature of risks in its portfolio and,

specifically, its actual exposure to catastrophe risk. Relative to securitization, reinsurance is associated

with lower adverse selection costs because of the superior underwriting resources of reinsurers. On the

flip side, however, reinsurance premia reflect markups over actuarially fair premia due to reinsurers’

underwriting costs (Froot (2001)). The insurer’s risk transfer choice reflects the tradeoff between the

benefits and costs of reinsurance relative to securitization.

Perfect Bayesian Equilibria (PBE) of the signaling game have a partition form. An insurer chooses

reinsurance if the “risk”of its portfolio—the probability of incurring a distress-triggering loss—is below

a low threshold; partial securitization if the risk lies in an intermediate interval; and full securitization
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Figure 1: Reinsurance v.s Securitization Capital Development

(a) Reinsurer Capital Development (b) Insurance Securitization Market Development

Source: Aon Securities Inc

if the risk is above a high threshold. The threshold risk level above which the insurer chooses securi-

tization increases with the magnitude of potential losses in its portfolio. Given that catastrophe risk

is typically associated with “low probability-high severity” losses, an insurer is more likely to choose

retention or reinsurance to transfer catastrophe risk. Further, because an insurable risk is only trans-

ferred via securitization if the probability of potential distress-triggering losses is high, catastrophe

bonds have high premia (relative to the ex ante expected losses) and a majority of them have ratings

below investment grade (see Figure 2).1 Our results suggest that the high costs of catastrophe securi-

ties reflect the rational incorporation of their risks by capital markets based on insurers’ observed risk

transfer choices.

In our signaling model, a representative insurer with a limited amount of capital holds a portfolio

of insurable risks. If the insurer incurs losses that exceed its available capital, it must raise additional

capital to meet its liabilities due to which the insurer incurs external financing costs as in Froot et al.

(1993). The presence of financial distress costs provides incentives for the insurer to transfer its risks.

The insurer can choose to retain its risks or transfer them either partially or wholly through reinsurance

or securitization. The insurer has private information about its portfolio so there is adverse selection

regarding its “type.” Note that an insurer’s “type” is the ex ante probability that the insurable risks

1Because CAT bonds are fully collateralized, the rating of a CAT bond is determined by the probability that the
principal will be hit by a triggering event. Hence, the CAT bond rating captures the ”risk” that is securitized.
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Figure 2: CAT Bond Ratings

Source: Data are collected from Artemis Website: http://www.artemis.bm/deal_directory/ and Aon Benfield 2017
Report about Insurance-Linked Securitization.

in its portfolio incur a distress-triggering loss, and is not the probability of a particular loss event. 2

Relative to capital market investors, reinsurers possess the resources to more effectively underwrite

insurers’ risk. For simplicity, we assume that reinsurers know an insurer’s risk type and, therefore, do

not face any adverse selection. (We can allow for adverse selection in reinsurance as long as its degree

is less than that in securitization.) However, competitive reinsurers invest in costly underwriting

technologies if and only if reinsurance premia incorporate a markup over actuarially fair premia that

compensate reinsurers for their underwriting costs. The insurer’s risk transfer choice reflects the

tradeoff between the lower adverse selection costs associated with reinsurance and the costs stemming

from the reinsurance markup.

We first analyze a framework where an insurer incurs fixed financial distress costs if it is unable to

meet its liabilities. Perfect Bayesian Equilibria (PBE) of the signaling game (under stability restrictions

on off-equilibrium beliefs along the lines of the D1 refinement (see Banks and Sobel (1987)) have a

“partition form” that is characterized by two thresholds. The insurer chooses reinsurance if its risk—

the probability of incurring a distress-triggering loss in its overall portfolio—is below the low threshold,

retention if its risk lies between the thresholds, and securitization if its risk is above the high threshold.

2In general, insurers have differing liability portfolios that differ in the degrees of diversification. Hence, the probabili-
ties of incurring distress-triggering losses vary across insurers. Even though there might be publicly available information
on the probabilities of particular loss events (e.g., earthquakes in California or hurricanes in Florida), the probability
that an insurer incurs a distress-triggering loss depends on its portfolio of exposures to different insurable risks.
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With fixed financial distress costs, the costs the insurer incurs are independent of the magnitude

of its shortfall in meeting its liabilities. Consequently, it is optimal for the insurer to either retain all

its risks or completely transfer them. The presence of the reinsurance markup implies that the cost

of reinsurance—the difference between the reinsurance premium and the actuarially fair premium—

increases disproportionately with the insurer’s risk, while the cost of retention increases linearly. The

costs of securitization, which stem from the cross-subsidization of higher risk types are, however,

decreasing in the insurer’s risk (relative to the costs of retention). Consequently, if the insurer’s risk is

below a low threshold, it prefers reinsurance. If the insurer’s risk lies in an intermediate interval, the

increasing and convex cost of reinsurance dominates the cost of retention so that the insurer prefers

retention. If the insurer’s risk is above a high threshold, securitization dominates because the cost is

decreasing in the insurer’s risk type relative to the cost of retention.

An increase in the loss size increases the marginal cost of subsidizing higher risks as well as the

marginal cost associated with the reinsurance markup. Consequently, the trigger risk level above

which insurers choose securitization increases. In other words, the interval of risks that are securitized

shrinks as the loss size increases. As catastrophe exposures are characterized by low probabilities and

large magnitudes of potential losses, they are more likely to fall in the intervals of risks described

above where retention or reinsurance rather than securitization are chosen. Hence, the volume of

securitization is low relative to retention and reinsurance in catastrophe risk transfer.

To examine the robustness of our results, we next analyze a model with variable financial distress

costs that are proportional to the magnitude of the insurer’s shortfall in meeting its liabilities. In

this scenario, it may be optimal for an insurer to choose partial securitization and, thereby, signal its

type. The possibility of partial securitization makes the analysis significantly more complicated, but

we show the PBE of the risk transfer signaling game again have a partition structure characterized

by three intervals of risk types. The lowest risks are fully reinsured. To avoid the costs associated

with reinsurance, and the costs of pooling with higher risks, intermediate risks are transferred via

separating securitization contracts that fully reveal the risks, and are characterized by retention levels

that decline with the risk. For high risks, the signaling costs are too high so that they are transferred

via full pooling securitization contracts. As catastrophic losses have lower probabilities, our results

suggest that CAT risks are more likely to be reinsured or partially securitized. In other words, only

losses above a threshold are securitized (if at all), which is consistent with evidence that CAT bonds
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typically protect top layers of the loss distribution (e.g., Cummins and Trainar (2009)).

The implication of our theory that only high risks are securitized is consistent with a noticeable

increase in catastrophe securitization after Hurricane Katrina. Anecdotal evidence suggests that ac-

tuaries significantly increased their estimates of catastrophe loss probabilities following Katrina (see

Ahrens et al. (2009)). The spike in securitization transactions is, therefore, consistent with the higher

perceived levels of risk. Our basic story is also consistent with the observation that more sophisticated

investors such as dedicated hedge funds have entered the catastrophe securitization market in recent

years, and this has been followed by an increase in the volume of securitization. The entry of more

sophisticated and informed investors has likely reduced the level of adverse selection, thereby lowering

securitization costs relative to reinsurance. Finally, even more recently, there has been a spike in the

volume of securitization because of the advent of blockchain technology.3 This phenomenon is also

consistent with our basic argument as blockchain technology has greatly reduced the administrative

costs of securitization relative to reinsurance by lowering the costs associated with claim settlement.

A significant proportion of catastrophe securities have payoffs that are tied to an index rather than

a particular insurer’s losses, that is, they employ index-based rather than indemnity-based triggers.

The use of index-linked securities introduces basis risk because the distribution of the index is not,

in general, perfectly correlated with that of an insurer’s losses. In online Appendix B, we extend our

basic model to allow insurers to have access to index-linked securities. Our main implication that

securitization—index-based or indemnity-based—only protects risks above a threshold is unaffected.

Our analysis and results can be directly extended to the scenario in which an insurer is exposed to

multiple “classes” or “tranches” of insurable risks with differing distress-triggering probabilities. For

example, this would be the case if the insurer sells multiple lines of insurance. In such a scenario, the

probabilities of incurring distress-triggering losses differ across insurance lines. By risk-neutrality, an

insurer chooses the optimal form of risk transfer for each class of risk in its portfolio. In this setting, our

results suggest that an insurer choose reinsurance for the lowest risk exposures in its portfolio, partial

securitization for the intermediate risks, and full securitization for the highest risks. Consequently,

our results are also consistent with the observation that insurers often choose both reinsurance and

securitization to transfer their portfolios of different types of risks with varying distress-triggering

probabilities.

3see https://www.bloomberg.com/view/articles/2017-08-11/blockchains-get-into-the-catastrophe-business

5



2 Related Literature

Our study relates to two branches of the literature that investigate insurers’ choice between reinsurance

and securitization. The first branch examines the factors that affect the demand for insurance-linked

securities (e.g., Bantwal and Kunreuther (2000), Barrieu and Louberge (2009)). The second branch

examines the factors that affect the supply of insurance-linked securities that is closer to our perspec-

tive. Cummins and Trainar (2009) argue that the benefits of securitization relative to reinsurance

increase when the magnitude of potential losses and the correlation of risks increase. Finken and Laux

(2009) argue that, given low basis risk, catastrophe bonds with parametric triggers are insensitive to

adverse selection, and can be attractive to low risk insurers who suffer from adverse selection with

reinsurance.4 Lakdawalla and Zanjani (2012) argue that catastrophe bonds can improve the welfare

of insureds when reinsurers face contracting constraints on the distribution of assets in bankruptcy.

Gibson et al. (2014) analyze the tradeoff between the costs and benefits of loss information aggrega-

tion procedures to determine the prevalent risk transfer form. We complement the above literature

by providing an explanation based on signaling considerations for the dominance of retention and

reinsurance in the market for catastrophe risk transfer.

It is often argued that a significant deterrent to the growth in the market for insurance-linked

securities is the presence of basis risk, which is present when security payouts are based on an index

not directly tied to the sponsoring insurer’s losses. It is, however, unclear what the quantitative

impact of basis risk is on the securitization decision given that insurers can choose the volume of

securities to hedge their exposure to the catastrophe underlying the index (Cummins, Lalonde and

Phillips (2004)). Moreover, a substantial percentage of CAT bonds also have indemnity-based triggers

that are tied to the insurer’s losses (Braun (2016)). In fact, as shown in Figure 3, the volume of

CAT bonds with indemnity triggers is higher than those with index triggers in recent years.5 More

importantly, because the choice of index-linked securitization is endogenous, it is problematic to argue

that index-linked securities are the cause of the low volume of securitization. Our extended model in

online Appendix B endogenizes the choice of the type of securitization by incorporating both index-

based and indemnity-based securitization. Our main implication that only risks above a threshold are

4CAT bonds are not issued in equilibrium in Finken and Laux’s (2009) model; they play a role as an off-equilibrium
alternative to reinsurance for low risk insurers. The purpose of parametric CAT bonds is to constrain inside reinsurers’
power (arising from superior information) relative to outside reinsurers.

5According to Artemis website http://www.artemis.bm/deal_directory/cat_bonds_ils_by_trigger.html, the pro-
portion of outstanding CAT bonds with indemnity triggers is 57.6%.
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securitized is unaffected.

Figure 3: Trigger Types of CAT Bonds

Source: Data are collected from Artemis website: http://www.artemis.bm/deal_directory/ and Aon Benfield Research
Report (2017) about Insurance-Linked Securitization.

Another related argument that is proffered for the low volume of securitization is the presence of

transaction costs. A major component of these costs are endogenous costs due to adverse selection

that play a central role in our analysis. Further, CAT bond issuers annualize the fixed costs over

multiple periods, thereby reducing annual transaction costs. In addition, the favorable tax treatment

of CAT bonds allow insurers to reduce tax costs associated with equity financing (Niehaus (2002),

Harrington and Niehaus (2003)). Moreover, CAT bond interest paid offshore is also deducted for tax

purposes in the same way as reinsurance premia. Consequently, it is not clear that transaction costs

associated with securitization, apart from adverse selection costs that we already incorporate, are high

enough to significantly deter securitization. Further, even if transaction costs were significant, it is not

clear whether they explain why securitization is typically used to provide high layers of protection.

3 The Model

The economy consists of a continuum of insurers. The representative insurer has a limited amount

of capital W and a risky portfolio of insurable risks. The insurer is faced with the choice between

retaining the risk or transferring the risk through reinsurance or securitization. The insurer’s portfolio
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has two possible realizations. In the “good” state, which occurs with probability 1 − p, the portfolio

suffers no loss and the insurer obtains the premium A. However in the “bad” state, which occurs

with probability p, the portfolio suffers a loss and the insurer has to make the net payment B (total

indemnity net of the premium). We assume that W−B < 0 so that the insurer’s existing capital is not

enough to cover the net loss payment in the bad state. In this scenario, the insurer raises additional

external capital to meet its liability, but incurs financial distress costs.

Consistent with standard terminology in insurance markets, an insurer’s risk is the loss probability

p, which is the probability that the insurer’s overall portfolio incurs a distress-triggering loss. Impor-

tantly, it is not the probability of a particular loss event, and is also not the severity or size of the

loss. A typical insurer has a portfolio of insurance liabilities and is, therefore, exposed to different

insurable risks. Further, different insurers may have distinct portfolios of liabilities and may, therefore,

have contrasting exposures to different insurable risks. Moreover, insurers could differ in the degrees

of diversification of their portfolios so that the loss probability p differs, in general, across insurers.

In particular, even though there might be publicly available information about the probabilities of

particular loss events, the probability that an insurer incurs a distress-triggering loss depends on its

specific portfolio of exposures to different loss events.

It is also worth emphasizing here that the loss probability p is the ex ante probability of incurring

a distress-triggering loss, that is, the probability before it makes its risk transfer decision. After it

makes its risk transfer decision—reinsurance or securitization—its probability of distress is, of course,

altered. Our interest, however, is on how the ex ante loss probability affects the insurer’s risk transfer

decision.

The insurer has superior information about its portfolio of exposures to different insurable risks,

which manifests in the insurer possessing private information about the probability p. Hence, there

is adverse selection regarding the type p of the insurer. Note that the terminology, “insurer type”

really refers to the characteristics of the insurer’s risk exposure as represtented by the loss probability

p, which is the same regardless of whether it is retained by the insurer or transferred via reinsurance

or securitization. The loss probability p is drawn from the cumulative distribution F with support

in [0, 1]. The insurer incurs an additional deadweight financial distress cost C in the bad state if its

available capital is insufficient to fully cover the loss so it must raise additional external capital B−W

to cover it. Note that the financial distress cost C is in addition to the net external capital B−W that
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the insurer must raise. It is worth emphasizing here that, because p is the probability of incurring a

distress-triggering loss for the insurer’s overall portfolio, the probabilities of individual loss events or

subsets of loss events say little about the overall distress-triggering probability p.

We assume a fixed financial distress cost C in this section. In Section 4, we alter the model

to consider variable financial distress costs that increase with the magnitude of the shortfall in the

insurer’s existing capital in meeting its liabilities. Consistent with the evidence in Hoerger et al.(1990),

the presence of financial distress costs creates an incentive for the insurer to hedge its underwriting

losses through reinsurance or securitization. As mentioned earlier, the probabilities of individual loss

events or subsets of events in the insurer’s portfolio are distinct from the overall distress-triggering

probability p of the insurer’s entire portfolio. Hence, the insurer cannot reveal its type by choosing

reinsurance for a portion of its risks.

Given its linear objective function, it is optimal for the insurer to choose either reinsurance or

securitization for its entire portfolio provided it chooses to transfer its risk. As we discuss in Section

3.4 , however, our results extend naturally to the scenario in which an insurer is exposed to differing

risks and chooses distinct risk transfer mechanisms for different types of risks. We next analyze the

insurer’s choice among retention, reinsurance and securitization.

3.1 Reinsurance

Insurers have access to a competitive reinsurance market. Reinsurers have an information advantage

over ordinary investors in capital markets due to their specialized expertise in the insurance industry

(e.g. Jean-Baptise et al.(2000), Plantin (2006), Boyer and Dupont-Courtade (2015)). To simplify

matters, and to focus attention on the information advantage of reinsurers relative to capital markets,

we assume that reinsurers have the underwriting technology to know the risk type of the insurer

perfectly so that they do not face any adverse selection. (Our results are robust to allowing for

adverse selection in reinsurance as long as its degree is less than that in securitization.)

On the flip side, reinsurers’ underwriting technology is costly, and they charge a proportional

markup δ > 0 over the actuarially fair insurance premium that compensates them for their underwrit-

ing costs. For simplicity, we assume that reinsurers have sufficient capital to fully insure the insurance

company so that they do not face default risk.6 Reinsurers usually have better diversification oppor-

6According to the Guy Carpenter report (2012), the total losses of the global property/casualty sector in 2011 exceeded
$100 billion, but shareholder funds exceeded $160 billion. Consequently, the reinsurance sector continued to function
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tunities that may lower their default risks (e.g. Jean-Baptise et al.(2000)). The main objective of our

study is to compare the trade-off between the information advantage of reinsurers against the lower

costs of risk-sharing with capital markets. Consequently, we avoid further complicating the analysis

and the intuition for our results by also introducing default risk for reinsurers.

Because reinsurance companies know the insurer’s type, they offer distinguishing contracts (Ar(p), Br(p))

that are contingent on the insurer’s type, where Ar(p) is the reinsurance premium and Br(p) is the

total payment made by the reinsurer to the insurer in the bad state. The optimal contract for each

insurer type, p, maximizes its expected utility subject to the reinsurance premium being at least a

proportion δ above the actuarially fair premium.

Define

B̃ = B −W, (1)

which is the shortfall in the insurer’s existing capital in meeting its liabilities in the bad state in the

scenario where it retains all its risk, that is, the insurer must raise additional capital, B̃, to meet

its liabilities. Given the fixed financial distress cost C, we can show that no insurer type chooses

reinsurance if δ ≥ C
B̃
, because it is too expensive. Consequently, we consider the case where δ < C

B̃
. If

an insurer chooses reinsurance, the optimal reinsurance contract solves

max
(Ar(p),Br(p))

(W +A−Ar(p))(1− p) + (W −B −Ar(p) +Br(p))p− Cp · 1{Br(p)<B+Ar(p)−W} (2)

such that

Ar(p) ≥ (1 + δ)

actuarially fair premium︷ ︸︸ ︷
pBr(p) (3)

In the objective function (2), note that the total capital of the insurer in the bad state after receiving

the payment, Br(p), from the reinsurer is W −B−Ar(p) +Br(p), that is, W −B less the reinsurance

premium, Ar(p) plus the payment, Br(p). If W − B < 0, the insurer must raise additional capital,

B−W to meet its liabilities if it does not transfer its risks due to which it incurs an additional financial

distress cost, C. The constraint (3) expresses the fact that the reinsurance premium must be at least,

(1 + δ) times the actuarially fair premium, pBr(p). As the insurer is risk-neutral, it is suboptimal for

the insurer to overinsure as it pays a markup for this overinsurance.

normally despite the heavy losses in 2011.
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Proposition 1 (Reinsurance Contract). Define

pF1 =
C − B̃δ
C(1 + δ)

< 1. (4)

If p > pF1 , the insurer chooses retention. If p < pF1 , the insurer chooses reinsurance. The optimal

reinsurance contract, (A∗r(p), B
∗
r (p)),7 is

A∗r(p) =
B̃p(1 + δ)

1− p(1 + δ)
, B∗r (p) = A∗r(p) + B̃ =

B̃

1− p(1 + δ)

Because the financial distress cost is fixed, the insurer chooses full reinsurance if it opts to transfer

its risks. The total insurance payment, B∗r (p) equals the loss, B̃, the insurer incurs if it were to

purchase no reinsurance plus the reinsurance premium, A∗r(p). Because the insurer is risk-neutral, it

is optimal for the insurer to buy just enough reinsurance to cover its shortfall, A∗r(p) + B̃, in the

bad state and, thereby, avoid financial distress. In other words, it is suboptimal for the insurer

to overinsure because it pays a markup over the actuarially fair premium for reinsurance. Hence,

reinsurance takes the form of “excess of loss” that covers losses exceeding those that are not covered

by the insurer’s existing capital. Consequently, the actuarially fair premium is pB∗r (p) so that the

reinsurance premium, A∗r(p) = (1 + δ)pB∗r (p). As one would expect, a higher loss probability, p, raises

the reinsurance premium, A∗r(p).

Interestingly, Proposition 1 shows that the insurer chooses retention if its risk type is above a

threshold pF1 , and reinsurance below the threshold. In other words, lower risk insurers choose rein-

surance, while higher risk insurers choose retention. The intuition for this result is that the cost of

reinsurance—the difference between the reinsurance premium and the actuarially fair premium—is

B̃pδ
1−p(1+δ) , which is increasing and convex in the insurer’s risk type, p. The cost of retention, which

is the expected financial distress cost pC, is increasing and linear in the insurer’s risk type. Conse-

quently, in general, the cost of retention is lower (higher) than the cost of reinsurance if the insurer’s

risk type is above (below) a threshold.

7Profit-maximizing reinsurers will not offer contracts for insurers with risk type above 1
1+δ

because the expected payoff
is negative so that insurers must choose retention.
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Figure 4: Cost of Full Retention and Full Reinsurance

3.2 Securitization

We now examine the case where insurers only have access to capital markets. An insurer’s cost of

transferring its risks is potentially reduced by the fact that capital market investors do not charge a

markup, that is, the premium equals the expected indemnity conditional on the information possessed

by capital market investors. On the flip side, however, capital markets are marred by adverse selection

since they cannot obtain the information about an insurer’s risk type ex ante, that is, before it issues

securities.

We model the securitization game as a signaling game whose timing is as follows. An insurer offers

a contract, (As, Bs), where As is the premium received by the investors, and Bs is the payment made

by investors if a loss occurs. To fix ideas, we consider indemnity-based securitization in the baseline

model, that is, the loss payment, Bs is contingent on the insurer’s loss. In online Appendix B, we

extend our baseline model to incorporate index-linked securitization where insurers can issue securities

whose payouts are tied to an index that is not directly contingent on the issuing insurers’ losses.

We restrict consideration to equilibria in pure strategies for the insurer. Investors update their

prior beliefs based on the offered contract and then either accept or reject it. In all our subsequent

results, we employ reasonable stability restrictions on off-equilibrium beliefs along the lines of Banks

and Sobel’s (1987) D1 refinement for signaling games to address the potential multiplicity of Perfect

Bayesian Equilibria (PBE). The relevant statement of the D1 refinement in our context is as follows

(see also Page 452 of Fudenberg and Tirole (1991)).

Remark (D1 Refinement) Consider an equilibrium of the signaling game. Suppose that the set of in-
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vestor beliefs under which an off-equilibrium deviation to a particular contract, (Aoff−equils , Boff−equil
s ),

is weakly preferable to the equilibrium payoff for an insurer risk type, p1, is a proper subset of the set

of investor beliefs under which the off-equilibrium deviation is strongly preferable for a higher risk type

p2 > p1. Off-equilibrium beliefs on observing the contract offer, (Aoff−equils , Boff−equil
s ), should then

assign probability zero that the insurer’s risk type is p1.

Because the financial distress cost is fixed and does not depend on the magnitude of the insurer’s

shortfall in the bad state, separating securitization contracts are not incentive compatible. In other

words, it is better for an insurer to self-insure rather than choose a securitization contract with a

nonzero retention level that reveals its type because it incurs the same financial distress cost in either

case so that its expected payoff is the same. (Recall that the financial distress cost is in addition to

the loss payment.)

We conjecture that there exists a trigger level such that insurers with types above the trigger choose

full securitization, while those with types below the trigger choose full retention. Consider a candidate

equilibrium defined by a trigger level, p. Let µp(.) denote the posterior beliefs of capital markets

regarding an insurer’s type given that it has chosen securitization, where the subscript indicates the

dependence of the posterior beliefs on the trigger p. Given that insurers with types above p choose

full securitization in the conjectured equilibrium, investors’ posterior beliefs about the insurer’s type

are given by

dµp(p
′) =

dF (p′)

1− F (p)
(5)

The equilibrium is determined by a function, R(.)—the subsidization ratio function—that is

defined as follows:

R(p) =

∫ 1
p p
′dµp(p

′)− p

1−
∫ 1
p p
′dµp(p

′)
=

∫ 1
p

p′

1−F (p)dF (p′)− p

1−
∫ 1
p

p′

1−F (p)dF (p′)
(6)

The subsidization ratio function depends on the distribution of insurers’ risk types and the threshold

level p that defines the conjectured equilibrium. It determines the costs incurred by an insurer with

risk type p if it were to pool with higher risk insurers and, thereby, subsidize them. More precisely, if

insurers with types greater than p pool together by offering a single contract, then the premium must

reflect the average risk of the pool,
∫ 1
p p
′dµp(p

′). The cost of pooling securitization for the insurer of

type p is, therefore, the difference between the premium of the pooling contract and the actuarially

13



fair premium, that is, the premium it would pay if its type were fully observable by capital markets.

This cost is given by B̃R(p).

We see that R(p) is the ratio of the distance X to the distance Y in Figure 5. R(p) measures

the degree of subsidization, and depends on the shape of the truncated distribution of insurer’s risk

types to the right of the threshold risk type, p. R(p) is greater than 1 if the truncated distribution of

insurer types is right skewed, less than 1 if the truncated distribution of insurer’s type is left skewed,

and equal to 1 if the truncated distribution of insurer’s type is symmetrically distributed.

Figure 5: Illustration of Subsidization Ratio Function

If p is the equilibrium threshold, then the insurer with risk type p should be indifferent between

full retention and full securitization. In other words, the expected cost associated with full retention

should be the same as the cross-subsidization cost associated with full pooling securitization for an

insurer of type p. We now characterize the equilibrium choice between retention and securitization

and the optimal securitization contracts.

Proposition 2 (Securitization Contract). Suppose there is a unique pF2 satisfying the following equa-

tion:

CpF2 = B̃R(pF2 ). (7)

In the unique PBE of the securitization game (under the D1 refinement), insurers with types p in the

interval
[
pF2 , 1

]
fully transfer their risks and offer the same contract (A∗s, B

∗
s ), where

A∗s =
B̃
∫ 1
pF2

p′

1−F (pF2 )
dF (p′)

1−
∫ 1
pF2

p′

1−F (pF2 )
dF (p′)

, B∗s = B̃ +A∗s

Insurers with types p below pF2 choose full self-insurance.

The threshold, pF2 , is the point of indifference between the cross-subsidization costs from pooling
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with higher types, B̃R(p), and the expected costs from retaining risk, Cp. In general, (7) could have

multiple solutions so that there could be multiple PBEs each determined by the threshold risk type that

is indifferent between retention and pooling securitization. As is common in the signaling literature,

we add a “single crossing” assumption, which ensures that the above equation has a unique solution,

that is, the curves Cp and B̃R(p) intersect at exactly one point pF2 . A sufficient condition that ensures

this is

R′(p) <
C

B̃
8 (8)

Condition (8) expresses that a marginal increase in the degree of subsidization due to an increase

in the lowest risk type in the pooling contract is less than the marginal increase in the cost of risk

retention of the lowest risk type. Because the subsidization costs incurred by insurer types greater

than pF2 decline with the type, it is optimal for all such insurers to pool by offering full securitization

contracts. Given that pF2 satisfies (7), the expected retention cost incurred by an insurer with type less

than pF2 is less than the subsidization costs incurred by choosing securitization so that pF2 determines

the unique equilibrium.

The D1 refinement ensures that the threshold pF2 , indeed, characterizes the equilibrium by ensuring

that it is unprofitable for an insurer with type p ≥ pF2 to deviate to any other contract. Intuitively, if

such a deviation is profitable for the insurer of type p, then it is also profitable for higher risk types.

The D1 criterion then ensures that, if such a deviation is observed, investor beliefs assign probability

zero that the insurer is of type p, thereby making the deviation unprofitable for the type p insurer.

3.3 Risk Transfer Equilibria

We now show that the PBE of the risk transfer game have the conjectured “partition” form as shown

in Figure 6.

Proposition 3 (Partition Equilibrium). There exist two thresholds, pF1 and pF2 that determine the

unique PBE (under the D1 refinement) as follows. Insurers with types in the interval [0, pF1 ] choose

full reinsurance, insurers with types in the interval [pF1 , p
F
2 ] choose full self-insurance, and insurers

with types [pF2 , 1] choose full pooling securitization.

8Let the function g(p) = Cp− B̃R(p). Since g(0) = −B̃R(0) < 0, and g(1) = C > 0, we can show that g(p) = 0 has
a unique solution pF2 as long as g(p) is increasing over the interval [0, 1]; that is,R′(p) < C

B̃
.
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Figure 6: Partition Equilibrium

Figure 7: The Cost of Different Risk Transfer Mechanisms

Figure 7 shows the cost function for each risk transfer choice faced by insurers. For all types,

the chosen form of risk transfer is the one that has the lowest expected cost. As illustrated in the

figure, the expected cost of retention, pC, is increasing and linear in an insurer’s type, the expected

cost of reinsurance, B̃pδ
1−p(1+δ) , is increasing and convex in an insurer’s type, and the expected cost of

securitization based on the belief that the insurers with types above pF2 choose pooling securitization,
B̃

∫ 1

pF2

p′

1−F (pF2 )
dF (p′)−p

1−
∫ 1

pF2

p′
1−F (pF2 )

dF (p′)
, decreases with an insurer’s type. Consequently, in general, the equilibrium takes

a partition form with three subintervals of insurer types. Insurers with sufficiently low risk in the

interval [0, pF1 ] choose full reinsurance, intermediate-risk insurers with types in interval [pF1 , p
F
2 ] choose

full retention, and high-risk insurers with types in the interval [pF2 , 1] choose full securitization. The

thresholds that determine the various subintervals are the “indifference” points. Depending on the

relative magnitudes of the financial distress cost C, the reinsurance markup δ and the loss payment B,

we could have pF1 = 0 or pF1 = pF2 so that either the interval of risk types that choose reinsurance or
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the interval of types that choose retention is empty. (We provide the precise conditions in the proof of

Proposition 3.) In these scenarios, the equilibrium is characterized by a single trigger where insurers

with risks below the trigger choose either reinsurance or retention, whereas insurers with risks above

the trigger choose securitization.

From (7) and the implicit function theorem, we get

dpF2
dB

=
R(pF2 )

C − B̃R′(pF2 )
(9)

The numerator of (9) is positive. Because pF2 is the unique solution of (7), we can show that the

denominator of the R.H.S. of (9) is positive. Thus dpF2 /dB > 0. In other words, pF2 is an increasing

function of B. When the financial distress cost C ≤ B̃δ
1−pF2 (1+δ)

, it follows from the above proposition

that pF2 is the threshold risk level above which insurers choose securitization. If C > B̃δ
1−pF2 (1+δ)

,

it follows from condition,
pF3 δ

1−pF3 (1+δ)
= R(pF3 ), that the trigger level above which insurers choose

securitization does not depend on the loss payment B. Taken together, the above discussion shows

that an increase in the magnitude of the insurer’s aggregate losses weakly increases the threshold risk

level above which insurers choose securitization so that the securitization subinterval shrinks.

Corollary 1 (Effects of Loss Size). An increase in the size of the net loss payments B reduces the

sizes of the subintervals of insurer risk types that choose securitization and reinsurance, respectively.

An increase in the loss size increases the marginal cost borne by an insurer of subsidizing higher

risk types through securitization. An increase in the loss size also increases the marginal cost of the

reinsurance markup. Consequently, as the loss size increases, the marginal insurer who is indifferent

between retention and securitization has higher risk, while the marginal insurer who is indifferent

between reinsurance and retention has lower risk. Figure 8 illustrates the effects of an increase in the

amount of net loss payment.

Catastrophe risks are characterized by low probabilities and large magnitudes of potential losses.

The result that an increase in the magnitude of potential losses increases the trigger risk (or loss

probability) level above which securitization is chosen suggests that catastrophe risks are less likely to

be securitized. Figure 9 supports the prediction that an increase in the loss size increases the trigger

level above which risks are securitized. The figure shows that the average issue volume of CAT bond

tranches (which directly captures the sizes of losses that are protected by the bonds) with ratings of A
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Figure 8: Effect of An Increase in Net Loss Payment

Figure 9: Average Volume of CAT Bond Tranches with Different Ratings

Source: The graph is generated from the data that are collected from Artemis website: http://www.artemis.bm/deal_

directory/ and Aon Benfield Research Report (2017) about Insurance-Linked Securitization.

or above is less than the issue volume of tranches with lower ratings. Further, because only high risks

are securitized, the corresponding premia are high relative to the ex ante expected loss determined by

the average probability
1∫
0

pdF (p). This could also explain why catastrophe-linked securities are usually

expensive. Further, credit ratings of many catastrophe bonds, which reflect the loss probabilities, are

below investment grade (see Figure 2).

The prediction that an increase in the size of potential losses lowers the likelihood of securitization

is consistent with the evidence in Hagendorff et al. (2014) of a negative relation between CAT bond

issuance and the size of underwriting losses. They also show a negative relation between CAT bond

issuance and the volatility of underwriting losses. As emphasized earlier, the “risk” of an insurer in our
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model is its probability of incurring a loss so an increase in the loss size, ceteris paribus, also increases

the loss volatility. More generally, the volatility of losses, especially in the context of catastrophe risk,

is likely to be driven by large losses. The finding of a negative relation between CAT bond issuance

and loss volatility, therefore, also supports our theory.

The prediction that only risks above a threshold are securitized also comports with the observed

spike in securitization transactions following major catastrophes such as Hurricane Katrina following

which actuaries’ assessments of future catastrophic events were revised upward (Ahrens et al. (2009)).

In support of this implication, Hagendorff et al. (2014) also find that CAT bond issuance is positively

related to the likelihood of potential losses.

3.4 Extensions

In online Appendix B, we show that our main implications are robust to an extended model that

incorporates index-linked securities whose payouts are tied to the loss of an index, rather than the loss

of a particular insurer.

Our model and results can also be directly extended to the scenario in which an insurer is exposed to

multiple types of risk with differing distress-triggering probabilities as is the case when the insurer sells

multiple lines of insurance. Specifically, in the preceding analysis, we interpret p as the probability that

an insurer incurs a distress-triggering loss with different insurers having different distress-triggering

probabilities. We can, however, reinterpret the model to focus on a representative insurer that is ex-

posed to multiple classes of risk or insurance lines (e.g. life insurance, property and casualty insurance,

etc.) each associated with a probability of inducing a distress-triggering loss for the insurer. In other

words, after taking into account potential correlations among different risks in the insurer’s overall

portfolio, its portfolio can be viewed as divided into different classes or ”tranches” of risk with each

tranche associated with a different distress-triggering probability. The distress-triggering probabilities

of the different tranches take values in the interval [0, 1] and there is asymmetric information about

the probabilities. Our analysis and results directly extend to this setting, and imply that it is optimal

for the insurer to reinsure the lowest risks, retain the intermediate risks, and securitize the highest

risks. These results comport with the observation that insurers often choose both reinsurance and

securitization to transfer their portfolios of risks of differing distress-triggering probabilities.
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4 Variable Financial Distress Costs

In the model that we have analyzed thus far, an insurer incurs a fixed financial distress cost regardless

of the extent of the shortfall in its existing capital in meeting its liabilities. To examine the robustness

of our main implications, we now modify the model to allow for variable financial distress costs that

increase with the size of the insurer’s shortfall.For simplicity, we assume that an insurer incurs financial

distress costs that are proportional to the insurer’s shortfall in the bad state. More precisely, if the

insurer chooses to transfer some or all of its risk through reinsurance or securitization, and receives a

payment B, in the bad state (net of the reinsurance or securitization premium), then the additional

deadweight financial distress cost is c · (B̃−B), where c is a constant. The maximum financial distress

cost, which occurs when the insurer retains all its risk, is c · B̃. We set cB̃ = C to compare our results

in this section with those in the previous one. In this modified model, we also allow for insurers’ risk

transfer choices to be observable to capital market investors. All other assumptions in the previous

section remain the same.

In the presence of variable financial distress costs, separating partial securitization contracts may

be the optimal choice for some insurer types in the equilibrium since they benefit from sharing risk

with investors in capital markets at the cost of retaining some risk to signal their type. The analysis

of the scenario with variable financial distress costs is significantly more complex than the scenario

with fixed financial distress costs.

4.1 Reinsurance

We first consider the case where insurers only have access to reinsurance. Because of the presence of

the reinsurance markup, it is either optimal for an insurer to choose full reinsurance or no reinsurance

at all. Further, because the expected cost of reinsurance, and the expected cost of partial retention,

are both linear functions of the reinsurance indemnity net of reinsurance premium, partial reinsurance

is suboptimal. Consequently, the insurer’s optimal choice between retention and reinsurance, and the

optimal reinsurance contract if it chooses reinsurance, are given by Proposition 1. The risk transfer

choice and the reinsurance contract are, therefore, the same as in the model with fixed financial distress

costs.
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4.2 Securitization

Suppose now that insurers only have access to capital markets. The proportional financial distress

cost provides low risk insurers the room to bear some risk by choosing partial securitization. The

insurer’s choice of risk retention level serves as a signal of its type and, thereby, reduces the adverse

selection cost due to information asymmetry. An insurer’s optimal choice of securitization coverage

reflects the tradeoff between the adverse selection/cross-subsidization cost and the expected retention

cost.

We conjecture that a candidate PBE is characterized by a threshold risk type p such that insurers

with risk types below the threshold partially transfer their risk through separating contracts, while

insurers with risk types above the threshold fully transfer their risk through pooling contracts. In-

surers who partially transfer their risk through separating securitization contracts reveal their types

and, therefore, incur no adverse selection costs, but nonzero expected retention costs arising from

partial retention. In contrast, the high risk insurers who fully transfer their risks through the pooling

securitization contract incurs zero expected retention costs, but nonzero cross-subsidization costs. The

equilibrium threshold p∗ is determined by three conditions.

First, for insurers with risk types below the threshold, each type chooses an incentive compatible

risk retention level. The incentive compatibility condition implies that the loss amount transferred

through separating securitization satisfies the following ordinary differential equation that arises from

the local incentive constraint of each risk type (please see the Appendix for the proof)

dBsep
s (p)

dp
=
Bsep
s (p)(1 + cp)

cp(1− p)
(10)

The general solution to the above ODE is

Bsep
s (p) = exp(λ) exp

(∫
1 + cp

c(1− p)p
dp

)
(11)

where the constant λ is determined endogenously along with the equilibrium threshold p∗.

Second, an insurer with the threshold risk, p∗, is indifferent between the pooling and separating

securitization contracts. It incurs nonzero expected retention costs associated with the retention level

if it chooses to signal its type, while it bears subsidization costs associated with the full risk transfer

if it pools with higher risk insurers. The expected retention cost if the risk type p∗ signals its type
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by choosing a separating securitization contract is c
(
B̃ −Bsep

s (p∗) +Aseps (p∗)
)
p∗. As we discussed in

Section 3.2, the subsidization cost incurred by the risk type p∗ is B̃R(p∗) where R(.) is the subsidization

ratio function defined in (6).

The equilibrium threshold, p∗, should therefore satisfy the following condition:

c
(
B̃ −Bsep

s (p∗) +Aseps (p∗
)

)p∗︸ ︷︷ ︸
expected retention costs from separating contracts

= B̃R(p∗)︸ ︷︷ ︸ .
subsidization costs from pooling contracts

(12)

Rearranging the above equation and using (11), we obtain

exp(λ) = B̃

(
1− R(p∗)

cp∗

)(
1− p∗

p∗

) 1
c

(13)

Third, for p∗ to be the equilibrium threshold, it should be sub-optimal for the insurers in the two

subintervals to deviate from their securitization choices. For insurers with risk types below p∗, the

marginal subsidization costs must exceed the marginal financial distress costs, thereby motivating the

insurers to signal their types by retaining some risk. On the other hand, for insurers with risk types

above p∗, the expected retention costs must exceed the cross-subsidization costs. As we show in the

Appendix, the equilibrium trigger, p∗, satisfies the following condition:

c−
(
c+

1

1− p∗

)(
1− R(p∗)

cp∗

)
+

1

1−
∫ 1
p∗ tdµp∗(t)

≥ 0 (14)

In general, there is a continuum of threshold levels, p∗, satisfying the above inequality. For each

such p∗, the marginal expected cost of financial distress is no less than the marginal cost of full

securitization. Because the difference between the expected retention cost due to signaling and the

expected cross-subsidization cost due to full pooling securitization is a concave function of the insurer’s

risk type (see proof of Proposition 4) any off-equilibrium deviation is dominated by the equilibrium

contract. Therefore, there exists a corresponding λ satisfying (13) so that each p∗ determines a PBE

of the securitization game. More formally, we define the set P satisfying (14), that is,

P = {p∗ : c−
(
c+

1

1− p∗

)(
1− R(p∗)

cp∗

)
+

1

1−
∫ 1
p∗ tdµp∗(t)

≥ 0}. (15)

The set P is the set of possible equilibrium threshold risk levels. The following proposition characterizes
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the multiple PBEs of the securitization game.

Proposition 4 (Securitization Contracts). Define the set P as in (15). For any p∗ ∈ P, the optimal

securitization contract, (A∗s(p), B
∗
s (p)) ,is characterized as follows.

• For an insurer of type p < p∗

A∗s(p) = B̃

(
1− R(p∗)

cp∗

)(
1− p∗

p∗

) 1
c
(

p

1− p

) 1
c
+1

,

B∗s (p) = B̃

(
1− R(p∗)

cp∗

)(
1− p∗

p∗

) 1
c
(

p

1− p

) 1
c

+A∗s(p).

• For an insurer of type p > p∗

A∗s(p) = A∗s =
B̃
∫ 1
p∗ tdµp∗(t)

1−
∫ 1
p∗ tdµp∗(t)

, B∗s (p) = B∗s = B̃ +A∗s(p),

where

µp∗(t) =
F (t)− F (p∗)

1− F (p∗)

Cross-subsidization costs are basically transfers among insurers. Consequently, among the set of

PBEs described in the proposition, the most efficient one minimizes the expected cost of retention

including the deadweight financial distress costs incurred by insurers. The efficient PBE is, therefore,

the one defined by the threshold p where

p = arg min
p∈P

∫ p

0
c(B̃ −Bsep

s (t, p))tf(t)dt

4.3 Risk Transfer Equilibria

We now consider the scenario where insurers have access to both reinsurance and securitization. In

this general scenario, there exist a variety of candidates for PBEs. The reinsurance markup plays

a key role in determining the properties of the PBEs. Intuitively, when the reinsurance markup is

below a low threshold, reinsurance dominates (partial or full) securitization for low and intermediate

risk insurers because the costs due to the reinsurance markup for such insurers are low relative to the

expected financial distress costs from partial securitization or the cross-subsidization from full pooling

securitization. High risk insurers choose full pooling securitization. If the reinsurance markup is in
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an intermediate region, partial securitization becomes attractive to intermediate risk insurers, while

low risk insurers choose reinsurance and high risk insurers choose full pooling securitization. If the

reinsurance markup exceeds a high threshold, partial securitization dominates reinsurance even for

low risk insurers.

To formalize the above intuition, we begin by noting that the expected cost of an insurer with risk

type p if it chooses full reinsurance is B̃δp
1−p(1+δ) . The expected cost from choosing a separating partial

securitization contract with retention level B̃−Bsep
s (p) +Aseps (p) is the expected retention cost that is

given by pc
(
B̃ −Bsep

s (p) +Aseps (p)
)

. By the arguments used to derive (11), incentive compatibility

of the securitization contracts implies that

Bsep
s (p) = exp(λ) exp

(∫
1 + cp

c(1− p)p
dp

)
. (16)

Let p1 be the risk type that is indifferent between full reinsurance and partial securitization, and p2

be the risk type that indifferent between partial securitization and full securitization. Any equilibrium

of the risk transfer game is characterized by the pair (p1, p2). The set of possible values of (p1, p2) is

determined by the aforementioned indifference conditions as well as the equilibrium conditions that

ensure that deviations from the hypothesized equilibrium strategies are suboptimal.

Let us first examine the indifference conditions. Because it represents the point of indifference

between full reinsurance and partial securitization, the trigger, p1, must satisfy

expected cost of reinsurance︷ ︸︸ ︷
B̃δp1

1− p1(1 + δ)
=

expected retention cost from choosing partial securitization︷ ︸︸ ︷
c(B̃ −Bsep

s (p1) +Aseps (p1))p1

= c

(
B̃ − exp(λ)

(
p1

1− p1

) 1
c
)
p1,

where the second equality above follows from (16). Rearranging the above equation, we have

exp(λ) = B̃

(
1− δ

(1− p1(1 + δ)) c

)(
1− p1

p1

) 1
c

(17)

For any p1 satisfying p1 <
c−δ
c(1+δ) , a corresponding λ exists satisfying the above equation so that any

such p1 is a candidate indifference point between reinsurance and partial securitization. Accordingly,
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we define the set U as

U = {p1 : p1 <
c− δ
c(1 + δ)

} (18)

In other words, the set U is the set of candidate equilibrium indifference thresholds between reinsurance

and partial securitization. Reinsurance is dominated by the full retention for insurers with types greater

than c−δ
c(1+δ) . The set U guarantees that partial securitization might dominate reinsurance for certain

types of insurers in the equilibrium. We use the term “candidate” because we have not yet imposed

the equilibrium conditions. As we see shortly, the imposition of the equilibrium conditions reduces

this set.

Given any p1 ∈ U , the threshold, p2, which represents the point of indifference between partial and

full securitization, must satisfy

c(B̃ −Bsep
s (p2) +Aseps (p2))p2 = B̃R(p2). (19)

By (17),

Bsep
s (p2) = B̃

(
1− δ

(1− p1(1 + δ)) c

)(
1− p1

p1

) 1
c
∫

1 + cp

c(1− p)p
dp.

Accordingly, we define the set L—the set of candidate equilibrium indifference thresholds, p2—as

follows.

L =

{
p2 : 1−

(
1− δ

(1− p1(1 + δ)) c

)(
1− p1

p1

) 1
c
(

p2

1− p2

) 1
c

=
R(p2)

cp2
; ∀p1 ∈ U

}
(20)

We now examine the conditions under which a candidate pair (p1, p2), indeed, characterizes an

equilibrium. Let us consider the subset of feasible pairs, (p1, p2) where p1 < p2 so that there is

an interval of insurer types who choose partial securitization. For p2 to be an equilibrium threshold, it

must be sub-optimal for insurers choosing partial or full securitization to deviate from their respective

choices. As we show in the Appendix, this condition ensures that p2 must satisfy the following

inequality for any given p1 ∈ U

c−
(
c+

1

1− p2

)(
1− δ

c(1− p1(1 + δ))

)(
(1− p1)p2

p1(1− p2)

) 1
c

+
1

1−
∫ 1
p2
tdµp2(t)

≥ 0. (21)
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Figure 10: Risk Transfer Equilibria with Variable Financial Distress Cost

For each such p2, the above inequality implies that the marginal increase in the expected cost of

partial securitization is no less than the marginal increase in the expected cost of full securitization

due to an increase in the insurer’s risk type. It guarantees that any off-equilibrium full securitization

contract is dominated by a partial securitization contract for insurers with types below p2.

Accordingly, we define the set G as

G =

{
(p1, p2) : p1 < p2,

c−
(
c+

1

1− p2

)(
1− δ

c(1− p1(1 + δ))

)(
(1− p1)p2

p1(1− p2)

) 1
c

+
1

1−
∫ 1
p2
tdµp2(t)

≥ 0,∀p1 ∈ U , p2 ∈ L
}
.

In other words, the set G is the set of equilibria, determined by the pair of thresholds, (p1, p2), that

feature reinsurance, partial securitization and full securitization (Figure 10).

We now have the requisite definitions in place to characterize the risk transfer equilibria.

Proposition 5 (Partition Equilibrium). There exist a set of PBE which are characterized by the

pairs of p∗1, p
∗
2 such that {p∗1, p∗2} ∈ G, insurers with types in the interval [0, p∗1] choose full reinsurance,

insurers with types in the interval [p∗1, p
∗
2] choose separating partial securitization, and insurers with

types in the interval [p∗2, 1] choose pooling full securitization.

The above proposition shows that the PBE, in general, continue to take the partition form with

three intervals when allowing for variable financial distress cost. The general form subsumes several
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degenerate cases, which depend on the level of the variable financial distress cost, c, and the reinsurance

markup, δ. Specifically, full reinsurance dominates partial risk sharing for low risk insurers if the

reinsurance markup is lower than the proportional financial distress cost c. Intermediate risk insurers

choose partial securitization provided the proportional financial distress cost is below a threshold. If

the proportional financial distress cost exceeds the threshold, however, partial securitization is sub-

optimal for all insurers, that is, high risk insurers chooses full securitization, while low risk insurers

choose full reinsurance. When the reinsurance markup exceeds the proportional financial distress cost,

however, insurers choose partial or full securitization.

Our results are consistent with evidence that CAT bonds mainly provide protection for top layers of

the loss distribution. As catastrophe risks are characterized by lower probabilities and high severities,

they are more likely to be reinsured or partially securitized, that is, catastrophe-linked securities such

as CAT bonds are more likely to be employed (if at all) to protect losses above a threshold.

5 Conclusions

We reconcile the “catastrophe risk” puzzle using a signaling model. Insurers’ risk transfer choices reflect

the tradeoff between the lower adverse selection costs associated with reinsurance against reinsurance

markups. PBE of the signaling game have a partition form where the lowest risks are reinsured,

intermediate risks are partially securitized, and the highest risks are fully securitized. An increase

in the loss size increases the threshold risk level above which risks are transferred via securitization.

Consequently, catastrophe risk, which is characterized by “low probability-high severity” losses, is less

likely to be securitized. Further, catastrophe-linked securities such as CAT bonds are more likely to

be employed (if at all) for losses above a threshold. Because only the highest risk insurers choose

securitization, they pay high premia in securities markets, which could explain why catastrophe-linked

securities are usually expensive, and why catastrophe securities often receive ratings below investment

grade.

Our results suggest that, in the scenario in which an insurer is exposed to multiple types of

risks, the lowest risks are reinsured, the intermediate risks are partially securitized, and the high-

est risks are fully securitized. With the entry of more sophisticated investors such as dedicated

hedge funds and the advent of blockchain technology, both of which lower the adverse selection costs

of securitization relative to reinsurance, the market for insurance-linked securities will grow signifi-
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cantly in the future, which supports the optimistic view expressed by key industry professionals (e.g.,

see http://www.artemis.bm/blog/2017/10/18/alternative-capital-seen-as-28-of-reinsurance-224bn-by-

2021-ey/).
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Online Appendix A: Proofs

Proof of Proposition 1

Proof. Suppose δ < C
B̃

.

Given the presence of fixed financial distress costs, it is easy to see that it is sub-optimal for

an insurer to choose partial reinsurance, that is, if an insurer chooses reinsurance, it chooses full

reinsurance. As it is optimal for the insurer to buy just enough reinsurance to cover its net loss in the

bad state, the total reinsurance payment B∗r (p) for it in the bad state is B∗r (p) = B −W + A∗r = B̃.

The insurer’s maximization problem is equivalent to minimizing Ar(p) − Brp which implies that the

constraint (3) is also binding. Hence, the premium is given by A∗r(p) = B̃p(1+δ)
1−p(1+δ) .

The expected payoff of reinsurance for the insurer with type p is EUr(p) = W +
(
A(1 − p) −

Bp
)
− B̃δp

1−p(1+δ) . The expected payoff of full self-insurance for the insurer with type p is EUself (p) =

W +
(
A(1− p)−Bp

)
−Cp. Thus, EUr(p) > EUself (p) for all p < C−B̃δ

C(1+δ) = pF1 , where pF1 is defined in

(4). Accordingly, reinsurance is sub-optimal for insurers with types p > pF1 , but optimal for insurers

with types p < pF1 .

Proof of Proposition 2

Proof. Consider first a candidate fully separating equilibrium (A∗s(p), B
∗
s (p)), where (A∗s(p), B

∗
s (p)) is

the securitization contract offered by the insurer with type p. The capital market investors break

even, thereby leading the investors’ participation condition to be binding. Hence, the premium is

A∗s(p) = pB∗s (p). However, (A∗s(p), B
∗
s (p)) is not incentive compatible because the higher risk insurers

are strictly better off by deviating and offering the lower risk insurers’ contract. Consequently, we

cannot have a fully separating equilibrium. Hence, any equilibrium must necessarily involve some

pooling.

Next, we observe that there cannot be an equilibrium in which there exists a quadruple, {p1, p2, p3, p4}
with p1 ≤ p2 < p3 ≤ p4 such that insurers with types in [p1, p2] pool together and choose a single

full securitization contract, and insurers with types in [p3, p4] pool together and choose a single full

securitization contract, but the two intervals of insurers choose different contracts. This assertion

follows easily from the observation that insurers with types in [p3, p4] would prefer the contract offered

by the insurers with types in [p1, p2].

It follows from the above arguments that it suffices to consider candidate equilibria in which insurers

with types below a threshold choose self-insurance, while insurers with types above the threshold choose

full pooling securitization. Accordingly, consider a candidate equilibrium defined by a trigger level p.

We now examine the conditions for p to be an equilibrium threshold. An insurer with type k ≥ p

chooses full pooling securitization, B∗s (k) = B̃ + A∗s. The break-even condition of investors requires

that the premium be given by

A∗s(k) = A∗ = B̃

∫ 1
p tdµp(t)

1−
∫ 1
p tdµp(t)

,
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where µp(t) is the investors’ posterior beliefs about insurer’s types. Therefore, the insurer’s expected

payoff from securitization is

EUpoolings (k) = W +
(
A(1− k)−Bk

)
− B̃

∫ 1
p tdµp(t)− k

1−
∫ 1
p tdµp(t)

. (A1)

The insurer, whose type k is less than or equal to p, chooses full retention. Its expected payoff is,

therefore, EUself (k) = W +
(
A(1− k)−Bk

)
−Ck. It is easy to see that, if p = pF2 satisfying (7), then

EUpoolings (p) = EUself (p). Hence, the insurer with risk type pF2 is indifferent between pooling with

higher types and self-insurance.

Next, we check that pF2 is, indeed, the equilibrium threshold. First, we establish incentive com-

patibility of the set of contracts defined by pF2 . If an insurer with type k < pF2 deviates to choose the

pooling contract (A∗, B∗), its expected payoff is

EUdeviates (k) = W +
(
A(1− k)−Bk

)
− B̃

∫ 1
pF2
tdµpF2

(t)− k

1−
∫ 1
pF2
tdµpF2

(t)
.

It is easy to show that, if k < pF2 , then

B̃

∫ 1
pF2
tdµpF2

(t)− k

1−
∫ 1
pF2
tdµpF2

(t)
> B̃

∫ 1
pF2
tdµpF2

(t)− pF2
1−

∫ 1
pF2
tdµpF2

(t)
= B̃R(pF2 ) = CpF2 > Ck.

Thus, EUself (k) > EUdeviates (k). As a result, the insurer with type k < pF2 will not choose the pooling

contract (A∗, B∗). If an insurer with type k > pF2 deviates to choose full self-insurance, the expected

payoff is

EUdeviateself (k) = W +
(
A(1− k)−Bk

)
− Ck.

It is easy to see that, if k > pF2 , then

B̃

∫ 1
pF2
tdµpF2

(t)− k

1−
∫ 1
pF2
tdµpF2

(t)
< B̃

∫ 1
pF2
tdµpF2

(t)− pF2
1−

∫ 1
pF2
tdµpF2

(t)
= B̃R(pF2 ) = CpF2 < Ck.

Thus, EUpoolings (k) > EUdeviateself (k). Consequently, the insurer whose type is greater than pF2 will not

choose retention.

Now suppose that an insurer with type k > pF2 finds it profitable to deviate to some other securiti-

zation contract (A′s, B
′
s). Suppose first that the contract involves a full transfer of risk. The deviation

is profitable for the insurer iff A′s < A∗. In this case, however, the deviation is also profitable for

insurers with higher risk types. Consequently, reasonable off-equilibrium beliefs of investors must nec-

essarily pool insurers with types greater than or equal to k, which makes the hypothesized deviation

unprofitable for insurer k. Alternately, applying the D1 refinement, the sets of investor beliefs under

which a deviation to the full risk transfer contract (A′s, B
′
s) is profitable increases with the insurer risk
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type. Iteratively applying the D1 refinement, therefore, implies that, on observing such a deviation,

investors’ beliefs assign probability one that the insurer has the highest risk type, which makes it

unprofitable for all lower risk insurers to deviate.

Suppose that the deviating contract (A′s, B
′
s) does not involve a full transfer of risk so that B′s < B∗

and the insurer bears the additional financial distress cost C in the bad state. Because the insurer’s

expected cost under the pooling contract given by (A1) is decreasing and linear in its type k, in this

case too, the sets of investor beliefs under which the deviation is profitable are increasing in the insurer

type. Iteratively applying the D1 refinement, investors’ beliefs assign probability one that the insurer

has the highest risk type on observing such a deviation, thereby making it unprofitable for lower risk

types.

Similarly, suppose that an insurer with type k < pF2 finds it profitable to deviate to a securitization

contract (A”
s, B

”
s ). If the contract involves a full transfer of risk, it must also be profitable for insurers

with types in [k, pF2 ]. Consequently, reasonable off-equilibrium beliefs must pool together such insur-

ers, which makes the hypothesized deviation unprofitable. Alternately, iteratively applying the D1

refinement, off-equilibrium beliefs following such a deviation assign probability one that the insurer is

of type pF2 , thereby making the deviation unprofitable for all lower risk insurers. If the contract does

not involve a full transfer of risk, then the insurer necessarily bears the financial distress cost C in the

bad state. In this case too, if such a deviation is profitable for the insurer, it must also be profitable

for insurers with types in [k, pF2 ]. We can again argue as above that reasonable off-equilibrium beliefs

following such a deviation make it unprofitable for the insurer.

Hence, the threshold pF2 satisfying (7) defines an equilibrium. Moreover, if (7) has a unique

solution, then it determines the unique PBE of the risk transfer game.

Proof of Proposition 3.

Proof. 1. If C < B̃δ, where it is sub-optimal for an insurer to choose reinsurance. We are, thus, in

the scenario described in Proposition 2.

2. Suppose B̃δ < C < B̃δ
1−pF2 (1+δ)

.

It follows from Proposition 1 that insurers with types in the interval [0, pF1 ] prefer full reinsurance

to full self-insurance. By Proposition 2, insurers with types in the interval [pF2 , 1] prefer full pooling

securitization to full self-insurance. By condition (8), there is a unique pF2 satisfying (7).

Since C < B̃δ
1−pF2 (1+δ)

,
B̃δpF1

1−pF2 (1+δ)
> CpF1 =

B̃δpF1
1−pF1 (1+δ)

. Thus, pF1 < pF2 .

It follows from the results of Propositions 1 and 2 that pF1 and pF2 are two indifference points. Now

check whether they are, indeed, the equilibrium thresholds. If an insurer with type in the interval

[0, pF1 ], deviates to choose the pooling securitization contract given by Proposition 2, the expected

payoff is

EUdeviates (p) = W + (A(1− p)−Bp)− B̃

∫ 1
pF2
tdµpF2

(t)− p

1−
∫ 1
pF2
tdµpF2

(t)
.
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It is easy to see that, since

B̃

∫ 1
pF2
tdµpF2

(t)− p

1−
∫ 1
pF2
tdµpF2

(t)
≥ B̃

∫ 1
pF2
tdµpF2

(t)− pF2
1−

∫ 1
pF2
tdµpF2

(t)
= B̃R(pF2 ) = CpF2 > CpF1 > Cp,

it will not deviate to choose full pooling securitization. Consequently, the insurers with types in the

interval [0, pF1 ] will not deviate to choose full pooling securitization. Under restrictions on reasonable

off-equilibrium beliefs along the lines of the D1 refinement as in the proof of Proposition 2, an insurer

with type in the interval [0, pF1 ] will also not deviate to choose any other securitization contract.

For an insurer with type in the interval [pF1 , p
F
2 ], Proposition 1 implies that it will not choose

full reinsurance. Proposition 2 implies that it will not choose full pooling securitization or any other

securitization contract. As a result, it is optimal for it to choose full self-insurance.

For an insurer with type in the interval [pF2 , 1], Proposition 2 shows that it will not choose full

self-insurance. If it deviates to choose full reinsurance, it pays the additional rents due to reinsurance

markup arising from a variety of sources. Thus, the expected payoff is EUdeviater (p) = W + (A(1 −
p)−Bp)− B̃δp

1−p(1+δ) . It is easy to show that

B̃δp

1− p(1 + δ)
> Cp

since the function C − B̃δ
1−p(1+δ) decreases with p and equals zero at pF1 . Also,

Cp > CpF2 = B̃

∫ 1
pF2
tdµpF2

(t)− pF2
1−

∫ 1
pF2
tdµpF2

(t)
> B̃

∫ 1
pF2
tdµpF2

(t)− p

1−
∫ 1
pF2
tdµpF2

(t)
.

As a result, EUdeviater (p) < EUpoolings (p) if p > pF2 . By arguments similar to those used in the proof of

Proposition 2, which plays restrictions on reasonable off-equilibrium beliefs, it is also sub-optimal for an

insurer with type in the interval [pF2 , 1] to deviate to any other securitization contract. Consequently,

it is optimal for insurers with types greater than pF2 to choose pooling securitization. Further, the

conjectured PBE is the unique equilibrium since the values of pF1 and pF2 are unique under condition

(8) and B̃δ < C < B̃δ
1−pF2 (1+δ)

.

3. Suppose C > B̃δ
1−pF2 (1+δ)

, that is pF2 < pF1 . It follows that it is sub-optimal for an insurer to choose

self-insurance, thereby leading the equilibria to have a partition form with two subintervals.

First solve for the point of indifference between choosing full reinsurance and pooling with higher

risk insurers through securitization. The optimal reinsurance contracts are given by Proposition 1, and

the corresponding expected payoff is EUr(p) = W + (A(1− p)−Bp)− B̃pδ
1−p(1+δ) . The optimal pooling

securitization coverage is B∗s = B̃. The indifference point, p3, between securitization and reinsurance

must solve
B̃p3δ

1− p3(1 + δ)
= B̃R(p3) (A2)
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Condition R′(p) < δ
(1−p(1+δ))2

ensures that there is a unique solution pF3 to (A2)

Next, we check whether the unique solution pF3 is the equilibrium threshold. For insurers with

types in the interval [0, pF3 ], the expected payoff of full reinsurance is

EUr(p) = W + (A(1− p)−Bp)− B̃pδ

1− p(1 + δ)
,

while the expected payoff of full pooling securitization is

EUdeviates (p) = W + (A(1− p)−Bp)−
B̃(
∫ 1
pF3
tdµpF3

(t)− p)

1−
∫ 1
pF3
tdµpF3

(t)
.

For any p ∈ [0, pF3 ],

B̃pδ

1− p(1 + δ)
<

B̃pF3 δ

1− pF3 (1 + δ)
=
B̃(
∫ 1
pF3
tdµpF3

(t)− pF3 )

1−
∫ 1
pF3
tdµpF3

(t)
<
B̃(
∫ 1
pF3
tdµpF3

(t)− p)

1−
∫ 1
pF3
tdµpF3

(t)

Then, EUr(p) > EUdeviates (p). The insurer types in the interval [0, pF3 ], therefore, will not deviate to

choose full securitization. By arguments similar to those used in the earlier proofs, an insurer with

type in the interval [0, pF3 ] will also not deviate to choose any other securitization contract.

Similarly, the expected payoff of insurers with types in the interval [pF3 , 1] from choosing securiti-

zation is

EUs(p) = W + (A(1− p)−Bp)−
B̃(
∫ 1
pF3
tdµpF3

(t)− p)

1−
∫ 1
pF3
tdµpF3

(t)
,

while the expected payoff of choosing full reinsurance is

EUdeviater (p) = W + (A(1− p)−Bp)− B̃pδ

1− p(1 + δ)
.

For any p ∈ [pF3 , 1], we have

B̃(
∫ 1
pF3
tdµpF3

(t)− p)

1−
∫ 1
pF3
tdµpF3

(t)
<
B̃(
∫ 1
pF3
tdµpF3

(t)− pF3 )

1−
∫ 1
pF3
tdµpF3

(t)
=

B̃pF3 δ

1− pF3 (1 + δ)
<

B̃pδ

1− p(1 + δ)

Thus, EUs(p) > EUdeviater (p). Therefore,insurers with types in the interval [pF3 , 1] will not deviate

to choose reinsurance. By arguments similar to those used in earlier proofs, they will also not deviate

to choose any other securitization contract.

Consequently, the conjectured equilibrium is, indeed, the unique PBE of the signaling game if

condition (A2) and C > B̃δ
1−pF2 (1+δ)

hold.

Proof of Corollary 1
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Proof. We first show that an increase in the size of the net loss payments B increases the threshold

level above which insurers choose full securitization. pF2 is the point of indifference between the cross-

subsidization costs from pooling with higher types and expected costs from retaining risk. Given the

“single crossing” condition (8), there exists a unique solution to (7), pF2 ; that is

g(pF2 ) = CpF2 − B̃R(pF2 ) = 0

Applying the implicit function theorem to the above equation, we get
∂pF2
∂B =

R(pF2 )

C−B̃R′(pF2 )
. Under the

“single crossing” condition (8), we can show that
∂pF2
∂B > 0. An increase in the size of the net loss

payments, B, increases the threshold level above which insurers choose full securitization.

We then show that an increase in the size of the net loss payments B increases the threshold level

below which insurers choose full Reinsurance. It is easy to show
∂PF1
∂B = − δ

C(1+δ) < 0. It implies an

increase in the size of the net loss payments, B, decreases the threshold level above which insurers

choose reinsurance. Consequently, the subinterval of insurer risk types that choose securitization or

reinsurance decreases.

In sum, an increase in the size of net loss payment, B, reduces the subinterval of insurer risk

types that choose securitization and increases the total subinterval of insurer risk types that choose

reinsurance and securitization. Given that insurers choose securitization if only if their probability of

potential losses is very high, catastrophe risks that are characterized by ”low probability-high severity”

are, therefore, more likely to be either retained by insurers or reinsured.

Proof of Proposition 4

Proof. We first show that PBEs cannot be fully pooling or fully separating.

Consider first a candidate pooling equilibrium where all insurers offer the same contract (A∗s(p), B
∗
s (p))

given by Proposition 2. Because financial distress costs now depend on an insurer’s shortfall in meeting

its liabilities, the lower risk insurers have incentives to retain some risk to signal their types, thereby

reducing the subsidization costs from pooling securitization contracts.

Now consider a candidate fully separating equilibrium where each insurer type chooses correspond-

ing securitization contracts at fair price since its risk type is perfectly revealed in the capital markets.

Thus, the optimal risk retention level B̃−Bsep
s (p)+Aseps (p) (or the optimal total risk coverage Bsep

s (p))

solves

max
p̃
W + (A (1− p)−Bp)− (As(p̃)−Bsep

s (p̃)p)− c
(
B̃ −Bsep

s (p̃) +Aseps (p̃)
)
p

such that

As(p̃)−Bsep
s (p̃)p̃ ≥ 0 (A3)
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The break-even condition (A3) for capital markets is binding. The above is, therefore, equivalent

to

min
p̃
Bsep
s (p̃− p) + c

(
B̃ −Bsep

s (p̃) +Aseps (p̃)
)
p

The first order condition is

Bsep′
s (p̃) (p̃− p) +Bsep

s (p̃) + cpp̃Bsep′
s (p̃) + cpBsep

s (p̃)− cBsep′
s (p̃)p = 0.

Setting p̃ = p, we obtain

(1 + cp)Bsep
s (p) =

dBsep
s (p)

dp
cp(1− p) (A4)

The general solution of the above ordinary differential equation is given by (10), that is

Bsep
s (p) = exp(λ) exp(

∫
1 + cp

cp(1− p)
dp),

where λ is the constant of integration. It is easy to show that, for any λ, there is a p̃ where 0 < p̃ < 1,

such that Bsep
s (p̃) = B̃+Aseps (p̃). It follows that the pure separating equilibrium is also violated since

not all insurers are able to signal their types.

Using arguments similar to those used in the proof of Proposition 2, we can show that it suffices to

consider candidate semi pooling equilibria characterized by a threshold risk type p∗ such that insurers

with types below it partially transfer their risks through separating contracts, while insurers with risk

types above it fully transfer their risks through pooling contracts. Insurers who choose separating

contracts reveal their types and, therefore, incur no adverse selection costs, but nonzero expected

costs from the partial retention. The insurer of type p∗ should be indifferent between a separating and

pooling contract.

The expected cost to an insurer of type p from choosing a separating contract that reveals its type

is

Cseps (p)p = c

(
B̃ − exp(λ)

(
p

1− p

) 1
c

)
p

The expected cost to the insurer with type p from choosing a pooling contract is B̃R(p), where R(p)

is defined by equation (6).

Thus, an indifference threshold p∗ is determined by

c

(
B̃ − exp(λ)

(
p∗

1− p∗

) 1
c

)
p∗ = B̃R(p∗).

Any p∗ satisfying the above equation is a candidate for the threshold that supports the conjectured
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semi pooling PBE. The indifference point p∗ also determines the incentive compatible pooling and

separating contracts in terms of the value of λ. Rearranging (12) and using (11), we obtain (13), that

is

exp(λ) = B̃

(
1− R(p∗)

cp∗

)(
1− p∗

p∗

) 1
c

.

Clearly, ∀p∗ ∈ [0, 1], there exists a corresponding λ such that p∗ is the point of indifference between

pooling and separating contracts.

For the given indifference point p∗, plugging (13) into (11), we obtain the corresponding separating

contracts for the insurer with type p < p∗.

Bsep∗
s (p) =B̃

(
1− R(p∗)

cp∗

)(
1− p∗

p∗

) 1
c
(

p

1− p

) 1
c

+Asep∗s (p) (A5)

Asep∗s (p) =B̃

(
1− R(p∗)

cp∗

)(
1− p∗

p∗

) 1
c
(

p

1− p

) 1
c
+1

(A6)

The break-even condition for capital markets requires the pooling contract premium to be

A∗s =
B̃
∫ 1
p∗ tdµp∗(t)

1−
∫ 1
p∗ tdµp∗(t)

We now show that p∗ ∈ [0, 1] is an equilibrium indifference threshold if it satisfies condition (14).

For an insurer with type p ∈ [0, p∗], the expected payoff of choosing partial securitization is

EU seps (p) = W + (A (1− p)−Bp)− c
(
B̃ −Bsep

s (p) +Aseps (p)
)
p

If it deviates to the pooling contract, the expected payoff is

EUdeviatepools (p) = W + (A (1− p)−Bp)− B̃
∫ 1
p∗ tdµp∗(t)− p

1−
∫ 1
p∗ tdµp∗(t)

We now show that EUdeviatepools (p) ≤ EU seps (p) if condition (14) holds. Define

G1(p) = cp
(
B̃ − B̃s

sep
(p)
)
− B̃

∫ 1
p∗ tdµp∗(t)− p

1−
∫ 1
p∗ tdµp∗(t)
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where B̃s
sep

(p) is given by Bsep
s (p)−Aseps (p) = B̃

(
1− R(p∗)

cp∗

)(
1−p∗
p∗

) 1
c
(

p
1−p

) 1
c
. We have

G′1(p) = c
(
B̃ − B̃s

sep
(p)
)
− cpB̃s

sep′
(p) +

B̃

1−
∫ 1
p∗ tdµp∗(t)

= c
(
B̃ − B̃s

sep
(p)
)
− B̃s

sep
(p)

1− p
+

B̃

1−
∫ 1
p∗ tdµp∗(t)

G′′1(p) = −cB̃s
sep′

(p)− B̃s
sep′

(p)(1− p) + B̃s
sep

(p)

(1− p)2
≤ 0.

Thus, G1(p) is a concave function of p. So we have

∂G1(p)

∂p
|p<p∗ ≥

∂G1(p)

∂p
|p=p∗

Next, note that

∂G1(p)

∂p
|p=p∗ = c

(
B̃ − B̃

(
1− R(p∗)

cp∗

))
−
B̃
(

1− R(p∗)
cp∗

)
1− p∗

+
B̃

1−
∫ 1
p∗ tdµp∗(t)

= B̃

(
c−

(
c+

1

1− p∗

)(
1− R(p∗)

cp∗

)
+

1

1−
∫ 1
p∗ tdµp∗(t)

)
.

Under condition (14), ∂G1(p)
∂p |p<p∗ ≥ 0, that is G1(p) is an increasing function of p for p < p∗ so that

G1(p) < G1(p∗) = 0. Consequently,

cp
(
B̃ −Bsep

s (p)
)
< B̃

∫ 1
p∗ tdµp∗(t)− p

1−
∫ 1
p∗ tdµp∗(t)

,

and EU seps (p) > EUdeviatepools . Hence, the insurers with risk types below p∗ will not deviate to pooling

securitization by (14). Because the Spence-Mirrlees single-crossing condition holds (due to the linear

objective function of insurers), the “local” incentive compatibility condition (A4) ensures that an

insurer with risk type p ≤ p∗ will also not deviate to choose the partial securitization contract of some

other type p′ ≤ p∗. Finally, as in the proof of Proposition 2, we can show that, under reasonable

off-equilibrium beliefs, it is sub-optimal for an insurer with risk type p ≤ p∗ to deviate to some other

arbitrary securitization contract (As, Bs) that is not chosen by another risk type p′ ≤ p∗. If such a

deviation were profitable for the insurer of type p < p∗, it would also be profitable for types p′ ∈ (p, p∗].

Consequently, on observing such an off-equilibrium deviation, the beliefs of capital market investors

would pool the insurer of type p with the insurers of types p′ ∈ (p, p∗], thereby making the deviation

unprofitable. Alternatively, iteratively applying the D1 refinement, investors believe that the deviating

insurer is of the risk type p∗ with probability one, which makes the deviation unprofitable for all lower

39



risk types.

For insurers with types p ∈ [p∗, 1], the expected payoff of choosing full pooling securitization is

EUpools (p) = W + (A (1− p)−Bp)− B̃
∫ 1
p∗ tdµp∗(t)− p

1−
∫ 1
p∗ tdµp∗(t)

The expected payoff of mimicking an arbitrary lower-risk insurer of type p̂ < p∗ is

EUdeviateseps (p) =W + (A (1− p)−Bp)− c
(
B̃ − B̃s

sep
(p̂)
)
p︸ ︷︷ ︸

expected financial distress costs of mimicking

−B̃s
sep

(p̂)(p̂− p)
1− p̂︸ ︷︷ ︸

benefits from mimicking

Define

G2(p) = c
(
B̃ − B̃s

sep
(p̂)
)
p+

B̃s
sep

(p̂)(p̂− p)
1− p̂

− B̃
∫ 1
p∗ tdµp∗(t)− p

1−
∫ 1
p∗ tdµp∗(t)

The first derivative is

G′2(p) = c
(
B̃ − B̃s

sep
(p̂)
)
− B̃s

sep
(p̂)

1− p̂
+

B̃

1−
∫ 1
p∗ tdµp∗(t)

= c
(
B̃ − B̃s

sep
(p̂)
)

+ (
B̃

1−
∫ 1
p∗ tdµp∗(t)

− B̃s
sep

(p̂)

1− p̂
) > 0

It is obvious that G2(p) is an increasing function of p ∈ [p∗, 1]. Thus, G2(p) ≥ G2(p∗) = 0 ∀p ≥ p∗.

That is, c
(
B̃ − B̃s

sep
(p̂)
)
p+ B̃s

sep
(p̂)(p̂−p)
1−p̂ > B̃

∫ 1
p∗ tdµp∗ (t)−p

1−
∫ 1
p∗ tdµp∗ (t)

. Hence, it is easy to show that EUpools (p) >

EUdeviates (p) ∀p > p∗. As a result, insurers with risk types greater than p∗ will not deviate to choose

separating contracts. As earlier, we can iteratively apply the D1 refinement to show that an insurer

with risk type p > p∗ will also not deviate to choose some other arbitrary securitization contract.

By the above arguments, each candidate threshold p∗ ∈ P defined in (15) defines a semi-pooling

PBE.

Proof of Proposition 5

Proof. 1. Suppose first that

δ < c (A7)

It then follows from Proposition 1 that the insurer with risk type below a threshold chooses full

reinsurance. By Proposition 4, higher risk insurers prefer pooling securitization, while lower risk

insurers prefer separating securitization. Therefore, we conjecture that there are two types of PBEs
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under condition (A7). The differences between the two types of PBEs lie in the intermediate risk

insurers’ choice between full reinsurance and partial securitization.

First considers the candidates for a pair of triggers (p1, p2), where p1 is the point of indifference

between full reinsurance and partial securitization, and p2 is the point of indifference between partial

securitization and full securitization. The intermediate interval is nonempty iff p1 < p2. By our earlier

arguments, p1 must satisfy

B̃δp1

1− p1(1 + δ)
= c(B̃ − exp(λ)

(
p1

1− p1

) 1
c

)p1 (A8)

where the constant of integration, λ, is determined by p1 if it is the equilibrium threshold.

Rearranging the above equation, we obtain (17), where

exp(λ) = B̃

(
1− δ

(1− p1(1 + δ)) c

)(
1− p1

p1

) 1
c

(A9)

The trigger, p2, must satisfy equation (19), that is, c(B̃ −Bsep
s (p2))p2 = B̃R(p2), where it follows

from (17) that

B̃s
sep

(p2) = B̃

(
1− δ

(1− p1(1 + δ)) c

)(
1− p1

p1

) 1
c
(

p2

1− p2

) 1
c

The above two equations lead to the following relationship between p1 and p2:

1−
(

1− δ

(1− p1(1 + δ)) c

)(
1− p1

p1

) 1
c
(

p2

1− p2

) 1
c

=
R(p2)

cp2

We define the set U by (18), which comprises of all possible indifference points p∗1. We define the

set L by (20), which contains all possible indifference points p∗2.

Suppose that p∗1 < p∗2. Conjecture a partition equilibrium where insurers with types in the range

[0, p∗1] choose full reinsurance, insurers with types in the range [p∗1, p
∗
2] choose separating partial secu-

ritization, and insurers with types in the range [p∗2, 1] choose pooling full securitization. We now show

that the pair of indifference points are, indeed, equilibrium thresholds.

For insurers with types in the range [0, p∗1], their expected payoff of full reinsurance is

EUr(p) = W + (A (1− p)−Bp)− B̃δp

1− p(1 + δ)
.

If they deviate to choose partial securitization by choosing the corresponding coverage, where

B̃s
sep

(p) = Bsep
s (p)−Aseps (p) = B̃

(
1− δ

(1− p∗1(1 + δ))c

)(
1− p∗1
p∗1

) 1
c
(

p

1− p

) 1
c

(A10)

their expected payoff is

EUdeviatesep(p) = W + (A (1− p)−Bp)− c(B̃ − B̃s
sep

(p))p.
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If they deviate to choose full pooling securitization, where

B∗s = B̃ +A∗s; A∗s =
B̃
∫ 1
p∗2
tdµ(t)

1−
∫ 1
p∗2
tdµp∗2(t)

, (A11)

the expected payoff is

EUdeviatepool(p) = W + (A (1− p)−Bp)− B̃

∫ 1
p∗2
tdµp∗2(t)− p

1−
∫ 1
p∗2
tdµp∗2(t)

.

Define

Φ(p) =
B̃δp

1− p(1 + δ)
− cp

(
B̃ − B̃s

sep
(p)
)
.

It is easy to show that Φ(p) is a convex function. Since Φ(0) = Φ(p∗1) = 0, then, Φ(p) ≤ 0∀p ∈ [0, p∗1].

That is

B̃δp

1− p(1 + δ)
< c

(
B̃ − B̃s

sep
(p)
)
p

Define

Ψ(p) = cp
(
B̃ − B̃s

sep
(p)
)
− B̃

∫ 1
p∗2
tdµp∗2(t)− p

1−
∫ 1
p∗2
tdµp∗2(t)

.

It is easy to see that function Ψ(p) is a concave function of p. Then ∂Ψ(p)
p |p<p∗2 >

∂Ψ(p)
p |p=p∗2 and

∂Ψ(p)

p
|p=p∗2 = B̃

(
c−

(
c+

1

1− p∗2

)(
1− δ

c(1− p∗1(1 + δ))

)(
(1− p∗1)p∗2
p∗1(1− p∗2)

) 1
c

+
1

1−
∫ 1
p∗2
tdµp∗2(t)

)
.

For any p∗1 ∈ L, it follows that ∂Ψ(p)
p > 0 for all p < p2∗ if condition (21) holds. Therefore, Ψ(p) is

an increasing function of p. So Ψ(p) ≤ Ψ(p∗2) = 0 for all p < P ∗2 ; that is

cp
(
B̃ − B̃s

sep
(p)
)
< B̃

∫ 1
p∗2
tdµp∗2(t)− p

1−
∫ 1
p∗2
tdµp∗2(t)

.

Since

B̃δp

1− p(1 + δ)
< c

(
B̃ − B̃s

sep
(p)
)
p < B̃

∫ 1
p∗2
tdµp∗2(t)− p

1−
∫ 1
p∗2
tdµp∗2(t)

,
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EUr(p) > EUdeviatesep(p), EUr(p) > EUdeviatepool(p)

Therefore, insurers with types in the range [0, p∗1] will not deviate to choose either separating partial

securitization or pooling full securitization. Iteratively applying the D1 refinement, they will also not

deviate to choose some other arbitrary securitization contract.

Now consider insurers with types in the range [p∗1, p
∗
2]. If they choose partial securitization contracts

given by (A10), the expected payoff is EU seps (p) = W + (A (1− p)−Bp)− c(B̃ −Bsep
s (p))p.

If they deviate to choose full reinsurance contracts given by Proposition 1 , the expected payoff is

EUdeviatere(p) = W + (A (1− p)−Bp)− B̃δp

1− p(1 + δ)
.

If they deviate to choose pooling securitization given by (A11), the expected payoff is

EUdeviatepool(p) = W + (A (1− p)−Bp)− B̃

∫ 1
p∗2
tdµp∗2(t)− p

1−
∫ 1
p∗2
tdµp∗2(t)

.

Since Φ(p) is a convex function with Φ(0) = Φ(p∗1) = 0, Φ(p) > 0 for p > p∗1, that is, B̃δp
1−p(1+δ) >

cp
(
B̃ − B̃s

sep
(p)
)

. Thus EUdeviatere(p) < EU seps (p).

Also, when p < p∗2, it follows that c(B̃ − Bsep
s (p))p < B̃

∫ 1
p2
tdµp∗2

(t)−p

1−
∫ 1
p2
tdµp∗2

(t)
. Hence, EU seps (p) >

EUdeviatepool(p). Therefore, insurers with types in the range [p∗1, p
∗
2] will choose neither full rein-

surance nor full pooling securitization. Because the Spence-Mirrlees single-crossing condition holds,

the “local” incentive compatibility condition (A4) for the partial securitization contracts ensures that

an insurer with risk type p ∈ [p∗1, p
∗
2] will also not deviate to choose some other type’s partial securi-

tization contract. Finally, iteratively applying the D1 refinement, they will also not deviate to choose

some other arbitrary securitization contract that is not chosen by another type.

We now consider the insurers with types in the range [p∗2, 1].

If they choose pooling securitization given by (A11), the expected payoff is

EUpools (p) = W + (A (1− p)−Bp)− B̃

∫ 1
p∗2
tdµp∗2(t)− p

1−
∫ 1
p∗2
tdµp∗2(t)

.

If they deviate to choose full reinsurance, the expected payoff is

EUdeviatere = W + (A (1− p)−Bp)− B̃δp

1− p(1 + δ)
.

By the property of the function Φ(p), it is easy to show that, when p > p∗2 > p∗1, Φ(p) > 0. Thus,

B̃δp

1− p(1 + δ)
> cp

(
B̃ − B̃s

sep
(p)
)
.
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By the property of function Ψ(p), it is easy to show that, when p > p∗2 > p∗1,

cp
(
B̃ − B̃s

sep
(p)
)
> B̃

∫ 1
p∗2
tdµp∗2(t)− p

1−
∫ 1
p∗2
tdµp∗2(t)

.

As a result, EUpoolings (p) > EUdeviatere(p). The insurers, therefore, will not deviate to choose full

reinsurance. It follows from the results of Proposition 4 that the insurers on this interval would not

choose partial securitization. There are multiple possible PBEs, where the thresholds {p∗1, p∗2} ∈ G and

p∗1 < p∗2.

Now consider the case where p∗1 > p∗2 so that partial securitization is sub-optimal for insurers. In

this case, we conjecture a PBE with two partitions, where insurers with type in the range [0, p∗3] choose

full reinsurance, while insurers with types in the range [p∗3, 1] choose pooling full securitization. We

are, therefore, in the scenario as characterized by Part 3 of Proposition 3.

2. Suppose δ > c. It follows that full reinsurance is the sub-optimal choice for all insurers. Conse-

quently, we are in the scenario as characterized by Proposition 4.

Online Appendix B: Index-Linked Securitization

We now extend our model to incorporate index-linked securities whose payouts are tied to the loss of

an index, rather than the loss of a particular insurer. Specifically, there is a publicly observable index

I that incurs a loss with probability q, where q is public information. The index-linked securitization

contract, (Aindex, Bindex), specifies the premium, Aindex, received by investors and the payment, Bindex,

made by investors if the index incurs a loss. Because the index loss probability, q, is public information,

and capital markets are competitive, we must have Aindex = qBindex. Further, the presence of the fixed

financial distress cost, C, implies that it is optimal for an insurer to choose full insurance, that is, the

insurer sets, Bindex = B̃ +Aindex. Hence,

Aindex =
q

1− q
B̃ (A12)

The index contract can mitigate the adverse selection problem suffered by the securitization con-

tract that is tied to an insurer’s loss—that is, an indemnity-based contract—since the index loss

probability, q, is public information and known by investors. However, an index-linked contract intro-

duces basis risk because the loss distribution of the index need not be perfectly correlated with the

loss distribution of an insurer. We model the imperfect correlation between insurer loss distributions

and the index loss distribution as follows.

For an insurer with loss probability p < q, the set of states of the world under which the insurer

incurs a loss is a subset of the set of states under which the index incurs a loss. Consequently, the

probability that the index incurs a loss, but the insurer does not is q − p, and the joint probability

that both the insurer and the index incur losses is simply p. Analogously, for an insurer with loss
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Figure 11: Partition Equilibrium with Index Securitization

probability p > q, the set of states under which the insurer incurs a loss is a superset of the set of

states under which the index incurs a loss. Hence, the probability that the insurer incurs a loss, but

the index does not is p− q, and the joint probability that both incur losses is q.

The cost to an insurer with loss probability p < q from choosing the index contract to transfer its

risk arises from the fact that it must pay a higher premium that corresponds to the loss probability of

the index, q, rather than its true loss probability, p. The cost to an insurer with loss probability p > q

stems from basis risk, that is, the insurer will not receive any payout if it incurs a loss, but the index

doesn’t in which case it is insolvent and incurs the financial distress cost, C. On the other hand, an

insurer with loss probability p > q benefits from the fact that it pays a premium that corresponds to

the index loss probability, q, rather than its own true loss probability, p > q.

It follows from the above and (A12) that the expected cost of the index contract for an insurer

with risk type, p, is

Expected Cost of Index Contract =

expected benefit/cost of index contract premium︷ ︸︸ ︷
(

q

1− q
− p

1− p
)B̃ +

expected cost of basis risk︷ ︸︸ ︷
(p− q)+C ,

(A13)

where (p−q)+ = max(p−q, 0). By (A13), the expected cost of the index-linked securitization contract

is a non-monotonic function of the insurer’s risk type p as the “purple curve” shown in Figure 11.

Specifically, the expected cost decreases with insurer’s risk type when it is less than the index loss

probability, q; increases with with insurer’s risk type when q < p < 1−
√

B̃
C ; and decreases with with

the insurer’s risk type when p > 1−
√

B̃
C . The expected cost equals zero in two cases: (i) the insurer’s

risk type, p, is equal to the index loss probability, q, so that the insurer faces no basis risk and pays a

premium that corresponds to its true loss probability; and (ii) the insurer’s risk types, p, is equal to,

p̄, so that the insurer’s benefit from paying a premium associated to the index loss probability exactly

offsets the cost of basis risk, where p̄ satisfies ( p̄
1−p̄ −

q
1−q )B̃ = (p̄− q)C.
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The following proposition shows that the PBE of the risk transfer game continues to have a partition

form.

Proposition 6 (Partition Equilibrium with Index-linked Securitization). There exist four triggers,

pI1, p
I
2, p

I
3, p

I
4 with pI1 ≤ pI2 ≤ pI3 ≤ pI4 such that the unique PBE (under the D1 refinement) is char-

acterized as follows. Insurers with types in the interval [0, pI1] choose full reinsurance, insurers with

types in the interval [pI1, p
I
2] choose full retention, insurers with types in the intervals [pI2, p

I
3] and [pI4, 1]

choose index-linked securitization and insurers with types in the interval [pI3, p
I
4] choose full pooling

“indemnity-based” securitization.

The above proposition shows that the PBE is, in general, characterized by five intervals. Insurers

with risk types in the lowest interval choose reinsurance, followed by retention, index-linked securitiza-

tion, indemnity-based securitization, and index-linked securitization again respectively.9 As shown by

Figure 11, the interplay between the costs associated with basis risk due to index-linked securitization,

and the costs associated with pooling with higher risk types in indemnity-based securitization, causes

the relative benefit of index-based vis-a-vis indemnity-based securitization to vary non-monotonically

with the insurer’s risk type. Consequently, the interval over which securitization—index-based or

indemnity-based—is chosen consists of three subintervals in general. The lower and higher subinter-

vals of risk types choose index-based securitization, whereas the intermediate subinterval of risk types

choose indemnity-based securitization. Importantly, however, the key implication of Proposition 3 is

robust to the incorporation of index-linked securitization. There exists a trigger risk level such that

insurers with risks above the trigger choose securitization; index-linked or indemnity-based.

Proof of Proposition 6

Proof. The proof follows using logic that is quite similar to the proof of Proposition 3. First, consider

the scenario where B̃δ < C ≤ B̃δ
1−pF2 (1+δ)

and q1 < q < q2, where

q1 =
pF1 B̃ + pF1 (1− pF1 )C

B̃ + pF1 (1− pF1 )C
(A14)

q2 =
pF2 B̃ + pF2 (1− pF2 )C

B̃ + pF2 (1− pF2 )C
(A15)

It follows from the proof of Proposition 1 and the properties of the expected cost function of index-

linked securitization that insurers with low risk type prefer full reinsurance to both full self-insurance

and index-linked securitization. Insurers with risk type higher than p̄ prefer index-linked securitization

because the benefit from paying the index-linked premium rather than the indemnity-based premium

is greater than the cost of basis risk, where ( p̄
1−p̄ −

q
1−q )B̃ = (p̄−q)C. In addition, the net benefit from

index-linked securitization approaches infinity as insurer’s risk type approaches one. Consequently,

9Depending on the relative magnitudes of the financial distress cost and insurer loss size, either the interval over
which retention is chosen or the interval over which reinsurance is chosen could be empty. Further, depending on the
index loss probability, q, one or more of the subintervals over which index-linked securitization is chosen could be empty.
Please see the proof of Proposition 6 for the detailed conditions.

46



there exists a threshold level of risk above which index-linked securitization dominates indemnity-based

securitization.

By the above arguments, it suffices to consider candidate equilibria with five partitions such that

insurers with risk types in the lowest subinterval choose reinsurance, followed by retention, index-linked

securitization, indemnity-based securitization, and index-linked securitization again respectively. Ac-

cordingly, we examine the partition equilibrium defined by four thresholds pI1, pI2, pI3 and pI4. Specif-

ically, pI1 = pF1 is the indifference point between full reinsurance and full self-insurance as defined by

Proposition 1. pI2 is the indifference point between full self-insurance and index-linked securitization

such that

(
q

1− q
− pI2

1− pI2
)B̃ = pI2C (A16)

pI3 and pI4 are the two indifference points between index-linked securitization and pooling of indemnity-

based securitization, which determines the subinterval where insurers choose pooling of indemnity-

based securitization and are jointly determined by the following:

(
q

1− q
− pI3

1− pI3
)B̃ + (pI3 − q)C = B̃

∫ pI4
pI3
tdµpI3

(t)− pI3

pI4 −
∫ pI4
pI3
tdµpI3

(t)
(A17)

(
q

1− q
− pI4

1− pI4
)B̃ + (pI4 − q)C = B̃

∫ pI4
pI3
tdµpI3

(t)− pI4

pI4 −
∫ pI4
pI3
tdµpI3

(t)
(A18)

where dµpI3
(t) = dF (t)

F (pI4)−F (pI3)
.

(i) Under restrictions on reasonable off-equilibrium beliefs along the lines of the D1 refinement as in

the proof of Proposition 1, insurers with types in the interval [0, pF1 ] prefer full reinsurance to full self-

insurance and any other indemnity-based securitization. Further, insurers with types in this interval

will not deviate from full reinsurance to index-linked securitization because, for any 0 < p < pF1 ,

B̃δp

1− (1 + δ)p
<

B̃δpF1
1− (1 + δ)pF1

< pI2C = (
q

1− q
− pI2

1− pI2
)B̃ < (

q

1− q
− p

1− p
)B̃

(ii) We now show it is optimal for insurers with types in the interval [pF1 , p
I
2] to choose full self-

insurance. Since q1 < q < q2, we have pF1 < pI2 < pF2 . By the proof of Proposition 1, insurers with

types in this interval prefer self-insurance to reinsurance as well as other indemnity-base securitization.

Also, insurers in this interval will not deviate to choose index-linked securitization because for any

p ∈ [pF1 , p
I
2]

pC < pI2C = (
q

1− q
− pI2

1− pI2
)B̃ < (

q

1− q
− p

1− p
)B̃

(iii) We now show that it is optimal for insurers with types in interval [pI2, p
I
3] to choose index-

linked securitization. By the proof of Proposition 1, it is sub-optimal for insurers to choose either
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reinsurance and self-insurance. It is easy to show that pI2 < q < pI3 since q1 < q < q2. It is sub-optimal

for insurers to choose pooling indemnity-type securitization with all higher risk insurers. Also because

pooling indemnity-type securitization within two separate intervals are not incentive compatible, it is

optimal for insurers with types in interval [pI2, p
I
3] to choose index-linked securitization because for any

p ∈ [pI2, p
I
3]

(
q

1− q
− p

1− p
)B̃ + (p− q)+C < B̃

∫ pI4
pI3
tdµpI3

(t)− p

pI4 −
∫ pI4
pI3
tdµpI3

(t)

(iv) Similarly, we can show that insurers with types in the interval [pI3, p
I
4] prefer pooling indemnity-

based securitization. Under the restrictions on reasonable off-equilibrium beliefs along the lines of the

D1 refinements, insurers will not deviate to choose any other indemnity-based securitization. Also

because for any p ∈ [pI3, p
I
4]

B̃

∫ pI4
pI3
tdµpI3

(t)− p

pI4 −
∫ pI4
pI3
tdµpI3

(t)
< (

q

1− q
− p

1− p
)B̃ + (p− q)+C (A19)

it is optimal for insurers to choose pooling indemnity-type securitization.

(v) We now show it is optimal for insurers with types in the interval [pI4, 1] to choose index-linked

securitization. The benefits from paying index-linked securitization dominates the cost of basis risk

for insurers with sufficiently high risk. Thus the net benefits from index-linked securitization will

exceed the subsidization benefit from pooling indemnity-type securitization with lower risk insurers.

Consequently, insurers prefer index-linked securitization to all other alternatives.

For completeness, we next analyze other cases where one or more of the intervals that characterize

the partition equilibrium described above may be empty.

1(a). Suppose C < B̃δ, it is sub-optimal for an insurer to choose reinsurance. By Proposition 3,

insurers with types below pF2 choose full retention while insurers with types above pF2 choose pooling

indemnity type securitization. If q < q2, there exist unique pI2, pI3 and pI4 such that pI2 < pF2 < pI3.

According to the properties of cost function of index-linked securitization contract, intermediate risk

insurers with types in the interval [pI2, p
I
3] and [pI4, 1] prefer index-linked securitization contract to either

retention or pooling securitization with indemnity trigger. Consequently, there exists a unique PBE

(under the D1 refinement) with four partitions determined by the thresholds pI2, pI3 and pI4. Insurers

with types in the interval [0, pI2] choose full self-insurance, insurers with types both in the interval

[pI2, p
I
3] and [pI4, 1] choose index-linked securitization, and insurers with types in the interval [pI3, p

I
4]

choose full pooling “indemnity-based”securitization.

1(b). Suppose C < B̃δ and q > q2, we have pI2 > pF2 . It is too costly to choose index-linked

securitization rather than indemnity-type securitization. There exsits two thresholds pI∗2 and pI∗4 ,

where pI∗2 is the indifference point between full retention and pooling of indemnity-type securization

and pI∗4 is the indifference point between pooling of indemnity-type securization and index-linked
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securitization. pI∗2 and pI∗4 are jointly determined by

CpI∗2 = B̃

∫ pI∗2
pI∗4

tdµpI∗2
(t)− pI∗2

pI∗4 −
∫ pI∗4
pI∗2

tdµpI∗2
(t)

(A20)

(
q

1− q
− pI∗4

1− pI∗4
)B̃ + (pI∗4 − q)C = B̃

∫ pI∗2
pI∗4

tdµpI∗2
(t)− pI∗4

pI∗4 −
∫ pI∗4
pI∗2

tdµpI∗2
(t)

(A21)

where dµpI∗2
(t) = dF (t)

F (pI∗4 )−F (pI∗2 )
.

Consequently, there exists a unique PBE (under the D1 refinement) with three partitions deter-

mined by the threshold pI∗2 and pI∗4 . Insurers with types in the interval [0, pI∗2 ] choose full self-insurance,

insurers with types in the interval [pI∗2 , p
I∗
4 ] choose full pooling “indemnity-based” securitization, and

insurers with types in the interval and [pI∗4 , 1] choose index-linked securitization.

2(a). Suppose B̃δ < C < B̃δ
1−pF2 (1+δ)

and q < q1 where q1 is defined by (A14), there exist unique pI5

defined by

(
q

1− q
− pI5

1− pI5
)B̃ =

B̃pI5δ

1− pI5(1 + δ)
(A22)

such that pI5 < pF1 . It follows from Proposition 1 that insurers with types in the interval [0, pI5]

prefer full reinsurance to full self-insurance. In addition, insurers with types in the interval [0, pI5]

also prefer full reinsurance to index-linked securitization. As stated earlier, insurers with types in the

interval [pI5, p
I
3] prefer index-linked securitization contract to either retention or pooling securitization

with indemnity trigger, and insurers with types in the interval [pI3, 1] prefer pooling securitization

with indemnity trigger to other alternatives. Consequently, the unique equilibrium (under the D1

refinement) is characterized by four intervals. Specifically,insurers with types in the interval [0, pI5]

choose full reinsurance, insurers with types both in the interval [pI5, p
I
3] and [pI4, 1] choose full index-

linked securitization, and insurers with types in the interval [pI3, p
I
4] choose full pooling “indemnity-

based” securitization.

2(b). Suppose B̃δ < C < B̃δ
1−pF2 (1+δ)

and q > q2. Reinsurance dominates retention and index-linked

securitization for insurers with risk type lower than pF1 . Hence, the situation for insurers with risk

types greater than pF1 is the same as the scenario stated in proof of 1(b). Consequently, there exists

a unique PBE (under the D1 refinement) with four partitions determined by three thresholds, pF1 , pI∗2

and pI∗4 . Specifically, insurers with types in the interval [0, pF1 ] choose full reinsurance, insurers with

types in the interval [pF1 , p
I∗
2 ] choose full self-insurance, insurers with types in the interval [pI∗2 , p

I∗
4 ]

choose full pooling “indemnity-based” securitization, and insurers with types in the interval and [pI∗4 , 1]

choose index-linked securitization.
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3. Suppose C > B̃δ
1−pF2 (1+δ)

, that is pF2 < pF1 . It is suboptimal to choose self-insurance. Define

q3 =
pF3 B̃ + pF3 (1− pF3 )C

B̃ + pF3 (1− pF3 )C

Suppose q < q3, there exists one indifference point between reinsurance and index-linked securitization

pI5, where pI5 < q. Thus it is clear that insurers with risk below pI5 prefer reinsurance to other

alternatives. For insurers with risk higher than pI5, we are, thus, in the scenario described in the first

case for insurer with risk above pF1 . Consequently, there exists three thresholds, pI5, pI3 and pI4 such that

insurers with types in the interval [0, pI5] choose full reinsurance, insurers with types in the interval

[pI5, p
I
3] and [pI4, 1] choose index-linked securitization, and insurers with types in the interval [pI3, p

I
4]

choose full pooling “indemnity-based”securitization.
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