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Abstract

Theoretical work on stochastic choice mainly focuses on the sources of choice ran-

domness, and less on its economic consequences. We attempt to close this gap by

developing a method of extracting information about the monetary costs of noise from

structural estimates of preferences and choice randomness. Our method is based on

allowing a degree of noise in choices in order to rationalize them by a given structural

model. To illustrate the approach, we consider risky binary choices made by a sample

of the general Danish population in an artefactual field experiment. The estimated

welfare costs are small in terms of everyday economic activity, but they are consider-

able in terms of the actual stakes of the choice environment. Higher welfare costs are

associated with higher age, lower education, and certain employment status.
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1 Introduction

Stochastic choice has become an active area of research in recent years, motivated primar-

ily by two considerations. First, a large body of empirical evidence shows that stochastic

choice is a robust empirical phenomenon,1 and much work has been devoted to explaining

this behavior.2 Second, models of stochastic choice provide researchers with econometric

tools to estimate structural models in a broad range of applications. The primary inter-

est in applying a model of stochastic choice is to recover the structural parameters of the

deterministic part of a model, such as risk or time preferences. Little attention has been

given, however, to the systematic economic interpretation of the parameter estimates of the

stochastic part, which determine the magnitude of choice randomness. The interpretation of

these parameters is important for understanding the economic value of choice randomness,

which has implications for the quality of decision making, and also for a better understanding

of the underlying “source” models of stochastic choice. We study the economic consequences

of stochastic choice by developing an intuitive method of translating the estimates of the

stochastic part into economically tractable terms.

Consider a generic structural model of discrete choice that uses a standard multinomial

logit model of stochastic choice,3 which assigns each discrete alternative a choice likelihood

P according to

P(a | β, µ) =
exp(U(a | β)/µ)∑

a′∈A exp(U(a′ | β)/µ)
. (1)

In this expression, a and a′ are alternatives, such as lotteries or dated outcomes, from a

set of all alternatives A. The deterministic part of this structural model is parametrized

by a vector of behavioral parameters β, which could represent, for instance, an agent’s

risk or time preferences. For example, in the case of risk preferences, β could be a risk

1 Nogee and Mosteller (1951) provide the earliest evidence of stochastic choice, followed by Tversky
(1969), Starmer and Sugden (1989), Camerer (1989), and Ballinger and Wilcox (1997).

2 Wilcox (2008) provides an excellent overview of many popular stochastic models of choice under risk.
Recent examples include Swait and Marley (2013), Wallin, Swait, and Marley (2018), Matêjka and McKay
(2015) and Agranov and Ortoleva (2017).

3 Also known in the literature as the strong utility model or the Fechnerian model.
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aversion parameter and U could be the expected utility of a risky alternative; in the case

of time preferences, such as the quasi-hyperbolic discounting model, β would comprise the

exponential and hyperbolic discounting parameters and U would be the discounted utility

of an income stream. The behavioral parameters determine the aggregate utility function U

assigned to each alternative.

The stochastic part of the model is parametrized by µ, often called the noise parameter.4

The noise parameter determines how sensitive choice likelihoods are to the maximization of

utility U according to a given structural model. As noise tends to zero, an agent will almost

surely choose the alternative with the highest utility. When noise goes to infinity, the agent

will assign equal likelihoods to choosing each alternative regardless of their utilities. Higher

values of µ thus imply a higher magnitude of choice randomness in this popular specification.

Three issues arise with the interpretation of the estimates of the noise parameter. First,

while the effect of µ on choice likelihoods is clear, one cannot readily interpret a particular

estimate of noise in economic terms.5 A monetary value assigned to a noise estimate, on

the other hand, would provide clear information about the economic consequences of choice

randomness. Second, since the noise parameter is unbounded from above, it is difficult to

judge whether the randomness of an agent’s choices is high or low. A value defined on the

unit interval would solve this problem.6 Third, the raw estimates of µ are not well suited for

interpersonal comparisons, since behavioral parameters β also change across people. Having

choice randomness expressed in common units, such as money, and taking into account the

interpersonal differences in β would help to overcome this issue. Aspects of these three issues

4 In the game theory literature on Quantal Response Equilibrium due to McKelvey and Palfrey (1995),
which applies stochastic choice to strategic settings, it is common to use an alternative parametrization
λ ≡ 1/µ.

5 In the existing literature (von Gaudecker et al., 2011; Bland, 2018), an estimate of noise is sometimes
interpreted as the likelihood of choosing the best alternative (among the two available) for a given difference
in utilities (or certainty equivalents) between them. While this number is informative of the economic
consequences of choice randomness, it does not provide a monetary measure of the welfare costs associated
with stochastic choice.

6 The parameter of the tremble model of stochastic choice (Harless and Camerer, 1994) has this property
and thus allows one to evaluate the relative magnitude of choice randomness. However, an estimate of
the tremble parameter would still require an economic interpretation. See Carbone and Hey (2000) for a
comparison between the tremble model and the Fechnerian model.
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arise not only in the standard multinomial logit model but also in its modifications, such as

the contextual utility model of Wilcox (2011) or specifications that substitute the utilities

of alternatives for their certainty equivalents, such as von Gaudecker et al. (2011).

We address these issues by converting an estimate of µ into two intuitive measures.7

The first measure, absolute welfare cost (AWC), puts a dollar value on choice randomness.

It shows how much money, in certainty equivalent terms, an agent would be allowed to

“waste” compatibly with rationalization of her choices by an underlying structural model.8

The second measure, relative welfare cost (RWC), scales the absolute welfare cost by the

monetary value at stake in a choice context. The relative welfare cost is thus defined on the

unit interval. It shows what proportion of the total monetary value at stake an agent would

be allowed to waste compatibly with rationalization of her choice by the model.9

Our approach rests on a careful interpretation of the concepts of “noise” and “waste.”

We follow the descriptive, structural literature on risk preferences by assuming a specific

model of the manner in which choice randomness is rationalized. In the language of Infante,

Lecouteux, and Sugden (2016, p. 21), this is

...not an inference about the hypothetical choices of the client’s inner rational
agent, but rather a way of regularising the available data about the client’s
preferences so that it is compatible with the particular model of decision-making
that the professional wants to use. Regularisation in this sense is almost always
needed when a theoretical model comes into contact with real data.

In our case the subject being evaluated is the “client,” and we are the “professional.” Thus

we consistently use the expression “noise,” or some synonym, rather than “error.” When

it comes to us using this regularised model of the agent, we may then adapt the “inten-

7 While the discussion below focuses on the multinomial logit model and its modifications, a similar logic
can be applied to other models of stochastic choices, such as the trembles model (Harless and Camerer, 1994)
or the random preferences model (Loomes and Sugden, 1995; Gul and Pesendorfer, 2006).

8 While our discussion focuses on individual decision-making, our method can also be used to study
stochastic choice in group decision-making (Bone, Hey, and Suckling, 1999).

9 Other ways to measure the welfare costs of stochastic choice might exist, however we find that using
monetary measures based on certainty equivalents to be intuitive and transparent. It might be the case that,
depending on a particular research question, one might be more interested in an absolute measure than a
relative measure, or vice versa. Our goal here is to provide the general tools, which can then be adapted to
a particular research question.
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tional stance” towards the evaluation of an agent’s behavior, using a philosophical approach

developed by Dennett (1987), theoretically interpreted for use in economics by Ross (2014,

ch. 4), and explicitly applied to behavioral welfare economics by Harrison and Ross (2018,

§ 5). This perspective, which has become the dominant one in the philosophy of psychology,

emphasizes that preferences and beliefs are not fixed internal states of people, but are ra-

tionalizations of choice behaviors that people rely on to interpret one another. This applies

mutatis mutandis to self-interpretation. Preference and belief attributions pick out “real

patterns” in choice behaviors (Dennett, 1991), and these patterns, which typically involve

some noise, are the basis for assessing people’s goals, and hence, for economics, their welfare.

Only then can we use the expression “waste.” Similarly, when we characterize behavior as

being “imperfectly rational” below, that also reflects our intentional stance, rather than a

claim that the agent has made an error in cognitive processing or problem representation.

Our measures of the welfare costs of noisy behavior are consistent with the model-based

approach advocated by Manzini and Mariotti (2014). This means that in order to calculate

our welfare cost measures, we assume specific deterministic and stochastic models of the

decision-making process. These assumptions allow us to derive precise (in the sense of being

point estimates) and efficient (in the sense of efficiently using available data, explained in

Section 2.3) values of welfare costs. We recognize the potential sensitivity of our results to

these assumptions, and address them in Appendix A.

Our absolute and relative welfare cost measures allow one to conveniently evaluate the

economic significance of choice randomness, its relative magnitude, and to compare the mag-

nitude of choice randomness across people. The implications of these measures for an agent’s

behavior, however, will ultimately depend on the underlying model of the source of choice

randomness adopted by a researcher. This is an important point since different “source”

models of stochastic choice often lead to the same choice likelihoods, such as the likelihoods

generated by the multinomial logit model presented above. For instance, the Random Utility

model due to Marschak (1960) assumes that when an agent makes an optimal choice, the
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choice randomness is due to the perturbations in her utility function that are unobservable

to a researcher. The noise parameter in the Random Utility model is then proportional to

the variance of the unobserved component of utility. High estimated welfare costs would

imply that the stochastic part of the structural model dominates the deterministic part, i.e.,

the structural model cannot explain the agent’s choices well. The welfare costs can then be

viewed as measures of a model’s fit.10

Some studies, such as von Gaudecker et al. (2011), interpret choice randomness induced

by the Random Utility model as behavioral “mistakes.” This interpretation usually arises

in experiments on choice under risk. In these experiments, all the decision-relevant features,

such as payoffs and probabilities, are observable to both researcher and subject, while the

time frames are small enough to rule out meaningful changes in preferences. Provided that

the assumed structural model is close to the true data-generating process, the estimates of

welfare costs can then be interpreted as the magnitude of behavioral “mistakes.” In practice

it is likely that the model will be misspecified by a researcher (e.g. an Expected Utility model

is estimated while the true model is Rank Dependent Utility) in addition to any potential

behavioral “mistakes” a subject might make. The welfare costs will then capture both a

model’s fit and behavioral “mistakes.” The correct interpretation of the estimates of welfare

costs in this case is an upper bound on actual behavioral “mistakes.”

Recent studies offer an alternative view on choice randomness as an optimal response to

costly frictions in the decision-making process. For example, these frictions may be caused

by the need to collect the relevant information to make a choice, as in Rational Inattention

models of Caplin and Dean (2015) and Matêjka and McKay (2015). The noise parameter

in a Rational Inattention model represents marginal information costs. The estimates of

welfare costs in this type of models can then be interpreted as aggregate information costs,

or losses that an agent incurs relative to an ideal case of no information costs. Another

example of frictions is the pursuit of multiple goals that cannot be obtained simultaneously

10 Recent work by Halevy et al. (2018) provides a promising example of how welfare costs can be used as
a measure of fit.

5



(Swait and Marley, 2013; Wallin et al., 2018). An agent is assumed to balance the goal of

choosing the best available alternative with the goal of having diversity in choices. Noise

parameters in this model represent the relative weight of the second goal. The estimates of

welfare costs in this type of models can be interpreted as the economic value that an agent

places on the goal of having diversity or, alternatively, as the loss an agent incurs relative to

a case of having a single goal of choosing the best alternative.

We apply our method to the data from an artefactual field experiment in Denmark. The

subjects came from a sample of the general Danish population and were asked to make a series

of choices between two risky alternatives. Each subject answered a detailed demographic

survey, which we use to characterize the effects of demographic characteristics on the observed

heterogeneity in the AWC and RWC. We find that the average AWC are around 67 Danish

kroner ($10)11 and thus negligible for the subjects’ natural economic environment. However,

the RWC are quite significant, at 0.87 on average. There is also considerable variation

among the subjects in terms of their AWC and RWC. Regression analysis shows that certain

demographic characteristics are associated with higher costs. In particular, subjects who

are older, less educated, and have a particular employment status, have larger welfare costs.

Females have higher AWC than males, but do not differ in RWC.

Section 2 describes the method of converting an estimate of noise into welfare costs

measured in monetary terms and provides an explicit algorithm for computation in a binary

choice case. Section 3 applies the method to data from an artefactual field experiment in

Denmark involving choice under risk and studies the properties of the welfare costs, as well

as their demographic correlates. Section 4 discusses connections with previous literature.

Section 5 concludes.

11 Throughout the text, we use an exchange rate of 1 Danish krone = $0.15 that was prevalent at the time
of the experiment.
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2 Method

We first look at a general case when the set of alternatives is continuous. This case allows us

to clearly demonstrate the logic behind our method of extracting the welfare cost information

from a noise estimate. Then we turn to a more common discrete case with two alternatives

and explicitly describe the algorithm to implement our method.

2.1 General Case

Consider an agent choosing from a set of alternatives indexed by real numbers on a compact

interval A = [ al, ah ]. Each alternative generates a lottery12

l(a) = {x1(a), . . . , xk(a); q1(a), . . . , qk(a)},

a ∈ A, xi ∈ R, qi ∈ R+, ∀i = 1, . . . , k,
k∑
i=1

qi = 1,

where xi are monetary outcomes and qi are respective probabilities of obtaining those out-

comes.

This setting could represent allocating resources between two state-contingent accounts,

as in Choi et al. (2007). Each allocation in this example is an alternative with k = 2

outcomes, x1(a) and x2(a), and equal probabilities of each outcome. The minimum (al = 0)

and maximum (ah > 0) amounts an agent can allocate to account 1 will define the interval

of alternatives A. Then x1(a) = a and x2(a) = b(ah − a), where −b < 0 is the slope of the

budget line and q1(a) = q2(a), ∀a ∈ A.13

The risk elicitation task of Gneezy and Potters (1997) is another example of such a

setting. In this example, the minimum (al = 0) and maximum (ah > 0) amounts a subjects

can allocate to a risky asset define the set of alternatives A, where ah is the initial endowment.

12 The lottery itself does not need to be discrete. An alternative can generate a continuous probability
density.

13 In an actual experiment, the set of alternatives is, of course, discrete. This choice set, however, comes
close to being continuous.
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A subject’s choice of how much of the endowment to allocate to a risky asset, a, generates

lotteries with two outcomes given by x1(a) = ah−a (the asset yields no return) and x2(a) =

ah + a(k − 1) (the asset yields a positive return k − 1). The probabilities of outcomes are

given exogenously and do not depend on a.

Each alternative a has an aggregate utility U(a) ≡ U(l(a)) defined by an assumed struc-

tural model of choice under risk. Monetary outcomes are transformed using u : R 7→ R, the

von Neumann-Morgenstern utility function. Each value of U(a) can be translated into a cer-

tainty equivalent m(a), defined by u(m(a)) = U(a). The ordering of alternatives is preserved

for the certainty equivalent transformation: U(a) > U(b)⇔ m(a) > m(b), ∀a, b ∈ A.

Assume that U is concave and reaches its unique maximum (minimum) at a∗ (a∗), as does

the certainty equivalent function. Define the maximum certainty equivalent as m∗ ≡ m(a∗),

and the minimum certainty equivalent as m∗ ≡ m(a∗). If the agent always chooses the best

alternative a∗, we call this behavior perfectly rationalizable (by an assumed model of choice

under risk). On the other extreme, if the likelihood of choosing a∗ is the same as for any other

alternative, we call such a behavior non-rationalizable. We are concerned with the behavior

in between, which is neither perfectly rationalizable nor non-rationalizable, a behavior that

we call imperfectly rationalizable.

The degree of this imperfection14 is characterized by a number ε, 0 6 ε 6 ∆m, with

∆m ≡ m∗ − m∗. Choices that lead to certainty equivalents within ε distance from the

maximum certainty equivalent can be viewed, from the perspective of a model, as imperfectly

rationalizable.15 These choices form an optimal region A∗ defined by

A∗(ε) =
{
a ∈ A | m(a) > m∗ − ε

}
. (2)

The degree of imperfection ε shows how much monetary welfare an agent would be allowed to

14 This term should be understood as an imperfection of a given model to regularise data, rather than a
statement about an agent making decision errors.

15 The idea of allowing an agent some degree of imperfection in choices is not new. For example, Harrison
(1994) introduces a similar quantity based on an agent’s subjective cost of choosing one alternative versus
the other to explain many EUT violations.
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waste to make her choices rationalizable by the model, and effectively includes these choices

in the optimal region. In other words, ε represents the welfare costs measured in monetary

units. Our goal is to link these costs to noise.

The allowed degree of imperfection co-varies with the width of the optimal region. If ε is

set to 0, the optimal region will consist only of the best alternative a∗. If ε is high enough,

the optimal region will coincide with the whole set of alternatives A. Figure 1 illustrates

how the optimal region varies with the degree of imperfection. Geometrically, the optimal

region is the line segment
[
a∗l , a

∗
h

]
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(b) High Degree of Imperfection

Figure 1: Optimal Region and Degree of Imperfection

The optimal region and the degree of imperfection are the first two components that

we need to interpret an estimate of noise. The third component comes from a stochastic

model p : A 7→ R+ , which generates choice likelihoods over the set of alternatives. Some

alternatives fall into the optimal region, by definition. By integrating the density p(a) over

this region we get the proportion of choices that are counted, from the perspective of a

model, as imperfectly rationalizable for a given degree of imperfection. We call this measure
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a degree of rationalizability (DoR):

ρ(µ, ε) =

∫
A∗(ε)

p(a) da. (3)

The DoR has several intuitive properties, two of which turn out to be crucial for our

analysis, and can be represented graphically. Figure 2 shows that as the degree of imper-

fection increases, the optimal region expands and the DoR, represented by the gray shaded

area, increases. Figure 3 shows that as the noise goes up, the density flattens out and the

probability mass shifts from the optimal region to the outside area, reducing the DoR.

A*

ρ(µ, ε)

Alternatives

D
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(a) Low Degree of Imperfection

A*

ρ(µ, ε)

Alternatives

D
en

si
ty

(b) High Degree of Imperfection

Figure 2: Degree of Rationalizability and Imperfection

The DoR for certain values of noise and imperfection has attractive interpretations. The

quantity ρ(∞, ε) tells us what proportion of choices are counted as rationalizable for a given

imperfection ε when they are, in fact, non-rationalizable. It represents a Type II error in

a test to detect rationalizability, and the quantity 1 − ρ(∞, ε) is the power of this test.

This power will decrease as the allowed degree of imperfection increases or as the set of

alternatives shrinks. The value of DoR at ρ(µ̂, 0) measures the proportion of rationalizable

choices for an estimated level of noise µ̂ and no imperfection. We refer to it as the default
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degree of rationalizability or DDoR.
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Figure 3: Degree of Rationalizability and Noise

We now have all the tools to decipher the noise. We do this by linking an estimate of µ,

the value of which is hard to interpret, to the degree of imperfection, a monetary measure that

has an intuitive economic interpretation as the welfare cost, or monetary welfare required

to rationalize the agent’s choices by a model. In order to link them, we need to reverse the

steps we followed so far. Currently, we introduced a degree of imperfection ε that defines an

optimal region A∗. The optimal region combined with a stochastic model, parameterized by

µ, yields a value of DoR. Now suppose that instead we start with a DoR measure and fix it

at some target level α. Let an estimated value of the noise be µ̂. The question is how much

imperfection should be allowed for 100 × α% of the choices to be rationalized for a given

noise. In other words, we need to find ε that satisfies

ρ(µ̂, ε) = α. (4)

This equation establishes an implicit function, ε(µ̂;α). For the purpose of our analysis, the

11



following property of this function is important.

Proposition 1. For a given α, the degree of imperfection as a function of noise, ε(µ;α), is

monotonically increasing:16

dε

dµ
> 0.

Proof. See Appendix B.

This property implies that noise and imperfection are in a direct and monotonic relation.17

This property is important since more noise should imply higher welfare costs, which in our

case are measured by imperfection. If imperfection and noise were not in a direct and

monotonic relation, such an interpretation would be impossible. The relation between ε and

µ comes from the fact that the DoR is decreasing in noise and increasing in imperfection.

From these properties it also follows that higher values of α imply higher values of ε. The

more choices we wish to rationalize, for a given value of a noise, the more imperfection we

should allow. The choice of the target α is left to the discretion of a researcher. In our

empirical analysis we use the values of 0.9, 0.95, and 0.99, which appear to be reasonable

targets.

So far we have focused on a single choice context, but in practice we observe agents make

choices over a series of rounds of a choice task. Suppose we observe an agent’s choices over n

rounds indexed by j = 1, . . . , n, and in each round the mapping of alternatives a into lotteries

lj(a) is different. In the context of an allocation task, the variation is introduced by changing

the slope of a budget line bj and a maximum amount ajh that can be allocated to one of the

accounts: Aj = [ 0, ajh ], xj1(a) = a, xj2 = bj(ajh − a). We can repeat all the previous steps in

deriving the DoR, but now it will differ by the round: ρj(µ, ε). What remains common across

rounds, however, is the degree of allowed imperfection ε. We assume that µ and preferences

16 We note that in the case when alternatives are discrete rather than continuous, as discussed below, the
DoR as a function of imperfection will not be continuous and thus it will not be possible to match the target
DoR α perfectly. We address this issue by using a discrete grid for ε and an interpolated version of ρ(µ̂, ε).
The interpolated DoR function on a discrete grid is continuous and thus Proposition 1 applies.

17 This property holds for a given agent, or rather given risk preferences. This property will not hold
perfectly across agents whose preferences are different.
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remain fixed for the duration of a choice task. We can then aggregate the DoR from all the

choices by averaging across the DoR for single choices:

ρ(µ, ε) =
1

n

n∑
j=1

ρj(µ, ε). (5)

Naturally, the average follows all the properties of the DoR for a single choice. In particular,

it increases in ε and decreases in µ. We can then use the aggregate DoR in (5) to calculate

the imperfection needed to reach a target α in equation (4).

After calculating the value of ε that satisfies equation (4), ε(µ̂, α), it makes sense to

adjust this value to take into account the fact that the degree of imperfection should not

exceed the difference between the maximum and minimum certainty equivalents for a given

choice. Since a common ε is applied to all the rounds of a choice task, for some rounds it can

actually exceed ∆m. Increasing imperfection beyond this difference does not have any effect

on the DoR and would imply that we allow an agent to waste more monetary welfare than

there actually is. This issue can be addressed by bounding ε by ∆m, and then averaging

across all the rounds:

ε̄(µ̂, α) =
1

n

n∑
j=1

min
{
ε(µ̂, α),∆mj

}
. (6)

We call the resulting measure of imperfection Absolute Welfare Costs (generated by noise

µ̂, with 100× α% of choices rationalized), or AWC. It represents the monetary welfare that

the agent would be allowed to give up for exactly 100×α% of her choices to be rationalized

by the model, given noise µ̂. For any estimated value of noise and any desired proportion of

choices we would like to rationalize we can, therefore, always find a precise dollar value of

the welfare costs.

We can go further and translate the welfare costs into relative terms, to compare these

costs with the actual stakes of a choice context. For example, an AWC of $1 may not look

like much, but if ∆mj are close to $1 in all the rounds, almost all the welfare would have to

be sacrificed to rationalize an agent’s choices. We divide the degree of imperfection by the
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difference between the maximum and minimum certainty equivalents for every round, and

average across all the choices:18

ε̃(µ̂, α) =
1

n

n∑
j=1

min

{
ε(µ̂, α)

∆mj

, 1

}
. (7)

The resulting degree of imperfection represents Relative Welfare Costs (generated by

noise µ̂, with 100 × α% of choices rationalized), or RWC. Another benefit of this measure

is that it allows one to appreciate the relative magnitude of noise, since RWC are bound

between 0 and 1, while a raw estimate of noise is unbounded from above. If rationalizing

100× α% of the choices requires on average almost all the difference between the maximum

and the minimum certainty equivalents, in which case RWC are close to 1, that clearly

indicates that the choices are close to being non-rationalizable, from the perspective of the

model. On the other hand, if it requires only a small fraction of this difference, in which case

RWC are near 0, then choices are close to being perfectly rationalizable, from the perspective

of the model.

2.2 Binary Choice

An important special case arises when an agent has only two alternatives to choose from.

This is one of the most common experimental designs in risk elicitation tasks.19 In this case

the set of alternatives in each round is A = { a1, a2 }. Without loss of generality, assume that

alternative a2 always gives the highest utility, so that Uj(a2) > Uj(a1), j = 1, . . . , n, i.e.,

a∗j = a2, using the notational convention Uj(a) ≡ U
(
lj(a)

)
. The maximum and the minimum

certainty equivalents in each round j are m∗j ≡ mj(a2) and mj∗ ≡ mj(a1), respectively. The

18 Since the resulting quantity has to be a fraction, we bound this ratio by 1.
19 For example, the risk elicitation tasks developed and popularized by Hey and Orme (1994) and Holt

and Laury (2002) apply to the binary choice case.
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optimal region and the DoR can then take only two values:

A∗j(ε) =


a2, ε < ∆mj,

A, ε > ∆mj,

ρj(µ, ε) =


pj(a2), ε < ∆mj,

1, ε > ∆mj,

(8)

where pj(a2) is the likelihood of choosing alternative a2 in round j.

Suppose we observe a series of binary choices made by a subject and estimate a structural

model of risk preferences in which γ̂ is a vector of estimated risk parameters and µ̂ is an

estimate of noise. The γ̂ vector in the Expected Utility Theory (EUT) case is typically just

the relative risk aversion. In the case of Cumulative Prospect Theory (CPT) γ̂ includes

the risk aversion parameter(s), the probability weighting parameter(s), and the loss aversion

parameter.20 The computation of AWC and RWC (rationalizing 100 × α% of the choices)

from these data can be performed using the following algorithm.

1. For each round, compute the aggregate utilities of both alternatives, Uj(a1; γ̂), Uj(a2; γ̂),

j = 1, . . . , n.

2. Compute the certainty equivalents of both alternatives, mj(a1),mj(a2), using the in-

verse transformation, mj(a) = u−1(Uj(a; γ̂); γ̂), a ∈ A, and the difference between

them, ∆mj.

3. Compute the likelihoods of each alternative using the stochastic model, pj(a; γ̂, µ̂),

a ∈ A.

4. Start with ε = 0. Compute the DoR in each round ρj(µ̂, ε) using (8). Compute the

aggregate DoR ρ(µ̂, ε) using (5).

5. If ρ(µ̂, ε) < α, increase ε by a small number ∆ε > 0.

20 The parametrization will also depend on the utility and probability weighting functions used. For
example, if an expo-power utility function is used, it will have two parameters rather than one.
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6. Repeat Step 5 until the aggregate DoR reaches the target level of α.21

7. Compute the AWC ε̄(µ̂, α) using (6). Compute the RWC ε̃(µ̂, α) using (7).

2.3 Alternative Measures

Note that the proposed computation of welfare costs does not involve actual choices. After

estimating risk parameters and noise, we ignore whether the actual choices corresponded

to the maximum certainty equivalent or not. A question then arises: what choices do we

rationalize, if not actual choices? This question also suggests an equivalent computation

based on actual choices rather than on likelihoods.

Consider the following alternative algorithm. Start by computing the implied (by the

model) decisions based on certainty equivalents. Compare actual and implied decisions

by looking at the proportion of times when implied and actual decisions coincide. This

proportion gives the actual default DoR. Next, calculate the vector of the differences in

the certainty equivalents (CE differences) for the cases when implied and actual decisions

disagree. These are the “mistakes,” from the perspective of the model, we need to “correct,”

or regularise by adding a structural model of behavioral noise. Start with ε = 0 and increase

it by a small positive amount. When ε is lower than the CE difference, the DoR in that

round is zero; otherwise it equals one, meaning that implied and actual decisions become

equivalent. After that, compute the relative proportion of times when rationalized decisions

coincide with the actual ones. Increase ε until this proportion reaches the target level.

Compute the average of the bounded (by CE difference) ε for the absolute actual welfare

costs, and the average of their ratios to CE differences for the relative actual welfare costs.

Although this alternative algorithm is almost identical to the previous algorithm, there

is a subtle difference. This difference makes us choose in favor of the method described in

§2.2, which involves rationalizing potential choices, as opposed to actual ones. Consequently,

21 In practice, due to the discreteness of ρ(µ̂, ε) it will often be impossible to match the target α exactly.
We use linear interpolation to handle this issue.
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we obtain the estimates of the potential welfare costs, while the alternative method would

give us the actual welfare costs. The key difference between the two methods lies in the fact

that the likelihoods of choices represent what could have been chosen if the same options

were presented many times. We view the approach of using potential choices as extracting

more information from the same data points. The informational gain is obtained through

the introduction of a particular structure that describes the choice likelihoods.

Of course, if the two methods gave completely different estimates, one would need a

stronger argument in favor of one method against the other. Comparing the potential and

actual welfare costs, however, shows that the measures are tightly associated in practice (not

reported here). In principle, one could easily substitute one method for another.

Another alternative method of computing the absolute welfare costs would arise if we

reconsidered equation (6), which involves bounding the value of imperfection by the differ-

ence in certainty equivalents. This is not required and we could, as well, have computed

the unbounded absolute welfare costs.22 One might expect that we would obtain higher esti-

mates of the AWC in that case. Indeed, our calculations show (not reported here) that the

unbounded AWC are on average twice as large as the bounded AWC, and both measures

are tightly associated. We prefer to use the bounded measure, however, since it represents

only the welfare costs that can be potentially incurred, while the unbounded measure allows

wasting more monetary welfare than there actually is.

3 Empirical Analysis

3.1 Data

We present the results for 218 adult Danes, a subsample of a larger field study by Harrison,

Jessen, Lau, and Ross (2018). The subjects for the original study were recruited from two

22 The computation of the RWC must involve bounding, since they represent a fraction that must lie in
the unit interval.
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internet-based panels with 165,000 active members combined. The sample frame consisted of

65,592 adult Danes between ages 18 and 75. The sample was stratified by sex and age across

three regions of Denmark: greater Copenhagen, Jutland, and Funen and Zealand.23 The

completed sample consisted of 8,405 respondents, or 12.8% of the sample frame. Invitations

were sent out by email, and the subjects could participate in a survey using internet-browsers

on their computers or mobile devices. The experiment was implemented as an artefactual

field experiment (Harrison and List, 2004).

Table 1 provides a summary of the socio-demographic characteristics of our subsample

who were invited to participate in an experiment after completing the online survey. Slightly

less than half of the sample were females and the average age was just less than 50 years. The

majority of the sample had college education, and the distribution of income across different

income brackets was roughly equal. Most of the participants were either employed as public

servants or retired. More than 75% of our sample comes from the Greater Copenhagen area.

The subjects made binary choices across 60 pairs of lotteries and answered a set of

demographic questions. Once all the lottery choices were made, one of the choices was

selected randomly for payoff. Table C.1 in the Appendix contains the battery of lotteries

that were given to the subjects. This battery is based on designs by Loomes and Sugden

(1998), Wakker, Erev, and Weber (1994) and Cox and Sadiraj (2008). Together they provide

a powerful test of EUT and RDU.

3.2 Estimation Procedure

Computation of the welfare costs relies on structural estimates of risk preferences γ and

noise µ. We implement the estimation in the standard fashion by maximizing the Bernoulli

23Greater Copenhagen area was assigned a weight of 50%, and the other two regions were assigned equal
weights of 25%.
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Table 1: Socio-Demographic Characteristics of the Sample

Characteristic Mean

Female 0.46
Age 48.06

Education

Vocational training 0.19
Low level of formal education 0.21
College, less than 3 years 0.09
College, 3 to 4 years 0.27
College, 5 or more years 0.24

Annual household income, before tax

Less than 300k DKK 0.23
300k–500k DKK 0.23
500k–800k DKK 0.23
More than 800k DKK 0.17
Not reported 0.14

Occupation

Public servant 0.42
Student 0.12
Unemployed 0.04
Retired 0.23
Skilled worker 0.03
Unskilled worker 0.06
Self-employed 0.06
Other 0.04

Family

Has children 0.25
Lives with a partner 0.54

Geographic area

Copenhagen 0.78
Central Denmark 0.07
Zealand 0.09
Southern Denmark 0.06
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log-likelihood function at the level of a subject:24

(γ̂, µ̂) = arg max
γ,µ

n∑
j=1

(
yj ln pj(a2; γ, µ) + (1− yj) ln pj(a1; γ, µ)

)
,

where yj ≡ I(a = a2)j is an indicator variable that takes a value of 1 whenever an alternative

a2 is chosen in round j. The alternative a2 is taken to be the one on the right side of the

screen without loss of generality, and we no longer assume that it gives the highest aggregate

utility in all the rounds.

We assume that the choice probability pj(a2; γ, µ) is given by the strong utility model in

the logit form25

pj(a2; γ, µ) =
exp

(
Uj(a2; γ)/µ

)
exp

(
Uj(a2; γ)/µ

)
+ exp

(
Uj(a1; γ)/µ

) = Λ

(
Uj(a2; γ)− Uj(a1; γ)

µ

)
,

where Λ(·) denotes the logistic cumulative density function, and pj(a1; γ, µ) = 1−pj(a2; γ, µ).

We also assume that the lotteries are compared according to their expected utilities

(dropping an index for the round)

U(a; γ) =
k∑
i=1

qi(a)u(xi(a); γ),

and the u function takes the constant relative risk aversion form:

u(x; γ) =
x1−γ

1− γ
.

24 We find that the estimation procedure successfully converges for 183 subjects (84% of the sample). For
the rest of our subjects, the estimation procedure terminates after a number of iterations and yields the
best parameter values at the time of termination. The results in subsequent sections are reported for the
full sample of subjects. Using only the subset of subjects with successful convergence yields quantitatively
similar results, e.g., compare Figure 4 that uses the full sample and Figure D.7 (in Appendix) that uses the
subset of subjects.

25 One could alternatively use certainty equivalent functions m instead of the aggregate utility functions
U in the specification of the stochastic model, as in Bruhin et al. (2010) or von Gaudecker et al. (2011).
Using this alternative specification only changes the scale of the estimates of the noise parameter, and does
not change the estimates of risk parameters or the estimated likelihoods of choosing each alternative. The
algorithm for computing welfare costs and their magnitude would remain the same.
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Nothing in our approach relies on assuming an EUT model or a strong utility model in the

logit form. In fact, we could have proceeded in a way suggested by Harrison and Ng (2016)

and estimated different models for different subjects, classifying our subjects as EUT or

RDU, for example. Alternatively, as suggested by Monroe (2017), we could have assumed an

RDU model for all the subjects, since correct classification has significant data requirements.

Appendix A demonstrates this important generalization by regenerating all results assuming

an RDU model of risk preferences, as well as assuming a different utility function, the expo-

power utility function, and a different model of stochastic choice, the contextual utility model

of Wilcox (2011).

3.3 Welfare Costs

Figure 4 (Panel A) shows the distribution of the individual-level estimates of AWC (in Danish

kroner, DKK) and Table 2 (Panel A) presents their summary statistics.26 The distribution

of the AWC is composed of two clusters: a major cluster on the left end and a minor cluster

on the right end of the support, so that overall the distribution is right-skewed. The major

cluster is bell-shaped and fairly symmetric. The minor cluster appears to be bell-shaped but

the number of observation in it is small. As the target DoR increases, the distribution of

the AWC flattens out and slides to the right end of the support.

The AWC are, on average, quite modest in size. For α = 0.95, the mean AWC are only

66.96 DKK (10.04 USD) and the median AWC are even smaller, 58.56 DKK (8.78 USD).

For 50% of the subjects, the AWC lie within 38.37 DKK (5.76 USD) and 80.76 DKK (12.11

USD) at this level of DoR. As the target level of DoR increases, the mean AWC also increase,

as expected. For α = 0.99, the mean AWC reach 88.66 DKK (13.3 USD), and the median

AWC reach 79.44 DKK (11.92 USD).

There is substantial variation among subjects in their AWC. At α = 0.95 the smallest

26 As discussed in §2.3, we rationalize the potential choices, which allows us to use a fine grid for the target
DoR. If we were rationalizing the actual choices instead, we would have to deal with the target DoR’s that
are fractions of 60 (the number of choice pairs in the experiment).
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Figure 4: Distributions of AWC and RWC in the Sample
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Note: The graph shows the distributions of the individual-level estimates of AWC (Panel A) and
RWC (Panel B) for three target levels of α: 0.9, 0.95, and 0.99. The bars are the histograms
and the smooth lines are the kernel density estimates. The dashed lines show the medians of the
distributions. The AWC numbers are in DKK. For the RWC, we truncate the support at 0.4 to
improve readability of the graph. This results in dropping 11 observations for which the RWC are
below 0.4.
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AWC are just 1.24 DKK (0.19 USD) while the maximum AWC are 224.23 DKK (33.63 USD),

which is roughly 3 times as large as the mean AWC. The standard deviation of AWC at this

level of DoR is 42.2 DKK (6.33 USD). The variation in AWC increases as the target DoR

goes up, which is reflected in higher standard deviations and higher ranges. At α = 0.99 the

minimum AWC are still tiny, just 4.56 DKK (0.68 USD), while the maximum AWC become

271.3 DKK (40.69 USD), which is again roughly 3 times as large as the mean AWC at this

level of DoR. The standard deviation reaches 48.05 DKK (7.21 USD) at this level of DoR.

Table 2: Summary Statistics for AWC and RWC

α Mean SD Min Q1 Median Q3 Max

Panel A. AWC (DKK)

0.9 50.10 36.60 0 27.60 41.00 58.90 200.00
0.95 67.00 42.20 1.24 38.40 58.60 80.80 224.00
0.99 88.70 48.00 4.56 56.70 79.40 110.00 271.00

Panel B. RWC

0.9 0.77 0.15 0 0.73 0.81 0.89 0.93
0.95 0.87 0.13 0.18 0.83 0.91 0.94 0.98
0.99 0.95 0.09 0.41 0.95 0.98 0.99 1.00

Notes: The table reports the summary statistics for the three
samples of the individual-level estimates of AWC and RWC com-
puted at different target levels of DoR: 0.9, 0.95, and 0.99. The
AWC numbers are in DKK. RWC are measured as proportions.

While the variation in the AWC between subjects is substantial, there is also consider-

able uncertainty at the individual level. Figure 5 (Panel A) shows the point estimates of

the AWC (for α = 0.95) for each subject along with the 95% confidence interval around

those estimates. The confidence intervals are computed using bootstrap methods. We rank

subjects based on their point estimates of AWC. The vertical axis represents the percentile

rank of each subject. The uncertainty in the individual-level estimates of AWC stems from

the combined uncertainty in the estimates of risk aversion and noise and tends to increase

with the percentile rank.
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Figure 5: Uncertainty in the Individual-Level Estimates of AWC and RWC
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Note: The graph shows the point estimates and the confidence intervals for AWC (Panel A) and
RWC (Panel B) computed at α = 0.95. Each point on the graph represents an individual-level
estimate for a given subject. The estimates are ranked from lowest to highest, and the percentile
rank of each subject is shown on the vertical axis. The horizontal error bars show the bootstrapped
95% confidence intervals around the point estimates.

24



Figure 4 (Panel B) shows the distribution of the individual-level estimates of RWC and

Table 2 (Panel B) presents their summary statistics. At α = 0.9 the distribution is very

flat and has a long left tail resulting in a negative skew. As the target DoR increases, the

distribution of the RWC shifts to right and becomes more concentrated while preserving a

long left tail. The distribution features some observations on the left tail with unusually low

RWC. For some of these outcomes, RWC are less than a half, even for the highest level of α.

In contrast to the AWC, the RWC are extremely high, which implies that while the

AWC are modest in size, these costs represent a substantial portion of the monetary welfare

available in the choice environment. For α = 0.95, the mean RWC are 0.87 and the median

RWC are 0.91, so that around 90% of the relative welfare has to be sacrificed in order to

rationalize this proportion of choices. For 50% of the subjects, the RWC lie within 0.83 and

0.94 at this level of DoR. As the target level of DoR increases, the mean RWC increase even

further. For α = 0.99, the mean RWC reach 0.95, and the median RWC reach 0.98: almost

all the welfare must be sacrificed in this case.27

The RWC numbers also show significant variation across subjects. At α = 0.95 the

smallest amount of RWC is 0.18, while the maximum amount is 0.98, which is roughly 1.13

times as large as the mean amount. The standard deviation at this level of DoR is 0.13.

At α = 0.99 the minimum RWC is slightly below a half, 0.41, while the maximum amount

becomes 1, and the standard deviation is 0.09.

There is considerable uncertainty in the RWC at the individual level, just as we found

for the AWC. Figure 5 (Panel B) shows the point estimates of RWC (at α = 0.95) for each

subject along with the 95% confidence interval around those estimates. Contrary to the

AWC, however, the uncertainty in the RWC is highest at the lower percentile ranks. This

uncertainty tends to decrease with the percentile rank.

The preceding analysis allow us to formulate the following result.

Result 1. The welfare costs are low in terms of everyday economic activity, but are sub-

27 Rationalizing all the choices would definitionally require RWC of 1 for every subject with a non-zero
noise, however small, which is the reason to use 0.99 as the highest level of α, and not 1.
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stantial for the choice environment in which they occurred.

Comparing our results to Choi et al. (2014), we find that the subjects in our sample

require a larger fraction of the total monetary welfare to rationalize their choices. This

difference can be explained by the differences in methods. The GARP-based measure used

by Choi et al. is well-known for its relatively mild requirements on choice consistency (Beatty

and Crawford, 2011).28 For example, their primary measure does not even require choices to

satisfy first-order stochastic dominance. We find greater similarity between our results and

the results reported by von Gaudecker et al. (2011), who also employ structural methods.

3.4 Marginal Welfare Costs

So far we have looked at the distributions of AWC and RWC for only three levels of the target

DoR. This analysis does not tell us how quickly welfare costs grow as the rationalizability

requirements become tighter, and in general what the shape of the costs as functions of α

is. Figure 6 provides an answer to these questions by showing the median welfare costs as

functions of α across all the subjects in the sample, with the dashed lines corresponding to

the 5% and 95% empirical quantiles. The lowest possible target DoR in our context is 0.5,

since the choice is binary. However, the welfare costs stay at 0 for the median subject until

α crosses the 0.62 mark.

Panel A on Figure 6 shows the graphs of the AWC in relation to α. The median AWC

tend to be a convex function of α: at first increasing the DoR requires relatively little AWC,

but as the target becomes higher, each additional percentage point of DoR costs more and

more in terms of AWC. The graph for the RWC on Panel B of Figure 6 is in a sense the mirror

image of the AWC. The RWC tends to be a concave function of α. For small values of DoR

extra percentage points of change require high welfare costs, but as the target increases these

28 Another potential explanation could be that there are systematic differences in the samples used.
The Choi et al. (2014) experiment was conducted in Netherlands, while our experiment was conducted in
Denmark. We believe this explanation to be unlikely a priori. The results in Blow et al. (2008) support our
claim, as it also employs a revealed preference approach and shows that Danes are generally consistent in
other choice domains.
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Figure 6: Welfare Costs as Functions of the Target DoR
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Note: The graph shows the AWC (Panel A) and the RWC (Panel B) as functions of the target
DoR (α). The black solid lines are the median welfare costs for each level of α. The dashed lines
below (above) the solid line represent the 5% (95%) quantiles of the welfare costs.

extra points become less costly in relative terms. These observations allow us to formulate

the next result.

Result 2. The marginal absolute (relative) welfare costs are increasing (decreasing) with the

increase in the target DoR.

This result can be explained by the way our measures of welfare costs are computed.

Starting from a given default DoR, ρ(µ̂, 0), we gradually increase ε until the DoR reaches

the target, ρ(µ̂, ε) = α. The low marginal AWC at low α targets imply there are many choices

that can be easily rationalized by small ε, since the difference in the certainty equivalents be-

tween the alternatives must be low. At high target DoR more choices have to be rationalized,

but no “easily rationalizable” choices are left. Increasing DoR requires tapping into choice

pairs with higher differences in certainty equivalents, and hence higher marginal AWC. The

implications for the RWC graphs are the converse. At low target DoR the marginal RWC are

high, since rationalizing many choices with small differences in certainty equivalents requires

the whole difference. At high targets fewer such choice pairs remain and the marginal RWC

decrease.
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3.5 Relationship Between the Measures

We now turn to the relationship between the two welfare costs measures and the default

DoR (DDoR). We ask whether people with lower AWC also have lower RWC, and formally

test the previous observation that people with lower DDoR tend to have higher costs. The

motivation behind these questions is that it is intuitive to expect the positive relation between

AWC and RWC. It does not follow, however, directly from the method of their computation.

Only if preferences are held constant must higher AWC imply higher RWC, but there is

no such prediction when preferences are not constant, as is typically the case when making

comparisons across subjects. Likewise, even though it is natural to expect that people with

higher DDoR have lower costs we cannot formally expect this observation to hold a priori.

Figure 7: Relationship Between AWC, RWC, and DDoR
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Note: The graph shows the scatterplots between three pairs of measures: AWC, RWC, and DDoR.
The welfare costs are evaluated at α = 0.95. The dots represent individual subjects. The dashed
lines are the smooth fitted lines estimated using local polynomial regressions, and the shaded regions
are the estimated 95% confidence intervals.

Figure 7 (Panel A) shows a scatterplot of the RWC (y-axis) against the AWC (x-axis)

computed at α = 0.95.29 A clear positive association between the two measures can be

observed. The Kendall rank correlation between the two measures is 0.45 (the ranking of

subjects by the two measures is the same 73% of the time) and is highly significant, with

p-value < 0.001. The relation between RWC and AWC is non-linear, and has a concave

shape.

29 The results in this section remain quantitatively similar if we use α = 0.9 or 0.99.
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Figure 7 (Panel B) shows the scatterplot of the AWC (y-axis) against the DDoR (x-axis),

and confirms our earlier observation from the analysis of marginal costs. There is a moderate

negative association between the DDoR and the AWC. The Kendall rank correlation between

the two measures is −0.5 (the ranking of subjects by the two measures is the opposite 75%

of the time) and is highly significant, with p-value < 0.001. The relation between them is

again non-linear, and has a convex shape.

Figure 7 (Panel C) shows the scatterplot of the RWC (y-axis) against the DDoR (x-axis).

We can immediately see a very tight negative association between the two measures. The

Kendall rank correlation between them is −0.85 (the ranking of subjects by the two measures

is the opposite 93% of the time) and is highly significant, with p-value < 0.001. The relation

is again slightly non-linear and has a concave shape.

These observations allow us to formulate the following result.

Result 3. People with higher absolute welfare costs tend to have higher relative welfare costs.

People with higher default degree of rationalizability tend to have lower absolute welfare costs

and relative welfare costs.

This result implies that there is a certain degree of consistency between the measures we

introduce. Moreover, this consistency works in the way we expect. This is a nice property, but

it could not have been deduced from the method by which these measures are constructed.

If risk preferences were the same across subjects, higher AWC must have implied higher

RWC, but we cannot say much about the case when preferences and noise are different

across subjects. It is possible, that a subject with high AWC has preferences such that the

differences in the certainty equivalents are even higher, and the RWC are actually low. We

do, in fact, observe such cases. But the general tendency is for the subjects to have the same

ordering, whether it is measured according to the absolute or relative measure of welfare

costs.

There is also a negative relationship between the DDoR and the welfare two costs mea-

sures. This implies that people who make more consistent choices, measured by the DDoR,
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also require less welfare costs to rationalize their choices. This is an intuitive property, but

it is hard to see a priori why it should hold even though the data indicate that it does, with

the relation between the default DoR and the RWC being particularly strong. The relative

strength of this relationship, compared to the relationship with the AWC can be partially

attributed to the fact that both the default DoR and the RWC are relative measures defined

on the unit interval. Nonetheless, such a strong relationship is remarkable, given that the

two measures address two very different questions.

3.6 Welfare Costs and Noise

Our approach is in part motivated by the desire to attach an economic meaning to the noise

parameter. It is, therefore, of interest to look at the relationship between the two welfare

cost measures we introduced and noise, as well as the relationship between the DDoR and

noise. Higher noise does translate into higher welfare costs if preferences are kept constant,

but no prediction is available for comparisons between subjects, whose preferences are not

kept constant. It is natural to expect, however, that this property should also hold between

subjects. Given the negative association between the DDoR and the costs, it is also natural

to expect that higher noise translates into lower default DoR, but whether it does is an

empirical question.

Figure 8 shows the scatterplots of (from left to right) the AWC and RWC and the DDoR

(on the y-axis) against the logarithm of noise (x-axis).30 The three panels confirm our

hypotheses. We do see that higher noise is associated with higher AWC and RWC and lower

DDoR, although the strength of this association differs across the measures. It is small,

though statistically significant, for the AWC. The Kendall rank correlation between the two

measures is 0.13 with p-value = 0.003 (the ranking of subjects by the two measures is the

same 57% of the time). The weakness of the association can be seen by the substantial

variation in the AWC at the high values of noise, which means that there are many subjects

30 We truncate the logarithm noise at 15, in order to make the graph more readable. This excludes one
subject.
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Figure 8: Relationship Between Welfare Costs and Noise

0

50

100

150

200

-5 0 5 10 15
Log Noise

A
W

C
(D

K
K

)

Panel A.

0.3

0.6

0.9

-5 0 5 10 15
Log Noise

R
W

C

Panel B.

0.5

0.6

0.7

0.8

0.9

-5 0 5 10 15
Log Noise

D
D

oR

Panel C.

Note: The graph shows the scatterplots between three measures (AWC, RWC, DDoR) and (the
logarithm of) noise. The welfare costs are evaluated at α = 0.95. The dots represent individual
subjects. The dashed lines are the smooth fitted lines estimated using local polynomial regressions,
and the shaded regions are the estimated 95% confidence intervals. The graphs drop one subject
with log noise higher than 15.

with high estimates of noise but low AWC. The association with the RWC is much stronger.

The Kendall rank correlation between the two measures is 0.48 with p-value < 0.001 (the

ranking of subjects by the two measures is the same 74% of the time). Finally, the association

with the DDoR (in absolute terms) is slightly weaker than the association with the RWC, but

much stronger than the association with the AWC. The Kendall rank correlation between

the two measures is −0.41 with p-value < 0.001 (the ranking of subjects by the two measures

is the opposite 70% of the time).

A notable feature in these results, most pronounced in the relationship between noise

and the DDoR and the RWC, is that there is an outer boundary that constrains the values.

On Panel B of Figure 8 this boundary constrains the values of the RWC from above, and

on Panel C of Figure 8 this boundary constrains the values of the DDoR from below. This

pattern suggests that for given noise the RWC (DDoR) cannot be higher (lower) than a

certain value, defined by this boundary.

These findings lead us to the next result.

Result 4. People with higher noise tend to have higher absolute and relative welfare costs and

lower default degree of rationalizability. For any given value of noise there appears to exist a
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maximum (minimum) amount of absolute and welfare costs (degree of rationalizability) that

one can have.

The first part of this result confirms our intuitive guesses. We do see some association

between noise and welfare costs, which implies that noise contains some information about

welfare costs and choice consistency, but this information is imprecise. Despite big differences

in noise estimates between some subjects, their RWC need not be that different. Similarly,

some subjects might appear to have high welfare costs based on the noise measure, while in

fact their AWC are not nearly as large.

The second part of the result is unexpected and remarkable. It says that there is a

regularity in the relation between noise, welfare costs and default DoR. This regularity is

in the form of a boundary that constraints the possible values. The existence of such a

boundary is likely to be related to the estimation and computation procedures, however it

is not clear why it exists and what determines its shape. We leave this question for further

research.

3.7 Socio-Demographic Covariates of Welfare Costs

We have seen that the estimates of welfare costs vary substantially between subjects in our

sample. Here we attempt to attribute this variability to the observable socio-demographic

characteristics of the subjects. We focus on sex, age, education, work, income, housing,

family, and health characteristics. The demographic covariates are defined as indicator

variables, relative to a base category. The base category is male, age 18–29, vocational

training, employed as a student, household income less than 300,000 DKK, living in an

apartment, owning apartment/house, living alone, no children, has not experienced death,

has not been hospitalized, and not smoking.

Figure 9 provides descriptive regression results by plotting the estimates of regression

coefficients along with 95% confidence intervals (using robust standard errors). The model
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Figure 9: Regression Results
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Note: The graph shows descriptive regression results for the AWC (Panel A, OLS) and RWC
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confidence intervals based on robust standard errors. Number of observations: 217.
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on Panel A uses the logarithm of AWC, computed at α = 0.95, as the dependent variable,31

ln(AWC)i = constant+ β Demographic controlsi + εi,

and is estimated using OLS. The model on Panel B uses the RWC, computed at α = 0.95,

as the dependent variable. Since the RWC are defined only on the unit interval, we use a

fractional regression model due to Papke and Wooldridge (1996) to estimate the coefficients.

Several patterns emerge from Figure 9. Females tend to have higher AWC than males.

The RWC, however, are not significantly different between males and females. Welfare costs

tend to be higher for older subjects. The AWC tend to increase monotonically with the

age group, but the effect is not precisely estimated. The RWC are higher for subjects older

than 30 years than for younger subjects, but there is no statistically significant difference

between the three age groups above 30 years. College education has a beneficial impact on

the welfare costs relative to vocational training. The effect is most pronounced for the RWC

and subjects with 5 or more years of college. Interestingly, subjects who are employed as

public servants have significantly lower AWC and RWC than subjects employed as students

or workers. Retired subjects tend to have lower AWC and RWC, on average, but the effect

is not statistically different from zero. The effect of income is mixed and not precisely

estimated. Subjects with medium and medium-high levels of income tend to have higher

welfare costs, while subjects with very high levels of income tend to have lower welfare costs.

The type of housing a subject occupies and the type of ownership does not appear to have

a meaningful impact on welfare costs. Similarly, the effect of parenting status is small and

not statistically significant, except for the effect having children on the RWC. Subjects show

some systematic variation by their health status with the effects most pronounced for RWC.

For instance, smokers tend to have higher RWC than non-smokers.

These observations lead us to the following result.

31 Using alternative target DoR, 0.9 or 0.99, produces quantitatively similar results.
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Result 5. Having higher welfare costs is associated with higher age, lower education, and

particular employment status. The RWC are not significantly different for males and females,

although the AWC for females tend to be higher.

Overall, even the rich set of socio-demographic characteristics that we use does little to

explain the observed variance in welfare costs. The regression for the AWC, for instance,

is able to explain only 12% of the observed variation. After correcting for the number

of covariates included, the R2 actually becomes negative. Such low explanatory power of

socio-demographic characteristics for elicited economic variables is typical in the literature

(l’Haridon et al., 2018; Noussair et al., 2014; Choi et al., 2014; von Gaudecker et al., 2011).

One explanation for low predictive power of socio-demographic characteristics is the sampling

error in the estimates on the left-hand side.32 On the other hand, part of the heterogeneity

in the estimates of welfare costs that we observe might be truly idiosyncratic, which in our

view is not necessarily an undesirable property as suggested by some, such as l’Haridon et al.

(2018). If an elicited economic quantity (such as welfare costs, in our case) could be perfectly

decomposed into a linear combination of socio-demographic characteristics, this quantity

would have nothing to contribute to explaining variation in other behavioral outcomes.

4 Related literature

Our approach connects to a large theoretical literature on stochastic choice, which we briefly

summarize. The early work on stochastic choice dates back to Fechner (1860) and Thurstone

(1927). It was subsequently developed into the Random Utility Model (RUM) by Marschak

(1960) and summarized by McFadden (2001). Luce (1959) introduced and axiomatized the

strong utility (or multinomial logit) model, as well as other models of stochastic choice.

McFadden (1976) established necessary and sufficient conditions under which a RUM is

equivalent to the multinomial logit model.

32 Using weighted OLS in the AWC regression in which weights are proportional to the inverses of the
squared standard errors substantially improves fit.
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Wilcox (2011) extends the standard multinomial logit model by allowing for the noise

heterogeneity that is caused by the range of monetary stakes in a choice context. This exten-

sion allows one to preserve the deterministic notion of being more risk averse in a stochastic

setting. The stronger utility model developed by Blavatskyy (2014) also allows for noise

heterogeneity, but focuses on preserving the first-order stochastic dominance relation in a

stochastic choice setting. Gul, Natenzon, and Pesendorfer (2014) modify the multinomial

logit model by considering the attributes of choice alternatives rather than alternatives them-

selves, to address some of the criticism of the original formulation. Apesteguia, Ballester,

and Lu (2017) characterize the RUM that satisfies a single-crossing property.

Conceptually, our measures are similar to the Critical Cost Efficiency Index (CCEI) of

Afriat (1972), which is used to evaluate the degree of consistency with the Generalized

Axiom of Revealed Preference (GARP). Just like our relative cost measure, CCEI is defined

on the unit interval, and its complement shows what proportion of monetary value an agent

should be allowed to waste in order to rationalize her choices by some utility function. While

GARP provides qualitative statements, we put more structure on it in a flexible manner to

complement it and provide quantitative evidence.

Viewing our approach as a structural extension of GARP allows us to position our ap-

proach again in a broader methodological setting. Ross (2014, ch. 4) carefully lays out

the full case for interpreting economic experimentation as an application of the intentional

stance of Dennett (1987), noted earlier. This is the methodology that Ross (2014) calls

“neo-Samuelsonian,” a label that tries to nudge economists toward seeing that the inten-

tional stance is what they have always been doing when they applied Revealed Preference

Theory to actual, finite, choice data. In other words: our approach is not novel, exotic

economic methodology. Instead we view it as just a sophisticated, structural interpretation

of the good old-time religion for economists.

The intuition behind the computation of our measures also links it to a literature on payoff

dominance in experiments (Harrison, 1994, 1992; Harrison and Morgan, 1990; Harrison,
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1989). This literature shows that allowing for small deviations from optimal behavior, just

as we do, allows one to rationalize supposedly anomalous effects observed in experimental

studies.

Harrison and Ng (2016, 2018) use an approach similar to ours in order to evaluate the loss

of consumer surplus resulting from suboptimal insurance choices. Harrison and Ross (2018)

apply the same approach to evaluate suboptimal portfolio investments. Their measure of

lost consumer surplus is similar to our AWC measure, with both being based on computing

certainty equivalents. One key difference, however, is that these studies use two experimental

tasks: one for preference estimation and the other for welfare evaluation, while we rely on a

single task to estimate welfare costs resulting from stochastic choice. The approach that we

take in this study does not rely on an independent risk metric, as is the case in Harrison and

Ng (2016, 2018) and Harrison and Ross (2018), but rather relies on a specific noise structure

to “bootstrap” a measure of welfare costs.

Our approach is closely related to studies that estimate structural models of choice under

risk and over time. Holt and Laury (2002) study subjects’ choices under risk in a laboratory

experiment. Subjects make choices between a “safe” and a “risky” lottery across different

pairs of lotteries, in which the probabilities of lottery outcomes vary from one pair to the

next. HL estimate the Expected Utility model with a flexible Expo-Power utility function

using the strict utility model of stochastic choice.33 Andersen, Harrison, Lau, and Rutström

(2008) also use the strict utility model to structurally estimate risk and time preferences of a

representative sample of the Danish population. They note that noise estimates are higher in

the risk task than in the discounting task. von Gaudecker et al. (2011) uses a representative

sample of the Dutch population to estimate subjects’ risk preferences using a model of

stochastic choice that is a hybrid between the multinomial logit and tremble models, and

thus features two measures of choice randomness: noise and trembles. While these studies

typically focus on estimates of risk and time preferences, and do not interpret the estimates

33The strict utility model of Luce (1959) differs from the multinomial logit model in the way the noise
parameter enters choice likelihoods.
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of the stochastic part, such as noise or tremble parameters,34 we explicitly focus on the

estimates of the stochastic part and provide a systematic approach to economically interpret

the estimates of choice randomness. Finally, Bland (2018) considers mixture specification

over pooled choices, contrasting one “rational” model as one of the data generating processes

(DGP) with a “behavioral” model as the other DGP. He then calculates CE of choices using

the deterministic core of the “rational” model DGP, thereby evaluating potential welfare

losses from using a “behavioral” DGP as well as the existence of noise for both DGP. We

reject the simplistic identification of one model as “rational” and the explicit assumption

that the “behavioral” model is therefore “irrational.” But the general logic of allowing the

estimated structural model of noise to provide a basis for welfare evaluation is consistent

with our approach.

We provide economic measures of choice randomness (or consistency), which link to

studies on the quality of decision-making. Choi et al. (2007) study decision-making under

risk in a laboratory experiment in which they present subjects with convex budget sets

for two Arrow securities. This design allows them to gauge the subjects’ decision-making

quality using a measure of GARP-consistency, a standard technique in the revealed preference

approach to consumer demand. They find that subjects’ behavior is highly consistent with

GARP. Choi et al. (2014) expand the analysis by using a representative panel of the Dutch

population. They also find a high degree of GARP-consistency in risky choices, which

varies, however, with education, sex, and age. Beatty and Crawford (2011) show that while

behavior in a wide range of situations is highly GARP-consistent, this might be a result of

a misspecified measure of consistency. They propose an alternative to the traditional CCEI

measure, which is based on predictive success, and show that the CCEI measures of GARP-

consistency are overinflated, and hence that the actual consistency of choices is much lower.

Hey (2001) studies decision-making quality in a laboratory experiment on choice under risk

34von Gaudecker et al. (2011) is an exception, which provides a brief discussion of the economic significance
of the estimates of the tremble parameter. In particular, they give an example of what the estimated
parameters of the stochastic part of the model imply for the relation between the difference in the certainty
equivalents and the likelihood of choosing the higher-valued lottery.
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and asks whether choice consistency improves with experience. He finds mixed evidence of

a positive effect of experience on choice consistency. We rely on a parametric measure of

choice consistency and find a lower degree of consistency than in the studies that use the

non-parametric revealed preference approach.

Finally, our approach is also related to recent literature on rational inattention. Matêjka

and McKay (2015) show that when an agent faces information costs, optimal behavior is

stochastic choice, and that under certain conditions choice likelihoods are represented by

the multinomial logit specification. Cheremukhin, Popova, and Tutino (2015) apply a model

of rational inattention to risky choices and estimate the shape of the cost-of-information

function in a laboratory experiment with student subjects. Caplin and Dean (2015) develop

a revealed preference test of rational inattention theories with general cost-of-information

functions. Since the noise parameter in the rational inattention models has the interpretation

of marginal information costs, our method allows one to convert these costs into monetary

or percentage terms.

5 Conclusion

Stochastic choice has become an active area of both theoretical and empirical research. While

the existing literature mainly focuses on the sources of choice randomness, its economic

consequences are less well understood. We develop tools to assess the economic significance

of noise and apply them to a sample from the general Danish population in an artefactual

field experiment.

We introduce three interconnected concepts: rationalizing imperfection, optimal region,

and degree of rationalizability. Fixing the degree of rationalizability at a certain target

level, we vary the amount of imperfection, which in turn affects the optimal region, to

make the proportion of subjects’ choices falling in the optimal region equal the target level.

This amount of imperfection represents the welfare costs, or monetary welfare allowed to be
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wasted, that is required to rationalize by a model a given proportion of choices. The resulting

welfare costs can be expressed both in absolute (dollar) and in relative (to the actual stakes

of the choice environment) terms.

We compute the absolute welfare costs and relative welfare costs at the individual level

in an experiment with binary-choice lotteries. Several patterns emerge from our analysis,

some of which coincide with previous findings, and some of which are new. We find that

the AWC are not economically significant in our sample, while the RWC are economically

significant. In other words, the welfare costs are tiny if viewed from a broad perspective of

economic activity, but they are substantial if viewed from the perspective of this particular

choice experiment. As compared to Choi et al. (2014), who employ a relative measure based

on the consistency with GARP, our estimates of RWC are much larger. However, our results

for choice consistency are comparable with that of von Gaudecker et al. (2011), who also

employ structural methods. We attribute the difference in results to the difference in the

methods, with our method imposing stricter requirements.

Since our welfare costs measures depend on the target level of rationalizability α, we study

the shape of the relation between α and these welfare costs. We find that the AWC increase in

α at an increasing speed, while the RWC increase in α at a decreasing speed. The difference in

these two relations is explained by the way our method of computation works. Subjects with

higher AWC tend to have higher RWC. Also, a lower DDoR is associated with higher AWC

and RWC: subjects who start out with low default degree of rationalizability require a higher

cost to reach a given degree of rationalizability. Looking at the relationship between our

cost measures and raw estimates of noise reveals that they are positively associated, though

our measures do not have such a wide range, which allows for sensible comparisons across

subjects and allows us to make judgments about the magnitudes of choice inconsistencies.

The analysis of observable heterogeneity and its role in predicting welfare costs suggests

patterns similar to those reported by von Gaudecker et al. (2011) and Choi et al. (2014). We

find that welfare costs increase with age, decline with education, and are lower for certain
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occupations.

Finally, we take seriously the need for consistent methodological and philosophical po-

sitions when it comes to undertaking behavioral welfare economics. The reason is simple:

one cannot question the consistency of observed choices by agents on the one hand and then

turn around and effortlessly infer the preferences of those agents on the other hand. This

isolates the deep normative challenge raised by the core descriptive insight of behavioral

economics, as stressed by Ross (2014, ch. 4), Infante, Lecouteux, and Sugden (2016), and

Harrison and Ross (2018, § 5). Dennett (1987)’s intentional stance, as applied to economics

by Ross (2014)’s “neo-Samuelsonian” methodology, provides a general and consistent ap-

proach to address this challenge, and permits concrete applications illustrated by Harrison

and Ng (2016, 2018), Harrison and Ross (2018) and the present study.
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Appendices

A Robustness Checks

Here we present additional results derived from alternative assumptions about risk prefer-

ences and stochastic choice.

First, we consider an alternative to the EUT, the Rank-Dependent Utility (RDU) model

due to Quiggin (1982), which allows for probability weighting. The RDU model has been

used extensively in applied and theoretical work. Under this alternative assumption the

aggregate utilities of the lotteries are computed as

U(a; γu, γq) =

=
k∑
i=1

(
ω
(
q(1)(a) + . . .+ q(i)(a); γq

)
− ω

(
q(1)(a) + . . .+ q(i−1)(a); γq

))
×

× u
(
x(i)(a); γu

)
,

where ω : [0, 1] 7→ [0, 1] is the probability-weighting function, and outcomes are ranked

from highest x(1) to lowest x(k), with corresponding probabilities. We assume that ω is the

two-parameter (Prelec, 1998) probability weighting function,35

ω(q; γ1q , γ
2
q ) = exp(−γ2q (− ln q)γ

1
q ).

Figure A.1 shows the calculated absolute and relative welfare costs under the assumption

of the RDU model for each individual. Figure A.1 shows that the distributions look very

similar to those under EUT, Figure 4.

Taking a closer look at the differences between the EUT and RDU-based calculations,

we can see from Figure A.2a that the AWC calculated using the EUT model are lower. For

35We do not restrict the shape parameter γ1q to the unit interval, and thus do not impose an inverse-S
shape on the probability weighting function.
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Figure A.1: Absolute and Relative Welfare Costs for Three Levels of α, RDU.

α = 0.9 the difference in the medians between the AWC calculated using EUT vs. RDU is

−59.04 (Wilcoxon signed rank test, p-value < 0.001). The mean of the differences is −84.89

DKK (approximately −13 USD): RDU-based AWC are almost 3 times higher on average.

The RWC, however, are slightly higher under EUT, as shown in Figure A.2b. The

difference in the medians between the RWC calculated using EUT vs. RDU is 0.02 (Wilcoxon

signed rank test, p-value = 0.02). The mean of the differences is 0.03. The difference in the

RWC for RDU and EUT disappears at higher values α, while the difference in the AWC

persists. All the other qualitative results on marginal welfare costs, relations between the

measures, and observable heterogeneity hold under the RDU assumption.
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Figure A.2: Absolute and Relative Welfare Costs for EUT vs. RDU, α = 0.9.
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Second, we consider a different specification for the utility function under EUT, an expo-

power (EP) utility, which generalizes the CRRA and CARA utility functions

u(x; γa, γr) =
1− exp(−γax1−γr)

γa
,

where γa and γr are the two parameters to be estimated. This specification does not do so

well in modeling subjects’ risk preferences in our data. For a large (40%) fraction of subjects

the estimation procedure yields unreasonably high parameter values, which impedes the

calculation of certainty equivalents and welfare costs. We use CRRA specification for these

subjects when presenting the results on Figure A.3. They look very similar to the baseline

specification with the CRRA utility function.
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Figure A.3: Absolute and Relative Welfare Costs for 3 Levels of α, EP.

Looking at the differences between the AWC calculated under the two utility specifica-

tions, our baseline specification again provides lower values (see Figure A.4a). The difference

in the medians between the AWC calculated using CRRA vs. EP is −16.17 (Wilcoxon signed

rank test, p-value < 0.001), for α = 0.9. The mean of the differences is −24.7 DKK (approx-

imately −4 USD). The AWC under the EP utility function are roughly 60% higher than in

the baseline, which is even higher than in the case of the RDU model as an alternative.

At the same time there are no significant differences in the RWC between the two utility

specifications (Wilcoxon signed rank test, p-value = 0.52). The same pattern of results hold
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for other values of α. Under the EP-utility assumption the marginal welfare costs have a

similar shape, but the association between the measures becomes weaker, as do the effects

of observable heterogeneity.
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Figure A.4: Absolute and Relative Welfare Costs for CRRA vs. EP, α = 0.9.

Finally, we look at an alternative stochastic choice specification, the contextual utility

model due to Wilcox (2011), which allows for a heterogeneous noise term and preserves the

“more risk averse” relation in the stochastic domain. This specification of noise has been

shown by (Wilcox, 2015) to have good out-of-sample predictive power. Under the assumption

of contextual utility the choice probabilities become

p(a2; γ, µ) = Λ

(
U(a2; γ)− U(a1; γ)

µ
(
u(x(1); γ)− u(x(k); γ)

)) ,
where we drop the index for the decision round, and p(a1; γ, µ) = 1− p(a2; γ, µ). As before,

x(1) and x(k) denote the highest and lowest outcomes, but this time they are defined only

among the outcomes that occur with positive probabilities, and outcomes are ranked across

both lotteries in the choice.

Figure A.5 shows the calculated AWC and RWC under the assumption of contextual

utility. These graphs, again, look very similar to those under EUT and no contextual utility

(Figure 4), except that the right tails in the distributions of the AWC become thicker.
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Figure A.5: Absolute and Relative Welfare Costs for Three Levels of α, Contextual Utility.

Figure A.6 contrasts the AWC and RWC for the baseline and alternative specifications

of noise. The densities of the AWC are very much alike, except for a thicker right tail in

the case of contextual utility, which leads to higher welfare costs. The difference in the

medians between the AWC calculated using non-contextual vs. contextual models is −1.87

(Wilcoxon signed rank test, p-value < 0.001). The mean of the differences is −16.33 DKK

(approximately −2 USD). This result is comparable to the non-contextual noise specification

with RDU as an alternative. Again, there is no significant difference between the RWC for

these two models (Wilcoxon signed rank test, p-value ≈ 0.47). All the results reported for

the baseline model hold in the case of contextual utility model as well.
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Figure A.6: Absolute and Relative Welfare Costs for Non-contextual vs. Contextual Utility,
α = 0.9.
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B Proofs

Consider an implicit function ρ(µ, ε) = α. From the implicit function theorem, it follows

that

dε

dµ
= −∂ρ/∂µ

∂ρ/∂ε
.

The denominator of this expression is

∂ρ

∂ε
=

∂

∂ε

∫ a∗h(ε)

a∗l (ε)

p(a)da = p(a∗h(ε))a
∗′
h (ε)− p(a∗l (ε))a∗

′

l (ε) > 0,

since a∗
′

h (ε) > 0, and a∗
′

l (ε) 6 0.

In order to show the sign of the numerator, we restrict our attention to the binary choice

case, since it is the setting of our primary interest. Recall that

p(a2; γ, µ) = Λ

(
U(a2; γ)− U(a1; γ)

µ

)
.

Then

∂p(a2; γ, µ)

∂µ
= Λ′

(
U(a2; γ)− U(a1; γ)

µ

)
(U(a2; γ)− U(a1; γ))(−µ2) < 0,

since alternative a2 gives the highest certainty equivalent by our assumption. Therefore,

∂ρ

∂µ
=


∂p(a2;γ,µ)

∂µ
, ε < ∆m,

0, ε > ∆m,

so that ∂ρ/∂µ 6 0. Together the two results imply that dε/dµ > 0.
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C Additional Tables

Table C.1: The Battery of Lotteries

ID La1 Lp1 La2 Lp2 La3 Lp3 La4 Lp4 Ra1 Rp1 Ra2 Rp2 Ra3 Rp3 Ra4 Rp4

1 450 0.50 1, 350 0 2, 250 0.50 0 0 450 0.10 1, 350 0.80 2, 250 0.10 0 0
2 450 0.50 1, 350 0 2, 250 0.50 0 0 450 0 1, 350 1 2, 250 0 0 0
3 450 0.10 1, 350 0.80 2, 250 0.10 0 0 450 0 1, 350 1 2, 250 0 0 0
4 450 0.70 1, 350 0 2, 250 0.30 0 0 450 0.50 1, 350 0.40 2, 250 0.10 0 0
5 450 0.70 1, 350 0 2, 250 0.30 0 0 450 0.40 1, 350 0.60 2, 250 0 0 0
6 450 0.50 1, 350 0.40 2, 250 0.10 0 0 450 0.40 1, 350 0.60 2, 250 0 0 0
7 450 0.40 1, 350 0 2, 250 0.60 0 0 450 0.10 1, 350 0.75 2, 250 0.15 0 0
8 450 0.40 1, 350 0 2, 250 0.60 0 0 450 0 1, 350 1 2, 250 0 0 0
9 450 0.30 1, 350 0 2, 250 0.70 0 0 450 0.15 1, 350 0.25 2, 250 0.60 0 0
10 450 0.10 1, 350 0.75 2, 250 0.15 0 0 450 0 1, 350 1 2, 250 0 0 0
11 450 0.70 1, 350 0 2, 250 0.30 0 0 450 0.60 1, 350 0.25 2, 250 0.15 0 0
12 450 0.70 1, 350 0 2, 250 0.30 0 0 450 0.50 1, 350 0.50 2, 250 0 0 0
13 450 0.60 1, 350 0.25 2, 250 0.15 0 0 450 0.50 1, 350 0.50 2, 250 0 0 0
14 450 0.40 1, 350 0 2, 250 0.60 0 0 450 0.20 1, 350 0.60 2, 250 0.20 0 0
15 450 0.40 1, 350 0 2, 250 0.60 0 0 450 0.10 1, 350 0.90 2, 250 0 0 0
16 450 0.20 1, 350 0.60 2, 250 0.20 0 0 450 0.10 1, 350 0.90 2, 250 0 0 0
17 450 0.60 1, 350 0 2, 250 0.40 0 0 450 0.50 1, 350 0.30 2, 250 0.20 0 0
18 450 0.30 1, 350 0 2, 250 0.70 0 0 450 0 1, 350 0.50 2, 250 0.50 0 0
19 450 0.60 1, 350 0 2, 250 0.40 0 0 450 0.40 1, 350 0.60 2, 250 0 0 0
20 450 0.50 1, 350 0.30 2, 250 0.20 0 0 450 0.40 1, 350 0.60 2, 250 0 0 0
21 450 0.25 1, 350 0 2, 250 0.75 0 0 450 0.10 1, 350 0.60 2, 250 0.30 0 0
22 450 0.25 1, 350 0 2, 250 0.75 0 0 450 0 1, 350 1 2, 250 0 0 0
23 450 0.10 1, 350 0.60 2, 250 0.30 0 0 450 0 1, 350 1 2, 250 0 0 0
24 450 0.50 1, 350 0.20 2, 250 0.30 0 0 450 0.40 1, 350 0.60 2, 250 0 0 0
25 450 0.55 1, 350 0 2, 250 0.45 0 0 450 0.40 1, 350 0.60 2, 250 0 0 0
26 450 0.55 1, 350 0 2, 250 0.45 0 0 450 0.50 1, 350 0.20 2, 250 0.30 0 0
27 450 0.15 1, 350 0.25 2, 250 0.60 0 0 450 0 1, 350 0.50 2, 250 0.50 0 0
28 450 0.15 1, 350 0.75 2, 250 0.10 0 0 450 0 1, 350 1 2, 250 0 0 0
29 450 0.60 1, 350 0 2, 250 0.40 0 0 450 0 1, 350 1 2, 250 0 0 0
30 450 0.60 1, 350 0 2, 250 0.40 0 0 450 0.15 1, 350 0.75 2, 250 0.10 0 0
31 135 0.55 1, 620 0.25 1, 890 0.20 0 0 135 0.55 1, 215 0.25 2, 430 0.20 0 0
32 810 0.40 675 0.40 1, 620 0.20 0 0 810 0.40 405 0.40 2, 025 0.20 0 0
33 1, 485 0.40 675 0.40 1, 620 0.20 0 0 1, 485 0.40 405 0.40 2, 025 0.20 0 0
34 2, 160 0.40 675 0.40 1, 620 0.20 0 0 2, 160 0.40 405 0.40 2, 025 0.20 0 0
35 675 0.70 1, 485 0.10 2, 835 0.20 0 0 675 0.70 945 0.10 3, 375 0.20 0 0
36 1, 620 0.70 1, 485 0.10 2, 835 0.20 0 0 1, 620 0.70 945 0.10 3, 375 0.20 0 0
37 2, 565 0.70 1, 485 0.10 2, 835 0.20 0 0 2, 565 0.70 945 0.10 3, 375 0.20 0 0
38 3, 510 0.70 1, 485 0.10 2, 835 0.20 0 0 3, 510 0.70 945 0.10 3, 375 0.20 0 0
39 0 0.50 540 0.10 540 0.40 0 0 0 0.50 0 0.10 810 0.40 0 0
40 540 0.50 540 0.10 540 0.40 0 0 540 0.50 0 0.10 810 0.40 0 0
41 1, 080 0.50 540 0.10 540 0.40 0 0 1, 080 0.50 0 0.10 810 0.40 0 0
42 945 0.55 1, 620 0.25 1, 890 0.20 0 0 945 0.55 1, 215 0.25 2, 430 0.20 0 0
43 1, 620 0.50 540 0.10 540 0.40 0 0 1, 620 0.50 0 0.10 810 0.40 0 0
44 540 0.50 1, 080 0.10 1, 080 0.40 0 0 540 0.50 540 0.10 1, 350 0.40 0 0
45 1, 080 0.50 1, 080 0.10 1, 080 0.40 0 0 1, 080 0.50 540 0.10 1, 350 0.40 0 0
46 1, 620 0.50 1, 080 0.10 1, 080 0.40 0 0 1, 620 0.50 540 0.10 1, 350 0.40 0 0
47 2, 160 0.50 1, 080 0.10 1, 080 0.40 0 0 2, 160 0.50 540 0.10 1, 350 0.40 0 0
48 1, 755 0.55 1, 620 0.25 1, 890 0.20 0 0 1, 755 0.55 1, 215 0.25 2, 430 0.20 0 0
49 2, 565 0.55 1, 620 0.25 1, 890 0.20 0 0 2, 565 0.55 1, 215 0.25 2, 430 0.20 0 0
50 135 0.65 945 0.20 1, 485 0.15 0 0 135 0.65 810 0.20 1, 620 0.15 0 0
51 675 0.65 945 0.20 1, 485 0.15 0 0 675 0.65 810 0.20 1, 620 0.15 0 0
52 1, 215 0.65 945 0.20 1, 485 0.15 0 0 1, 215 0.65 810 0.20 1, 620 0.15 0 0
53 1, 755 0.65 945 0.20 1, 485 0.15 0 0 1, 755 0.65 810 0.20 1, 620 0.15 0 0
54 135 0.40 675 0.40 1, 620 0.20 0 0 135 0.40 405 0.40 2, 025 0.20 0 0
55 0 0 0 0 0 0 1, 200 1 0 0 0 0 975 0.50 1, 440 0.50
56 0 0 0 0 0 0 1, 275 1 0 0 0 0 1, 155 0.50 1, 410 0.50
57 0 0 0 0 0 0 450 1 0 0 0 0 225 0.50 690 0.50
58 0 0 0 0 0 0 1, 950 1 0 0 0 0 1, 725 0.50 2, 190 0.50
59 0 0 0 0 0 0 2, 025 1 0 0 0 0 1, 905 0.50 2, 160 0.50
60 0 0 0 0 0 0 225 1 0 0 0 0 105 0.50 360 0.50

Notes. The columns are coded as follows: “L” and “R” denote left and right lottery, “a” denotes amounts (in DKK) and “p”
denotes probabilities. The amounts in the table are baseline amounts. In addition to these amounts, 1.5x and 2x amounts
were used. The subjects were randomized across the baseline, 1.5x and 2x amounts.
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D Additional Graphs

Figure D.7: Distributions of AWC and RWC in the Subset of Subjects
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Note: The graph shows the distributions of the individual-level estimates of AWC (Panel A) and
RWC (Panel B) for three target levels of α: 0.9, 0.95, and 0.99. The sample is restricted to
include only the subjects for whom the estimation procedure successfully converged. The bars
are the histograms and the smooth lines are the kernel density estimates. The dashed lines show
the medians of the distributions. The AWC numbers are in DKK. For the RWC, we truncate the
support at 0.4 to improve readability of the graph. This results in dropping 8 observations for
which the RWC are below 0.4.
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