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Abstract. Economists widely agree that consumers are incompletely annuitized, but the conventional 
economic theory underlying the value of life assumes otherwise. We develop and apply a new framework 
for valuing health improvements that relaxes this assumption, and describe several novel implications. 
First, public annuity programs boost demand for life-extension. For instance, US Social Security adds 
$11.5 trillion (10.5 percent) to the current value of post-1940 longevity gains. Second, in contrast to the 
conventional theory, a mortality improvement may be worth more, not less, to patients facing shorter 
lives. This result helps explain why consumers report a preference for extending life among people with 
the bleakest survival prospects, an empirical puzzle at odds with the conventional model, and implies that 
existing economic analysis may undervalue treatment of severe illnesses relative to mild ones. Finally, we 
introduce the value of statistical illness, which quantifies the value of preventing illness and includes the 
value of statistical life as a special case. Our calculations suggest that treating severe illnesses such as 
cancer and heart disease is worth significantly more to consumers than saving an equivalent number of 
life-years by preventing these conditions. 
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I. INTRODUCTION 
The economic analysis of risks to life and health has made enormous contributions to both academic 
discussions and public policy. Economists have used the standard tools of life-cycle consumption theory 
to propose a transparent framework that measures the value of improvements to both health and 
longevity. Economic concepts such as the value of statistical life now play central roles in public policy 
discussions surrounding investments in medical care, public safety, workplace safety, environmental 
hazards, and countless other arenas. 

The standard framework assumes complete annuitization and deterministic mortality risk. While 
analytically convenient and useful for illustrating some of the underlying economics, these assumptions 
are not realistic: it is well known that most people are incompletely annuitized (Brown et al. 2008), and 
that mortality risk changes over time according to one’s health state. Moreover, these assumptions hamper 
the model’s predictive power in several ways: the standard model glosses over policy-relevant 
relationships between the value of life and the structure of the annuity market, cannot investigate what 
happens to the value of life upon falling ill, and cannot meaningfully distinguish between preventive care 
and medical treatment. 

This paper develops a general economic framework for valuing health improvements and applies it to 
data. We establish three main results. First, we calculate that the US Social Security program added $11.5 
trillion (10.5 percent) to the value of post-1940 longevity gains. Second, we derive conditions under 
which the value of life can rise following a negative health shock, and demonstrate that this effect is 
economically significant: for example, we calculate that the value of statistical life (VSL) for a 70-year-
old soars by over $1 million following the development of two chronic conditions that impair her 
everyday living. Third, we introduce the value of statistical illness (VSI), which captures the willingness-
to-pay to avoid falling ill and includes VSL as a special case. We calculate that—holding wealth 
constant—a sick individual’s initial willingness-to-pay for medical treatments is several times greater 
than a healthy individual’s willingness-to-pay for equally effective preventive care. 

Incomplete annuity markets drive all three of these results. While complete annuity markets shield an 
individual’s consumption against longevity risk, an incompletely annuitized consumer will have a 
different consumption profile, which in turn affects her value of life. A very simple example illustrates the 
intuition. Imagine a 60-year-old retiree with no bequest motive and a flat optimal consumption profile. If 
she fully annuitizes her savings, her consumption remains flat at, say, $30,000 annually. Now suppose she 
cannot annuitize any of her wealth. In this case, it is well known that the optimal consumption profile 
shifts forward (Yaari 1965), in response to the risk of dying with money still left in the bank (see Figure 
1). Because VSL depends greatly on consumption, it too will shift forward. Thus, reductions in 
annuitization lower VSL at older ages. Conversely, public programs that increase annuitization rates will 
raise VSL at older ages. If this in turn increases spending on elderly healthcare, it will generate a positive 
relationship between public spending on annuity and elderly healthcare programs. 

Our other results follow from the simple observation that it is optimal for a non-annuitized individual to 
shift her consumption forward, i.e., to spend down her wealth, following an adverse stochastic shock to 
mortality. At least for some initial period of time, the spike in mortality risk increases consumption, and 
thus reduces the marginal utility of consumption. An important insight of our paper is that although this 
rise in mortality risk always reduces lifetime utility, the accompanying reduction in the contemporaneous 
marginal utility of consumption can be large enough to cause VSL to increase even though life 
expectancy has fallen. Indeed, we show that VSL is frequently higher for an individual diagnosed with a 
more fatal illness, and vice-versa. This is in stark contrast to the conventional model with full 
annuitization, where a reduction in survival always reduces VSL. 
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The first half of this paper provides a formal framework that confirms these insights. We first demonstrate 
that consumption increases following an adverse shock to mortality, and provide a set of sufficient 
conditions under which that shock also generates an accompanying increase in VSL.1 We focus on shocks 
to mortality, but our framework accommodates shocks to quality of life and income as well. We then 
show how our framework leads to a more general concept, the value of statistical illness, which can be 
interpreted as an individual’s willingness to pay to avoid a marginal increase in the risk of acquiring an 
illness. This allows for the first time an economic comparison of the value of prevention to the value of 
treatment. In general, prevention and treatment are not valued equally unless consumers are completely 
annuitized. If preferences satisfy the same conditions that cause VSL to rise following a health shock, 
then the value of treatment exceeds the value of prevention. This result sheds new light on cases where 
consumers appear reluctant to invest in prevention, even when there are considerable social and private 
life expectancy benefits (Dranove 1998). 

The second half of the paper applies our model to data. Our first exercise illustrates the connections 
between public annuity programs and the societal value of mortality reductions, defined as individuals’ 
private willingness-to-pay for life-extension plus its effect on expected future mortality and income. We 
calculate that the US Social Security program added $11.5 trillion (10.5 percent) to the value of post-1940 
longevity gains by raising the value of life at older ages. This gain is worth over $35,000 per person to the 
current population, or about half as much as the longevity insurance value of Social Security. We also 
calculate that Social Security has increased the aggregate value of reducing future mortality risks by over 
10 percent, so that a 1 percent reduction in population-wide mortality is $138 billion more valuable than it 
would have been without the program. Moreover, increasing the size of Social Security pensions by 50 
percent would add a further $72 billion of value to this mortality decline. Including a strong bequest 
motive into our model reduces the effect of Social Security on the value of life by half, which suggests the 
interaction between retirement policy and the value of life matters most for non-wealthy individuals, 
whom are less likely to have a significant bequest motive. 

Our second set of empirical exercises incorporates detailed microsimulation data from the Future Elderly 
Model into a stochastic life-cycle model that allows mortality and quality of life to vary across 20 
different health states. Using reasonable parameterizations, we demonstrate the surprising theoretical 
result that VSL can rise when life expectancy falls. For instance, we calculate that VSL soars from $2.9 
million to $4.3 million for a 70-year-old who suffers a debilitating health shock that reduces her life 
expectancy by nearly 7 years and worsens her quality of life. This relationship between health shocks and 
VSL generates substantial variability in the aggregate: a Monte Carlo simulation of a set of initially 
healthy, identical 50-year-olds finds that stochastic health shocks generate an inter-vigintile (middle 90 
percent) VSL range of $4.2 to 5.3 million by age 60.2 In addition, we show that the value of life-years 
gained through medical treatment is higher in states with lower remaining life expectancy. Finally, we 
calculate that the value of treating life-threatening conditions like cancer for a 50-year-old is worth up to 

                                                      
1 The sign of the effect depends on whether the loss in lifetime utility is offset by a corresponding decrease in 
marginal utility. Specifically, it depends on a trade-off between the elasticity of intertemporal substitution, which 
measures the curvature of the utility function, and prudence, which measures the curvature of the marginal utility 
function. An adverse mortality shock increases VSL when demand for current consumption is sufficiently inelastic, 
or when the marginal utility of demand is sufficiently linear. See Proposition 6 for a formal proof. 

2 The Monte Carlo simulation is repeated 10,000 times. We solve this large number of stochastic life-cycle models 
using a recursive analytical formula, which allows for quick and exact calculations. A complete derivation is 
available in Appendix C2.  
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10 times more than equivalent preventive treatments that add the same number of years to an individual’s 
life expectancy.3 Our results are robust to including stochastic wealth shocks and a bequest motive. 

Our primary contribution is the development and application of a novel model of the value of health 
improvements. Relaxing the unrealistic assumptions of full annuitization and deterministic mortality 
permits us to address three new research questions: How does the value of life change following a health 
diagnosis? How does the value of treatment compare to the value of prevention? What is the relationship 
between annuitization and the value of life? In doing so, our study connects the large literature on the 
value of life (Arthur 1981; Rosen 1988; Murphy and Topel 2006; Hall and Jones 2007) with the vast 
literature on annuities and life-cycle consumption models that goes back to Yaari (1965). Our results 
suggest that researchers and policymakers should pay more attention to the public finance interactions 
between pension and healthcare systems. 

Our findings have two significant implications for cost-effectiveness analysis, which governs the 
allocation of healthcare resources in many “single-payer” countries such as the United Kingdom and 
Canada (Dranitsaris and Papadopoulos 2015), and which continues to grow in importance in the multi-
payer US healthcare marketplace (Goldman, Nussbaum, and Linthicum 2016). First, conventional cost-
effectiveness analysis assumes that the value of extending life is insensitive to the severity of illness: 
providing X aggregate life-years to a large population of hypertension patients is worth the same as 
providing X aggregate life-years by extending life substantially for a proportionally smaller population of 
cancer patients. Our model finds that this equivalence is incorrect when individuals are not fully 
annuitized, which suggests that the cost-effectiveness approach to healthcare resource allocation 
underinvests in the treatment of the most life-threatening illnesses relative to less severe conditions. This 
insight is consistent with data on how consumers view the value of life-extension (Nord et al. 1995; 
Green and Gerard 2009; Linley and Hughes 2013), and can better inform the way economists and 
healthcare payers assess the value of medical technologies. 

Second, cost-effectiveness analysis traditionally values life-years gained by prevention and treatment 
equally (Drummond et al. 2005a). However, in our model baseline health status affects the value of life-
years gained, which creates a wedge between prevention and treatment. In contrast to the old adage,4 we 
find that treatment is often significantly more valuable to consumers than prevention, even when they 
produce the same longevity gain. Of course, this does not preclude the possibility of positive externalities, 
such as the “herd immunity” of vaccines, that could offset this wedge. 

Finally, extending the value of life analysis to a stochastic mortality setting requires us to rely on tools 
from continuous-time stochastic optimal control. To derive the expressions for VSL and VSI, we rely on 
a “stochastic” version of the Pontryagin maximum principle following recent developments in the 
systems and control literature (Parpas and Webster 2013). The resulting expression for VSL generalizes 
the deterministic versions in the earlier literature (Rosen 1988; Murphy and Topel 2006), and VSI can in 
turn be interpreted as a generalization of the concept of VSL. We view our application of these tools as a 
useful demonstration for other researchers working in stochastic settings. 

                                                      
3 This valuation differential depends on the individual’s current health state and is therefore most relevant for 
assessing the value of current medical R&D. The difference in the values of preventives and treatments introduced 
in the distant future is negligible because they are necessarily valued from an ex ante (healthy) perspective. 

4 Addressing the need for fire-prevention, Benjamin Franklin wrote, “An ounce of prevention is worth a pound of 
cure” (Labaree 1961). 
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Section II reviews the predictions of the conventional model for the returns to life-extension and 
demonstrates how relaxing the perfect annuity assumption alters these predictions. Section III then 
generalizes the framework further by allowing health and income to be stochastic. Section IV presents 
empirical analysis that: (1) quantifies the effect of Social Security on the value of statistical life; (2) 
shows how health shocks can increase the value of statistical life when annuity markets are incomplete; 
(3) illustrates how more severe health shocks cause consumers to place higher value on a given mortality 
reduction; and (4) calculates the value of preventing different kinds of illness. Section V concludes. 

II. THE VALUE OF LIFE WHEN MORTALITY IS DETERMINISTIC  
Consider an individual who faces a mortality risk. We are interested in analyzing the value of a marginal 
reduction in this risk. We first quantify this value in the conventional setting where markets are complete 
and the consumer has access to actuarially fair annuities (Rosen 1988; Murphy and Topel 2006). We then 
repeat this exercise in a “Robinson Crusoe” economy where the consumer cannot purchase annuities to 
insure against her uncertain lifetime (Shepard and Zeckhauser 1984; Ehrlich 2000; Johansson 2002). We 
compare our findings for these two polar cases to illustrate the basic insights of the paper. We focus on 
improvements in longevity and their relationship to annuity insurance markets, but allow for 
improvements in quality of life as well. Section III then extends the model to accommodate stochastic 
mortality and introduces the value of statistical illness.  

Although it is optimal for a consumer to fully annuitize, real-world annuitization rates are quite low. This 
“annuity puzzle” is the subject of numerous papers. Many explanations have been suggested, but there is 
no consensus on what drives incomplete annuitization (Brown et al. 2008). Our model takes the low rate 
of annuitization as a given empirical fact and illustrates its significance for the value of life. Section IV 
uses a numerical model to probe the sensitivity of our results to different assumptions about consumer 
preferences, such as the presence of a bequest motive, which prior studies have argued might rationalize 
low observed rates of annuitization. There continues to be debate over why real-world consumption 
profiles and annuity purchase decisions look the way they do. However, as we show, the implications for 
life-extension depend primarily on the real-world consumption profiles themselves, not the reasons that 
lie beneath. 

We focus throughout this paper on the willingness-to-pay for a marginal reduction in mortality risk. The 
extent to which this translates into an increase in health spending depends on the health production 
function. See Hall and Jones (2007) for additional discussion. 

II.A. The fully annuitized value of life 
Let ܿሺݐሻ be consumption at time ݐ, ଴ܹ be baseline wealth, ݉ሺݐሻ be exogenously determined income, ߩ be 
the rate of time preference, and ݎ be the rate of interest.5 Finally, define ݍሺݐሻ as health-related quality of 
life at time ݐ. Since it sacrifices little generality in our application, we take the life-cycle quality of life 
profile ݍሺݐሻ as exogenous. As needed, one can consider any relevant quality of life profile in concert with 
a given profile of mortality, and we investigate this issue in our empirical analysis later. The maximum 
lifespan of a consumer is ܶ, and her mortality (hazard) rate at any point in time is given by ߤሺݐሻ, where 
0 ൑ ݐ ൑ ܶ. The probability that a consumer will be alive at time ݐ is: 

                                                      
5 It is straightforward to incorporate endogenous labor supply (Murphy and Topel 2006). In the stochastic mortality 
model presented in Section III, we allow income to depend on the health state. 
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ܵሺݐሻ ൌ exp ቈെන ݏሻ݀ݏሺߤ
௧

଴
቉ 

At time ݐ ൌ 0 , the consumer fully annuitizes. We assume that annuitization is actuarially fair. The 
consumer’s maximization problem is: 

ܸሺ0ሻ ൌ max
௖ሺ௧ሻ

න ݁ିఘ௧ܵሺݐሻݑሺܿሺݐሻ, ݐሻሻ݀ݐሺݍ
்

଴
	

.ݏ 		.ݐ න ݁ି௥௧ܵሺݐሻܿሺݐሻ݀ݐ
்

଴
ൌ ଴ܹ ൅ න ݁ି௥௧ܵሺݐሻ݉ሺݐሻ݀ݐ

்

଴
 

The consumer’s utility function, ݑሺܿሺݐሻ,  ሻሻ, depends on both consumption and health-related quality ofݐሺݍ
life. We assume ݑሺ⋅ሻ is strictly increasing and concave in its first argument, and twice continuously 
differentiable. Let ݑ௖ሺ∙ሻ denote the marginal utility of consumption. Associating the multiplier ߠ with the 
wealth constraint, optimal consumption is characterized by the first-order condition: 

߲ܸሺ0ሻ

߲ܹ
ൌ ߠ ൌ ݁ሺ௥ିఘሻ௧ݑ௖ሺܿሺݐሻ,  ሻሻݐሺݍ

To analyze the value of life, let ߜሺݐሻ be a perturbation on the mortality rate with ׬ ݐሻ݀ݐሺߜ
்
଴ ൌ 1, and 

consider  

ܵఌሺݐሻ ൌ exp ቈെන ሺߤሺݏሻ െ ݏሻሻ݀ݏሺߜߝ
௧

଴
቉ , ߝ ൐ 0 

Let ܿఌሺݐሻ represent the equilibrium variation in ܿሺݐሻ caused by this perturbation. As shown in Rosen 
(1988), the marginal utility of this life-extension is given by 

߲ܸ
ߝ߲
ฬ
ఌୀ଴

ൌ
߲
ߝ߲
න ݁ିఘ௧ܵఌሺݐሻݑ൫ܿఌሺݐሻ, ݐሻ൯݀ݐሺݍ
்

଴
ቤ
ఌୀ଴

	

ൌ න ൣ݁ିఘ௧ݑሺܿሺݐሻ, ሻሻݐሺݍ ൅ ݁ି௥௧ߠ൫݉ሺݐሻ െ ܿሺݐሻ൯൧ ቈන ݏሻ݀ݏሺߜ
௧

଴
቉ ܵሺݐሻ݀ݐ

்

଴
 

The marginal value of life-extension is equal to the marginal rate of substitution between longer life and 
wealth: 

ߝ߲/ܸ߲ 
߲ܸ/߲ܹ

ൌ න ݁ି௥௧ܵሺݐሻ ቆ
,ሻݐሺܿሺݑ ሻሻݐሺݍ

,ሻݐ௖ሺܿሺݑ ሻሻݐሺݍ
൅ ݉ሺݐሻ െ ܿሺݐሻቇ ቈන ݏሻ݀ݏሺߜ

௧

଴
቉ ݐ݀

்

଴
 

 

 (1) 

 

The value of a life-year is the value of a one-period change in survival from the perspective of current 
time: 

 
ሻݐሺݒ ൌ

,ሻݐ൫ܿሺݑ ሻ൯ݐሺݍ

,ሻݐ௖൫ܿሺݑ ሻ൯ݐሺݍ
൅ ݉ሺݐሻ െ ܿሺݐሻ 

 

 (2) 

 

The value of a life-year, ݒሺݐሻ, is equal to the value of consumption in that year plus net savings, ݉ሺݐሻ െ
ܿሺݐሻ. The net savings term is a consequence of the requirement that annuities be actuarially fair. The 
value of a life-year can be rewritten as:  



 7

ሻݐሺݒ ൌ ݉ሺݐሻ ൅ ܿሺݐሻ ቆ
,ሻݐ൫ܿሺݑ ሻ൯ݐሺݍ

ܿሺݐሻݑ௖൫ܿሺݐሻ, ሻ൯ݐሺݍ
െ 1ቇ ൌ ݉ሺݐሻ ൅ ܿሺݐሻ߶ሺܿ,  ሻݍ

where ߶ሺܿ,  ሻ represents the consumer surplus value per unit of consumption. It is positive if averageݍ
utility exceeds marginal utility. A life-year adds value through two different channels: an increase in 
earnings, which can finance additional consumption, and an increase in consumer surplus.6 

A canonical choice for ߜሺ⋅ሻ in equation (1) is the Dirac delta function, so that the mortality rate is 
perturbed at ݐ ൌ 0 and remains unaffected otherwise. This then yields an expression that is commonly 
called the value of statistical life (VSL): 

 
ܮܸܵ ≡ න ݁ି௥௧ܵሺݐሻݒሺݐሻ݀ݐ

்

଴
 

 (3) 

 

VSL corresponds to the value that the individual places on a marginal reduction in risk of death in the 
current period. For example, it is the amount that 1,000 people would be collectively willing to pay to 
eliminate a current risk that is expected to kill one of them. It is equal to the present discounted value of 
lifetime consumption, plus the change in net savings. Holding wealth constant, VSL increases with 
survival, which implies increasing returns in health improvements (Murphy and Topel 2006). Conversely, 
this leads to the conventional result that VSL falls when mortality rises. 

The value of statistical life depends on how substitutable consumption is at different ages, i.e., on how 
easily an individual can reallocate consumption over time. Intuitively, if present consumption is a good 
substitute for future consumption, then living longer is less valuable. Define the elasticity of intertemporal 
substitution, ߪ, as: 

1
ߪ
≡ െ

௖௖ܿݑ
௖ݑ

 

In addition, define the elasticity of quality of life with respect to the marginal utility of consumption as: 

ߟ ≡
ݍ௖௤ݑ
௖ݑ

 

When this term is positive, the marginal utility of consumption is higher in healthier states, and vice-
versa. Taking logarithms of the first-order condition for consumption and differentiating with respect to 
time yields the rate of change for consumption over the life cycle: 

 ሶܿ
ܿ
ൌ ݎሺߪ െ ሻߩ ൅ ߟߪ

ሶݍ
ݍ

 
 (4) 

 

If one assumes that ݎ ൐  and that the marginal utility of consumption is higher when health status is ,ߩ
better, then life-cycle consumption will have the inverted U-shape observed in real-world data.7 

                                                      
6 Positive consumer surplus may require that consumption remain above a “subsistence” level, ܿ ൐ 0. 

7 Consumption climbs early in life as the benefits to savings diminish. It declines later in life when quality of life 
deteriorates. This inverted U-shape for the age profile of consumption has been widely documented across different 
countries and goods (Carroll and Summers 1991; Banks et al. 1998; Fernandez-Villaverde and Krueger 2007). 
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Note the crucial feature of the conventional model that consumption growth over the life-cycle is 
independent of mortality risk, because the individual is fully insured against that risk. This feature in turn 
implies that the rate of change in the value of a life-year is also not a function of mortality risk: 

ሶݒ
ݒ
ൌ ൬

1
ݒߪ

ݑ
௖ݑ
൰
ሶܿ
ܿ
൅ ൬

െߟ
ݒ

ݑ
௖ݑ
൅
ݍ
ݒ
௤ݑ
௖ݑ
൰
ሶݍ
ݍ
൅

ሶ݉
ݒ

 

In sum, we have identified two major features of the conventional, fully annuitized and deterministic 
model of mortality: 

 The relative value of a life-year within a lifetime is independent of mortality risk. 
 The value of statistical life falls when mortality rises. 

II.B. The uninsured value of life 
To illustrate the effects of annuitization, we consider a model without any annuitization possibilities. In 
our numerical exercises later, we will consider various partial annuitization schemes. To characterize the 
model without annuitization, we employ the Yaari (1965) model of consumption behavior under mortality 
risk. The consumer’s maximization problem is: 

ܸ൫0,ܹሺ0ሻ൯ ൌ max
௖ሺ௧ሻ

න ݁ିఘ௧ܵሺݐሻݑሺܿሺݐሻ, ݐሻሻ݀ݐሺݍ
்

଴
	

.ݏ ሺ0ሻܹ.ݐ ൌ ଴ܹ,	
ܹሺݐሻ ൒ 0,ܹሺܶሻ ൌ 0,	
߲ܹሺݐሻ
ݐ߲

ൌ ሻݐሺܹݎ ൅ ݉ሺݐሻ െ ܿሺݐሻ 

If the non-negative wealth constraint binds, then the solution to the consumer’s problem is to set ܿሺݐሻ ൌ
݉ሺݐሻ. Otherwise, the solution is to maximize subject to the constraint on the law of motion for wealth. 
We focus here on the latter, nontrivial case.  

Optimal consumption is again characterized by the first-order condition: 

߲ܸ൫0,ܹሺ0ሻ൯
߲ܹሺ0ሻ

ൌ ߠ ൌ ݁ሺ௥ିఘሻ௧ܵሺݐሻݑ௖ሺܿሺݐሻ,  ሻሻݐሺݍ

Unlike in the case of perfect markets, the survival function enters the consumer’s first-order condition for 
optimal consumption. Instead of setting the discounted marginal utility of consumption equal to the 
marginal utility of wealth, the consumer sets the expected discounted marginal utility of consumption at 
time ݐ equal to the marginal utility of wealth. This effectively shifts consumption to earlier ages in the 
life-cycle. This is rational because consumption allocated to later time periods will not be enjoyed in the 
event of an early death. 

The expression for the marginal utility of life-extension is: 

߲ܸ
ߝ߲
ฬ
ఌୀ଴

ൌ
߲
ߝ߲
න ݁ିఘ௧ܵఌሺݐሻݑ൫ܿఌሺݐሻ, ݐሻ൯݀ݐሺݍ
்

଴
ቤ
ఌୀ଴

	

ൌ න ݁ିఘ௧ ቈන ݏሻ݀ݏሺߜ
௧

଴
቉ ܵሺݐሻݑሺܿሺݐሻ, ݐሻሻ݀ݐሺݍ

்

଴
൅ න ݁ିఘ௧ܵሺݐሻݑ௖ሺܿሺݐሻ, ሻሻݐሺݍ

߲ܿఌሺݐሻ
ߝ߲

ฬ
ఌୀ଴

ݐ݀
்

଴
	

ൌ න ݁ିఘ௧ ቈන ݏሻ݀ݏሺߜ
௧

଴
቉ ܵሺݐሻݑሺܿሺݐሻ, ݐሻሻ݀ݐሺݍ

்

଴
൅ ߠ

߲
ߝ߲
න ݁ି௥௧ܿఌሺݐሻ݀ݐ
்

଴
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ൌ න ݁ିఘ௧ ቈන ݏሻ݀ݏሺߜ
௧

଴
቉ ܵሺݐሻݑሺܿሺݐሻ, ,ݐሻሻ݀ݐሺݍ

்

଴
 

where the last equality follows from application of the budget constraint.8  

Dividing this result by the marginal utility of wealth, ߠ, then yields the marginal value of life-extension: 

ߝ߲/ܸ߲ 
߲ܸ/߲ܹ

ൌ න ݁ିఘ௧ ቈන ݏሻ݀ݏሺߜ
௧

଴
቉ ܵሺݐሻ

,ሻݐ൫ܿሺݑ ሻ൯ݐሺݍ

,௖൫ܿሺ0ሻݑ ሺ0ሻ൯ݍ
ݐ݀

்

଴
	

ൌ න ݁ି௥௧ ቈන ݏሻ݀ݏሺߜ
௧

଴
቉
,ሻݐ൫ܿሺݑ ሻ൯ݐሺݍ

,ሻݐ௖൫ܿሺݑ ሻ൯ݐሺݍ
ݐ݀

்

଴
 

 (5) 

 

In this setting, the value of a life-year from the perspective of current time is: 

 
ሻݐሺݒ ൌ

,ሻݐ൫ܿሺݑ ሻ൯ݐሺݍ

,ሻݐ௖൫ܿሺݑ ሻ൯ݐሺݍ
 

 (6) 

 

When the consumer is uninsured, the value of a life-year depends only on the value of consumption. The 
net savings term is absent in equation (6) because life-extension has no effect on the consumer’s budget 
constraint.9 

Choosing again the Dirac delta function for ߜሺ⋅ሻ yields an expression for VSL that differs from the perfect 
markets case: 

 
ܮܸܵ ൌ න ݁ି௥௧ݒሺݐሻ݀ݐ

்

଴
 

 (7) 

The value of statistical life is proportional to (expected) lifetime utility, and inversely proportional to the 
marginal utility of consumption. It is well known that removing annuity markets lowers lifetime utility 
(Yaari 1965). As we show more formally below, removing these markets also shifts consumption to 
earlier ages, thereby lowering the marginal utility of consumption, at least at those ages. When consumers 
shift consumption forward, the near-term life-years rise in value but distant life-years fall in value. Thus, 
the net effect of annuity markets on VSL is in general ambiguous. Put differently, exposure to longevity 
risk does not necessarily lower VSL. In the next section, we will show that this basic insight extends to 
exposing a consumer to a mortality “shock.” We emphasize that in both cases the result depends critically 
on whether consumers are fully annuitized. 

Unlike the perfect markets case, the life-cycle consumption profile of the non-annuitized individual 
depends explicitly on mortality risk. Taking logarithms of the first-order condition for consumption and 
differentiating with respect to time yields: 

                                                      
8 The budget constraint ܹሺܶሻ ൌ 0 implies ׬ ݁ି௥௧ܿఌሺݐሻ݀ݐ

்
଴ ൌ ܹ0 ൅ ׬ ݁ି௥௧݉ሺݐሻ݀ݐ

்
଴ , a value which does not depend 

on survival and thus is unaffected by life extension. 

9 Unless the consumer survives until period ܶ, she will die with positive wealth. Although this remaining wealth has 
no value to an individual with no bequest motive, it may be of value to society. When calculating the social value of 
life-extension, we account for the effect of increased longevity on bequests by including a net savings term, defined 
to be the expected increase in future earnings net of consumption, as in equation (2). This term reflects the external 
effect on society’s aggregate wealth due to increased longevity. 
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 ሶܿ
ܿ
ൌ ݎሺߪ െ ሻߩ ൅ ߟߪ

ሶݍ
ݍ
െ  ሻݐሺߤߪ

 (8) 

Comparing this result to the standard case, given by equation (4), reveals both similarities and differences. 
As in the standard, fully annuitized model, the non-annuitized consumption profile described by equation 
(8) changes shape when the rate of time preference is above or below the rate of interest and when the 
quality of life changes. Unlike in the standard model, the consumption profile described by equation (8) 
depends explicitly on the mortality rate, ߤሺݐሻ. Higher rates of mortality depress the rate of consumption 
growth over the life-cycle. This rate of growth is always higher in the fully annuitized case, in which the 
last term drops out of the consumption growth equation (8). Put another way, removing the annuity 
market “pulls consumption earlier” in the life-cycle. 

An appealing feature of the uninsured model is that it generates an inverted U-shape for the profile of 
consumption under quite natural assumptions. Low income early in life and high mortality risk later in 
life are sufficient conditions for the inverted U-shape consumption profile. One need not impose the ad 
hoc assumptions on the signs of  ݎ െ  that are necessary in the fully annuitized model (Murphy and ߟ or ߩ
Topel 2006). 

The life-cycle profile of the value of a life-year is: 

ሶݒ 
ݒ
ൌ ൬

1
ߪ
൅
ܿ
ݒ
൰
ሶܿ
ܿ
൅ ቀ

௤ݑݍ
ݑ

െ ቁߟ
ሶݍ
ݍ

 
 (9) 

An important implication of (9) is that willingness to pay for longevity depends on the life-cycle mortality 
profile because of its dependence on the rate of change in consumption. Holding quality of life constant, it 
is evident from equation (6) that increases in the mortality rate—which shift consumption forward—will 
raise ݒ, the current value of a life-year. That is, mortality also shifts forward the value of life. All else 
equal, individuals who face high mortality risks will pay more for a marginal (near-term) life-year, but 
less for a distant life-year, than healthy peers who face low mortality risks. This differs from the 
implications of the conventional model, in which higher mortality reduces the values of life-years but has 
no impact on their relative values.  

At the aggregate level, as societies become richer and live longer, the fraction of wealth spent on health 
will depend not just on the income elasticity of health, but also on the degree of survival uncertainty they 
face. Furthermore, our results imply that public programs that increase annuitization rates, such as Social 
Security, will affect society’s willingness to pay for longevity, thereby creating a feedback loop that could 
dampen or increase program expenditures.10 In our numerical exercises, we will quantify how the degree 
of annuitization influences the value of statistical life. 

To summarize the findings for this uninsured model, we have identified the following two properties that 
contrast with those of the fully annuitized model: 

 The values of near-term life-years rise, and distant life-years fall, when mortality rises. 
 The value of statistical life may rise or fall when mortality rises. 

In the next section, we allow mortality to be stochastic so that we can investigate formally the effect of 
disease and other health shocks on the value of life. Before turning to that analysis, we pause to note that 
suffering a health shock is similar to removing access to annuity markets, which exposes an individual to 

                                                      
10 Philipson and Becker (1998) make the important, but distinct, point that the moral hazard effects of public annuity 
programs also increase an individual’s willingness to pay for longevity gains. 
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mortality risk. We have shown here that this shifts the value of life-years forward, with an ambiguous net 
effect on VSL. As we shall see, health shocks have a similar effect.  

III. THE VALUE OF LIFE WHEN MORTALITY IS STOCHASTIC 
The previous analysis demonstrates that mortality risk affects the value of life when annuity markets are 
incomplete. Prior studies have overlooked this relationship by assuming complete annuitization. 
However, the conventional framework is ill-equipped to study the influence of mortality risk for another 
reason as well. Prior analysis, just like our deterministic model above, treats the mortality rate as a 
nonrandom parameter (Murphy and Topel, 2006). Thus, shifts in mortality risk reflect preordained and 
anticipated changes in mortality. In the real world, however, neither the timing nor the size of shifts in 
mortality risk is known. As a related matter, the conventional framework does not allow for different 
health states. This omission precludes a meaningful analysis of the value of preventing health 
deterioration. 

This section extends our analysis to allow for stochastic mortality. Specifically, we assume that the 
mortality rate now depends on the individual’s health state. Let ௧ܻ be a continuous-time Markov chain 
with finite state space ܻ ൌ ሼ1,2, … , ݊ሽ. Denote the transition intensities by: 

ሻݐ௜௝ሺߣ ൌ lim
௛→଴

1
݄
ℙሾ ௧ܻା௛ ൌ ݆| ௧ܻ ൌ ݅ሿ, ݆ ് ݅, 

ሻݐ௜௜ሺߣ ൌ െ෍ߣ௜௝ሺݐሻ
௝ஷ௜

 

The mortality rate at time ݐ is defined as 

ሻݐሺߤ ൌ෍ߤ௝ሺݐሻ૚ሼ ௧ܻ ൌ ݆ሽ
௡

௝ୀଵ

 

where ቄߤ௝ሺݐሻቅ are exogenous and ૚ሼ ௧ܻ ൌ ݆ሽ is an indicator variable equal to 1 if the individual is in state ݆ 

at time ݐ  and 0 otherwise. Without meaningful loss of generality, we assume that individuals can 
transition only to higher-numbered states, i.e., ߣ௜௝ሺݐሻ ൌ 0	∀݆ ൏ ݅, so that the probability that a consumer 
in state ݅ at time 0 remains in state ݅ at time ݐ is equal to:11  

ሚܵሺ݅, ሻݐ ൌ exp ቎െන ቌߤ௜ሺݏሻ ൅෍ߣ௜௝ሺݏሻ
௝ஷ௜

ቍ ݏ݀
௧

଴
቏ 

A complete annuities market allows the consumer to insure fully against mortality risk even when 
mortality is stochastic.12 Appendix C provides a full derivation for a setting with complete markets and 

                                                      
11 That is, an individual can transition from state ݅ to ݆, ݅ ൏ ݆, but not vice versa. This does not meaningfully limit the 
generality of our model, because one can always define a new state ݇ ൐ ݆ where ߤ௞ሺݐሻ ൌ  .ݐ∀ሻݐ௜ሺߤ

12  Reichling and Smetters (2015) show that when annuity markets are incomplete, stochastic mortality and 
correlated medical costs can explain the puzzling observation that many households do not fully annuitize their 
wealth. They take the positive correlation between health shocks and medical spending as a given. Our study sheds 
light on why these two phenomena are positively correlated. 
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demonstrates that stochastic mortality, by itself, does not alter the theoretical predictions of the standard 
VSL model as long as one maintains the assumption of full annuitization. Appendix C also derives 
expressions for the value of preventing illness when the consumer is fully annuitized. We defer discussion 
of those results until later in this section. 

Here, we focus on the uninsured case. The consumer’s maximization problem is: 

 
ܸሺ0,ܹሺ0ሻ, ଴ܻሻ ൌ max

௖ೊ೟ሺ௧ሻ
ॱ ቈන ݁ିఘ௧ܵሺݐሻݑ൫ܿ௒೟ሺݐሻ, ݐሻ൯݀ݐ௒೟ሺݍ

்

଴
ቤ ଴ܻ቉ 

 (10) 

 

.ݏ ሺ0ሻܹ.ݐ ൌ ଴ܹ,	
ܹሺݐሻ ൒ 0,ܹሺܶሻ ൌ 0,	
߲ܹሺݐሻ
ݐ߲

ൌ ሻݐሺܹݎ ൅ ݉௒೟ሺݐሻ െ ܿ௒೟ሺݐሻ 

As in the deterministic model presented in Section II.B, we focus on the non-trivial case where the non-
negative wealth constraint does not bind. Define the consumer’s objective function at time ݑ as: 

 
,ݑሺܬ ݅ሻ ൌ ॱ ቈන ݁ିఘ௧ exp ቊെන ݑሺߤ ൅ ݏሻ݀ݏ

௧

଴
ቋ ݑ൫ܿ௒ೠశ೟ሺݑ ൅ ,ሻݐ ݑ௒ೠశ೟ሺݍ ൅ ݐሻ൯݀ݐ

்ି௨

଴
ቤ ௨ܻ ൌ ݅቉ 

 (11) 

 

We can then write the objective function recursively as: 

,ݑሺܬ ݅ሻ ൌ න ݁ିఘ௧ expቐെන ቌߤ௜ሺݑ ൅ ሻݏ ൅෍ߣ௜௝ሺݑ ൅ ሻݏ
௝ஷ௜

ቍ ݏ݀
௧

଴
ቑቌݑሺܿ௜ሺݑ ൅ ,ሻݐ ݑ௜ሺݍ ൅ ሻሻݐ ൅෍ߣ௜௝ሺݑ ൅ ݑሺܬ	ሻݐ ൅ ,ݐ ݆ሻ

௝ஷ௜

ቍ ݐ݀
்ି௨

଴
 

Define the optimal value function as: 

ܸሺݐ,ܹሺݐሻ, ݅ሻ ൌ max
௖⋅ሺ௦ሻ,௦ஹ௧

ሼܬሺݐ, ݅ሻሽ 

Under conventional regularity conditions, we know that if ܸ and its partial derivatives are continuous, 
then ܸ satisfies the following Hamilton-Jacobi-Bellman (HJB) system of equations: 

 ቀߩ ൅ ሻቁݐ௜ሺߤ ܸሺݐ,ܹሺݐሻ, ݅ሻ

ൌ max
௖೔ሺ௧ሻ

ቐݑ൫ܿ௜ሺݐሻ, ሻ൯ݐ௜ሺݍ ൅
߲ܸሺݐ,ܹሺݐሻ, ݅ሻ

߲ܹሺݐሻ
ሾܹݎሺݐሻ ൅ ݉௜ሺݐሻ െ ܿ௜ሺݐሻሿ

൅
߲ܸሺݐ,ܹሺݐሻ, ݅ሻ

ݐ߲
൅෍ߣ௜௝ሺݐሻሾܸሺݐ,ܹሺݐሻ, ݆ሻ െ ܸሺݐ,ܹሺݐሻ, ݅ሻሿ

௝ஷ௜

ቑ , ݅ ൌ 1,… , ݊ 

 (12) 

 

We are interested in understanding how optimal consumption, and thus the value of life, changes over the 
life-cycle in this problem. We follow Parpas and Webster (2013), who demonstrate that it is possible to 
reformulate a stochastic optimization problem as a deterministic problem that takes ܸሺݐ,ܹሺݐሻ, ݆ሻ, ݆ ് ݅, 
as exogenous. This then allows us to apply the Pontryagin maximum principle and derive analytic 
expressions.  

Lemma 1: 

The optimal value function for ଴ܻ ൌ ݅, ܸሺ0,ܹሺ0ሻ, ݅ሻ , for the following deterministic optimization 
problem also satisfies the HJB given by (12), for each ݅ ∈ ሼ1, … , ݊ሽ: 
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ܸሺ0, ଴ܹ, ݅ሻ ൌ max

௖೔ሺ௧ሻ
቎න ݁ିఘ௧ ሚܵሺ݅, ሻݐ ቌݑሺܿ௜ሺݐሻ, ሻሻݐ௜ሺݍ ൅෍ߣ௜௝ሺݐሻܸሺݐ,ܹሺݐሻ, ݆ሻ

௝ஷ௜

ቍ ݐ݀
்

଴
቏ 

 (13) 

 

.ݏ .ݐ
߲ܹሺݐሻ
ݐ߲

ൌ ሻݐሺܹݎ ൅ ݉௜ሺݐሻ െ ܿ௜ሺݐሻ 

where ܸሺݐ,ܹሺݐሻ, ݆ሻ are taken as exogenous. 

Proof of Lemma 1: see Appendix A  

Following Bertsekas (2005), the present value Hamiltonian corresponding to (13) is 

,ሻݐ൫ܹሺܪ ܿ௜ሺݐሻ, ௧݌
ሺ௜ሻ൯ ൌ ݁ିఘ௧ ሚܵሺ݅, ሻݐ ቌݑ൫ܿ௜ሺݐሻ, ሻ൯ݐ௜ሺݍ ൅෍ߣ௜௝ሺݐሻܸሺݐ,ܹሺݐሻ, ݆ሻ

௝ஷ௜

ቍ ൅ ௧݌
ሺ௜ሻሾܹݎሺݐሻ െ ܿ௜ሺݐሻ ൅ ݉௜ሺݐሻሿ 

where ݌௧
ሺ௜ሻ is the costate variable for state ݅. The necessary costate equation is: 

ሶ௧݌
ሺ௜ሻ ൌ െ݌௧

ሺ௜ሻݎ െ ݁ିఘ௧ ሚܵሺ݅, ሻݐ௜௝ሺߣሻ෍ݐ
߲ܸሺݐ,ܹሺݐሻ, ݆ሻ

߲ܹሺݐሻ
௝ஷ௜

 

The solution to the costate equation can be obtained using the variation of the constant method: 

௧݌
ሺ௜ሻ ൌ ቎න ݁ሺ௥ିఘሻ௦ ሚܵሺ݅, ሻݏ௜௝ሺߣሻ෍ݏ

߲ܸሺݏ,ܹሺݏሻ, ݆ሻ

߲ܹሺݏሻ
௝ஷ௜

ݏ݀
்

௧
቏ ݁ି௥௧ ൅  ሺ௜ሻ݁ି௥௧ߠ

where ߠሺ௜ሻ is a constant. The necessary first-order condition for consumption is: 

௧݌ 
ሺ௜ሻ ൌ ݁ିఘ௧ ሚܵሺ݅, ,ሻݐ௖൫ܿ௜ሺݑሻݐ  ሻ൯  (14)ݐ௜ሺݍ

where the marginal utility of wealth at time ݐ ൌ 0  is 
డ௏ሺ଴,ௐబ,௜ሻ

డௐబ
ൌ ଴݌

ሺ௜ሻ ൌ ,௖൫ܿ௜ሺ0ሻݑ ௜ሺ0ሻ൯ݍ . Since the 

Hamiltonian is concave in ܿ and linear in ܹ, the necessary conditions for optimality are also sufficient 
(Seierstad and Sydsaeter 1977). 

To analyze the value of life, we let ߜሺݐሻ be a perturbation on the mortality rate in state ݅ with ׬ ݐሻ݀ݐሺߜ
்
଴ ൌ

1 and consider  

ሚܵఌሺ݅, ሻݐ ൌ exp ቎െන ൫ߤ௜ሺݏሻ െ ሻ൯ݏሺߜߝ ൅෍ߣ௜௝ሺݏሻ
௝ஷ௜

ݏ݀
௧

଴
቏ , where	ߝ ൐ 0 

We first derive an expression for the effect of this perturbation on expected lifetime utility. 

Lemma 2: 

The marginal utility of life extension in state ݅ is equal to: 

߲ܸ
ߝ߲
ฬ
ఌୀ଴

ൌ න ൦݁ିఘ௧ ቆන ݏሻ݀ݏሺߜ
௧

଴
ቇ ሚܵሺ݅, ሻݐ ൮ݑሺܿ௜ሺݐሻ, ሻሻݐ௜ሺݍ ൅෍ߣ௜௝ሺݐሻ

௝ஷ௜

ܸሺݐ,ܹሺݐሻ, ݆ሻ൲൪ ݐ݀
்

଴
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Proof of Lemma 2: 

From (13), the marginal utility of life-extension is 

߲ܸ
ߝ߲
ฬ
ఌୀ଴

ൌ
߲
ߝ߲
න ݁ିఘ௧ exp ቐെන ൫ߤሺݏሻ െ ሻ൯ݏሺߜߝ ൅෍ߣ௜௝ሺݏሻ

௝ஷ௜

ݏ݀
௧

଴
ቑቌݑ൫ܿ௜

ఌሺݐሻ, ሻ൯ݐ௜ሺݍ
்

଴

൅෍ߣ௜௝ሺݐሻܸ൫ݐ,ܹ
,ሻݐሺߝ ݆൯

௝ஷ௜

ቍ݀ݐቮ

ఌୀ଴

	

ൌ න ݁െݐߩ ቆන ݏሻ݀ݏሺߜ
௧

଴
ቇ ሚܵሺ݅, ሻݐ ቌݑ൫ܿ௜ሺݐሻ, ሻ൯ݐ௜ሺݍ ൅෍݆݅ߣሺݐሻܸሺݐ,ܹሺݐሻ, ݆ሻ

്݆݅

ቍ ݐ݀
ܶ

0

൅ න ݁െݐߩ ሚܵሺ݅, ሻݐ ቌܿݑ ቀܿ݅ሺݐሻ, ሻቁݐሺ݅ݍ
߲ܿ݅

ሻݐሺߝ

ߝ߲
൅෍݆݅ߣሺݐሻ

߲ܸሺݐ,ܹሺݐሻ, ݆ሻ

߲ܹ
്݆݅

ሻݐሺߝܹ߲

ߝ߲
ቍ݀ݐ

ܶ

0

ቮ

ൌ0ߝ

 

where ܿ௜
ఌሺݐሻ and ܹఌሺݐሻ represent the equilibrium variations in ܿ௜ሺݐሻ and ܹሺݐሻ caused by this perturbation. 

We conclude the proof by showing that the second term in the last equality is equal to 0. Note that along 
this path, wealth at time ݐ is equal to  

ܹሺݐሻ ൌ ଴ܹ݁௥௧ ൅ න ݁௥ሺ௧ି௦ሻ݉௜ሺݏሻ݀ݏ െ
௧

଴
න ݁௥ሺ௧ି௦ሻܿ௜ሺݏሻ݀ݏ,
௧

଴
 

which implies 
డௐഄሺ௧ሻ

డఌ
ൌ െ׬ ݁௥ሺ௧ି௦ሻ

డ௖೔
ഄሺ௦ሻ

డఌ
ݏ݀

௧
଴ . From the solution to the costate equation, we know that  

݁ିఘ௧ ሚܵሺ݅, ,ሻݐ௖൫ܿ௜ሺݑሻݐ ሻ൯ݐ௜ሺݍ ൌ ቎න ݁ሺ௥ିఘሻ௦ ሚܵሺ݅, ሻݏ௜௝ሺߣሻ෍ݏ
߲ܸሺݏ,ܹሺݏሻ, ݆ሻ

߲ܹሺݏሻ
௝ஷ௜

ݏ݀
்

௧
቏ ݁ି௥௧ ൅  ሺ௜ሻ݁ି௥௧ߠ

Thus, we can rewrite the second term in the expression for 
డ௏

డఌ
ቚ
ఌୀ଴

 above as 

						න ቎න ݁ሺ௥ିఘሻ௦ ሚܵሺ݅, ሻݏ௜௝ሺߣሻ෍ݏ
߲ܸሺݏ,ܹሺݏሻ, ݆ሻ

߲ܹሺݏሻ
௝ஷ௜

ݏ݀ ൅ ሺ௜ሻߠ
்

௧
቏ ݁ି௥௧

߲ܿ௜
ఌሺݐሻ

ߝ߲
ݐ݀

்

଴

െ න ݁ିఘ௧ ሚܵሺ݅, ሻݐ௜௝ሺߣሻ෍ݐ
߲ܸሺݐ,ܹሺݐሻ, ݆ሻ

߲ܹ
௝ஷ௜

න ݁௥ሺ௧ି௦ሻ
߲ܿ௜

ఌሺݏሻ

ߝ߲
ݏ݀

௧

଴
ݐ݀

்

଴
ቮ

ఌୀ଴

 

ൌ න ቎න ݁ሺ௥ିఘሻ௦ ሚܵሺ݅, ሻݏ௜௝ሺߣሻ෍ݏ
߲ܸሺݏ,ܹሺݏሻ, ݆ሻ

߲ܹሺݏሻ
௝ஷ௜

ݏ݀
்

௧
቏ ݁ି௥௧

߲ܿ௜
ఌሺݐሻ

ߝ߲
ݐ݀

்

଴

െ න ቎න ݁ሺ௥ିఘሻ௦ ሚܵሺ݅, ሻݏ௜௝ሺߣሻ෍ݏ
߲ܸሺݏ,ܹሺݏሻ, ݆ሻ

߲ܹሺݏሻ
௝ஷ௜

ݏ݀
்

௧
቏ ݁ି௥௧

߲ܿ௜
ఌሺݐሻ

ߝ߲
ݐ݀

்

଴
൅ න ሺ௜ሻ݁ି௥௧ߠ

߲ܿ௜
ఌሺݐሻ

ߝ߲
ݐ݀

்

଴
ቮ

ఌୀ଴

	

ൌ ሺ௜ሻߠ
߲
ߝ߲
න ݁ି௥௧ܿ௜

ఌሺݐሻ݀ݐ
்

଴ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ
อ

ఌୀ଴
ௐబା׬ ௘షೝ೟௠೔ሺ௧ሻௗ௧

೅
బ 									

	

ൌ 0 
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QED 

In order to facilitate comparison to the deterministic case, it is useful to derive an expression for the 
marginal utility of wealth at time ݐ. 

Lemma 3:  

The expected marginal utility of wealth in state ݅ at time ݐ is equal to:  

߲ܸሺݐ,ܹሺݐሻ, ݅ሻ

߲ܹሺݐሻ
ൌ ,ሻݐ௖൫ܿ௜ሺݑ ሻ൯ݐ௜ሺݍ ൌ ॱ ቈ݁ሺ௥ିఘሻሺఛି௧ሻ exp ቊെන ݏሻ݀ݏሺߤ

ఛ

௧
ቋ ,௖൫ܿ௒ഓሺ߬ሻݑ ௒ഓሺ߬ሻ൯ቤݍ ௧ܻ ൌ ݅቉ 

Proof of Lemma 3: see Appendix A 

Our next result demonstrates that the value of statistical life takes the same basic form as in the 
deterministic case. 

Proposition 4: 

Choosing once again the Dirac delta function for ߜሺ⋅ሻ simplifies the expression for the marginal utility of 
life-extension: 

߲ܸ
ߝ߲
ฬ
ఌୀ଴

ൌ න ൦݁ିఘ௧ ሚܵሺ݅, ሻݐ ൮ݑ൫ܿ௜ሺݐሻ, ሻ൯ݐ௜ሺݍ ൅෍ߣ௜௝ሺݐሻ
௝ஷ௜

ܸሺݐ,ܹሺݐሻ, ݆ሻ൲൪ ݐ݀
்

଴
	

ൌ ॱ ቈන ݁ିఘ௧ܵሺݐሻݑ൫ܿ௬೟ሺݐሻ, ݐሻ൯݀ݐ௬೟ሺݍ
்

଴
ቤ ଴ܻ ൌ ݅቉ 

Dividing the result by the marginal utility of wealth at time ݐ ൌ 0 and then applying Lemma 3 shows that 
the value of statistical life takes the same basic form as in the deterministic case: 

 
ሺ݅ሻܮܸܵ ൌ ॱ ቈන ݁ିఘ௧ܵሺݐሻ

,ሻݐ൫ܿ௬೟ሺݑ ሻ൯ݐ௬೟ሺݍ

,௖൫ܿ௒బሺ0ሻݑ ௒బሺ0ሻ൯ݍ
ቤݐ݀ ଴ܻ ൌ ݅

்

଴
቉ ൌ න ݁ି௥௧ݒሺ݅, ݐሻ݀ݐ

்

଴
 

 (15) 

 

where the value of a statistical life-year is equal to the expected utility of consumption normalized by the 
expected marginal utility of consumption: 

,ሺ݅ݒ ሻݐ ൌ
ॱ ቂܵሺݐሻݑ ቀܿݐݕሺݐሻ, ݐݕݍ

ሺݐሻቁቚ ܻ0 ൌ ݅ቃ

ॱ ቂܵሺݐሻܿݑ ቀܿݐݕሺݐሻ, ݐݕݍ
ሺݐሻቁቚ ܻ0 ൌ ݅ቃ

 

Proof of Proposition 4: see Appendix A 

As before, the value of statistical life is proportional to the expected discounted (lifetime) utility of 
consumption, and inversely proportional to the marginal utility of consumption. As we shall show below, 
a negative health shock increases current consumption, causing the net effect on VSL to be ambiguous. 
This parallels the result we showed previously that removing access to annuitization, thereby exposing a 
consumer to mortality risk, has an ambiguous effect on VSL.  

We can derive an expression for the life-cycle profile of consumption from (14), the first-order condition 
for ݌௧. Differentiating with respect to ݐ, plugging in the result for the costate equation and its solution, and 
rearranging yields 
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 ሶܿ௜
ܿ௜
ൌ ݎሺߪ െ ሻߩ ൅ ߟߪ

ሶݍ
ݍ
െ ሻݐ௜ሺߤߪ െ ሻݐ௜௝ሺߣ෍ߪ ቎1 െ

௖ݑ ቀ ௝ܿሺݐሻ, ሻቁݐ௝ሺݍ

,ሻݐ௖൫ܿ௜ሺݑ ሻ൯ݐ௜ሺݍ
቏

௝ஷ௜

 
 (16) 

 

As in the deterministic case, the rate of change is a declining function of the individual’s current mortality 
rate, ߤ௜ሺݐሻ: removing the annuity market “pulls consumption earlier” in the life-cycle. Unlike in the 
deterministic case, there is now an additional source of mortality risk, captured by the fourth term in 
equation (16). This term represents the possibility that the consumer might transition to a different health 
state in the future, and shifts consumption further still if the consumer is likely to fall ill in the future.  

We caution that equation (16) is specific to an individual’s health state ݅, and cannot be easily aggregated 
across health states. That is, one cannot infer from equation (16) whether stochastic mortality on average 
causes consumption to shift forward relative to deterministic mortality. That said, one should expect 
stochastic mortality to shift consumption forward by less than in the deterministic case. Intuitively, this is 
because a stochastic environment allows an individual to react to unanticipated health shocks by adjusting 
her consumption. Put differently, a deterministic model is equivalent to a stochastic model where the 
consumer is forced to keep consumption constant across states. Consumers prefer the ability to adjust 
consumption, so that they can consume less in healthy states and more in sick states. We have confirmed 
this intuition in (unreported) empirical exercises that assume CRRA utility: on net, stochastic mortality 
causes consumers to shift consumption forward a bit less than deterministic mortality. 

What happens when an individual transitions to a new health state? Because the consumer is not insured 
against mortality or quality of life risks, consumption will jump. The sign of the jump can be positive or 
negative, depending on the characteristics of the new health state relative to the old state. Because there is 
no consensus regarding the sign of health state dependence (ݑ௖௤ሺ⋅ሻ), let alone the magnitude, we hold 
quality of life constant for the time being, and return to this issue in our empirical analysis.13 Focusing on 
mortality, the model predicts that transitioning to a state where the current mortality and future expected 
mortality are high will shift consumption forward (see Figure 7), and vice versa. Our next result proves 
this formally for a two-state case.14  

Proposition 5: 

Let there be ݊ ൌ 2 states with identical quality of life profiles, so that ݍଵሺݏሻ ൌ  Assume that .ݏ∀	ሻݏଶሺݍ
ሻݏଵሺߤ ൏  so that state 1 is “healthy” and state 2 is “sick.” Suppose that the consumer transitions ,ݏ∀ሻݏଶሺߤ
from state 1 to state 2 at time ݐ, with no accompanying decrease in income (i.e., ݉ଵሺݐሻ ൑ ݉ଶሺݐሻ). Then 
ܿଵሺݐሻ ൏ ܿଶሺݐሻ.  

Proof of Proposition 5: see Appendix A 

It follows immediately from Proposition 5 that the value of near-term life-years will increase, and the 
value of distant life-years will decrease, when transitioning from a healthy state with low mortality to a 
sick state with higher mortality. Whether VSL rises or falls is ambiguous, however. A rise in mortality 
                                                      
13 Finkelstein et al. (2013), Sloan et al. (1998), and Viscusi and Evans (1990) find evidence of negative state 
dependence. Edwards (2008) and Lillard and Weiss (1988) find evidence of positive state dependence. Evans and 
Viscusi (1991) find no evidence of state dependence. Murphy and Topel (2006) assume negative state dependence 
when performing their calibration exercises, while Hall and Jones (2007) assume state independence.  

14 The proof can be extended to allow for a larger number of states, but the conditions required to sign the jump in 
consumption then become a complicated function of the matrix of transition probabilities and state-specific 
mortality rates. The two-state case conveys the basic result without a meaningful loss of generality.  
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risk lowers lifetime utility, which reduces VSL, but it also reduces the marginal utility of consumption, 
which increases VSL. Thus, the net effect depends on the curvature of the utility function relative to the 
curvature of the marginal utility function. The elasticity of intertemporal substitution, ߪ, is a common 
measure of the utility curvature. The analogous measure for the curvature of marginal utility is prudence 
(Kimball 1990). Define relative prudence as 

ߨ ≡ െ
௖௖௖ሺ⋅ሻݑܿ

௖௖ሺ⋅ሻݑ
 

Our next result provides a sufficient condition for VSL to rise following an adverse mortality shock.  

Proposition 6: 

Consider a two-state setting with assumptions set out in Proposition 5. Assume further that preferences 
satisfy the additional condition  

ߨ ൏
2
ߪ

 

Suppose that the consumer transitions from state 1 to state 2 at time ݐ, and that ߣଵଶሺ߬ሻ ൌ 0∀߬ ൐  Then .ݐ
,ሺ1ܮܸܵ ሻݐ ൏ ,ሺ2ܮܸܵ  .ሻݐ

Proof of Proposition 6: see Appendix A 

The condition specified in Proposition 6 is satisfied by many common preferences, such as CRRA with 
ߪ ൏ 1 (which we employ in our numerical exercises) and quadratic preferences. Consumers with inelastic 
demand, i.e., preferences with a low value for ߪ, find it costly to reallocate consumption over time. They 
therefore have a high willingness-to-pay for life-extension and are more likely to exhibit a rise in VSL 
following an adverse mortality shock. Likewise, consumers with low levels of prudence have nearly-
linear marginal utility that decreases rapidly with consumption. This generates a high willingness-to-pay 
for life-extension following a shock that increases consumption. 

III.A. The value of statistical illness 
Unlike the deterministic model, the stochastic model permits an investigation not only into the value of 
preventing death, but also into the value of preventing transitions to other health states. This requires only 
a slight modification to the analysis presented above, and will result in a more general concept we term 
the value of statistical illness. With a slight abuse of notation, let state ܰ ൅ 1 correspond to death, so that 
ܸሺݐ,ܹሺݐሻ, ܰ ൅ 1ሻ ൌ 0 . Let ߜ௜௝ሺݐሻ, ݅, ݆ ൑ ܰ , be a perturbation on the transition intensity ߣ௜௝ሺݐሻ  and 

∑ ሻ, whereݐ௜ሺߤ ሻ be a perturbation on the mortality rateݐ௜,ேାଵሺߜ ׬ ݐሻ݀ݐ௜௝ሺߜ
்
଴

ேାଵ
௝ୀଵ,௝ஷ௜ ൌ 1, and consider  

ሚܵఌሺ݅, ሻݐ ൌ exp ቎െන ൫ߤ௜ሺݏሻ െ ሻ൯ݏ௜,ேାଵሺߜߝ ൅ ෍ ൫ߣ௜௝ሺݏሻ െ ሻ൯ݏ௜௝ሺߜߝ

ே

௝ୀଵ,௝ஷ௜

ݏ݀
௧

଴
቏ , where	ߝ ൐ 0 

Proposition 7: 

The marginal utility of preventing an illness or death is given by: 
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߲ܸ
ߝ߲
ฬ
ఌୀ଴

ൌ න ݁ିఘ௧ ሚܵሺ݅, ሻݐ ൦න ෍ߜ௜௝ሺݏሻ
௝ஷ௜

ݏ݀
௧

଴
൮ݑሺܿ௜ሺݐሻ, ሻሻݐ௜ሺݍ ൅෍ߣ௜௝ሺݐሻ

௝ஷ௜

ܸሺݐ,ܹሺݐሻ, ݆ሻ൲
்

଴

െ෍݆݅ߜሺݐሻ
௝ஷ௜

ܸሺݐ,ܹሺݐሻ, ݆ሻ൪  ݐ݀

Proof of Proposition 7:  

From (13), the marginal utility of preventing an illness or death is: 

߲ܸ
ߝ߲
ฬ
ఌୀ଴

ൌ
߲
ߝ߲
න ݁ିఘ௧ exp ቐെන ൫ߤ௜ሺݏሻ െ ሻ൯ݐ௜,ேାଵሺߜߝ ൅෍൫ߣ௜௝ሺݏሻ െ ሻ൯ݏ௜௝ሺߜߝ

௝ஷ௜

ݏ݀
௧

଴
ቑ൮ݑ൫ܿ௜

ఌሺݐሻ, ሻ൯ݐ௜ሺݍ
்

଴

൅෍൫ߣ௜௝ሺݐሻ െ ሻ൯ݐ௜௝ሺߜߝ
௝ஷ௜

ܸሺݐ,ܹఌሺݐሻ, ݆ሻ൲݀ݐተ

ఌୀ଴

	

ൌ න ݁ିఘ௧ ሚܵሺ݅, ሻݐ ൦ቌන ෍ߜ௜௝ሺݏሻ
௝ஷ௜

ݏ݀
௧

଴
ቍ൮ݑሺܿ௜ሺݐሻ, ሻሻݐ௜ሺݍ ൅෍ߣ௜௝ሺݐሻ

௝ஷ௜

ܸሺݐ,ܹሺݐሻ, ݆ሻ൲ െ෍ߜ௜௝ሺݐሻ
௝ஷ௜

ܸሺݐ,ܹሺݐሻ, ݆ሻ൪ ݐ݀
்

଴

൅ න ݁ିఘ௧ ሚܵሺ݅, ሻݐ ቌݑ௖൫ܿ௜
ఌሺݐሻ, ሻ൯ݐ௜ሺݍ

߲ܿ௜
ఌሺݐሻ
ߝ߲

൅෍ߣ௜௝ሺݐሻ
߲ܸሺݐ,ܹሺݐሻ, ݆ሻ

߲ܹ
௝ஷ௜

߲ܹఌሺݐሻ
ߝ߲

ቍ݀ݐ
்

଴
 

Following the same argument as in the VSL case, the second term in the last equality is equal to 0. 

QED 

The value of preventing an illness or death is equal to the marginal rate of substitution between the 
transition perturbation and wealth: 

ߝ߲/ܸ߲
߲ܸ/߲ܹ

ൌ න
݁ିఘ௧ ሚܵሺ݅, ሻݐ

,௖൫ܿ௜ሺ0ሻݑ ௜ሺ0ሻ൯ݍ
൦ቌන ෍ߜ௜௝ሺݏሻ

௝ஷ௜

ݏ݀
௧

଴
ቍ൮ݑሺܿ௜ሺݐሻ, ሻሻݐ௜ሺݍ ൅෍ߣ௜௝ሺݐሻ

௝ஷ௜

ܸሺݐ,ܹሺݐሻ, ݆ሻ൲ െ෍ߜ௜௝ሺݐሻ
௝ஷ௜

ܸሺݐ,ܹሺݐሻ, ݆ሻ൪ ݐ݀
்

଴
 

As before, it is helpful to choose the Dirac delta function for ߜሺ⋅ሻ, so that the probability is perturbed at 
ݐ ൌ 0  and remains unaffected otherwise. It is also helpful to consider a reduction in the transition 
probability for only one alternative state, ݆଴, so that ߜ௜௝ሺݐሻ ൌ 0	∀݆ ് ݆଴. Applying these two conditions 
then yields what we term the value of statistical illness, ܸܵܫሺ݅, ݆ሻ: 

 
,ሺ݅ܫܸܵ ݆ሻ ൌ

ܸሺ0,ܹሺ0ሻ, ݅ሻ െ ܸሺ0,ܹሺ0ሻ, ݆ሻ

,௖൫ܿ௜ሺ0ሻݑ ௜ሺ0ሻ൯ݍ
	

ൌ ሺ݅ሻܮܸܵ െ ሺ݆ሻܮܸܵ
௖ݑ ቀ ௝ܿሺ0ሻ, ௝ሺ0ሻቁݍ

,௖൫ܿ௜ሺ0ሻݑ ௜ሺ0ሻ൯ݍ
 

 (17) 

 

The interpretation of VSI is analogous to VSL: it is the amount that 1,000 individuals would collectively 
be willing to pay in order to eliminate a current disease risk that is expected to befall one of them. Note 
that if health state ݆ corresponds to death, so that ܸܵܮሺ݆ሻ ൌ ሺܰܮܸܵ ൅ 1ሻ ൌ 0, then ܸܵܫሺ݅, ݆ሻ ൌ  .ሺ݅ሻܮܸܵ
Thus, VSI is a generalization of VSL.  

It is instructive to compare (17) to the expression for VSI obtained when the consumer is fully annuitized 
(derivation available in Appendix C):  
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,ሺ݅∗ܫܸܵ  ݆ሻ ൌ ሺ݅ሻ∗ܮܸܵ	 െ  ሺ݆ሻ  (18)∗ܮܸܵ

Equation (18) provides justification for the common practice of equating the values of prevention and 
treatment.15 Conventional cost-effectiveness analysis relies upon the standard fully annuitized framework 
that assumes the value of a life-year is equal across health states (holding quality of life constant). If the 
value of a life-year is constant, then equation (18) implies that prevention and treatment are equally 
valuable, as long as they add the same number of expected life-years. For example, conventional cost-
effectiveness frameworks value a treatment that prevents the onset of an illness that lowers life 
expectancy by 10 years the same as a therapeutic treatment that cures an illness and adds 10 years of life 
expectancy (Drummond et al. 2005b).  

In contrast, equation (17) shows that removing access to annuity markets breaks this equivalence between 
treatment and prevention. VSI in this case is not equal to the simple difference in VSL between the 
healthy and sick states, because VSL in the sick state is valued from the perspective of the sick, who have 
a lower marginal utility of consumption due to a shorter life span. This leads to the natural hypothesis that 
whenever VSL rises following an illness, the value of treatments (VSL per life-year) will be higher than 
equivalent preventive care prior to the illness (VSI per life-year). It is simple to show this for the case 
where the illness reduces life expectancy by one-half or more (proof available upon request). We 
conjecture that the hypothesis is true for any illness that reduces life expectancy. 

To summarize, the stochastic mortality model yields the following implications: 

 The values of near-term life-years rise, and distant life-years fall, when an individual transitions 
to a higher mortality state. 

 The value of statistical life may rise or fall when an individual transitions to a higher mortality 
state; if the individual’s demand is sufficiently inelastic, or insufficiently prudent, then it will rise. 

 Therapies that increase survival by treating sick patients are not the same as, and may even be 
more valuable than, those that add the same amount of life expectancy by preventing illness in 
healthy patients. 

IV. ESTIMATES OF THE VALUE OF LIFE 
This section measures the social value of gains to health and longevity and how that value interacts with 
annuitization in a simple setting with deterministic mortality. We then incorporate stochastic health 
shocks and demonstrate that the value of statistical life depends on an individual’s health history, and that 
the willingness-to-pay for treatment exceeds the willingness-to-pay for prevention.  

Our empirical framework, which incorporate survival and health status uncertainty into a life-cycle 
model, is related to a number of papers that study the savings behavior of the elderly (Kotlikoff 1988; 
Palumbo 1999; De Nardi, French, and Jones 2010). These prior studies allow health to affect wealth 
accumulation by including two or three different health states in the model. By contrast, our second 
empirical exercise allows mortality and quality of life to vary across 20 different health states.  

                                                      
15 When the consumer is fully annuitized, the value of her annuity depends on her health state. In particular, if she 
purchases an annuity in state ݅ and then later transitions to a worse health state ݆, causing her life expectancy to fall, 
then the value of her annuity will also fall. This technicality is not reflected in the notation for equation (18); see 
Appendix D for details and discussion. 
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IV.A. Framework 
We employ the discrete time analogue of our model. There are ݊ health states. Denote the transition 
probabilities between health states by: 

ሻݐ௜௝ሺ݌ ൌ ℙሾ ௧ܻାଵ ൌ ݆| ௧ܻ ൌ ݅ሿ 

As in the continuous time model, the mortality rate at time ݐ, ݀ሺݐሻ, depends on the individual’s health 
state: 

݀ሺݐሻ ൌ෍݀
௝
ሺݐሻ૚ሼ ௧ܻ ൌ ݆ሽ

௡

௝ୀଵ

 

where ቄ݀
௝
ሺݐሻቅ are given and ૚ሼ ௧ܻ ൌ ݆ሽ is an indicator variable equal to 1 if the individual is in state ݆ at 

time ݐ and 0 otherwise. The probability of surviving from time period ݐ to time period ݏ is denoted as 
ܵ௧ሺݏሻ, where  

ܵ௧ሺݐሻ ൌ 1,	 

ܵ௧ሺݏሻ ൌ ܵ௧ሺݏ െ 1ሻሺ1 െ ݀௦ିଵሻ, ݏ ൐  ݐ

Let ܿሺݐሻ, ݍሺݐሻ, and ܹሺݐሻ denote consumption, quality of life, and wealth in period ݐ, respectively. Let ߩ 
denote the utility discount rate, and ݎ the interest rate. Assume that in each period the consumer receives 
an exogenously determined income, ݕሺݐሻ, and that the maximum lifespan of a consumer is ܶ (i.e., ݀ሺܶሻ ൌ
1). Our baseline model assumes there is no bequest motive, although we relax this assumption in a later 
exercise.  

The consumer’s maximization problem is 

max
ሼ௖ሺ௧ሻሽ

	ॱ଴ ൥෍݁ିఘ௧ܵ଴ሺݐሻݑ൫ܿሺݐሻ, ሻ൯ݐሺݍ

்

௧ୀ଴

൩ 

subject to  

ܹሺ0ሻ	given,	
ܹሺݐሻ ൒ 0, 

ܹሺݐ ൅ 1ሻ ൌ ൫ܹሺݐሻ ൅ ሻݐሺݕ െ ܿሺݐሻ൯݁௥ 

We assume throughout that ݎ ൌ ߩ ൌ 0.03 (Siegel 1992; Moore and Viscusi 1990). Finally, we assume 
that utility takes the following CRRA form: 

 
,ሺܿݑ ሻݍ ൌ ݍ

ܿଵିఊ

1 െ ߛ
െ
ܿଵିఊ

1 െ ߛ
 

 

 (19) 

As discussed in Section III, there is no consensus regarding the sign or magnitude of health state 
dependence (ݑ௖௤ሺ⋅ሻ ). Here, we assume a multiplicative relationship where the marginal utility of 
consumption is higher when quality of life is high, and vice versa.  

We have normalized the utility of death to zero in (19). The consumer receives positive utility if she 
consumes an amount greater than ܿ, which represents a subsistence level of consumption. Consuming an 
amount less than ܿ generates utility that is worse than death. Although adding a constant to the utility 
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function does not affect the solution to the consumer’s maximization problem, it matters when calculating 
the value of life.16 We are unaware of any empirical evidence on the magnitude of ܿ, the subsistence level 
of consumption in the United States. We assume it is equal to $5,000, which is in line with the 
parameterization employed in Murphy and Topel (2006). 

The parameter ߛ is the inverse of the elasticity of intertemporal substitution, an important determinant of 
both the value of life and the value of annuitization. We follow Hall and Jones (2007) and set ߛ ൌ 2 in 
our analyses. As points of reference, Murphy and Topel (2006) set ߛ ൌ 1.25 while Brown (2001) uses 
survey data to estimate a mean value of ߛ ൌ 3.95. 

We employ dynamic programming techniques to solve for the optimal consumption path. The value 
function is defined as: 
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We then reformulate the optimization problem as a recursive Bellman equation: 
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After solving for the optimal consumption path, we use the analytical formulas derived in the previous 
sections to calculate the value of life. Complete details are provided in Appendix C. 

We are aware that there is significant uncertainty among economists regarding the proper values of many 
of the parameters in our model. The goal of the subsequent analyses is to illustrate the significance of our 
insights when our model is applied to real-world data using reasonable parameterizations. In some 
analyses, we investigate the sensitivity of our results to alternative assumptions for ߛ and to the presence 
of a bequest motive. 

IV.B. Retirement policy and the value of life 
This section explores the link between retirement policy and the value of life. We build up to these results 
by calculating how the value of statistical life varies over the life-cycle under alternative annuitization 
policies. We then calculate how these alternative policies influence the value of permanent reductions in 
mortality. All our calculations account for the effect of mortality reduction on net savings, regardless of 
the degree of annuitization. This facilitates comparison across different annuitization scenarios and makes 
it appropriate to interpret our estimates as the social value of increased longevity. (See footnote 9.) 

We initiate the model at age 20 and assume nobody survives past age 100. We obtain data on age-specific 
mortality rates from the Human Mortality Database. Because these mortality data are not available by 
health state, in this section we will assume deterministic mortality. (This corresponds to specifying ݊ ൌ 1 
health states in the framework above.) For this particular exercise, we also abstract from the role of 
quality of life by setting ݍሺݐሻ ൌ 1, because aggregate, nationally representative data on quality-of-life 
trends are not generally available. (Quality of life will be explicitly incorporated into the analysis 
presented in Section IV.C.) Finally, we choose the individual’s labor earnings, ሼ݉ሺݐሻሽ, to fit data on 

                                                      
16 Rosen (1988) was the first to point out that the level of utility is an important determinant of the value of life. See 
also additional discussion on this point in Hall and Jones (2007). 
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average life-cycle earnings as estimated by the Current Population Survey and the Health and Retirement 
Survey. See Appendix B1 for details.  

The individual’s period income is equal to ݕሺݐሻ ൌ ሺ1 െ ߬ሻ݉ሺݐሻ ൅ ܽሺݐሻ, where ܽሺݐሻ is nonwage defined-
benefit income financed by an earnings tax, ߬. We consider three different policy scenarios in the main 
text. In the first, financial markets are absent and the consumer’s income corresponds to labor earnings: 
ሻݐଵሺݕ ൌ ݉ሺݐሻ. Thus, her consumption is limited by current period income and savings from prior periods. 
The second scenario introduces an actuarially fair Social Security program that provides an annuity equal 
to $16,195 beginning at age 65.17 In this second scenario, the consumer is partially annuitized, but she still 
lacks access to financial markets and cannot borrow against her future income. The third scenario 
increases the size of the Social Security pension by 50 percent. Finally, in the appendix we also present 
results for the case where the consumer fully annuitizes at age 20 and enjoys a constant annuity stream, 
ݕ ൌ ܽ, provided by an actuarially fair and complete annuities market. The income streams in all scenarios 
are related according to the following equation: 
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Our assumed interest rate of 3 percent and our data on mortality and earnings imply a full annuity value 
of ݕ ൌ $37,897. 

The life-cycle profiles of consumption for the first two policy scenarios are displayed in Figure 2. 
Consumption is constrained by the consumer’s low income in early life. She saves during middle age 
when income is high, and then consumes her savings during retirement until eventually her consumption 
equals her pension (if available). Consumption for an individual with no annuity is “shifted forward” 
relative to an individual with a Social Security pension. This effect is particularly dramatic in the final 10 
years of life, when old consumers outlive their wealth. This is not surprising: a primary benefit of an 
annuity is its ability to provide income to consumers in their oldest ages. 

Figure 3 shows that this difference in consumption generates a corresponding difference in the value of a 
life-year. Individuals place a low value on life-years at very young and very old ages, because 
consumption is low. The slight drop at age 65 reflects the effect of retirement on the net savings 
component of the value of life. 

Figure 4 displays the corresponding value of statistical life (VSL) for these two scenarios, as calculated 
by equation (7). At age 40, VSL is equal to $7 million for an individual with no annuity, and $8 million 
for an individual who will be eligible for Social Security at age 65. Both these values are within the 
ranges estimated by empirical studies of VSL for working-age individuals (Viscusi and Aldy 2003). 
Figure 4 also shows that VSL is greater at older ages for a person with a Social Security pension than it is 
for a person with no annuity. This suggests that public annuity programs are complementary with retiree 
healthcare programs and other investments in life-extension for the elderly population. 

Finally, we calculate the value of historical reductions in mortality for these different annuitization 
scenarios, as well as the prospective value of permanent reductions in future mortality for selected 
diseases. Let ߜ denote a vector of mortality reductions for different ages. As in Murphy and Topel (2006), 

                                                      
17  This corresponds to the average retirement benefit paid by Social Security to retired workers in 2016 
(www.ssa.gov/policy/docs/quickfacts/stat_snapshot/2016-07.pdf). 
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we calculate the total social value of a mortality reduction by aggregating over the age distribution of the 
2015 US population: 

݁ݑ݈ܸܽ	݈ܽ݅ܿ݋ܵ ൌ ෍ܸܧܮሺܽ, δሻ݂ሺܽሻ
ଵଵ଴

௔ୀ଴

 

where ܸܧܮሺܽ, δሻ is defined as in equation (5), and ݂ሺܽሻ is the count of individuals alive in 2015 at age 
ܽ.18 

We report our results in Table 1. Life expectancy at birth increased by over 10 years between 1940 and 
2010. Like Murphy and Topel (2006), we find that the social value of these past longevity gains are 
substantial: the post-1940 gains are worth over $100 trillion today, and the post-1970 gains are worth over 
$50 trillion. Comparing results for different annuitization scenarios informs our understanding of the 
interaction between retirement policies and the value of longevity. For example, consider the introduction 
of Social Security over the last century. Comparing Column (1) to Column (2) of Table 1 suggests that 
this increased the value of post-1940 longevity gains by $11.5 trillion (10.5 percent), and increased the 
value of post-1970 gains by $6.2 trillion (11.6 percent). One way to interpret these values is to compare 
them to the longevity insurance value of Social Security, which is approximately $17 trillion.19 Thus, the 
interaction between post-1940 longevity gains and Social Security is worth about half as much as the 
longevity insurance value of the entire Social Security program itself. 

Table 1 also reveals that Social Security has raised the value of a 10 percent cancer mortality reduction by 
$427 billion, or 13 percent. Alternatively, it has raised the value of a 10 percent reduction in all-cause 
mortality by $1.38 trillion (12 percent). Column (3) reports that increasing the size of Social Security 
pensions by 50 percent would add $723 billion more to that value. 

A bequest motive encourages individuals to delay consumption, because money saved for consumption in 
old age also has the added benefit of increasing bequests in the event of death. Its effects on consumption 
and the value of longevity are therefore similar to that of increased annuitization. Since bequests are much 
more common among the wealthiest consumers (Hurd and Smith 2002), they are unlikely to matter much 
for our main estimates, which pertain to the median individual. However, for illustrative purposes we 
have also estimated our main specification under the assumption of a strong bequest motive that 
significantly affects savings behavior even for the median individual.20 Those results, illustrated in Figure 
5, demonstrate that a bequest motive lowers the value of statistical life prior to age 65, and increases it at 
older ages. Appendix Appendix Table 7 further shows that in this case, the effect of Social Security on the 
value of post-1940 longevity gains is $5.5 trillion (5.1 percent), or about half as large as in a setting with 
no bequest motive. This suggests that the effect of retirement policy on the value of life matters most for 
non-wealthy individuals, whom are less likely to have a significant bequest motive. 

                                                      
18 Specifically, ܸܧܮሺܽ, δሻ ൌ ׬ ݁െݎሺݐെܽሻ ቂ׬ ݐݏሻ݀ݏሺߜ

ܽ ቃ 100ݐሻ݀ݐሺݒ
ܽ . We assume ܸܧܮሺܽ, ሻߜ ൌ ,ሺ20ܧܮܸ ܽ ሻ forߜ ൏ 20, 

and equal to ܸܧܮሺ100, ܽ ሻ forߜ ൐ 100. Unlike Murphy and Topel (2006), our social value calculation does not 
account for the value that mortality reductions generate for future (unborn) populations. 

19 This value is calculated using the methodology of Mitchell et al. (1999) and does not account for other potential 
benefits of Social Security such as protection against inflation risk. See Appendix C1 for details. 

20 When accounting for a bequest motive in this exercise, we follow Kopczuk and Lupton (2007) and assume the 
utility from leaving a bequest is linear in wealth. See Appendix C1 for details. 
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To summarize, our model predicts that annuitization raises the value of life for the elderly. This should 
cause them to spend more on healthcare and invest more in healthy behaviors, which in turn should 
ultimately manifest in increased life expectancy. This dovetails with the point, made by Philipson and 
Becker (1998), that the moral hazard effects of retirement programs also increase the willingness to pay 
for longevity. Philipson and Becker (1998) analyze data from Virga (1996) and find that people with 
more generous annuities live longer than those with less generous annuities. They interpret this as the 
effect of endogenous longevity investments, which are encouraged among highly annuitized individuals 
who do not bear the full cost of an increase in their longevity. In our model, by contrast, annuitization 
increases the value of life even when annuities are actuarially fair, because they protect against the risk of 
outliving one’s wealth. Given that these effects reinforce each other, it is not surprising that increases in 
the generosity of public pensions in developed countries have been accompanied by large increases in 
public spending on retiree healthcare. 

IV.C. Stochastic health shocks and the value of life 
Conventional economic theory conceives of VSL as depending primarily on age and income. Our general 
framework with stochastic mortality and incomplete annuitization implies instead a substantial amount of 
variability in VSL within these categories. For example, individuals who have experienced a recent 
negative mortality shock have systematically higher VSL, although this VSL premium decays over time. 
We use real-world data on mortality and quality of life to estimate the degree to which VSL varies within 
the traditional categories, and the factors explaining the variation. Later exercises also incorporate data on 
medical spending and allow for a bequest motive. We focus here on the private value of statistical life21 
and abstract from potential externalities, e.g., investments in disease-prevention that might benefit public 
health insurance programs or other members of society. 

Our data are provided by the Future Elderly Model (FEM), a widely published microsimulation model 
that employs comprehensive, nationally representative data from a wide array of sources (Michaud et al. 
2011; Goldman et al. 2005; Lakdawalla, Goldman, and Shang 2005; Goldman et al. 2009; Lakdawalla et 
al. 2009; Goldman et al. 2013; Michaud et al. 2012; Goldman et al. 2010). The model produces estimates 
of mortality, disease incidence, quality of life, and medical spending at the individual level for people 
over the age of 50 with different comorbid conditions.22 The FEM accounts for six different chronic 
conditions (cancer, diabetes, heart disease, hypertension, chronic lung disease, and stroke) and six 
different impaired activities of daily living (bathing, eating, dressing, walking, getting in or out of bed, 
and using the toilet). 

We divide the health space within the FEM into ݊ ൌ 20 states. Each state corresponds to the number (0, 
1, 2, 3 or more) of impaired activities of daily living (ADL) and the number (0, 1, 2, 3, 4 or more) of 
chronic conditions, for a total of 4 ൈ 5 ൌ 20 health states. Health states are ordered first by number of 
ADL’s and then by number of chronic diseases, so that state 1 corresponds to 0 ADL’s and 0 chronic 
conditions, state 2 corresponds to 0 ADL’s and 1 chronic condition, and so on. For each health state and 
age, the FEM estimates the probability of dying and the probability of transitioning to each of the other 

                                                      
21 That is, our calculations in this section do not account for net savings, which will generally be negative for the 
elderly population we focus on here because expected future consumption is larger than future income. This 
omission increases the value of treatment relative to prevention: prevention is consumed by the healthy, who live 
longer than the sick and thus have larger expected future consumption, i.e., their (negative) net savings are larger in 
magnitude. 

22 Additional details about its methodology are provided in Appendix B2. A complete technical description of the 
FEM is available at roybalhealthpolicy.usc.edu/fem/technical-specifications/. 



 25

health states in the next year. As in the theoretical model, individuals can transition only to higher-
numbered states, i.e., ݌௜௝ሺݐሻ ൌ 0∀݆ ൏ ݅. In other words, all ADL’s and chronic conditions are permanent. 
The FEM also estimates quality of life for each health state and age, as measured by the EuroQol five 
dimensions questionnaire (EQ-5D). These five dimensions are based on five survey questions that elicit 
the extent of a respondent’s problems with mobility, self-care, daily activities, pain, and 
anxiety/depression. These questions are then weighted using stated preference data to compute the 
relative importance of each.23 The result is a single quality of life measure, the EQ-5D, reported on a scale 
typically from zero to one (negative values indicate a condition worse than death).  

Table 2 presents basic descriptive statistics for the data provided by the FEM model. Life expectancy at 
age 50 ranges from 30.4 years for a healthy individual in state 1 to 8.6 years for an ill individual in state 
20. Quality of life, as measured by the EQ-5D index, ranges from 0.54 to 0.88 at age 50. Columns (7) and 
(8) of Table 2 report the annual probability that an individual exits her health state but remains alive, i.e., 
acquires at least one new ADL or chronic condition. Health states are relatively persistent, with exit rates 
never exceeding 15 percent. State 20 is an absorbing state with an exit rate of 0 percent. 

We focus here on a setting where individuals do not have access to annuity markets, and we make two 
simplifying assumptions that allow us to calculate exact, analytical solutions to the consumer’s problem: 
we assume an individual can borrow against her future income, and that income is not survival 
contingent. These two assumptions imply an equivalence between income and wealth, allowing us to 
ignore income and to work with wealth only.24 See Appendix C2 for the derivation. We set initial wealth 
equal to $807,604, which corresponds to the net present value of all wealth and future earnings at age 50 
as estimated by the deterministic model presented in the prior section. All other parameterizations are the 
same as before.  

If an individual never suffers a health shock, then her consumption and VSL will decline smoothly with 
age. However, the arrival of a health shock can increase VSL, sometimes substantially. Figure 6 displays 
consumption and VSL for an initially healthy individual who develops one ADL (health state 6) at age 
60, and then two more ADLs plus two chronic conditions (health state 18) at age 70. The first shock 
reduces her life expectancy by 3.0 years and her quality of life by 0.06. The second one reduces her life 
expectancy by 6.7 years and her quality of life by 0.20. In contrast to a healthy consumer, the sick 
consumer’s consumption exhibits discontinuous jumps at ages 60 and 70 as a result of these two negative 
health shocks. The first shock has a mild effect on the declining trend in VSL, but the second increases 
her VSL at age 70 by nearly 50 percent, from $2.9 million to $4.3 million. This jump is driven by the 
reduction in life expectancy and would remain large even if quality of life were held constant.  

Individual-level shocks generate substantial variability in VSL in the aggregate. Figure 7 reports results 
from a Monte Carlo simulation of 10,000 life-cycle modeling exercises. At age 50, all individuals are 
identical and have a VSL of $5.9 million. As they age, some begin to suffer health shocks that, at least 

                                                      
23 The five dimensions of the EQ-5D are weighted using estimates from Shaw, Johnson, and Coons (2005). The 
specific process for estimating the quality of life score is explained in the FEM technical documentation, which can 
be found in the supplemental information appendix of Agus et al. (2016). 

24 Generalizing the model to allow for partial annuitization is possible but prohibits the calculation of an exact 
solution. The effect of annuitization on the value of life is illustrated instead by the deterministic mortality model 
presented in the previous section. Hubbard, Skinner, and Zeldes (1995) show that failing to include a “welfare floor” 
in the budget constraint causes life-cycle models to overestimate savings for low-income households. Our exercises 
model median-income individuals, however, for whom this issue is less important. 
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initially, increase their VSL. By age 60, the VSL inter-vigintile range spans $4.2 to $5.3 million. This 
dispersion is compressed towards the end of life, when mortality reaches 100 percent. 

The presence of multiple health states also allows us to calculate the value of a statistical illness (VSI). 
Column (3) of Table 3 reports VSI at age 50 from the perspective of a healthy individual. Each value 
represents the healthy individual’s willingness to pay for a marginal, contemporaneous reduction in the 
probability of developing an illness corresponding to one of the 19 other health states. The values are 
inversely related to life expectancy in the sick state because it is more valuable to prevent the onset of a 
lethal disease than a mild one. The highest VSI is $3.5 million, which corresponds to preventing the onset 
of a sick state with 3 ADL’s and 4 chronic conditions (health state 20). The interpretation of this value is 
analogous to VSL: it is the amount that 1,000 healthy individuals would collectively be willing to pay in 
order to reduce their risk of developing this illness by 1/1000. In our framework, VSL can be interpreted 
as the willingness to pay to avoid the “illness” of dying, which correspond to a state with 0 years of 
remaining life expectancy.  

How does the value of prevention compare to the value of treatment? We investigate this question by 
normalizing VSL and VSI by the number of life-years saved. In contrast to the standard framework, here 
the value of a life-year may vary depending on whether life-years were saved by preventing an illness or 
treating it. Intuitively, health interventions are worth more after health shocks than before them, because 
those shocks accelerate consumption and increase the value of life. 

Table 3 illustrates this point with data. According to our VSL calculations, for example, a 50-year-old 
with one chronic condition and no ADL’s (health state 2) has a marginal willingness-to-pay of $228,000 
per life-year for a treatment that extends her life. However, the VSI calculation reveals that a healthy 
individual (health state 1) is only willing to pay $115,000 per life-year saved through preventing the onset 
health state 2. In this case, treatment is twice as valuable as prevention. Column (6) of Table 2 shows that 
the value of life-years saved by treating illness always exceeds the value gained by prevention – by a 
factor of 10, for the sickest state in our model. 

Figure 8 displays these results graphically. It depicts how VSL and VSI vary across our health states, 
which are arrayed along the x-axis from longest to shortest life expectancy. The solid blue bars depict 
VSL per life-year and demonstrate that the value gained through treatment is monotonically higher for 
states with lower remaining life expectancy. The dotted red bars show the value per life-year gained by 
preventing each health state, from the perspective of a perfectly healthy person. For instance, the left-most 
dotted red bar reports the value of each life-year saved when a perfectly healthy consumer reduces the 
risk of entering the health state with 27.7 years of life expectancy. Notice that VSI is relatively stable 
across health states. This makes sense, because VSI is calculated from the fixed perspective of a perfectly 
healthy person; therefore, consumption profiles and the marginal utility of consumption remain stable. 
The minor variation in VSI per life-year is due primarily to differences in current and expected future 
quality of life across states. 

Our results might help account for low private willingness to invest in prevention. Even holding health 
gains fixed, individuals might have weaker incentives to invest in prevention. This wedge in the value of 
preventive versus treating technology thus magnifies any external benefits of prevention that further 
separate the private and social willingness to pay for prevention. 

In the years following the diagnosis, however, the gap between the value of treatment and prevention 
narrows. Figure 9 compares the value of treatment for the consumer who suffered the second health shock 
depicted in Figure 6 to the value of prevention for a consumer who never suffered that second health 
shock. The value of treatment exceeds the value of prevention, but only for the first 10 years following 
the shock. After that point, the sick patient has spent down much of her wealth, which causes a significant 
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reduction in her VSL, although we note that most patients will have died before reaching this point. (Life 
expectancy at age 70 for patients in health state 18 is 8.1 years.) This result also demonstrates that first-
line therapies are more valuable than second-line therapies. 

We pause to note that the difference in the private value of prevention versus treatment hinges on the 
distinction between ex ante and ex post valuations. Prevention is necessarily an ex ante concept, but 
treatments can be valued ex ante or ex post. From an ex ante point of view, the difference between 
equally effective preventive care and treatment is trivial—it does not matter much whether an individual 
avoids a disease by getting vaccinated when healthy or by consuming a drug that instantly cures her when 
ill. Put differently, there is little meaningful difference between prevention and treatment in the long run. 

But as Keynes dryly noted, “in the long run, we are all dead.” In the short run, society includes adults who 
suffer from diseases that lack effective treatment and therefore value new medical innovations from an ex 
post perspective. Medical research policy decisions made on behalf of society should account for the 
value they generate for both healthy and sick individuals. 

Our final set of exercises incorporates medical spending data from the FEM into our framework. 
Appendix Appendix Figure 11 reports average out-of-pocket medical spending for selected health states, 
by age. These data are comprehensive and include all inpatient, outpatient, prescription drug, and long-
term care spending that is not paid for by insurance. Spending is higher in sicker health states, and—
consistent with De Nardi, French, and Jones (2010)— increases greatly at older ages, when long-term 
care expenses arise.  

Incorporating these spending data directly into our model would require resorting to numerical solutions. 
Instead, we reformulate these data as wealth shocks, which should yield qualitatively similar results while 
still allowing us to calculate an exact solution to the consumer’s problem. Specifically, we modify the law 
of motion for wealth so that the effective interest rate depends on the health state: 

ܹሺݐ ൅ 1ሻ ൌ ൫ܹሺݐሻ െ ܿሺݐሻ൯݁௥ሺ௧,௒೟ሻ 

where ݎሺݐ, ௧ܻሻ ൌ 0.03 ൅ lnሾ1 െ ,ݐሺݏ ௧ܻሻሿ  and ݏሺݐ, ௧ܻሻ  is the share of an individual’s wealth spent on 
medical and nursing home care in health state ௧ܻ and time 25.ݐ Appendix C2 provides full details. 

Figure 10 illustrates that incorporating medical spending reduces VSL slightly, but does not otherwise 
appreciably alter its life-cycle profile, even in the presence of significant health shocks. The reason is that 
the difference in medical spending between healthy and sick individuals is small relative to the variation 
in spending by age (see Appendix Appendix Figure 11). A sufficiently large spending shock will have a 
significant impact, however. This is illustrated by the dotted black line in Figure 10, which plots VSL for 
a hypothetical case where the individual’s wealth falls by 30 percent following the health shock at age 70, 
rather than the much smaller medical spending amount estimated by the FEM. Although VSL still 
increases at age 70, the rise is far smaller than in the other two cases. Thus, while accounting for typical 
medical spending does not alter our basic results, catastrophic expenditures can matter. 

Our last exercise values the longevity gains experienced over the past 15 years. During this period, all-
cause mortality for the US population ages 50 and over has fallen by 18%, with cancer  and heart disease 

                                                      
25 Specifically, we divide out-of-pocket medical spending in health state ௧ܻ  at time ݐ by ܹሺݐሻ, where ܹሺݐሻ was 
estimated by our model for a healthy individual in a setting with no medical spending. Our results are similar if we 
instead use wealth estimates from the Health and Retirement Study. 



 28

mortality both falling by 21%.26 Panel A of Table 4 values these health gains from the perspective of a 
current 50-year-old. In a setting with no out-of-pocket medical spending, the private value of the 
reduction in all-cause mortality is worth $95,000 to $302,000, depending on the assumed value of relative 
risk version. The values are reduced slightly if we include out-of-pocket medical spending. Panel B shows 
that these estimates are reduced by 10 to 20 percent if we incorporate a bequest motive into the model.  

V. CONCLUSION 
The economic theory surrounding the value of life has many important applications. Yet, like most 
theories, it suffers from a few anomalies that appear at odds with intuition or empirical facts – e.g., the 
apparent preferences of consumers to pay more for life-extension when survival prospects are bleaker. 
We have demonstrated that several of these anomalies can be explained without abandoning the standard 
framework, simply by relaxing its strong assumptions around the completeness of annuity markets and 
deterministic mortality. Moreover, relaxing these assumptions generates new predictions with 
implications for health policy and behavior. We show that VSL varies with the arrival of mortality shocks 
and with remaining life expectancy. A given gain in longevity is more valuable to a consumer who has 
less life remaining, and vice-versa. Even holding wealth and income fixed, VSL may vary by $1 million 
or more for a 50-year-old. In addition, we demonstrate an interaction between annuity policy and health 
policy: Completing the annuity market may significantly increase the value of life, especially for the 
elderly. For instance, the US Social Security program has increased the value of mortality reductions, 
adding nearly $150 billion to the value of a 1 percent mortality decline. 

Our findings have several implications for the valuation of health investments and for policy more 
generally. The value of a life-year will tend to vary across types of risk, not just across types of people. It 
can be more valuable to add one month of life for a patient facing a highly fatal disease than for one 
facing a much milder ailment. Thus, health spending should be more targeted towards the severely ill than 
current economic models of cost-effectiveness suggest.  

In addition, public programs that expand the market for annuities might simultaneously boost the demand 
for life-extending technologies. Intuitively, annuities calm consumer fears about outliving their wealth 
and thus enable more aggressive investments in life-extension. Viewed differently, our results also show 
that market failures in annuities affect the value of statistical life, and thus the socially optimal level of 
health care spending. 

Finally, our framework offers a single unified framework for valuing both life-extension and the 
prevention of illness. This provides a more practical tool for policymakers and decision makers, since 
many health investments involve preventing the deterioration of health, not a direct and immediate 
mortality risk. Our result also provides one explanation for why it has proven to be so difficult for 
policymakers and public health advocates to encourage investments in the prevention of disease. From the 
private perspective, prevention is often less valuable than treatment, even though there may be public 
goods – e.g., savings in public health insurance programs – associated with prevention investments. 
Kremer and Snyder (2015) show that heterogeneity in consumer values distorts R&D incentives by 
allowing firms to extract more consumer surplus from treatments than with preventives. Our results 
suggest that differences in private VSL may reinforce this result and further disadvantage incentives to 
develop preventives. 

                                                      
26 Source: authors’ calculations using mortality data from the national vital statistics. 
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Our analysis raises a number of important questions for further research. First, how does the value of 
longevity vary with endogenous demand for quality of life? Elsewhere, we have studied how incomplete 
health insurance enhances the value of medical technology that improves quality of life, because such 
technology acts as insurance by compressing the difference in utility between the sick and healthy states 
(Lakdawalla, Malani, and Reif 2017). Less clear is how demands for the quantity and quality of life 
interact with financial market incompleteness of various kinds. Second, what does the generalized value 
of life model mean for the value of different kinds of medical technologies? For instance, the model 
suggests that short-term survival gains for high-risk diseases are more valuable than previously believed, 
but very long-term survival gains might actually be less valuable than previously believed. Finally, what 
are the implications for the empirical literature on VSL? Empirical analysis has typically proceeded under 
the assumption that different kinds of mortality risk are all valued the same way, as long as they imply 
similar changes in the probability of dying (Viscusi and Aldy 2003; Hirth et al. 2000; Mrozek and Taylor 
2002). Our framework casts doubt on this assumption and suggests the need for a more nuanced empirical 
approach. This missing insight may be one reason for the widely disparate empirical estimates of the 
value of a statistical life.  
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VII. TABLES AND FIGURES 
 

Table 1. Aggregate social value of historical and prospective reductions in mortality (billions of dollars) 

 (1) (2) (3) 

 No annuity Social Security Social Security + 50% 
A. Historical reduction    
    1940-2010 $109,356  $120,855  $126,488  
    1970-2010 $53,492  $59,673  $62,769  
    
B. 10% reduction, all ages    
    All causes $11,550  $12,928  $13,651  
    Cancer $3,348  $3,775  $3,995  
    Diabetes $368  $414  $437  
    Heart disease $2,425  $2,744  $2,916  
    Homicide $105  $102  $99  
    Infectious diseases $166  $188  $201  
Notes: These aggregate values were calculated using the 2015 US population by age. Column (1) presents estimates 
under the assumption that individuals have no annuities in retirement. Column (2) presents estimates under the 
assumption that individuals receive typical Social Security benefits that are financed by an earnings tax. Column (3) 
increases the generosity of Social Security by 50%, financed by an increase in the earnings tax. The net present 
value of individuals’ wealth at age 20 is the same across all three columns.  
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Table 2. Summary statistics for the Future Elderly Model data, by health state  

 (1) (2) (3) (4)  (5) (6)  (7) (8) 

   Life expectancy  Quality of life  Exit probability 

Health 
state 

ADL’s Chronic 
conditions 

Age 50 Age 70  Age 50 Age 70  Age 50 Age 70 

1 (healthy) 0 0 30.4 14.0  0.884 0.873  4.2% 12.6% 
2 0 1 27.7 12.4  0.850 0.840  3.6% 10.8% 
3 0 2 24.1 10.4  0.812 0.804  3.6% 10.2% 
4 0 3 20.0 8.4  0.773 0.765  3.9% 10.2% 
5 0 4+ 15.6 6.6  0.730 0.720  3.9% 7.9% 
6 1 0 26.1 12.0  0.830 0.816  6.3% 14.7% 
7 1 1 23.5 10.6  0.795 0.783  5.7% 12.7% 
8 1 2 20.0 8.8  0.754 0.745  6.1% 12.2% 
9 1 3 16.3 7.1  0.716 0.707  6.4% 11.7% 
10 1 4+ 12.7 5.5  0.669 0.662  6.1% 8.6% 
11 2 0 23.8 10.8  0.781 0.765  7.3% 14.3% 
12 2 1 21.0 9.4  0.746 0.731  7.5% 14.3% 
13 2 2 17.6 7.8  0.706 0.693  7.5% 13.8% 
14 2 3 14.5 6.3  0.669 0.655  7.5% 13.1% 
15 2 4+ 11.0 4.8  0.630 0.610  7.3% 10.6% 
16 3+ 0 21.4 8.9  0.700 0.692  3.4% 11.1% 
17 3+ 1 18.5 7.9  0.664 0.660  2.8% 8.5% 
18 3+ 2 15.2 6.4  0.622 0.622  2.3% 7.1% 
19 3+ 3 12.2 5.0  0.584 0.584  1.4% 5.3% 
20 3+ 4+ 8.6 3.8  0.536 0.540  0.0% 0.0% 
Notes: This table reports summary statistics for the microsimulation data generated by the Future Elderly Model 
(FEM) for ages 50 and 70. Columns (1) and (2) report the number of impaired activities of daily living (ADL) and 
the number of chronic conditions, which together define each health state. Column (3)-(6) report life expectancy and 
quality of life for an individual in one of these health states. Quality of life is measured using the EQ-5D index, 
which ranges from 0 (death) to 1 (perfectly healthy). Columns (7) and (8) report the probability that an individual 
transitions to a different health state in the following year. All ADL’s and chronic conditions are permanent, so 
individuals can only transition to higher-numbered health states. See Appendix B2 for additional documentation of 
the FEM. 
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Table 3. Value of treatment and prevention (in thousands of dollars) at age 50 

 (1) (2) (3) (4) (5) (6) 
    Willingness-to-pay per life-year 

Health 
state 

Life 
expectancy 

VSL VSI  Treatment Prevention Treatment/Prevention 

1 (healthy) 30.4 $5,878  N/A $193  N/A N/A 
2 27.7 $6,302  $312  $228  $115  1.97 
6 26.1 $6,786  $483  $260  $113  2.29 
3 24.1 $6,930  $774  $288  $123  2.34 
11 23.8 $7,421  $783  $312  $119  2.62 
7 23.5 $7,321  $833  $312  $121  2.58 
16 21.4 $8,021  $1,163  $375  $129  2.91 
12 21.0 $8,089  $1,200  $386  $127  3.04 
4 20.0 $7,780  $1,366  $388  $132  2.95 
8 20.0 $8,151  $1,354  $408  $130  3.15 
17 18.5 $8,782  $1,621  $476  $136  3.50 
13 17.6 $9,057  $1,721  $514  $135  3.81 
9 16.3 $9,248  $1,941  $566  $138  4.10 
5 15.6 $8,966  $2,102  $575  $142  4.04 
18 15.2 $9,949  $2,165  $655  $142  4.59 
14 14.5 $10,308  $2,258  $712  $142  5.02 
10 12.7 $10,771  $2,595  $846  $147  5.75 
19 12.2 $11,468  $2,721  $943  $149  6.32 
15 11.0 $12,081  $2,944  $1,102  $152  7.27 
20 8.6 $13,988  $3,453  $1,621  $159  10.22 
Notes: This table displays values (in thousands of dollars) from a life-cycle modeling exercise where health is 
stochastic. Values are sorted by life expectancy at age 50, as reported in column (1). Column (2) reports the value of 
statistical life (VSL) for a 50-year-old in each health state. Column (3) reports the values of statistical illness (VSI) 
for a healthy individual in state 1, i.e., that individual’s willingness-to-pay (WTP) to prevent a marginal increase in 
the probability of transitioning to one of the other 19 health states. Column (4) reports a sick individual’s WTP per 
life-year for a therapeutic treatment, which is equal to the value in column (2) divided by the value in column (1). 
Column (5) reports the healthy individual’s corresponding WTP for preventive care, which is equal to the value in 
column (3) divided by the difference between 30.4 (life expectancy when healthy) and the value in column (1). 
Column (6) reports the ratio of the values reported in columns (4) and (5). The twenty health states are defined in 
Table 2. 

 

 

 

 

 

 

 

 

 



 36

Table 4. Per capita value of historical 2001-2015 health gains, at age 50 (thousands of dollars) 

Disease 

Increase in life 
expectancy at 
age 50 (years) (1) (2) (3) (4) (5) (6) 

A. No bequest motive        

    All causes 1.43 $95  $159  $302  $87  $142  $263  
    Cancer 0.39 $23  $40  $77  $21  $34  $65  
    Heart disease 1.21 $68  $116  $224  $59  $96  $185  
B. Bequest motive        

    All causes 1.43 $87  $143  $275  $75  $121  $225  
    Cancer 0.39 $22  $36  $70  $18  $29  $55  
    Heart disease 1.21 $66  $106  $204  $52  $78  $150  
Relative risk aversion   1.5 2 2.5 1.5 2 2.5 

Medical spending     X X X 
Notes: This table reports the value of the reduction in mortality experienced in the United States between 2001 and 
2015, from the perspective of a current 50-year-old. The cancer and heart disease calculations do not account for 
competing risks, and thus should be interpreted as holding mortality from all other causes constant. Columns (1)-(3) 
report results under the assumption that the individual has no out-of-pocket healthcare costs. The values in Panel A 
are calculated under the assumption that individuals do not have a bequest motive, while those in Panel B assume 
the bequest motive specification described in Appendix C2.  
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Figure 1. Illustrative example: annual consumption for fully annuitized and non-annuitized consumers 

 

Notes: This figure illustrates the well-known result that it is optimal for a non-annuitized consumer who is exposed 
to longevity risk to shift her consumption forward in time, relative to a fully annuitized consumer. For simplicity, 
this example assumes that the consumption profile of the fully annuitized consumer is flat. 
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Figure 2. Life-cycle profiles of consumption and income when mortality is deterministic 

 

Notes: This figure plots consumption results from a life-cycle modeling exercise where mortality is deterministic. 
“Consumption (no annuity)” displays consumption for a consumer whose income equals her earnings. 
“Consumption (Social Security)” displays consumption for a consumer receiving typical Social Security benefits 
that are financed by an earnings tax. The net present value at age 20 of all future income is the same across both 
scenarios. 
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Figure 3. Life-cycle profile of the value of a life-year when mortality is deterministic 

 

Notes: This figure plots the value of a life-year for the two scenarios displayed in Figure 2. “No annuity” assumes 
the consumer’s income equals her earnings. “Social Security” assumes the consumer receives typical Social Security 
benefits that are financed by an earnings tax. The net present value at age 20 of all future income is identical in both 
scenarios. 
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Figure 4. Life-cycle profile of the value of statistical life when mortality is deterministic 

 

Notes: This figure plots the value of statistical life for the two scenarios displayed in Figure 2. “No annuity” 
assumes the consumer’s income equals her labor earnings. “Social Security” assumes the consumer receives typical 
Social Security benefits that are financed by an earnings tax. The net present value at age 20 of all future income is 
identical in both scenarios. 
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Figure 5. Similar to annuitization, a bequest motive shifts the value of statistical life towards older ages 

 

Notes: This figure plots the value of statistical life in a setting with deterministic mortality and no annuity markets. 
The “No bequest motive” scenario is identical to the “No annuity” scenario depicted in Figure 4. The bequest motive 
specification is described at the end of Appendix C1. 
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Figure 6. Consumption and the value of statistical life can increase when an individual falls ill 

 

Notes: This figure plots an individual’s consumption profile (left axis) and corresponding value of statistical life 
(right axis) as calculated from a life-cycle modeling exercise where mortality and quality of life are stochastic. This 
consumer is healthy at age 50, but then falls ill twice, once at age 60 and then again at age 70. At age 60, the illness 
causes permanent difficulties with one routine activity of daily living (ADL). At age 70, she is diagnosed with two 
chronic conditions and subsequently has difficulties with two additional ADL’s. 
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Figure 7. The value of statistical life depends on an individual’s health history 

 

Notes: The figure reports the mean, 5th percentile, and 95th percentile of the value of statistical life (VSL) from a 
Monte Carlo simulation that is repeated 10,000 times. Each individual began the simulation at age 50 in the same 
healthy state. Stochastic health shocks generate differences in VSL at older ages.  
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Figure 8. Treatments for an ill patient are worth more than preventive care for a healthy individual 

 

Notes: The blue solid bars report the value of statistical life (VSL) for an individual in one of 19 different sick states, 
divided by life expectancy in that state. The red dotted bars report the value of statistical illness (VSI) for a healthy 
individual (life expectancy: 30.4 years) divided by the reduction in life expectancy she would experience if she fell 
ill. The data plotted in this figure are also reported in columns (4) and (5) of Table 3. 
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Figure 9. The value of treatment relative to prevention declines with time since illness 

 

Notes: The blue solid bars report the value of statistical life (VSL) divided by life expectancy for the individual who 
suffered a health shock at age 70 (see Figure 6). The red dotted bars report the value of statistical illness (VSI) for a 
healthy individual divided by the reduction in life expectancy she would experience if she fell ill with the same 
disease.  
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Figure 10. Correlated spending shocks can attenuate the rise in the value of statistical life following a health 
shock 

 

Notes: The solid red line reproduces the value of statistical life (VSL) estimates displayed in Figure 6. The dashed 
blue line incorporates out-of-pocket medical spending shocks into the life-cycle model. The dotted black line 
additionally incorporates a wealth shock at age 70 that reduces the individual’s wealth by 30 percent. 
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APPENDIX (FOR ONLINE PUBLICATION ONLY) 
Appendix Table 5, Appendix Table 6, and Appendix Table 7 replicate Table 1 from the main text under 
different assumptions regarding the risk aversion parameter, ߛ, and the presence of a bequest motive. The 
value of life depends greatly on the assumed value of risk aversion. In the main text, we reported that 
Social Security raised the aggregate social value of post-1940 reductions by 10.5 percent. Varying the risk 
aversion parameter yields values that range from 8.3 percent to 14.2 percent. Including a strong bequest 
motive causes the increase to fall to 5.4 percent.  

Appendix A provides proofs for lemmas and propositions stated in the main text. Appendix B provides 
supporting details for the data employed in the numerical models presented in Section IV, and Appendix 
C presents derivations for those models. Finally, Appendix D provides derivations for the value of 
statistical life and the value of statistical illness for a fully annuitized consumer when mortality is 
stochastic. 

Appendix Tables and Figures 
 

Appendix Table 5. Aggregate social value of historical and prospective reductions in mortality (billions of 
dollars) when the risk aversion parameter is set equal to ࢽ ൌ ૛. ૞ 

 (1) (2) (3) 

 No annuity Social Security Social Security + 50% 
Historical reduction:    
    1940-2010 $222,046  $253,546  $269,951  
    1970-2010 $109,580  $126,291  $135,146  
    
10% reduction, all ages:    
    All causes $23,879  $27,569  $29,566  
    Cancer $6,943  $8,081  $8,697  
    Diabetes $762  $885  $951  
    Heart disease $5,068  $5,910  $6,374  
    Homicide $189  $187  $184  
    Infectious diseases $349  $408  $441  
Notes: These aggregate values were calculated using the 2015 US population by age. Column (1) presents estimates 
under the assumption that individuals have no annuities in retirement. Column (2) presents estimates under the 
assumption that individuals receive typical Social Security benefits that are financed by an earnings tax. Column (3) 
increases the generosity of Social Security by 50%, financed by an increase in the earnings tax. The net present 
value of individuals’ wealth at age 20 is the same across all three columns. 
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Appendix Table 6. Aggregate social value of historical and prospective reductions in mortality (billions of 
dollars) when the risk aversion parameter is set equal to ࢽ ൌ ૚. ૞ 

 (1) (2) (3) 

 No annuity Social Security Social Security + 50% 
Historical reduction:    
    1940-2010 $27,121  $29,381  $30,465  
    1970-2010 $5,750  $6,277  $6,555  
    
10% reduction, all ages:    
    All causes $1,661  $1,822  $1,903  
    Cancer $183  $200  $209  
    Diabetes $1,185  $1,310  $1,379  
    Heart disease $63  $61  $59  
    Homicide $80  $89  $94  
    Infectious diseases $0  $0  $0  
Notes: These aggregate values were calculated using the 2015 US population by age. Column (1) presents estimates 
under the assumption that individuals have no annuities in retirement. Column (2) presents estimates under the 
assumption that individuals receive typical Social Security benefits that are financed by an earnings tax. Column (3) 
increases the generosity of Social Security by 50%, financed by an increase in the earnings tax. The net present 
value of individuals’ wealth at age 20 is the same across all three columns. 

 

Appendix Table 7. Aggregate social value of historical and prospective reductions in mortality (billions of 
dollars) when a bequest motive is present 

 (1) (2) (3) 

 No annuity Social Security Social Security + 50% 
Historical reduction:    
    1940-2010 $102,744  $108,261  $106,833  
    1970-2010 $50,110  $53,081  $52,445  
    
10% reduction, all ages:    
    All causes $11,042  $11,758  $11,616  
    Cancer $3,150  $3,362  $3,325  
    Diabetes $348  $371  $367  
    Heart disease $2,338  $2,512  $2,485  
    Homicide $99  $95  $92  
    Infectious diseases $163  $176  $174  
Notes: The bequest motive specification is described at the end of Appendix C1. These aggregate values were 
calculated using the 2015 US population by age. Column (1) presents estimates under the assumption that 
individuals have no annuities in retirement. Column (2) presents estimates under the assumption that individuals 
receive typical Social Security benefits that are financed by an earnings tax. Column (3) increases the generosity of 
Social Security by 50%, financed by an increase in the earnings tax. The net present value of individuals’ wealth at 
age 20 is the same across all three columns. 
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Appendix Figure 11. Medical spending for a healthy person versus a very sick patient 

 

Notes: These data are provided by the Future Elderly Model. The health states are described in detail in Table 2. 
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A. Mathematical proofs of results from main text 
Proof of Lemma 1: 

Let ܸሺݐ,ܹሺݐሻ, ݆ሻ be taken as given (exogenous). Consider the deterministic optimization problem: 

ܸሺ0, ଴ܹ, ݅ሻ ൌ max
௖೔ሺ௧ሻ

ቐන ݁ିఘ௧ ሚܵሺ݅, ሻݐ ቌݑሺܿ௜ሺݐሻ, ሻሻݐ௜ሺݍ ൅෍ߣ௜௝ሺݐሻܸሺݐ,ܹሺݐሻ, ݆ሻ
௝ஷ௜

ቍ ݐ݀
்

଴
ቑ 

subject to  

߲ܹሺݐሻ
ݐ߲

ൌ ሻݐሺܹݎ ൅ ݉௜ሺݐሻ െ ܿ௜ሺݐሻ 

Denote the optimal value-to-go as 

෨ܸ ሺݑ,ܹሺݑሻ, ݅ሻ ൌ max
௖೔ሺ௧ሻ

ቐන ݁ିఘ௧ ሚܵሺ݅, ሻݐ ቌݑሺܿ௜ሺݐሻ, ሻሻݐ௜ሺݍ ൅෍ߣ௜௝ሺݐሻܸሺݐ,ܹሺݐሻ, ݆ሻ
௝ஷ௜

ቍ ݐ݀
்

௨
ቑ 

Setting ෨ܸ ሺݐ,ܹሺݐሻ, ݅ሻ ൌ ݁ିఘ௧ ሚܵሺ݅, ,ሻݐሺܹ,ݐሻܸሺݐ ݅ሻ then demonstrates that ܸሺ⋅ሻ satisfies the HJB (12) for ݅. 
See Parpas and Webster (2013) for additional details. 

QED 

Proof of Lemma 3: 

The proof proceeds by induction on ݅ ൑ ݊. For the base case ݅ ൌ ݊, in which no state transitions are 
possible, the solution to the costate equation (given in the main text) simplifies to:27 

ఛ݌
ሺ௡ሻ ൌ ሺ௡ሻ݁ି௥ఛߠ ൌ exp ቊെන ߩ ൅ ݏሻ݀ݏ௡ሺߤ

ఛ

଴
ቋ ,௖ሺܿ௡ሺ߬ሻݑ 	௡ሺ߬ሻሻݍ

ൌ 	ሺ௡ሻ݁ି௥௧݁ି௥ሺఛି௧ሻߠ

ൌ ௧݌
ሺ௡ሻ݁ି௥ሺఛି௧ሻ	

ൌ exp ቊെන ߩ ൅ ݏሻ݀ݏ௡ሺߤ
௧

଴
ቋ ,ሻݐ௖ሺܿ௡ሺݑ ሻሻ݁ି௥ݐ௡ሺݍ

ሺఛି௧ሻ 

This then implies that 

,ሻݐ௖ሺܿ௡ሺݑ ሻሻݐ௡ሺݍ ൌ ݁௥ሺఛି௧ሻ݁ିఘሺఛି௧ሻ exp ቊെන ݏሻ݀ݏ௡ሺߤ
ఛ

௧
ቋ ,௖ሺܿ௡ሺ߬ሻݑ  ௡ሺ߬ሻሻݍ

which shows that the lemma holds for ݅ ൌ ݊. 

For the induction step, suppose the lemma is true for ݆ ൐ ݅, 1 ൑ ݅ ൑ ݊ െ 1. For any subinterval ሾ0, ߬ሿ, the 
solution of the costate equation can be written as: 

 
௧݌
ሺ௜ሻ ൌ ቎න ݁ሺ௥ିఘሻ௦ expቐെන ሻݑ௜ሺߤ ൅෍ߣ௜௝ሺݑሻ

௝ஷ௜

ݑ݀
௦

଴
ቑ෍ߣ௜௝ሺݏሻ

߲ܸሺݏ,ܹሺݏሻ, ݆ሻ
߲ܹሺݏሻ

௝ஷ௜

ݏ݀
ఛ

௧
቏ ݁ି௥௧ ൅ ,ሺ߬ߠ ݅ሻ݁ି௥௧ 

 (A1) 

                                                      
27 When no transitions are possible, this reduces to the deterministic model outlined in Section II.B. 
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where ߠሺ߬, ݅ሻ is a constant that depends on the choice of ߬ and ݅. (Take the derivative of ݌௧
ሺ௜ሻwith respect 

to ݐ to verify.)  Evaluating equation (A1) at ݐ ൌ ߬ and combining with equation (14) from the main text 
yields: 

ఛ݌
ሺ௜ሻ ൌ ,ሺ߬ߠ ݅ሻ݁ି௥ఛ ൌ exp ቐെන ߩ ൅ ሻݏ௜ሺߤ ൅෍ߣ௜௝ሺݏሻ

௝ஷ௜

ݏ݀
ఛ

଴
ቑ ,௖൫ܿ௜ሺ߬ሻݑ  ௜ሺ߬ሻ൯ݍ

which implies 

 
,ሺ߬ߠ ݅ሻ ൌ ݁ሺ௥ିఘሻఛ exp ቐെන ሻݏ௜ሺߤ ൅෍ߣ௜௝ሺݏሻ

௝ஷ௜

ݏ݀
ఛ

଴
ቑ ,௖൫ܿ௜ሺ߬ሻݑ  ௜ሺ߬ሻ൯ݍ

 

 (A2)  

Also, from equation (14) we know that: 

௧݌
ሺ௜ሻ ൌ exp ቐെන ߩ ൅ ሻݏ௜ሺߤ ൅෍ߣ௜௝ሺݏሻ

௝ஷ௜

ݏ݀
௧

଴
ቑ ,ሻݐ௖൫ܿ௜ሺݑ  ሻ൯ݐ௜ሺݍ

Plugging equations (14) and (A2) into equation (A1) yields: 

,ሻݐ௖൫ܿ௜ሺݑ ሻ൯ݐ௜ሺݍ exp ቐെන ߩ ൅ ሻݏ௜ሺߤ ൅෍ߣ௜௝ሺݏሻ
௝ஷ௜

ݏ݀
௧

଴
ቑ

ൌ ቎න ݁ሺ௥ିఘሻ௦ exp ቐെන ሻݑ௜ሺߤ ൅෍ߣ௜௝ሺݑሻ
௝ஷ௜

ݑ݀
௦

଴
ቑ෍ߣ௜௝ሺݏሻ

߲ܸሺݏ,ܹሺݏሻ, ݆ሻ
߲ܹሺݏሻ

௝ஷ௜

ݏ݀
ఛ

௧
቏ ݁ି௥௧

൅ ݁ି௥௧݁ሺ௥ିఘሻఛ exp ቐെන ሻݏ௜ሺߤ ൅෍ߣ௜௝ሺݏሻ
௝ஷ௜

ݏ݀
ఛ

଴
ቑ ,௖൫ܿ௜ሺ߬ሻݑ  ௜ሺ߬ሻ൯ݍ

Since 
డ௏ሺ௦,ௐሺ௦ሻ,௝ሻ

డௐሺ௦ሻ
ൌ ௖൫ݑ ௝ܿሺݏሻ,  :ሻ൯, we obtainݏ௝ሺݍ

,ሻݐ௖൫ܿ௜ሺݑ ሻ൯ݐ௜ሺݍ ൌ න ݁ሺ௥ିఘሻሺ௦ି௧ሻ exp ቐെන ሻݑ௜ሺߤ ൅෍ߣ௜௝ሺݑሻ
௝ஷ௜

ݑ݀
௦

௧
ቑ෍ߣ௜௝ሺݏሻݑ௖൫ ௝ܿሺݏሻ, ሻ൯ݏ௝ሺݍ
௝ஷ௜

ݏ݀
ఛ

௧

൅ ݁ሺ௥ିఘሻሺఛି௧ሻ exp ቐെන ሻݏ௜ሺߤ ൅෍ߣ௜௝ሺݏሻ
௝ஷ௜

ݏ݀
ఛ

௧
ቑ ,௖൫ܿ௜ሺ߬ሻݑ 	௜ሺ߬ሻ൯ݍ

ൌ න ݁ሺ௥ିఘሻሺ௦ି௧ሻ exp ቐെන ሻݑ௜ሺߤ ൅෍ߣ௜௝ሺݑሻ
௝ஷ௜

ݑ݀
௦

௧
ቑ෍ߣ௜௝ሺݏሻॱ ቈ݁

ሺ௥ିఘሻሺఛି௦ሻ exp ቊെන ݏሻ݀ݏሺߤ
ఛ

௦
ቋ ,௖൫ܿ௬೟ሺ߬ሻݑ ௬೟ሺ߬ሻ൯ቤݍ ௦ܻ ൌ ݆቉

௝ஷ௜

ݏ݀
ఛ

௧

൅ ݁ሺ௥ିఘሻሺఛି௧ሻ exp ቐെන ሻݏ௜ሺߤ ൅෍ߣ௜௝ሺݏሻ
௝ஷ௜

ݏ݀
ఛ

௧
ቑ ,௖൫ܿ௜ሺ߬ሻݑ 	௜ሺ߬ሻ൯ݍ

ൌ ॱ ቈ݁ሺ௥ିఘሻሺఛି௦ሻ exp ቊെන ݏሻ݀ݏሺߤ
ఛ

௧
ቋ ,௖൫ܿ௬ഓሺ߬ሻݑ ௬ഓሺ߬ሻ൯ቤݍ ௧ܻ ൌ ݅቉ 

where the second equality follows from the induction hypothesis.  
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QED 

Proof of Proposition 4: 

Choosing once again the Dirac delta function for ߜሺ⋅ሻ in Lemma 2 yields 

߲ॱܷ
ߝ߲

ฬ
ఌୀ଴

ൌ න ൦݁ିఘ௧ ሚܵሺ݅, ሻݐ ൮ݑ൫ܿ௜ሺݐሻ, ሻ൯ݐ௜ሺݍ ൅෍ߣ௜௝ሺݐሻ
௝ஷ௜

ܸሺݐ,ܹሺݐሻ, ݆ሻ൲൪ ݐ݀
்

଴
	

ൌ ॱ ቈන ݁ିఘ௧ܵሺݐሻݑ൫ܿ௬೟ሺݐሻ, ݐሻ൯݀ݐ௬೟ሺݍ
்

଴
ቤ ଴ܻ ൌ ݅቉ 

Dividing the result by the marginal utility of wealth at time ݐ ൌ 0 then yields the value of statistical life 
given by equation (15): 

 
ሺ݅ሻܮܸܵ ൌ ॱ ቈන ݁ିఘ௧ܵሺݐሻ

,ሻݐ൫ܿ௬೟ሺݑ ሻ൯ݐ௬೟ሺݍ

,൫ܿ௒బሺ0ሻݑ ௒బሺ0ሻ൯ݍ
ቤݐ݀ ଴ܻ ൌ ݅

்

଴
቉ ൌ න ݁ି௥௧ݒሺ݅, ݐሻ݀ݐ

்

଴
 

  

 

Applying Lemma 3 for ݐ ൌ 0 allows us to rewrite VSL as 

ሺ݅ሻܮܸܵ ൌ ॱ ቎න ݁ିఘ௧ܵሺݐሻ
,ሻݐ൫ܿ௬೟ሺݑ ሻ൯ݐ௬೟ሺݍ

ॱ ቂ݁ሺ௥ିఘሻ௧ exp ቄെ׬ ݏሻ݀ݏሺߤ
௧
଴ ቅ ,ሻݐ௖൫ܿ௒೟ሺݑ ሻ൯ቚݐ௒೟ሺݍ ଴ܻቃ

ቮݐ݀ ଴ܻ

்

଴
ൌ ݅቏	

ൌ ॱ ቎න ݁ି௥௧
ܵሺݐሻݑ൫ܿ௬೟ሺݐሻ, ሻ൯ݐ௬೟ሺݍ

ॱ ቂexp ቄെ׬ ݏሻ݀ݏሺߤ
௧
଴ ቅ ,ሻݐ௖൫ܿ௒೟ሺݑ ሻ൯ቚݐ௒೟ሺݍ ଴ܻቃ

ቮݐ݀ ଴ܻ

்

଴
ൌ ݅቏ 

which by exchanging expectation and integration shows that the value of a life-year, ݒሺ݅,  ሻ, is equal toݐ
the expected utility of consumption normalized by the expected marginal utility of consumption: 

,ሺ݅ݒ ሻݐ ൌ
ॱ ቂܵሺݐሻݑ ቀܿݐݕሺݐሻ, ݐݕݍ

ሺݐሻቁቚ ܻ0 ൌ ݅ቃ

ॱ ቂܵሺݐሻܿݑ ቀܿݐݕሺݐሻ, ݐݕݍ
ሺݐሻቁቚ ܻ0 ൌ ݅ቃ

 

QED 

Proof of Proposition 5: 

The proposition assumes there are ݊ ൌ 2 states, with ߤଶሺݏሻ ൐  That is, health in state 2 is strictly .ݏ∀ሻݏଵሺߤ
worse than health in state 1. For simplicity, we abstract from quality of life, ݍሺݐሻ. Without loss of 
generality, we will prove the proposition for the case where the consumer transitions from state 1 to state 
2 at time ݐ ൌ 0. 

For state 2, the solution to the costate equation is: 

௧݌
ሺଶሻ ൌ  ሺଶሻ݁ି௥௧ߠ

and from the first-order condition (14) we obtain: 

௧݌
ሺଶሻ ൌ ݁ିఘ௧ exp ቊെන ݏሻ݀ݏଶሺߤ

௧

଴
ቋ  ሻ൯ݐ௖൫ܿଶሺݑ
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The two preceding equations imply that  

ሻ൯ݐ௖൫ܿଶሺݑ ൌ ሺଶሻ݁ሺఘି௥ሻ௧ߠ exp ቊන ݏሻ݀ݏଶሺߤ
௧

଴
ቋ 

For state 1, the costate equation is: 

ሶ௧݌
ሺଵሻ ൌ െ݌௧

ሺଵሻݎ െ ݁ିఘ௧ exp ቊെන ሻݏଵሺߤ ൅ ݏሻ݀ݏଵଶሺߣ
௧

଴
ቋ ሻݐଵଶሺߣ

߲ܸሺݐ,ܹሺݐሻ,2ሻ

߲ܹሺݐሻ
	

ൌ െ݌௧
ሺଵሻݎ െ ݁ିఘ௧ exp ቊെන ሻݏଵሺߤ ൅ ݏሻ݀ݏଵଶሺߣ

௧

଴
ቋ  ሻ൯ݐ௖൫ܿଶሺݑሻݐଵଶሺߣ

 
																									ൌ െ݌௧

ሺଵሻݎ െ ݁ି௥௧ exp ቊെන ݏሻ݀ݏଵଶሺߣ
௧

଴
ቋ ߠሻݐଵଶሺߣ

ሺଶሻ exp ቊන ሻݏଶሺߤ െ ݏሻ݀ݏଵሺߤ
௧

଴
ቋ 

 (A3)  

Before proceeding, we first prove the following two lemmas. 

Appendix Lemma A1: 

There exists a ݐ ∈ ሾ0, ܶሿ such that  

௧݌
ሺଵሻ ൒ exp ቊെන ݏሻ݀ݏଵଶሺߣ

௧

଴
ቋ ௧݌

ሺଶሻ 

Proof of Appendix Lemma A1: 

Suppose by way of contradiction that ݌௧
ሺଵሻ ൏ exp ቄെ׬ ݏሻ݀ݏଵଶሺߣ

௧
଴ ቅ ௧݌

ሺଶሻ	∀ݐ ∈ ሾ0, ܶሿ. Then, since ߤଶሺݏሻ ൐

  ሻ we haveݏଵሺߤ

݁ିఘ௧ exp ቊെන ݏሻ݀ݏଶሺߤ
௧

଴
ቋ ௧݌

ሺଵሻ ൏ ݁ିఘ௧ exp ቊെන ݏሻ݀ݏଵሺߤ
௧

଴
ቋ exp ቊെන ݏሻ݀ݏଵଶሺߣ

௧

଴
ቋ ௧݌

ሺଶሻ 

Rearranging then yields 

ሻ	ሻݐ௖ሺܿଵሺݑ ൌ
௧݌
ሺଵሻ

݁ିఘ௧ exp ቄെ׬ ݏሻ݀ݏଵሺߤ
௧
଴ ቅ exp ቄെ׬ ݏሻ݀ݏଵଶሺߣ

௧
଴ ቅ

൏
௧݌
ሺଶሻ

݁ିఘ௧ exp ቄെ׬ ݏሻ݀ݏଶሺߤ
௧
଴ ቅ

ൌ  ሻሻݐ௖ሺܿଶሺݑ

which implies ܿଶሺݐሻ ൏ ܿଵሺݐሻ∀ݐ . But then we have a contradiction: ܿଶሺݐሻ  cannot be an optimal 
consumption plan because the feasible consumption plan ܿଵሺݐሻ strictly dominates ܿଶሺݐሻ. 

QED 

Appendix Lemma A2: 

଴݌
ሺଵሻ ൐ ሺଶሻߠ ൌ ଴݌

ሺଶሻ 

Proof of Appendix Lemma A2: 

Define 

݃ሺݐሻ ൌ exp ቊെන ݎ ൅ ݏሻ݀ݏଵଶሺߣ
௧

଴
ቋ ሺଶሻߠ ൌ exp ቊെන ݏሻ݀ݏଵଶሺߣ

௧

଴
ቋ ௧݌

ሺଶሻ 

Differentiating with respect to ݐ yields 
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ሶ݃ ሺݐሻ ൌ െ݃ሺݐሻݎ െ exp ቊെݐݎ െ න ݏሻ݀ݏଵଶሺߣ
௧

଴
ቋ ߠሻݐଵଶሺߣ

ሺଶሻ	

ൌ ߶ሺ݃ሺݐሻ,  ሻݐ

Combining this result with equation (A3) then yields the following inequality: 

ሶ௧݌
ሺଵሻ ൏ ߶ ቀ݌௧

ሺଵሻ,  ቁݐ

Suppose by way of contradiction that ݌଴
ሺଵሻ ൏ ሺଶሻߠ ൌ ݃ሺ0ሻ. Then by standard comparison arguments for 

ordinary differential equations, we have ݌௧
ሺଵሻ ൏ ݃ሺݐሻ ൌ exp ቄെ׬ ݏሻ݀ݏଵଶሺߣ

௧
଴ ቅ ௧݌

ሺଶሻ	∀ݐ ∈ ሾ0, ܶሿ, which is a 

contradiction to the result from Appendix Lemma A1.  

QED 

Thus, we have  

௖൫ܿଵሺ0ሻ൯ݑ ൌ ଴݌
ሺଵሻ ൐ ଴݌

ሺଶሻ ൌ  ௖ሺܿଶሺ0ሻሻݑ

which implies 

ܿଶሺ0ሻ ൐ ܿଵሺ0ሻ 

QED 

Proof of Proposition 6: 

Without loss of generality, consider the case ݐ ൌ 0. From Proposition 5 and Appendix Lemmas A1 and 
A2, it is clear that ܿଵሺݐሻ and ܿଶሺݐሻ are decreasing, ܿଶሺ0ሻ ൐ ܿଵሺ0ሻ, ܿଶሺݐሻ ൒ ܿଵሺݐሻ for ݐ ൑ ሻݐ଴, and ܿଶሺݐ ൑
ܿଵሺݐሻ for ݐ ൐ ݐ ଴. Making use of the assumption that no state transitions occur forݐ ൐ 0, we have that 

ሺ2,0ሻܮܸܵ ൌ න ݁ି௥௧
ܵଶሺݐሻݑ൫ܿଶሺݐሻ൯

ܵଶሺݐሻݑ௖൫ܿଶሺݐሻ൯

்

଴

	ݐ݀

ൌ න ݁ି௥௧
ሻ൯ݐ൫ܿଶሺݑ

ሻ൯ݐ௖൫ܿଶሺݑ

்

଴

 ݐ݀

and 

ሺ1,0ሻܮܸܵ ൌ න ݁ି௥௧
ሻ൯ݐ൫ܿଵሺݑ

ሻ൯ݐ௖൫ܿଵሺݑ

்

଴

	ݐ݀

Let ܻሺݔሻ ൌ
௨ሺ௫ሻ

௨೎ሺ௫ሻ
. Under the stated assumptions, we have that  

ܻ′ሺݔሻ ൌ 1 െ
ሻݔ௖௖ሺݑሻݔሺݑ

൫ݑ௖ሺݔሻ൯
ଶ ൐ 0,	

ܻ′′ሺݔሻ ൌ
2൫ݑ௖௖ሺݔሻ൯

ଶ
ሻݔሺݑ െ ሻݔ௖௖ሺݑሻݔ௖ଶሺݑ െ ሻݔ௖௖௖ሺݑሻݔሺݑሻݔ௖ሺݑ

൫ݑ௖ሺݔሻ൯
ଷ ൐ 0 

Employing Taylor’s theorem then yields: 
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ሺ2,0ሻܮܸܵ ൌ න ݁ି௥௧ܻ൫ܿଶሺݐሻ൯

்

଴

	ݐ݀

ൌ න ݁ି௥௧ ቎ܻ൫ܿଵሺݐሻ൯ ൅ ሾܿଶሺݐሻ െ ܿଵሺݐሻሿܻᇱ൫ܿଵሺݐሻ൯ ൅
1
2
ሾܿଶሺݐሻ െ ܿଵሺݐሻሿଶܻ′′൫ߦሺݐሻ൯ᇣᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇥ

வ଴

቏

்

଴

	ݐ݀

൐ න ݁ି௥௧
்

଴

ܻ൫ܿଵሺݐሻ൯݀ݐ ൅ න ݁ି௥௧
௧బ

଴

ܻ′൫ܿଵሺݐሻ൯ ሾܿଶሺݐሻ െ ܿଵሺݐሻሿᇣᇧᇧᇧᇤᇧᇧᇧᇥ
ஹ଴

ݐ݀

൅ න ݁ି௥௧
்

௧బ

ܻ′൫ܿଵሺݐሻ൯ ሾܿଶሺݐሻ െ ܿଵሺݐሻሿᇣᇧᇧᇧᇤᇧᇧᇧᇥ
ஸ଴

	ݐ݀

൐ න ݁ି௥௧
்

଴

ܻ൫ܿଵሺݐሻ൯݀ݐ ൅ න ݁ି௥௧
௧బ

଴

ܻ′൫ܿଵሺݐ଴ሻ൯ሾܿଶሺݐሻ െ ܿଵሺݐሻሿ݀ݐ

൅ න ݁ି௥௧
௧బ

଴

ܻ′൫ܿଵሺݐ଴ሻ൯ሾܿଶሺݐሻ െ ܿଵሺݐሻሿ݀ݐ	

ൌ න ݁ି௥௧
்

଴

ܻ൫ܿଵሺݐሻ൯݀ݐ ൅ ܻ′൫ܿଵሺݐ଴ሻ൯ ቎න ݁ି௥௧
்

଴

ܿଶሺݐሻ݀ݐ െ න ݁ି௥௧
்

଴

ܿଵሺݐሻ݀ݐ቏
ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ

ୀ଴

	

ൌ න ݁ି௥௧
்

଴

ܻ൫ܿଵሺݐሻ൯݀ݐ	

ൌ  ሺ1,0ሻܮܸܵ

where the final step follows from the budget constraint. 

QED 
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B. Data 

B1. Earnings 
We obtain earnings data for employed individuals under the age of 65 from the 2016 Current Population 
Survey (CPS).28 We also obtain earnings data for respondents over the age of 55 from the 2014 Health 
and Retirement Survey (HRS). For both surveys, the data represent earnings before taxes and other 
deductions, and include wages, salaries, and tips. The HRS earnings data also include self-employment 
income. (The CPS data exclude self-employed individuals.) 

The CPS earnings data are binned into the following age groups: 16-19, 20-24, 25-34, 35-44, 45-54, and 
55-64. We collapse the HRS earnings data into the following age groups: 55-64, 65-74, 75-84, 85-94, and 
95-104. The resulting estimates are plotted in Appendix Figure 1. We smooth the data by fitting it to a 
quartic polynomial, and include an indicator variable for ages over 65. The dependent variable in the 
regression is the CPS earnings estimate for ages under 65, and the HRS estimate for ages over 65. Finally, 
we constrain the fitted prediction to be non-negative. 

Appendix Figure B1. Annual earnings estimates from CPS and HRS 

 

Notes: Figure plots annual earnings by midpoint of age group as estimated by the 2016 Current Population Survey 
(CPS) for respondents under age 65 and the 2014 Health and Retirement Survey (HRS) for respondents over age 55. 

                                                      
28 These data are available at http://data.bls.gov/pdq/querytool.jsp?survey=le. 
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The fitted line corresponds to a regression of annual earnings on a quartic polynomial in age and an indicator equal 
to 1 for ages 65 and over. The dependent variable, annual earnings, corresponds to CPS estimates for ages under 65 
and HRS estimates for ages over 65.  

B2. Future Elderly Model (FEM) 
The FEM follows Americans aged 50 years and older and projects their health and medical spending over 
time. A complete technical document detailing the FEM is available online. 29  The FEM is a 
microsimulation that follows the evolution of individual-level health trajectories and economic outcomes, 
rather than the average or aggregate characteristics of a cohort. The FEM has three core modules. The 
first is the Replenishing Cohorts module, which predicts economic and health outcomes of new cohorts of 
50-year-olds with data from the Panel Study of Income Dynamics (PSID), and incorporates trends in 
disease and trends in other outcomes based on data from external sources, such as National Health 
Interview Survey and the American Community Survey. This module generates cohorts as the simulation 
proceeds, so that we can measure outcomes for the age 50+ population in any given year.  

The second component is the Health Transition module, which uses the longitudinal structure of the 
Health and Retirement Survey (HRS) to calculate transition probabilities across various health states, 
including chronic conditions, functional status, body-mass index and mortality, using linear and nonlinear 
multivariate regression models. These transition probabilities depend on a battery of predictors: age, sex, 
education, race, ethnicity, smoking behavior, marital status, employment and health conditions. Baseline 
factors are also controlled for using a series of initial health variables measured at age 50. FEM transitions 
produce a large set of simulated outcomes, including diabetes, high-blood pressure, heart disease, cancer 
(except skin cancer), stroke or transient ischemic attack, and lung disease (either or both chronic 
bronchitis and emphysema), disability, and body-mass index. Disability is measured by limitations in 
instrumental activities of daily living, activities of daily living, and residence in a nursing home. This 
dynamic simulation method has undergone extensive benchmarking and validation.  

Finally, the Policy Outcomes module combines individual-level outcomes into aggregate outcomes, such 
as medical care costs (Medicare, Medicaid and Private), federal, state and property taxes, Social Security 
expenditures and contributions. Individual health spending is predicted with regard to health status 
(chronic conditions and functional status), demographics (age, sex, race, ethnicity and education), nursing 
home status and mortality. Estimates are based on spending data from the Medical Expenditure Panel 
Survey for individuals aged 64 and younger and the Medicare Current Beneficiary Survey for individuals 
aged 65 and older, who constitute the bulk of the Medicare population. This module has been 
comprehensively tested against national aggregates. 

An example of how the three modules interact is as follows. For year 2014, the model begins with the 
population of Americans aged 50 and older based on nationally representative data from the HRS. 
Individual-level health and economic outcomes for the next two years are predicted using the Policy 
Outcomes module. The cohort is then aged two years using the Health Transition Module. Aggregate 
health and functional status outcomes for those years are then calculated. At that point, a new cohort of 
50-year-olds is introduced into the 2016 population using the Replenishing Cohort module, and they join 
those who survived from 2014 to 2016. This forms the age 50+ population for 2016. The transition model 
is then applied to this population. The same process is repeated until reaching the last year of the 
simulation.  

 

                                                      
29 A complete technical description is available at roybalhealthpolicy.usc.edu/fem/technical-specifications/. 
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C. Derivations for numerical models 
Appendix C1 provides details regarding the implementation of the deterministic mortality model 
employed in Section IV.B, and explains how it is used to derive the aggregate insurance value of Social 
Security. This model is estimated numerically using standard dynamic programming methods. 

Appendix C2 provides a derivation of the stochastic mortality model employed in Section IV.C. This 
model is solved analytically and thus provides exact solutions.  

C1. Deterministic mortality  
The value function is defined as: 

ܸ൫ݐ,ܹሺݐሻ൯ ൌ max
ሼ௖ሺ௧ሻሽ

	෍݁ିఘሺ௦ି௧ሻܵ௧ሺݏሻݑሺܿሺݏሻሻ

்

௦ୀ௧

 

We can use the value function to rewrite the optimization problem as a recursive Bellman equation: 

ܸ൫ݐ,ܹሺݐሻ൯ ൌ max
ሼ௖ሺ௧ሻሽ

ሻ൯ݐ൫ܿሺݑ	 ൅
1 െ ݀ሺݐሻ

݁ఘ
ܸ൫ݐ ൅ 1,ܹሺݐ ൅ 1ሻ൯ 

Because the problem is finite, we can work backwards from the final period. We discretize the state space 
into ܰ௪ ൌ 3,000 points evenly distributed across the interval ሾ0, ௠ܹ௔௫ሿ. Let that set of values be ሼ ௡ܹሽ. 
Define ݃௧൫ܹሺݐሻ൯ ൌ ܹሺݐ ൅ 1ሻ as a mapping from the current wealth state, ܹሺݐሻ, to the optimal wealth 
state in the following period, ܹሺݐ ൅ 1ሻ 

It is clear that the consumer should consume all her wealth in the final period, i.e., ்݃൫ܹሺܶሻ൯ ൌ 0 for all 

ܹሺܶሻ ∈ ሼݓ௡ሽ. This implies that ܸ൫ܶ,ܹሺܶሻ൯ ൌ ൫ܹሺܶሻݑ ൅ ሺܶሻ൯ for all ܹሺܶሻݕ ∈ ሼݓ௡ሽ.  

Next, we calculate ܸሺܶ െ 1, ଵሻି்ݓ ൌ max
௚ሺ௪೅షభሻୀ௪೅

ሺܹሺܶݑ	 െ 1ሻ ൅ ሺܶݕ െ 1ሻ െܹሺܶሻ/݁௥ሻ ൅

ଵିௗሺ௧ାଵሻ

௘ഐ
ܸ൫ܶ,ܹሺܶሻ൯. In other words, for each ܹሺܶ െ 1ሻ ∈ ሼݓ௡ሽ, we calculate the optimal ܸ൫ܶ െ

1,ܹሺܶ െ 1ሻ൯ by determining which choice of ்݃ିଵ൫ܹሺܶ െ 1ሻ൯ ൌ ܹሺܶሻ ∈ ሼݓ௡ሽ will maximize utility. 
This algorithm is then repeated for ݐ ൌ ܶ െ 2, ܶ െ 3,… ,1. 

Given the initial condition, ݓଵ, we can then employ our results to calculate ܹሺ2ሻ ൌ ݃ଵ൫ܹሺ1ሻ൯, ܹሺ3ሻ ൌ
݃ଶ൫ܹሺ2ሻ൯,…,	ܹሺܶሻ. Period consumption, ܿሺݐሻ, is then calculated using the equation for the budget 
constraint. Finally, we the analytical formulas derived in the main text to calculate the value of statistical 
life. 

When accounting for a bequest motive, we follow Kopczuk and Lupton (2007) and assume the utility 
from leaving a bequest is linear in wealth:	

௧ܸሺݓ௧ሻ ൌ max
ሼ௖೟ሽ

ሺܿ௧ሻݑ	 ൅
1

1 ൅ ߩ
ሾሺ1 െ ௧ሻݍ ௧ܸାଵሺݓ௧ାଵሻ ൅  ௧ାଵሿݓߙ௧ݍ

Kopczuk and Lupton (2007) estimate that the constant ିߙఊ is approximately equal to $50,000, where ߛ is 
the coefficient of relative risk aversion from a CRRA utility function. We adopt a (stronger) estimate of 
$35,000 when accounting for a bequest motive. This parameterization implies that the marginal utility of 
consumption is less than the marginal utility of leaving a bequest when consumption in the last year of 
life is more than $35,000. 

 



 59

Insurance value of Social Security 

We calculate the insurance value of Social Security at all ages by estimating its wealth equivalence. That 
is, we follow Mitchell et al. (1999) and estimate the amount of wealth, ܹ∗, required to equalize the 
utilities of a non-annuitized individual and an individual with Social Security. In other words, we solve 
for compensating wealth at age ݐ, ܹ∗ሺݐሻ, such that ܸ൫ݐ,ܹሺݐሻ ൅ܹ∗ሺݐሻ൯ ൌ ܸௌௌ൫ݐ,ܹௌௌሺݐሻ൯. Wealth for a 
non-annuitized individual, ܹሺݐሻ , and wealth for an individual with Social Security, ܹௌௌሺݐሻ , are 
calculated by the deterministic model for the first two policy scenarios discussed in the main text.  

We solve for ܹ∗ሺݐሻ by applying a numerical search algorithm. We estimate that, at age 65, having access 
to Social Security is equivalent to an increase in wealth of 16.5 percent for a non-annuitized individual. 
By way of comparison, Mitchell et al. (1999) estimate the before-tax value of full (complete) 
annuitization at age 65 to be 37.4 percent of wealth, using the same parameters for risk aversion, interest 
rate, and the discount rate. 

The aggregate insurance value of Social Security is then calculated by aggregating over the 2015 US 
population: 

ܵܵ	݁ݑ݈ܸܽ	݁ݐܽ݃݁ݎ݃݃ܣ ൌ ෍ܹ∗ሺܽሻ݂ሺܽሻ
ଵଵ଴

௔ୀ଴

 

C2. Stochastic mortality 
We focus on the case where the consumer does not have access to annuities. We ignore income, and 
assume that all of consumer’s wealth is available at time ݐ ൌ 0. This will allow us to generate an analytic 
solution to the consumer’s problem, given by: 

max
ሼ௖೟ሽ

ॱ଴ ൥෍݁ିఘ௧ܵ଴ሺݐሻݑ ቀܿሺݐሻ, ሻቁݐ௒೟ሺݍ ൅ ݁ିఘሺ௧ାଵሻ ቀ൫ܵ଴ሺݐሻ െ ܵ଴ሺݐ ൅ 1ሻ൯ݑሺܹሺݐ ൅ 1ሻ, ܾ௧ሻቁ

்

௧ୀ଴

൩ 

where  

ܹሺ0ሻ	given, 

ܹሺݐሻ ൒ 0, 

ܹሺݐ ൅ 1ሻ ൌ ൫ܹሺݐሻ െ ܿሺݐሻ൯݁௥ሺ௧,௒೟ሻ 

Here, ௧ܻ denotes the consumer’s health state at time ݐ, and we allow the interest rate to depend on it so as 
to model health-related wealth shocks. Of course, a constant interest rate ݎሺݐ, ݅ሻ ൌ  is included as a ݎ
special case. The parameter ܾ௧ measure the bequest motive. The utility function is  

,ሺܿݑ ሻݍ ൌ ݍ
ܿଵିఊ

1 െ ߛ
െ
ܿଵିఊ

1 െ ߛ
 

where ܿ is the subsistence level of consumption for a healthy person. Because optimal consumption is 
unaffected by affine transformations of utility, we will assume ݑሺܿ, ሻݍ ൌ ଵିఊ/ሺ1ܿݍ െ  ሻ when solvingߛ
the model for consumption. 

Define the value function 
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ܸሺݐ,ܹሺݐሻ, ௧ܻሻ ൌ max
ሼ௖ೞሽ

ॱ ൥෍݁ିఘሺ௦ି௧ሻܵ௧ሺݏሻݑ ቀܿሺݏሻ, ሻቁݏ௒ೞሺݍ

்

௦ୀ௧

൅ ݁ିఘሺ௦ାଵି௧ሻ൫ܵ௧ሺݏሻ െ ܵ௧ሺݏ ൅ 1ሻ൯ݑሺܹሺݏ ൅ 1ሻ, ܾ௦ሻอ ௧ܻ൩ 

subject to 

ܹሺݏ ൅ 1ሻ ൌ ൫ܹሺݏሻ െ ܿሺݏሻ൯݁ݎሺݏܻ,ݏሻ, ݏ ൐ ሻݏሺܹ,ݐ ൒ 0	 

Then we obtain the following Bellman equation: 

ܸሺݐ, ,ݓ ݅ሻ ൌ max
௖೟

ቐݑ൫ܿሺݐሻ, ሻ൯ݐ௜ሺݍ ൅ ݁ିఘ݀௜ሺݐሻݑ ቀ൫ݓ െ ܿሺݐሻ൯݁௥ሺ௧,௜ሻ, ܾ௧ቁ

൅ ݁ିఘ ቀ1 െ ݀௜ሺݐሻቁ෍݌௜௝ሺݐሻܸ൫ݐ ൅ 1, ൫ݓ െ ܿሺݐሻ൯݁௥ሺ௧,௜ሻ, ݆൯

௡

௝ୀଵ

ቑ 

Appendix Proposition C1:  

The value function and the optimal consumption level satisfy 

ܸሺݐ, ,ݓ ݅ሻ ൌ
ଵିఊݓ

1 െ ߛ
௧,௜ܭ , 

ܿ∗ሺݐ, ,ݓ ݅ሻ ൌ ݓ ⋅ ܿ௧,௜ 

where 

ܿ௧,௜ ൌ

ۏ
ێ
ێ
ێ
ۍ
1 ൅ ݁ି௥ሺ௧,௜ሻ ቌ

݁௥ሺ௧,௜ሻ ቂ݀௜ሺݐሻܾ௧ ൅ ቀ1 െ ݀௜ሺݐሻቁ ൫∑ ௧ାଵ,௝ܭሻݐ௜௝ሺ݌
௡
௝ୀଵ ൯ቃ

݁ఘݍ௜ሺݐሻ
ቍ

ଵ
ஓ

ے
ۑ
ۑ
ۑ
ې
ିଵ

, ݐ ൏ ܶ,	

்ܿ,௜ ൌ ቎1 ൅ ݁ି௥ሺ்,௜ሻ ቆ
݁௥ሺ்,௜ሻ்ܾ
݁ఘݍ௜ሺܶሻ

ቇ

ଵ
ஓ

቏

ିଵ

 

and ܭ௧,௜ satisfies the recursion: 

௧,௜ܭ ൌ

ۏ
ێ
ێ
ێ
ۍ

ሻݐ௜ሺݍ
ଵ
ఊ ൅ ݁ି௥ሺ௧,௜ሻ ൦݁௥ሺ௧,௜ሻିఘ ൮݀௜ሺݐሻܾ௧ ൅ ቀ1 െ ݀௜ሺݐሻቁ ቌ෍݌௜௝ሺݐሻܭ௧ାଵ,௝

௡

௝ୀଵ

ቍ൲൪

ଵ
ఊ

ے
ۑ
ۑ
ۑ
ې
ఊ

, ݐ ൏ ܶ,	

௜,்ܭ ൌ ቈݍ௜ሺܶሻ
ଵ
ఊ ൅ ݁ି௥ሺ்,௜ሻ൫݁௥ሺ்,௜ሻିఘ்ܾ൯

ଵ
ఊ቉
ఊ

 

Proof of Appendix Proposition C1: see end of appendix C 

When calculating VSL, we incorporate subsistence consumption back into the utility function. We then 
obtain for the value function: 
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ܸሺ0,ݓ, ݅ሻ ൌ෍݁ିఘ௧ॱ଴,௜ ቈexp ቊെන ݏሻ݀ݏሺߤ
௧

଴
ቋ ቆݍ௒೟ሺݐሻ

ܿሺݐሻଵିఊ

1 െ ߛ
െ
ܿଵିఊ

1 െ ߛ
ቇ቉

்

௧ୀ଴

൅ ݁ିఘሺ௧ାଵሻॱ଴,௜ ቈቆexp ቊെන ݏሻ݀ݏሺߤ
௧

଴
ቋ െ exp ቊെන ݏሻ݀ݏሺߤ

௧ାଵ

଴
ቋቇቆܾ௧

ܹሺݐ ൅ 1ሻଵିఊ

1 െ ߛ
െ
ܿଵିఊ

1 െ ߛ
ቇ቉
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∗

 

In specifications without the bequest motive, the second term (*) is dropped. Rearranging yields: 

ܸሺ0,ݓ, ݅ሻ ൌ෍݁ିఘ௧ॱ଴,௜ ቈexp ቊെන ݏሻ݀ݏሺߤ
௧

଴
ቋ ሻݐ௒೟ሺݍ

ܿሺݐሻଵିఊ

1 െ ߛ
቉

்

௧ୀଵ

൅ ݁ିఘሺ௧ାଵሻܾ௧ॱ଴,௜ ቈቆexp ቊെන ݏሻ݀ݏሺߤ
௧

଴
ቋ െ exp ቊെන ݏሻ݀ݏሺߤ

௧ାଵ

଴
ቋቇ
ܹሺݐ ൅ 1ሻଵିఊ

1 െ ߛ
቉	

ൌ
1

1 െ ߛ

ۏ
ێ
ێ
ێ
ێ
ۍ

଴,௜ܭଵିఊݓ െ ܿଵିఊ

ۏ
ێ
ێ
ێ
ۍ

1 ൅ ݁ିఘ ෍݁ିఘ௧
்

௧ୀ଴

ॱ଴,௜ ቈexp ቊെන ݏሻ݀ݏሺߤ
௧

଴
ቋ቉

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
୪୧୤ୣ	ୣ୶୮ୣୡ୲.		୧୬	ୱ୲ୟ୲ୣ	௜,			ୢ୧ୱୡ୭୳୬୲ୣୢ	ୟ୲	୰ୟ୲ୣ	ఘ	ے

ۑ
ۑ
ۑ
ې

ے
ۑ
ۑ
ۑ
ۑ
ې

 

We can then calculate VSL in state ݅ using the following formula: 

௜ܮܸܵ ൌ
ܸሺ0, ,ݓ ݅ሻ

,௖൫ܿ௜ሺ0ሻݑ ௜ሺ0ሻ൯ݍ
ൌ
ܸሺ0, ,ݓ ݅ሻ

௪ܸሺ0, ,ݓ ݅ሻ
 

When bequests are absent and ݎሺݐ, ݅ሻ ൌ  we drop the term (*), and the theory presented in the main text ,ݎ
yields the following expression for VSL: 

௜ܮܸܵ ൌ ॱ ቎෍exp ቊെන ߩ ൅ ݏሻ݀ݏሺߤ
௧

଴
ቋ
ݑ ቀܿሺݐሻ, ሻቁݐ௒೟ሺݍ

௖ݑ ቀܿሺ0ሻ, ௒బሺ0ሻቁݍ

்

௧ୀ଴

ቮ ଴ܻ ൌ ݅቏	

ൌ෍݁ି௥௧
ॱ ቂexp ቄെ׬ ݏሻ݀ݏሺߤ

௧
଴ ቅ ݑ ቀܿሺݐሻ, ሻቁቚݐ௒೟ሺݍ ଴ܻቃ

ॱ ቂexp ቄെ׬ ݏሻ݀ݏሺߤ
௧
଴ ቅ ௖ݑ ቀܿሺݐሻ, ሻቁቚݐ௒೟ሺݍ ଴ܻቃ

்

௧ୀ଴

	

ൌ෍݁ି௥௧
ॱ ቈexp ቄെ׬ ݏሻ݀ݏሺߤ

௧
଴ ቅ ቆݍ௒೟ሺݐሻ

ܿሺݐሻଵିఊ
1 െ ߛ െ

ܿଵିఊ

1 െ ቇቤߛ ଴ܻ቉

ॱ ቂexp ቄെ׬ ݏሻ݀ݏሺߤ
௧
଴ ቅ ሻݐሻܿሺݐ௒೟ሺݍ

ିఊቚ ଴ܻቃ

்

௧ୀ଴

 

or 

ܮܸܵ ൌ
1

1 െ ߛ
෍݁ି௥௧

ॱ ቂexp ቄെ׬ ݏሻ݀ݏሺߤ
௧
଴ ቅ ሻݐሻܿሺݐ௒೟ሺݍ

ଵିఊቚ ଴ܻቃ െ ܿଵିఊॱ ቂexp ቄെ׬ ݏሻ݀ݏሺߤ
௧
଴ ቅቚ ଴ܻቃ

ॱ ቂexp ቄെ׬ ݏሻ݀ݏሺߤ
௧
଴ ቅ ሻݐሻܿሺݐ௒೟ሺݍ

ିఊቚ ଴ܻቃᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
௩ሺ௧ሻ

்

௧ୀ଴

 

 

To evaluate this expression for VSL, we will make use of the following lemma. 

Appendix Lemma C2: Let ௧ܹ,௝ሺߖሻ ൌ 	ॱ ቂexp ቄെ׬ ݏሻ݀ݏሺߤ
௧
଴ ቅܹሺݐሻఅ૚ሼ ௧ܻ ൌ ݆ሽቚ ଴ܻቃ for ܻ ∈ ሺ1,∞ሻ. Then 

௧ܹ,௝ሺߖሻ satisfies the following recursion: 
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଴ܹ,௒బሺߖሻ ൌ ଴ݓ
అ, ଴ܹ,௜ሺߖሻ ൌ 0, ݅ ് ଴ܻ,	

௧ܹାଵ,௝ሺߖሻ ൌ ݁௥అ ෍ ௧ܹ,௞ሺߖሻ൫1 െ ܿ௧,௞൯
అ

௡

௞ୀଵ

ቀ1 െ ݀௞ሺݐሻቁ  ሻݐ௞,௝ሺ݌

Proof of Appendix Lemma C2: see end of appendix C 

Note that for ߖ ൌ 0 , the expression ∑ ௧ܹ,௝ሺ0ሻ
௡
௝ୀଵ ൌ 	ॱ ቂexp ቄെ׬ ݏሻ݀ݏሺߤ

௧
଴ ቅቚ ଴ܻቃ  is simply the ݐ -year 

survival probability. Using this Appendix Lemma C2, we obtain: 

Appendix Proposition C3:  

௒బܮܸܵ ൌ
1

1 െ ߛ
෍݁ି௥௧

∑ ሻܿ௧,௝ݐ௝ሺݍ
ଵିఊ

௧ܹ,௝ሺ1 െ ሻ௡ߛ
௝ୀଵ െ ܿଵିఊ ∑ ௧ܹ,௝ሺ0ሻ

௡
௝ୀଵ

∑ ሻܿ௧,௝ݐ௝ሺݍ
ିఊ

௧ܹ,௝ሺെߛሻ
௡
௝ୀଵᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ

௩ሺ௧ሻ

்

௧ୀ଴

 

 

Proof of Appendix Proposition C3: see end of appendix C 

We also immediately obtain the following corollary: 

Appendix Corollary C4: 

௜,௝ܫܸܵ ൌ ௜ܮܸܵ െ ௝ܮܸܵ
௝ሺ0ሻܿ଴,௝ݍ

ିఊ

௜ሺ0ሻܿ଴,௜ݍ
ିఊ 	

ൌ ௜ܮܸܵ െ ቆ
௝ሺ0ሻݍ

௜ሺ0ሻݍ
ቇ ቆ

ܿ଴,௜
ܿ଴,௝

ቇ
ఊ

 ௝ܮܸܵ
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Proofs for Appendix C 
Proof of Appendix Proposition C1: 

The proof proceeds by induction on ݐ ൑ ܶ. For the base case ݐ ൌ ܶ, note that ݀௜ሺݐሻ ൌ 1, so that the first-
order condition from the Bellman equation gives: 

௜ሺܶሻܿሺܶሻିఊݍ ൌ ݁௥ሺ்,௜ሻିఘܾܶ൫ݓ െ ܿሺܶሻ൯
െߛ
݁ି௥ሺ்,௜ሻఊ 

This implies that  

ܿሺܶሻ ൌ
௥ሺ்,௜ሻ݁݁ݓ

൫ఘି௥ሺ்,௜ሻ൯
ఊ ൬

௜ሺܶሻݍ
ܾܶ

൰

1
ߛ

1 ൅ ݁௥ሺ்,௜ሻ݁
൫ఘି௥ሺ்,௜ሻ൯

ఊ ൬
௜ሺܶሻݍ
ܾܶ

൰

1
ߛ

	

ൌ ݓ ቎1 ൅ ݁ି௥ሺ்,௜ሻ ቆ
݁௥ሺ்,௜ሻ்ܾ
݁ఘݍ௜ሺܶሻ

ቇ

ଵ
ఊ

቏
ᇣᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇥ

௖೅,೔

ିଵ

 

So that: 

ܸሺܶ,ݓ, ݅ሻ ൌ
ଵିఊݓ

1 െ ߛ
ቀݍ௜ሺܶሻ்ܿ,௜

ଵିఊ ൅ ݁ିఘ்ܾ݁௥
ሺ்,௜ሻሺଵିఊሻ൫1 െ ்ܿ,௜൯

ଵିఊ
ቁ	

ൌ
݁ିఘ݁௥ሺ்,௜ሻሺଵିఊሻ

൥்ܾ

ଵ
ఊ ൅ ݁௥ሺ்,௜ሻ݁

൫ఘି௥ሺ்,௜ሻ൯
ఊ ௜ሺܶሻݍ

ଵ
ఊ൩

ିఊ	

ൌ ቈݍ௜ሺܶሻ
ଵ
ఊ ൅ ݁ି௥ሺ்,௜ሻ൫݁ሺ௥ሺ்,௜ሻିఘሻ்ܾ൯

ଵ
ఊ቉
ఊ

 

For the induction step, suppose the proposition is true for case ݐ ൅ 1. We have 

ܸሺݐ, ,ݓ ݅ሻ ൌ max
௖

ቐݍ௜ሺݐሻ
ܿଵିఊ

1 െ ߛ
൅ ܾ௧݁ିఘ݀௜ሺݐሻ

ቀሺݓ െ ܿሻ݁௥ሺ௧,௜ሻቁ
ଵିఊ

1 െ ߛ
൅ ݁ିఘ ቀ1 െ ݀௜ሺݐሻቁ෍݌௜௝ሺݐሻ

௧ାଵ,௝ܭ
1 െ ߛ

ൣሺݓ െ ܿሻ݁௥ሺ௧,௜ሻ൧
ଵିఊ

௡

௝ୀଵ

ቑ 

From the first-order condition we obtain: 

ሻܿିఊݐ௜ሺݍ ൌ ܾ௧݁௥
ሺ௧,௜ሻିఘ݀௜ሺݐሻ݁ି௥

ሺ௧,௜ሻఊሺݓ െ ܿሻିఊ ൅ ݁௥ሺ௧,௜ሻିఘ ቀ1 െ ݀௜ሺݐሻቁ ݁ିఊ௥
ሺ௧,௜ሻሺݓ െ ܿሻିఊ෍݌௜௝ሺݐሻܭ௧ାଵ,௝

௡

௝ୀ௜

 

Rearranging yields: 

ሻܿିఊݐ௜ሺݍ ൌ ሺݓ െ ܿሻିఊ݁௥ሺ௧,௜ሻିఘ݁ି௥ሺ௧,௜ሻఊ ቎݀௜ሺݐሻܾ௧ ൅ ቀ1 െ ݀௜ሺݐሻቁ෍݌௜௝ሺݐሻܭ௧ାଵ,௝

௡

௝ୀ௜

቏ 

which implies: 
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ሻିଵ/ఊܿݐ௜ሺݍ ൌ ሺݓ െ ܿሻ݁൫ఘି௥ሺ௧,௜ሻ൯/ఊ݁௥ሺ௧,௜ሻ ቎݀௜ሺݐሻܾ௧ ൅ ቀ1 െ ݀௜ሺݐሻቁ෍݌௜௝ሺݐሻܭ௧ାଵ,௝

௡

௝ୀ௜

቏

ିଵ/ఊ

 

Rearranging further yields: 

	

ܿ ൌ ݓ
݁௥ሺ௧,௜ሻ ൤݁௥ሺ௧,௜ሻ ቂ݀௜ሺݐሻܾ௧ ൅ ቀ1 െ ݀௜ሺݐሻቁ∑ ௧ାଵ,௝ܭሻݐ௜௝ሺ݌

௡
௝ୀ௜ ቃ൨

ିଵ/ఊ

݁ఘݍ௜ሺݐሻିଵ/ఊ ൅ ݁௥ሺ௧,௜ሻ ൤݁௥ሺ௧,௜ሻ ቂ݀௜ሺݐሻܾ௧ ൅ ቀ1 െ ݀௜ሺݐሻቁ∑ ௧ାଵ,௝ܭሻݐ௜௝ሺ݌
௡
௝ୀ௜ ቃ൨

ିଵ/ఊ	

ൌ ݓ

ۏ
ێ
ێ
ێ
ۍ
1 ൅ ݁ି௥ሺ௧,௜ሻ ቌ

݁௥ሺ௧,௜ሻ ቂ݀௜ሺݐሻܾ௧ ൅ ቀ1 െ ݀௜ሺݐሻቁ∑ ௧ାଵ,௝ܭሻݐ௜௝ሺ݌
௡
௝ୀ௜ ቃ

݁ఘݍ௜ሺݐሻ
ቍ

ଵ
ఊ

ے
ۑ
ۑ
ۑ
ې

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
௖೟,೔

ିଵ

 

Thus we obtain: 

ܸሺݐ, ,ݓ ݅ሻ ൌ ሻܿ௧,௜ݐ௜ሺݍ
ଵିఊ ݓ

ଵିఊ

1 െ ߛ
൅ ܾ௧݁ିఘ݀௜ሺݐሻ

ଵିఊݓ

1 െ ߛ
൫1 െ ܿ௧,௜൯

ଵିఊ
݁௥ሺ௧,௜ሻሺଵିఊሻ ൅ ݁ିఘ ቀ1 െ ݀௜ሺݐሻቁ

ଵିఊݓ

1 െ ߛ
൫1 െ ܿ௧,௜൯

ଵିఊ
݁௥ሺ௧,௜ሻሺଵିఊሻ෍݌௜௝ሺݐሻܭ௧ାଵ,௝

௡

௝ୀ௜

	

ൌ
ଵିఊݓ

1 െ ߛ
൦ݍ௜ሺݐሻܿ௧,௜

ଵିఊ ൅ ݁ିఘ൫1 െ ܿ௧,௜൯
ଵିఊ

݁௥ሺ௧,௜ሻሺଵିఊሻ ቎݀௜ሺݐሻܾ௧ ൅ ቀ1 െ ݀௜ሺݐሻቁ෍݌௜௝ሺݐሻܭ௧ାଵ,௝

௡

௝ୀ௜

቏൪	

ൌ
ଵିఊݓ

1 െ ߛ

ሻ݁௥ݐ௜ሺݍ
ሺ௧,௜ሻሺଵିఊሻ ቂ݁௥ሺ௧,௜ሻ ቀ݀௜ሺݐሻܾ௧ ൅ ቀ1 െ ݀௜ሺݐሻቁ∑ ௧ାଵ,௝ܭሻݐ௜௝ሺ݌

௡
௝ୀ௜ ቁቃ

ଵିଵ/ఊ
൅ ݁ିఘ݁௥ሺ௧,௜ሻሺଵିఊሻ൫݁ఘݍ௜ሺݐሻ൯

ଵିଵ/ఊ
ቂ݀௜ሺݐሻܾ௧ ൅ ቀ1 െ ݀௜ሺݐሻቁ∑ ௧ାଵ,௝ܭሻݐ௜௝ሺ݌

௡
௝ୀ௜ ቃ

൥൫݁ఘݍ௜ሺݐሻ൯
ିଵ/ఊ

൅ ݁௥ሺ௧,௜ሻ ൤݁௥ሺ௧,௜ሻ ቂ݀௜ሺݐሻܾ௧ ൅ ቀ1 െ ݀௜ሺݐሻቁ∑ ௧ାଵ,௝ܭሻݐ௜௝ሺ݌
௡
௝ୀ௜ ቃ൨

ି
ଵ
ఊ
൩

ଵିఊ 	

ൌ
ଵିఊݓ

1 െ ߛ

݁௥ሺ௧,௜ሻሺଵିఊሻݍ௜ሺݐሻ ቂ݀௜ሺݐሻܾ௧ ൅ ቀ1 െ ݀௜ሺݐሻቁ∑ ௧ାଵ,௝ܭሻݐ௜௝ሺ݌
௡
௝ୀ௜ ቃ

൥൫݁ఘݍ௜ሺݐሻ൯
ିଵ/ఊ

൅ ݁௥ሺ௧,௜ሻ ൤݁௥ሺ௧,௜ሻ ቂ݀௜ሺݐሻܾ௧ ൅ ቀ1 െ ݀௜ሺݐሻቁ∑ ௧ାଵ,௝ܭሻݐ௜௝ሺ݌
௡
௝ୀ௜ ቃ൨

ି
ଵ
ఊ
൩

ିఊ	

ൌ
ଵିఊݓ

1 െ ߛ
ۏ
ێ
ێ
ێ
ۍ
ሻݐ௜ሺݍ

ଵ
ఊ ൅ ݁ି௥ሺ௧,௜ሻ ቎݁௥ሺ௧,௜ሻିఘ ቌ݀௜ሺݐሻܾ௧ ൅ ቀ1 െ ݀௜ሺݐሻቁ෍݌௜௝ሺݐሻܭ௧ାଵ,௝

௡

௝ୀ௜

ቍ቏

ଵ
ఊ

ے
ۑ
ۑ
ۑ
ې
ఊ

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
௄೟,೔

 

QED 

Proof of Appendix Lemma C2:  

௧ܹାଵ,௝ሺߖሻ ൌ 	ॱ ቈexp ቊെන ݏሻ݀ݏሺߤ
௧ାଵ

଴
ቋ ൫ܹሺݐ ൅ 1ሻ൯

అ
૚ሼ ௧ܻାଵ ൌ ݆ሽ቉	

ൌ ॱ ቈexp ቊെන ݏሻ݀ݏሺߤ
௧

଴
ቋ ቀ൫ܹሺݐሻ െ ܿሺݐሻ൯݁௥ቁ

అ
૚ሼ ௧ܻାଵ ൌ ݆ሽ exp ቊെන ݏሻ݀ݏሺߤ

௧ାଵ

௧
ቋ቉	
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ൌ෍ॱ

ۏ
ێ
ێ
ێ
ۍ

૚ሼ ௧ܻ ൌ ݇ሽ exp ቊെන ݏሻ݀ݏሺߤ
௧

଴
ቋ ݁௥అܹሺݐሻఅ൫1 െ ܿ௧,௞൯

అ
ॱ ቈ૚ሼ ௧ܻାଵ ൌ ݆ሽ exp ቊെන ݏሻ݀ݏሺߤ

௧ାଵ

௧
ቋቤ ௧ܻ ൌ ݇቉

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
ቀଵିௗೖሺ௧ሻቁ௣ೖೕሺ௧ሻ ے

ۑ
ۑ
ۑ
௡ې

௞ୀଵ

	

ൌ ݁௥అ ෍ ௧ܹ,௞ሺΥሻ൫1 െ ܿ௧,௞൯
అ

௡

௞ୀଵ

ቀ1 െ ݀௞ሺݐሻቁ  ሻݐ௞௝ሺ݌

QED 

Proof of Appendix Proposition C3:  

Note that we have 

ॱ ቈexp ቊെන ݏሻ݀ݏሺߤ
௧

଴
ቋ ሻݐሻܿሺݐ௒೟ሺݍ

అ቉ ൌ෍ॱቈexp ቊെන ݏሻ݀ݏሺߤ
௧

଴
ቋ ሻݐሻܿሺݐ௒೟ሺݍ

అ૚ሼ ௧ܻ ൌ ݆ሽ቉

௡

௝ୀଵ

	

ൌ ෍ॱቈexp ቊെන ݏሻ݀ݏሺߤ
௧

଴
ቋ ሻܿ௧,௝ݐ௝ሺݍ

అ ܹሺݐሻఅ૚ሼ ௧ܻ ൌ ݆ሽ቉

௡

௝ୀଵ

	

ൌ ෍ݍ௝ሺݐሻܿ௧,௝
అ ॱ ቈexp ቊെන ݏሻ݀ݏሺߤ

௧

଴
ቋܹሺݐሻఅ૚ሼ ௧ܻ ൌ ݆ሽ቉

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
ௐ೟,ೕሺఅሻ

௡

௝ୀଵ

 

The proof follows by setting ߖ ൌ 1 െ – and ,0 ,ߛ  .in the expression for VSL ߛ

QED 
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D. The fully annuitized value of life when mortality is stochastic 
Even when mortality is stochastic, a complete annuities market allows the consumer to fully insure 
against mortality risk. We assume a full menu of actuarially fair annuities is available where consumers 
can choose consumption streams, 	ܿ௒೟ሺݐሻ , that depend on the health state, ௧ܻ . The consumer’s 
maximization problem is: 

 
max
௖ೊ೟ሺ௧ሻ

ॱ ቈන ݁ିఘ௧ܵሺݐሻݑ൫ܿ௒೟ሺݐሻ, ݐሻ൯݀ݐ௒೟ሺݍ
்

଴
ቤ ଴ܻ቉ 

 

 (20) 

 

s. t. ॱ ቈන ݁ି௥௧ܵሺݐሻܿ௒೟ሺݐሻ݀ݐ
்

଴
ቤ ଴ܻ቉ ൌ ॱ ቈ ଴ܹ ൅ න ݁ି௥௧ܵሺݐሻ݉௒೟ሺݐሻ݀ݐ

்

଴
ቤ ଴ܻ቉ ≡ ܹሺ0, ଴ܻሻ 

where the net present value of wealth and future earnings at time ݐ  in state ݅  is ܹሺݐ, ݅ሻ, and ܵሺݐሻ is 
defined as before. Define the consumer’s objective function at time ݑ as: 

 
,ݑሺܬ ݅ሻ ൌ ॱ ቈන ݁ିఘ௧ exp ቊെන ݑሺߤ ൅ ݏሻ݀ݏ

௧

଴
ቋ ݑ൫ܿ௒ೠశ೟ሺݑ ൅ ,ሻݐ ݑ௒ೠశ೟ሺݍ ൅ ݐሻ൯݀ݐ

்ି௨

଴
ቤ ௨ܻ ൌ ݅቉ 

 (21) 

 

We can write the objective function (21) recursively as: 

,ݑሺܬ ݅ሻ ൌ න ݁ିఘ௧ exp ቐെන ݑ௜ሺߤ ൅ ሻݏ ൅෍ߣ௜௝ሺݑ ൅ ሻݏ
௝ஷ௜

ݏ݀
௧

଴
ቑቌݑሺܿ௜ሺݑ ൅ ,ሻݐ ݑ௜ሺݍ ൅ ሻሻݐ

்ି௨

଴

൅෍ߣ௜௝ሺݑ ൅ ݑሺܬ	ሻݐ ൅ ,ݐ ݆ሻ
௝ஷ௜

ቍ  ݐ݀

Similarly, current wealth at time ݑ in state ݅, including the value of future labor income, pays for future 
consumption such that:  

ܹሺݑ, ݅ሻ ൌ ॱ ቈන ݁ି௥௧ exp ቊെන ݑሺߤ ൅ ݏሻ݀ݏ
௧

଴
ቋ ܿ௒ೠశ೟ሺݑ ൅ ݐሻ݀ݐ

்ି௨

଴
ቤ ௨ܻ ൌ ݅቉	

ൌ න ݁ି௥௧ expቐെන ݑ௜ሺߤ ൅ ሻݏ ൅෍ߣ௜௝ሺݑ ൅ ሻݏ
௝ஷ௜

ݏ݀
௧

଴
ቑ

்ି௨

଴
൮ܿ௜ሺݑ ൅ ሻݐ ൅෍ߣ௜௝ሺݑ ൅ ሻݐ

௝ஷ௜

ܹሺݑ ൅ ,ݐ ݆ሻ൲݀ݐ 

This in turn implies: 

߲ܹሺݐ, ݅ሻ

ݐ߲
ൌ ቀݎ ൅ ,ݐሻቁܹሺݐ௜ሺߤ ݅ሻ െ ܿ௜ሺݐሻ ൅෍ߣ௜௝ሺݐሻൣܹሺݐ, ݅ሻ െ ܹሺݐ, ݆ሻ൧

௝ஷ௜

 

Define the optimal value function as: 

ܸ൫ݐ,ܹ௧, ௧ܻ൯ ൌ max
൛௖ೊೞሺ௦ሻ,௦ஹ௧ൟ

ሼܬሺݐ, ௧ܻሻሽ 

where ܹ௧ ൌ ቀܹሺݐ, 1ሻ, … ,ܹሺݐ, ݊ሻቁ. Under conventional regularity conditions, we know that if ܸ and its 

partial derivatives are continuous, then ܸ satisfies the following Hamilton-Jacobi-Bellman (HJB) system 
of equations: 
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 ቀߩ ൅ ሻቁݐ௜ሺߤ ܸ൫ݐ,ܹ௧, ݅൯

ൌ max
௖೔ሺ௧ሻ

ቐݑ൫ܿ௜ሺݐሻ, ሻ൯ݐ௜ሺݍ

൅෍
߲ܸ൫ݐ,ܹ௧, ݅൯

߲ ഥܹ ሺݐ, ݇ሻ
൥ቀݎ ൅ ,ݐሻቁܹሺݐ௞ሺߤ ݇ሻ െ ܿ௞ሺݐሻ ൅෍ߣ௞௟ሺݐሻൣܹሺݐ, ݇ሻ െܹሺݐ, ݈ሻ൧

௟ஷ௞

൩

௡

௞ୀଵ

൅
߲ܸሺݐ,ܹ௧, ݅ሻ

ݐ߲
൅෍ߣ௜௝ሺݐሻ ቂܸሺݐܹ,ݐ, ݆ሻ െ ܸ ቀݐܹ,ݐ, ݅ቁቃ

௝ஷ௜

ቑ , 1 ൑ ݅ ൑ 

 

 (22) 

 

We are interested in understanding how optimal consumption, and thus the value of life, changes over the 
life-cycle in this problem. Similarly to the uninsured case in the main text, we follow Parpas and Webster 
(2013), who demonstrate that it is possible to reformulate a stochastic optimization problem as a 

deterministic problem that takes ܸ൫ݐ,ܹ௧, ݆൯, ݆ ് ݅ , along with the corresponding optimal policies, as 
exogenous. This then allows us to apply the maximum principle and derive analytic expressions.  

Appendix Lemma D1: 

The optimal value function for ଴ܻ ൌ ݅, ܸ൫ݐ,ܹ௧, ݅൯, for the following deterministic optimization problem 
also satisfies the HJB given by (22), for each ݅ ∈ ሼ1, … , ݊ሽ: 

 
଴ܸ൫0,ܹ଴, ݅൯ ൌ max

௖೔ሺ௧ሻ
቎න ݁ିఘ௧ ሚܵሺ݅, ሻݐ ቌݑሺܿ௜ሺݐሻ, ሻሻݐ௜ሺݍ ൅෍ߣ௜௝ሺݐሻܸ൫ݐ,ܹ௧, ݆൯

௝ஷ௜

ቍ݀ݐ
்

଴
቏ 

 (23) 

 

s. t.
߲ܹሺݐ, ݆ሻ

ݐ߲
ൌ ൬ݎ ൅ ,ݐሻ൰ܹሺݐ௝ሺߤ ݆ሻ െ ௝ܿሺݐሻ ൅෍ߣ௝௞ሺݐሻൣܹሺݐ, ݆ሻ െܹሺݐ, ݇ሻ൧

௞ஷ௝

, ݆ ൌ 1,… , ݊ 

where ܸ൫ݐ,ܹ௧, ݆൯ and ௝ܿሺݐሻ, ݆ ് ݅,	are taken as exogenous. 

Proof of Appendix Lemma D1: see end of Appendix D 

Following Bertsekas (2005), the Hamiltonian for the (deterministic) maximization problem (23) is: 

 
,൫ܹ௧ܪ ܿ௜ሺݐሻ, ௧൯݌ ൌ ݁ିఘ௧ ሚܵሺ݅, ሻݐ ቌݑሺܿ௜ሺݐሻ, ሻሻݐ௜ሺݍ ൅෍ߣ௜௝ሺݐሻܸ൫ݐ,ܹ௧, ݆൯

௝ஷ௜

ቍ

൅෍݌௧
ሺ௞ሻ ൥൫ݎ ൅ ,ݐሻ൯ܹሺݐ௞ሺߤ ݇ሻ െ ܿ௞ሺݐሻ ൅෍ߣ௞௟ሺݐሻൣܹሺݐ, ݇ሻ െܹሺݐ, ݈ሻ൧

௟ஷ௞

൩

௡

௞ୀଵ

 

 (24) 

 

where ݌௧
ሺ௞ሻ is the costate variable corresponding to wealth ܹሺݐ, ݇ሻ. 

Appendix Lemma D2: 

The consumer’s first-order condition for the Hamiltonian (24) for ଴ܻ ൌ ݅ is  

 ݁ሺ௥ିఘሻ௧ݑ௖ሺܿ௜ሺݐሻ, ሻሻݐ௜ሺݍ ൌ  ߠ
 

 (25) 

where ߠ ൌ ߲ܸ൫0,ܹ଴, ݅൯/߲ܹሺ0, ݅ሻ is equal to the marginal utility of wealth. 

Proof of Appendix Lemma D2: see end of Appendix D 
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To analyze the value of life, we again let ߜሺݐሻ be a perturbation on the mortality rate with ׬ ݐሻ݀ݐሺߜ
்
଴ ൌ 1. 

As in the deterministic case, we will first derive the marginal utility of the life extension associated with 
this perturbation.  

Appendix Proposition D3: 

The marginal utility of life extension takes the same form as in the deterministic case: 

ߝ߲/ܸ߲
߲ܸ/߲ܹ

ฬ
ఌୀ଴

ൌ ॱ ቈන ൣ݁ିఘ௧ݑ൫ܿ௒೟ሺݐሻ, ሻ൯ݐ௒೟ሺݍ ൅ ݁ି௥௧ߠሺ݉௒೟ሺݐሻ െ ܿ௒೟ሺݐሻሻ൧ ቆන ݏሻ݀ݏሺߜ
௧

଴
ቇ ܵሺݐሻ݀ݐ

்

଴
ቤ ଴ܻ቉ 

Proof of Appendix Proposition D3: see end of Appendix D 

Choosing again the Dirac delta function for ߜሺ⋅ሻ and dividing the result by the marginal utility of wealth, 
 :yields the value of statistical life ,ߠ

 
ܮܸܵ ൌ ॱ ቈන ݁ି௥௧ܵሺݐሻݐܻݒሺݐሻ݀ݐ

்

଴
ቤ ଴ܻ቉ 

 (26) 

 

where the value of a statistical life-year is: 

ሻݐ௒೟ሺݒ ൌ
,ሻݐ൫ܿ௒೟ሺݑ ሻ൯ݐ௒೟ሺݍ

,ሻݐ௖൫ܿ௒೟ሺݑ ሻ൯ݐ௒೟ሺݍ
൅ ݉௒೟ሺݐሻ െ ܿ௒೟ሺݐሻ 

Comparing (26) to (3) reveals that stochastic mortality does not alter the basic expression for ܸܵܮ . 
Consumers continue to discount future life-years by the rate of interest and by survival. One notable 
difference is that stochastic mortality generates variance in the value of life, which can now increase or 
decrease following the transition to a new health state. 

We can obtain the life-cycle profile of consumption by differentiating the first-order condition (25) with 
respect to ݐ. Doing so confirms that, as in the deterministic case, annuitization insulates consumption 
from mortality risk:30 

ሶܿ௒೟
ܿ௒೟

ൌ
ሶܿ
ܿ
ൌ ݎሺߪ െ ሻߩ ൅ ߟߪ

ሶݍ
ݍ

 

Our results demonstrate that stochastic mortality, by itself, does not alter the basic insights regarding VSL 
offered by the prior literature as long as one maintains the assumption of full annuitization.  

A novel feature of the stochastic model is that it permits an investigation into the value of prevention, i.e., 
the value of a reduction in the probability of transitioning to a different health state. This is not possible in 
a deterministic environment, where there is implicitly only one health state.  

To analyze the value of prevention, let ߜ௜௝ሺݐሻ be a perturbation on ߣ௜௝ሺݐሻ, where ∑ ׬ ݐሻ݀ݐ௜௝ሺߜ
்
଴௝ஷ௜ ൌ 1. As 

in the life-extension case, it is helpful to choose the Dirac delta function for ߜሺ⋅ሻ, so that the probability is 

                                                      
30 We assume—like all prior studies—that full indemnity healthcare insurance is available, which is equivalent to 
assuming that ݍሺݐሻ is independent of the health state. Without this assumption, sudden decreases in ݍ could cause 
the value of life to jump (Lakdawalla, Malani, and Reif 2017). 
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perturbed at ݐ ൌ 0 and remains unaffected otherwise. It is also helpful to consider a reduction in the 
transition probability for only one alternative state, ݆଴, so that ߜ௜௝ሺݐሻ ൌ 0	∀݆ ് ݆଴. 

Appendix Proposition D4: 

Define the value of statistical illness, ܸܵܫሺ݅, ݆଴ሻ, to be the value of marginal reduction in the probability of 
transitioning to state ݆଴ when in state ݅. This value is equal to: 

 
,ሺ݅ܫܸܵ ݆଴ሻ ൌ 	ॱ ቎න ݁ି௥௧ ቎

ݑ ቀܿ௒೟ሺݐሻ, ሻቁݐ௒೟ሺݍ

௖ݑ ቀܿ௒೟ሺݐሻ, ሻቁݐ௒೟ሺݍ
൅ ݉ሺݐሻ െ ܿሺݐሻ቏ ܵሺݐሻ݀ݐቮ ଴ܻ

்

଴
ൌ ݅቏

െ ॱ ቎න ݁ି௥௧ ቎
ݑ ቀܿ௒೟ሺݐሻ, ሻቁݐ௒೟ሺݍ

௖ݑ ቀܿ௒೟ሺݐሻ, ሻቁݐ௒೟ሺݍ
൅ ݉ሺݐሻ െ ܿሺݐሻ቏ ܵሺݐሻ݀ݐቮ ଴ܻ

்

଴
ൌ ݆଴቏	

ൌ ሺ݅ሻܮܸܵ െ ൫݆଴|ܹሺ0ሻܮܸܵ ൌ ܹ∗൯ 

 (27) 

 

where ܹ∗  is the value of the annuity that was initially purchased in state ݅  that promised the state-
contingent consumption stream ܿ௒೟

∗ ሺݐሻ: 

ܹ∗ ൌ ॱ ቈන ݁ି௥௧ܵሺݐሻܿ௒೟
∗ ሺݐሻ݀ݐ

்

଴
ቤ ଴ܻ ൌ ݆଴቉ 

Proof of Appendix Proposition D4: see end of Appendix D 

The notation in equation (27) indicates that VSL in state ݆଴ is evaluated under the assumption that the 
consumer’s annuity was purchased when she was in state ݅. If life expectancy in state ݆଴ is lower than in 
state ݅, the value of the annuity to the consumer falls. 
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Proofs for Appendix C 

Proof of Appendix Lemma D1: 

Let ܸ൫ݐ,ܹ௧, ݆൯ and ௝ܿሺݐሻ, ݆ ് ݅, be taken as given (exogenous). Consider the deterministic optimization 
problem: 

ܸ൫0,ܹ଴, ݅൯ ൌ max
௖೔ሺ௧ሻ

ቐන ݁ିఘ௧ ሚܵሺ݅, ሻݐ ቌݑሺܿ௜ሺݐሻ, ሻሻݐ௜ሺݍ ൅෍ߣ௜௝ሺݐሻܸ൫ݐ,ܹ௧, ݆൯
௝ஷ௜

ቍ ݐ݀
்

଴
ቑ 

.ݏ 		.ݐ
߲ܹሺݐ, ݆ሻ

ݐ߲
ൌ ൬ݎ ൅ ,ݐሻ൰ܹሺݐ௝ሺߤ ݆ሻ െ ௝ܿሺݐሻ ൅෍ߣ௝௞ሺݐሻൣܹሺݐ, ݆ሻ െ ܹሺݐ, ݇ሻ൧

௞ஷ௝

, ݆ ൌ 1,… , ݊ 

Denote the optimal value-to-go as 

෨ܸ ൫ݑ,ܹ௨, ݅൯ ൌ max
௖೔ሺ௧ሻ

ቐන ݁ିఘ௧ ሚܵሺ݅, ሻݐ ቌݑሺܿ௜ሺݐሻ, ሻሻݐ௜ሺݍ ൅෍ߣ௜௝ሺݐሻܸ൫ݐ,ܹ௧, ݆൯
௝ஷ௜

ቍ ݐ݀
்

௨
ቑ 

Setting ෨ܸ ൫ݑ,ܹ௨, ݅൯ ൌ ݁ିఘ௧ ሚܵሺ݅, ,௧ܹ,ݐሻܸ൫ݐ ݅൯ then demonstrates that ܸሺ⋅ሻ satisfies the HJB (22) for ݅. 

QED 

Proof of Appendix Lemma D2: 

The costate equations for the Hamiltonian (24) are: 

ሶ௧݌
ሺ௜ሻ ൌ െ݌௧

ሺ௜ሻ ቌݎ ൅ ሻݐ௜ሺߤ ൅෍ߣ௜௝ሺݐሻ
௝ஷ௜

ቍ ൅෍ߣ௟௜ሺݐሻ݌௧
ሺ௟ሻ

௟ஷ௜

	and	

ሶ௧݌
ሺ௞ሻ ൌ ݁ିఘ௧ ሚܵሺ݅, ሻݐ௜௞ሺߣሻݐ

߲ܸ൫ݐ,ܹ௧, ݇൯

߲ܹሺݐ, ݇ሻ
െ ௧݌

ሺ௞ሻ ൭ݎ ൅ ௞ߤ ൅෍ߣ௞௟ሺݐሻ
௟ஷ௞

൱ ൅෍ߣ௟௞ሺݐሻ݌௧
ሺ௟ሻ

௟ஷ௞

 

for ݇ ് ݅. Suppose that ݌௧
ሺ௞ሻ ൌ 0, ݇ ് ݅. (We will verify this at the end of the proof.) This implies: 

௧݌
ሺ௜ሻ ൌ ௥௧ି݁ߠ ሚܵሺ݅,  ሻݐ

where ߠ is a constant. Note also that the first-order condition of the Hamiltonian with respect to ܿ௜ሺݐሻ is  

݁ିఘ௧ ሚܵሺ݅, ,ሻݐ௖ሺܿ௜ሺݑሻݐ ሻሻݐ௜ሺݍ ൌ ௧݌
ሺ௜ሻ 

Setting these last two equations equal to each other then yields the desired result.  

To verify that ݌௧
ሺ௞ሻ ൌ 0 , 	݇ ് ݅ , note that the previous result implies via the HJB that ߲ܸ൫ݐ,ܹ௧, ݅൯/

߲ܹሺݐ, ݅ሻ ൌ ݇ ሺ௥ିఘሻ௧, so that the costate equation forି݁	ߠ ് ݅ is  
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ሶ௧݌
ሺ௞ሻ ൌ െି݁ߠ௥௧ ሚܵሺ݅, ሻᇩᇭᇭᇭᇪᇭᇭᇭᇫݐ

௣೟
ሺ೔ሻ

ሻݐ௜௞ሺߣ ൅ ௧݌
ሺ௜ሻߣ௜௞ሺݐሻ െ ௧݌

ሺ௞ሻ ൭ݎ ൅ ௞ߤ ൅෍ߣ௞௟ሺݐሻ
௟ஷ௞

൱ ൅ ෍ ௧݌ሻݐ௟௞ሺߣ
ሺ௟ሻ

௟ஷሼ௞,௜ሽ

	

ൌ 0 

QED 

Proof of Appendix Proposition D3: 

The marginal utility of life extension is defined as 

ߝ߲/ܸ߲
߲ܸ/߲ܹ

ฬ
ఌୀ଴

ൌ
߲
ߝ߲
ॱ ቈන ݁ିఘ௧ exp ቊെන ሻݏሺߤ െ ݏሻ݀ݏሺߜߝ

௧

଴
ቋ ൬ݑ ቀܿ௒೟

ఌ ሺݐሻ, ሻቁ൰ݐ௒೟ሺݍ ݐ݀
்

଴
ቤ ଴ܻ቉ቤ

ఌୀ଴

 

where ܿఌሺݐሻ represents the equilibrium variation in ܿሺݐሻ caused by this perturbation. Then  

ߝ߲/ܸ߲
߲ܸ/߲ܹ

ฬ
ఌୀ଴

ൌ ॱ ቈන ݁ିఘ௧ ቆන ݏሻ݀ݏሺߜ
௧

଴
ቇ exp ቊെන ݏሻ݀ݏሺߤ

௧

଴
ቋ ,ሻݐ൫ܿ௒೟ሺݑ ݐሻ൯݀ݐ௒೟ሺݍ

்

଴
ቤ ଴ܻ቉

൅ ॱ ቈන ݁ିఘ௧ exp ቊെන ݏሻ݀ݏሺߤ
௧

଴
ቋ ௖ݑ ቀܿ௒೟

ఌ ሺݐሻ, ሻቁݐ௒೟ሺݍ
߲ܿ௒೟

ఌ ሺݐሻ

ߝ߲
ቤ
ఌୀ଴

ݐ݀
்

଴
ቤ ଴ܻ቉	

ൌ ॱ ቈන ݁ିఘ௧ ቆන ݏሻ݀ݏሺߜ
௧

଴
ቇ exp ቊെන ݏሻ݀ݏሺߤ

௧

଴
ቋ ,ሻݐ൫ܿ௒೟ሺݑ ݐሻ൯݀ݐ௒೟ሺݍ

்

଴
ቤ ଴ܻ቉

൅ ॱߠ ቈන ݁ି௥௧ exp ቊെන ݏሻ݀ݏሺߤ
௧

଴
ቋ
߲ܿ௒೟

ఌ ሺݐሻ

ߝ߲
ቤ
ఌୀ଴

ݐ݀
்

଴
ቤ ଴ܻ቉ 

Finally, the budget constraint implies  

0 ൌ
߲ ଴ܹ

ߝ߲
ฬ
ఌୀ଴

	

ൌ
߲
ߝ߲
ॱ ቈන ݁ି௥௧ exp ቊെන ሻݏሺߤ െ ݏሻ݀ݏሺߜߝ

௧

଴
ቋ ቀܿ௒೟

ఌ ሺݐሻ െ ݉௒೟ሺݐሻቁ ݐ݀
்

଴
ቤ ଴ܻ቉ቤ

ఌୀ଴

	

ൌ ॱ ቈන ݁ି௥௧ ቆන ݏሻ݀ݏሺߜ
௧

଴
ቇ exp ቊെන ݏሻ݀ݏሺߤ

௧

଴
ቋ ቀܿ௒೟ሺݐሻ െ ݉௒೟ሺݐሻቁ ݐ݀

்

଴
ቤ ଴ܻ቉

൅ ॱ ቈන ݁ି௥௧ exp ቊെන ݏሻ݀ݏሺߤ
௧

଴
ቋ
߲ܿ௒೟

ఌ ሺݐሻ

ߝ߲
ቤ
ఌୀ଴

ݐ݀
்

଴
ቤ ଴ܻ቉ 

Plugging this last result into the expression for 
డ௏/డఌ

డ௏/డௐ
ቚ
ఌୀ଴

 then yields the desired result. 

QED 

Proof of Appendix Proposition D4: 

Working from equation (23) in the text, the marginal utility of prevention is given by 
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ߝ߲/ܸ߲
߲ܸ/߲ܹ

ฬ
ఌୀ଴

ൌ
߲
ߝ߲
න ݁ିఘ௧ exp ቐെන ሻݏ௜ሺߤ ൅෍ൣߣ௜௝ሺݏሻ െ ሻ൧ݏ௜௝ሺߜߝ

௝ஷ௜

ݏ݀
௧

଴
ቑ൮ݑ൫ܿ௜

ఌሺݐሻ, ሻ൯ݐ௜ሺݍ
்

଴

൅෍ൣߣ௜௝ሺݐሻ െ ሻ൧ݐ௜௝ሺߜߝ
௝ஷ௜

ܸ ቀݐ,ܹ௧
ఌ
, ݆ቁ൲݀ݐተ

ఌୀ଴

 

where ܿ௜
ఌሺݐሻ and ܹ௧

ఌ
 represent the equilibrium variations in ܿ௜ሺݐሻ and ܹ௧  caused by this perturbation. 

This yields  

ߝ߲/ܸ߲
߲ܸ/߲ܹ

ฬ
ఌୀ଴

ൌ න ݁ିఘ௧ ቌන ෍ߜ௜௝ሺݏሻ
௝ஷ௜

ݏ݀
௧

଴
ቍ ሚܵሺ݅, ሻݐ ൮ݑ൫ܿ௜ሺݐሻ, ሻ൯ݐ௜ሺݍ ൅෍ߣ௜௝ሺݐሻ

௝ஷ௜

ܸ൫ݐ,ܹ௧, ݆൯൲
்

଴

െ ݁ିఘ௧ ሚܵሺ݅, ሻݐ௜௝ሺߜሻ෍ݐ
௝ஷ௜

ܸ൫ݐ,ܹ௧, ݆൯

൅ ݁ିఘ௧ ሚܵሺ݅, ሻݐ ቌݑ௖൫ܿ௜ሺݐሻ, ሻ൯ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥݐ௜ሺݍ
ఏ௘షሺೝషഐሻ೟

߲ܿ௜
ఌሺݐሻ

ߝ߲
ቤ
ఌୀ଴

൅෍ߣ௜௝ሺݐሻ
௝ஷ௜

ௐܸ൫ݐ,ܹ௧, ݆൯ᇣᇧᇧᇧᇤᇧᇧᇧᇥ
ఏ௘షሺೝషഐሻ೟

߲ܹ
ఌ
ሺݐ, ݆ሻ

ߝ߲
อ
ఌୀ଴

ቍ݀ݐ 

Next, note that the budget constraint implies 

0 ൌ
߲ ଴ܹ

ఌ	
ߝ߲

ቤ
ఌୀ଴

ൌ
߲
ߝ߲
න ݁ି௥௧ exp ቐെන ሻݏ௜ሺߤ ൅෍ൣߣ௜௝ሺݏሻ െ ሻ൧ݏ௜௝ሺߜߝ

௝ஷ௜

ݏ݀
௧

଴
ቑ൮ܿ௜

ఌሺݐሻ െ ݉௜ሺݐሻ
்

଴

൅෍ൣߣ௜௝ሺݐሻ െ ሻ൧ݐ௜௝ሺߜߝ
௝ஷ௜

ܹ
ఌ
ሺݐ, ݆ሻ൲݀ݐተ

ఌୀ଴

 

																													ൌ න ݁ି௥௧ ቌන ෍ߜ௜௝ሺݏሻ
௝ஷ௜

ݏ݀
௧

଴
ቍ ሚܵሺ݅, ሻݐ ቌܿ௜ሺݐሻ െ ݉௜ሺݐሻ ൅෍ߣ௜௝ሺݐሻܹሺݐ, ݆ሻ

௝ஷ௜

ቍ ݐ݀
்

଴

െ ݁ି௥௧ ሚܵሺ݅, ሻݐ௜௝ሺߜሻ෍ݐ
௝ஷ௜

ܹሺݐ, ݆ሻ

൅ ݁ି௥௧ ሚܵሺ݅, ሻݐ ቌ
߲ܿ௜

ఌሺݐሻ

ߝ߲
ቤ
ఌୀ଴

൅෍ߣ௜௝ሺݐሻ
௝ஷ௜

߲ܹ
ఌ
ሺݐ, ݆ሻ

ߝ߲
อ
ఌୀ଴

ቍ݀ݐ 

Substituting in then yields the final result for the marginal utility of the reduction in this transition 
intensity: 
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ߝ߲/ܸ߲
߲ܸ/߲ܹ

ฬ
ఌୀ଴

ൌ න ݁ିఘ௧ ቌන ෍ߜ௜௝ሺݏሻ
௝ஷ௜

ݏ݀
௧

଴
ቍ ሚܵሺ݅, ሻݐ ൮ݑ൫ܿ௜ሺݐሻ, ሻ൯ݐ௜ሺݍ ൅෍ߣ௜௝ሺݐሻ

௝ஷ௜

ܸ൫ݐ,ܹ௧, ݆൯൲
்

଴

െ ݁ିఘ௧ ሚܵሺ݅, ሻݐ௜௝ሺߜሻ෍ݐ
௝ஷ௜

ܸ൫ݐ,ܹ௧, ݆൯

െ ௥௧ି݁ߠ ቌන ෍ߜ௜௝ሺݏሻ
௝ஷ௜

ݏ݀
௧

଴
ቍ ሚܵሺ݅, ሻݐ ቌܿ௜ሺݐሻ െ ݉௜ሺݐሻ ൅෍ߣ௜௝ሺݐሻܹሺݐ, ݆ሻ

௝ஷ௜

ቍ

൅ ௥௧ି݁ߠ ሚܵሺ݅, ሻݐ௜௝ሺߜሻ෍ݐ
௝ஷ௜

ܹሺݐ, ݆ሻ݀ݐ	

ൌ න

ۉ

ۈ
ۇ
݁ିఘ௧ݑሺܿ௜ሺݐሻ, ሻሻݐ௜ሺݍ ൅෍ߣ௜௝ሺݐሻ

௝ஷ௜

ܸ൫ݐ,ܹ௧, ݆൯
்

଴

൅ ௥௧ି݁ߠ ൮݉௜ሺݐሻ െ ܿ௜ሺݐሻ െ෍ߣ௜௝ሺݐሻ
௝ஷ௜

ܹሺݐ, ݆ሻ൲

ی

ۋ
ۊ
ቌන ෍ߜ௜௝ሺݏሻ

௝ஷ௜

ݏ݀
௧

଴
ቍ ሚܵሺ݅, ሻݐ

െ ൮݁ିఘ௧෍ߜ௜௝ሺݐሻ
௝ஷ௜

ܸ൫ݐ,ܹ௧, ݆൯ െ ሻݐ௜௝ሺߜ௥௧෍ି݁ߠ
௝ஷ௜

ܹሺݐ, ݆ሻ൲ ሚܵሺ݅,  ݐሻ݀ݐ

The first term inside the integral of the above expression represents the gain in marginal utility from a 

reduction in the probability of exiting state ௧ܻ ൌ ݅, and is analogous to the expression for 
డ௏/డఌ

డ௏/డௐ
ቚ
ఌୀ଴

 for 

life-extension. The second term represents the loss in marginal utility from the reduction in probability of 
transitioning to other possible states. If these other states correspond to lower health (utility) than state ݅, 
then the net effect on marginal utility is positive. 

Next, we choose the Dirac delta function for ߜሺ⋅ሻ, so that the probability is perturbed at ݐ ൌ 0 and 
remains unaffected otherwise. We also consider a reduction in the transition probability for only one 
alternative state, ݆଴, so that ߜ௜௝ሺݐሻ ൌ 0	∀݆ ് ݆଴. This simplifies the above expression to  

ߝ߲/ܸ߲
߲ܸ/߲ܹ

ቤ
ఌୀ଴

ൌ න

ۉ

ۈ
ۇ
݁ିఘ௧ݑ൫ܿ௜ሺݐሻ, ሻ൯ݐ௜ሺݍ ൅෍ߣ௜௝ሺݐሻ

௝ஷ௜

ܸ൫ݐ,ܹ௧, ݆൯ ൅ ௥௧ି݁ߠ ൮݉௜ሺݐሻ െ ܿ௜ሺݐሻ െ෍ߣ௜௝ሺݐሻ
௝ஷ௜

ܹሺݐ, ݆ሻ൲

ی

ۋ
ۊ ሚܵሺ݅, ሻݐ

்

଴

െ ቀ݁ିఘ௧ܸ൫ݐ,ܹ௧, ݆଴൯ െ ,ݐ௥௧ܹሺି݁ߠ ݆଴ሻቁ ሚܵሺ݅, 	ݐሻ݀ݐ

ൌ න ൮݁ିఘ௧ ሚܵሺ݅, ,ሻݐ൫ܿ௜ሺݑሻݐ ሻ൯ݐ௜ሺݍ ൅෍ߣ௜௝ሺݐሻ
௝ஷ௜

ܸ൫ݐ,ܹ௧, ݆൯൲݀ݐ
்

଴
െ ܸ൫0,ܹ௧, ݆଴൯

൅ ߠ

ۏ
ێ
ێ
ێ
ۍ

න

ۉ

ۈ
ۇ
݁ି௥௧ ൮݉௜ሺݐሻ െ ܿ௜ሺݐሻ െ෍ߣ௜௝ሺݐሻ

௝ஷ௜

ܹሺݐ, ݆ሻ൲

ی

ۋ
ۊ ሚܵሺ݅, ݐሻ݀ݐ

்

଴
൅ܹሺ0, ݆଴ሻ

ے
ۑ
ۑ
ۑ
ې
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ൌ ॱ ቈන ݁ିఘ௧ܵሺݐሻݑ ቀܿ௒೟ሺݐሻ, ሻቁݐ௒೟ሺݍ ݐ݀
்

଴
ቤ ଴ܻ ൌ ݅቉ െ ॱ ቈන ݁ିఘ௧ܵሺݐሻݑ൫ܿ௒೟ሺݐሻ, ݐሻ൯݀ݐ௒೟ሺݍ

்

଴
ቤ ଴ܻ ൌ ݆଴, ଴ܹ

∗ ൌ ܹ௡௘௪቉

൅ ߠ ቆॱ ቈන ݁ି௥௧ܵሺݐሻ ቀ݉௒೟ሺݐሻ െ ܿ௒೟ሺݐሻቁ ݐ݀
்

଴
ቤ ଴ܻ ൌ ݅቉

െ ॱ ቈන ݁ି௥௧ܵሺݐሻ ቀ݉௒೟ሺݐሻ െ ܿ௒೟ሺݐሻቁ ݐ݀
்

଴
ቤ ଴ܻ ൌ ݆଴, ଴ܹ

∗ ൌ ܹ௡௘௪቉ቇ 

where ܹ௡௘௪ represents the change in value of the annuity menu purchased in state ݅ when immediately 
jumping to state ݆଴. Dividing the above expression by the marginal utility of wealth, given by (25), then 
yields (27), the value of statistical illness (VSI). 

QED 

 


