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Abstract

Motivated by the wide applications of distortion function and copulas in insurance and finance, this
paper generalizes the notion of deterministic distortion function to a stochastic distortion function, i.e., a
random process, and employs the defined stochastic distortion function to construct a so-called stochas-
tic distorted copula. One method for constructing stochastic distortions is provided with a focus on
using time-change processes. After giving some families of stochastic distorted copulas, the stochastic
distorted copula is applied to a portfolio credit risk model with a numeric study to show the advantage
of using stochastic distorted copulas over conventional Gaussian copula and double t copula in terms of
fitting accuracy and catching tail dependence.

Keywords: Stochastic distortion, Stochastic distorted copula, Time-change process, Portfolio credit
risk model.

1 Introduction
A function D(u) ,u ∈ [0,1] is called a distortion function if it is non-decreasing with D(0) = 0 and

D(1) = 1. Distortion function is also called weighting function or probability distortion in economic and
behavioral studies, and it is one of the key elements of Kahneman and Tversky’s Nobel-prize-winning the-
ory, i.e., Prospect Theory and Cumulative Prospect Theory (Kahneman and Tversky, 1979; Tversky and
Kahneman, 1992). In Prospect Theory and Cumulative Prospect Theory, an inverse s-shaped distortion
function is applied to enlarge the low probability and dismiss the large probability so as to reflect the hu-
man subjective probability. Distortion function was also applied in an experimental design on Cumulative
Prospect Theory in Harrison and Swarthout (2016). With the advent of Cumulative Prospect Theory, distor-
tion function has been used in the portfolio selection and behavioral related study. For example, Aït-Sahalia
and Brandt (2001), Berkelaar et al. (2004), Jin and Zhou (2011) and Carassus and Rasonyi (2015) studied
the portfolio selection problem under the utility framework by combining with distortion function; Co-
hen and Jaffray (1988), Bleichrodt and Pinto (2000) and Bruhin et al. (2010) applied probability distortion
to study behavioral risk-taking and decision-making; Trepe et al. (2005), Zhang and Maloney (2012) and
Stauffer et al. (2015) employed distortion function to the study of neurosceince.

It has been a long history for applying distortion function in risk measure. For example, Yaari (1987)
formally applied the distortion function in dual theory of choice under risk; Wang (1996) defined Wang’s
premium principle by using distortion function and introduced the distortion risk measure, which covers
some well-known risk measures such as Value-at-Risk and expected shorfall. The distortion risk measures
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are perspective risk measures where entity’s attitude toward risk could be reflected by selecting appropriate
distortion functions (Dhaene et al., 2006). The distortion risk measures have been applied for computing in-
surance premiums (Landsman and Sherris, 2001), capital requirement (Hurlimann, 2004), capital allocation
(Tsanakas, 2004) and investment portfolio optimization (Sered et al., 2010).

Another important application of distortion function is to construct copula functions. A copula function
is a multi-dimensional distribution function with all uniform [0,1] marginal distributions. As an important
method for modeling dependence between risks, copulas have been used in credit risk modeling (Laurent
and Gregory, 2005; Burtschel and Gregory, 2005; Burtschell et al., 2012), actuarial science (Lindskog and
McNeil, 2001; Deelstra et al., 2011) and risk management (Dhaene et al., 2006; Li et al., 2014). See Joe
(1997) and Nelsen (2006) for a standard introduction to copulas and McNeil et al. (2015) for an overview
of applications in risk management. Given the popularity of copula models, constructing copulas by using
distortion functions has received attention too. For example, Genest and Rivest (2001), Klement et al.
(2005), Durante and Sempi (2005) and Durante et al. (2010) considered a distortion transformation of a
bivariate copula by distorting each component of the copula and inverting them; Morillas (2005) extended
this idea to multivariate copulas by applying absolutely monotonic distortion functions; Li et al. (2014)
introduced Distorted Mix Method to construct copula function by combining distortion functions with the
convex sum method, which leads to modeling copula function’s central part and tail parts separately.

This paper first extends the notion of distortion function to a stochastic distortion, which is a random
process with the same properties as a distortion function. One method for constructing a stochastic distortion
is provided by focusing on time-change processes. Since every semi-martingale is equivalent to a time-
change Brownian motion (Monroe, 1978), the time-change method provides a highly flexible way to build
more preferable financial models starting from some basic models, such as stochastic volatility models
(Carr and Wu, 2004; Li and Linetsky, 2014), credit risk models (Gordy and Szerszen, 2015; Costin et al.,
2014; Mendoza and Linetsky, 2016) and equilibrium pricing models (Shaliastovich and Tauchen, 2008).
In this paper, three important types of time-change processes, Lévy subordinator, additive subordinator
and absolutely continuous time-change process (Mendoza and Linetsky, 2016), are employed to construct
stochastic distortions.

Secondly we use the defined stochastic distortion functions to construct copulas. The new copula func-
tion is constructed from an original copula by using stochastic distortions to change each component of it,
which is called stochastic distorted copula. The stochastic distorted copula combines the information of the
copula function with the multivariate stochastic distortion function. Some examples of stochastic distorted
copulas are presented to demonstrate the usefulness and flexibility of the proposed method.

Finally we apply one type of stochastic distorted copula constructed from a linear factor model in Men-
doza and Linetsky (2016) to the multiname credit risk model. The copula function of this type is similar
to the commonly used factor Gaussian copula with the combination of systematic factor and idiosyncratic
factors, and it can incorporate the tail dependence and capture the default clustering simultaneously. In
comparison with Gaussian copula and double t copula, a numerical study is conducted to show that the
proposed new model gives more desirable results in calibrating CDO tranches’ price.

The remainder of the paper is organized as follows. Section 2 defines the stochastic distortion, and
provides some families of stochastic distortions via transforming some time-change processes. Section
3 uses the defined stochastic distortions to construct a new copula named as stochastic distorted copula,
and studies the density function and tail dependence of the stochastic distorted copula. Some classes of
stochastic distorted copulas are given in Section 4. Section 5 is an application of stochastic distorted copulas
to a portfolio credit risk model on fitting CDO market price. Conclusions are summarized in Section 6.
Some proofs are put in the appendix.
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2 Stochastic distortion

2.1 Definition of stochastic distortion
A distortion function D(u),u ∈ [0,1] is a non-decreasing function from [0,1] to [0,1] with D(0) = 0 and

D(1) = 1. Note that the distortion function is deterministic. In the next, we will introduce a notion named as
stochastic distortion, which generalizes the concept of deterministic distortion function to a random process.

Definition 2.1. (Stochastic distortion) A stochastic process X(u), u ∈ [0,1] is called a stochastic distortion
if X(u), u ∈ [0,1] is a non-decreasing process with X(0) = 0 and X(1) = 1 almost surely.

If X(u),u ∈ [0,1] is a stochastic distortion, then it is easy to see that the process

X̂(u) = 1−X(1−u),u ∈ [0,1]

is a stochastic distortion too, which is called the dual stochastic distortion of X(u). Since the stochastic
distortion X(u),u ∈ [0,1] is a non-decreasing process, it allows us to introduce its inverse process

X−1(u) = inf{v : X(v)≥ u} ,u ∈ [0,1],

which is a non-decreasing process as well. Throughout for each stochastic distortion X(u),u ∈ [0,1], we
define X(u) = 1,u > 1 and X(u) = 0,u < 0.

The following example gives a stochastic distortion constructed from a Poisson process.

Example 2.1. Suppose that Nt , t ≥ 0 is a Poisson process with intensity λ > 0. The Laplace transform of
Nt can be expressed as

E
[
eθNt

]
= exp(tψ (θ)) for any θ ≤ 0,

where
ψ (θ) = λ

(
eθ −1

)
.

For a fixed θ < 0, we define the stochastic process Xθ (u),u ∈ [0,1] as

Xθ (u) = 1− exp
(
θNωθ (1−u)

)
,u ∈ (0,1), and Xθ (0) = lim

u→0+
Xθ (u) , Xθ (1) = lim

u→1−
Xθ (u) ,

where ωθ (u) = ln(u)/ψ (θ) . Since the Poisson process is a non-decreasing process with P(N0 = 0) =
P(N∞ = ∞) = 1, we claim that Xθ is a non-decreasing process with Xθ (0) = 0 and Xθ (1) = 1 almost surely.
That is, for each θ < 0 the process Xθ is a stochastic distortion. Moreover, for u ∈ (0,1),

E [Xθ (u)] = E
[
1− exp

(
θNωθ (u)

)]
= 1− exp(ψ (θ)ωθ (u)) = u

and E [Xθ (0)] = 0,E [Xθ (1)] = 1. Hence for a fixed θ < 0, the stochastic distortion Xθ satisfies E [Xθ (u)] =
u,u ∈ [0,1].

Some properties of a stochastic distortion are summarized as follows. Its proof is put in the appendix.

Proposition 2.1. Consider the stochastic distortion X(u),u ∈ [0,1].
(1) If E [X(u)] ,u ∈ [0,1] is continuous, then the process X(u),u ∈ [0,1] is stochastic continuous, i.e., given
any ε > 0,

lim
h→0

P(| X(u+h)−X(u) |≥ ε) = 0;
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(2) If E [X(u)] ,u ∈ [0,1] is continuous, then for a,b ∈ [0,1] it holds that

P
({

X−1 (a)≤ b
}

∆{X(b)≥ a}
)
= 0, (1)

where ∆ is the set operation of symmetric difference;
(3) Assume U is a uniform [0,1] random variable and is independent of the stochastic distortion X(u),u ∈
[0,1]. Then X−1 (U) is a uniform [0,1] random variable if and only if E [X(u)] = u,u ∈ [0,1];
(4) Assume U is a uniform [0,1] random variable and is independent of the stochastic distortion X(u),u ∈
[0,1]. If E [X(u)] = u,u ∈ [0,1], then X(U) is larger than U in convex order, i.e., for any convex function φ

we have
E [φ (X(U))]≥ E [φ (U)] .

2.2 Construction of stochastic distortions
Example 2.1 provides a basic idea for constructing stochastic distortions from a non-decreasing stochas-

tic process. The next theorem presents a general approach for constructing a stochastic distortion.

Theorem 2.1. Suppose that Tt , t ∈ [0,∞) is a nonnegative and non-decreasing stochastic process, limt→0+ Tt =
T0 = 0, limt→∞ Tt = ∞ almost surely, and the function G(t) , t ∈ [0,∞) is a continuous monotonic function
with inft∈[0,∞)G(t) = 0,supt∈[0,∞)G(t) = 1. If g(t) = E [G(Tt)] , t ∈ [0,∞) is strictly monotonic and g−1

denotes its inverse function, then for any continuous monotone function α (u) ,u ∈ [0,1] satisfying

lim
u→0+

α (u) = g−1 (0) , lim
u→1−

α (u) = g−1 (1) ,

the random process

X(u) = G
(
Tα(u)

)
,u ∈ (0,1), and X(0) = lim

u→0+
X(u), X(1) = lim

u→1−
X(u)

is a stochastic distortion. Specially, if g(t) , t ∈ [0,∞) is continuous and strictly monotonic, then for α (u) =
g−1 (u) ,u ∈ [0,1] the stochastic distortion X(u),u ∈ [0,1] satisfies that E [X(u)] = u,u ∈ [0,1].

Proof. Without loss of generality, we assume that G(t) , t ∈ [0,∞) is non-decreasing. Thus the func-
tion g(t) = E [G(Tt)], t ∈ [0,∞) is non-decreasing, and g−1(t), t ∈ [0,∞) is well defined and it is non-
decreasing. Then g−1 (0) ≤ g−1 (1) and α (u) ,u ∈ [0,1] is non-decreasing. From inft∈[0,∞)G(t) = 0 and
supt∈[0,∞)G(t) = 1, we have g(0) = 0, limt→∞ g(t) = 1, which imply that limu→0+ α (u) = g−1 (0) = 0 and
limu→1− α (u) = g−1 (1) = ∞. Therefore X(u),u ∈ [0,1] is a non-decreasing stochastic process with

X(0) = lim
u→0+

G
(
Tα(u)

)
= 0 and X(1) = lim

u→1−
G
(
Tα(u)

)
= 1 almost surely,

i.e., X(u),u ∈ [0,1] is a stochastic distortion. Specially, when g(t) , t ∈ [0,∞) is strictly increasing and
continuous, for α(u) = g−1 (u) we have

E [X(u)] = E
[
G
(

Tg−1(u)

)]
= g

(
g−1 (u)

)
= u,u ∈ (0,1)

and E [X(0)] = 0, E [X(1)] = 1.
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Theorem 2.1 shows that a stochastic distortion can be constructed easily and flexibly from a non-
decreasing stochastic process. Example 2.1 is a special case in that we choose Tt as a Poisson process
and G(x) = 1−eθx,θ < 0. Since Laplace transform of a stochastic process has usually been well-studied in
the literature, this paper mainly focuses on using the function G(x) = 1− eθx,θ < 0 or G(x) = eθx,θ < 0
for constructing stochastic distortions via the Laplace transform of a stochastic process.

The following corollary is easily derived from Theorem 2.1.

Corollary 2.1. Let Tt , t ∈ [0,∞) be a nonnegative and non-decreasing stochastic process, limt→0+ Tt = T0 =
0, limt→∞ Tt = ∞ almost surely, and its Laplace transform is given by

E
[
eθTt
]
= eKθ (t), θ < 0. (2)

Then for fixed θ < 0 and ω (u) = K−1
θ

(ln(u)), the random process

XLT (u) = exp
(
θTω(u)

)
,u ∈ (0,1), and XLT (0) = lim

u→0+
XLT (u), XLT (1) = lim

u→1−
XLT (u) (3)

is a stochastic distortion satisfying E
[
XLT (u)

]
= u,u ∈ [0,1].

For comparing XLT with its dual stochastic distortion X̂LT , Table 1 reports their differences as u tends
to zero.

Stochastic distortion and its dual stochastic distortion u→ 0+

XLT (u) = exp
(
θTω(u)

)
,ω (u) = K−1

θ
(ln(u)) ω (u)→ ∞,Tω(u)→ ∞,XLT (u)→ 0

X̂LT (u) = 1− exp
(

θTω̂(u)

)
, ω̂ (u) = K−1

θ
(ln(1−u)) ω̂ (u)→ 0,Tω̂(u)→ 0, X̂LT (u)→ 0

Table 1: Comparison of stochastic distortion and its dual stochastic distortion.

Time-change process, especially the time-change Brownian motion, is a standard process for connecting
diffusions and Brownian motions. Since Monroe (1978) showed that any semi-martingale is a time-change
Brownian motion and it is known that most stochastic processes used in finance are semi-martingales, thus
the time-change technique has become quite popular in the literature of finance. There are three important
types of time-change processes, Lévy subordinator, additive subordinator and absolutely continuous time-
change process (Mendoza and Linetsky, 2016). Based on these types of time-change processes, we will
construct stochastic distortions by applying Theorem 2.1.

2.2.1 Laplace transform of Lévy subordinator

Lévy process is essentially a stochastic process with stationary and independent increments. Formally a
Lévy process Lt on Rd is typically described by its triplet (A,N,γ), such that its characteristic function can
be expressed as

E
[
exp
(
izT Lt

)]
= exp(tψ (z)) , z ∈ Rd

with

ψ (z) = −1
2

zT Az+ iγT z+
ˆ
Rd

(
eizT x−1− izT x1||x||≤1

)
N(dx) ,

where A,γ and N are called diffusion term, drift term and multi-dimensional Lévy measure, respectively.
We can also express the above function as

ψ (z) = −1
2

zT Az+ ibT z+
ˆ
Rd

(
eizT x−1

)
N(dx) ,
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where b= γ−
´
||x||≤1 xN(dx). If A= 0, b∈Rd

+ and N is a σ -finite measure on Rd concentrated on Rd
+\{0}

such that
´
Rd
+
(||x||∧1)N(dx)<∞, then Lt is called a multivariate Lévy subordinator. See Cont and Tankov

(2004) and Mendoza and Linetsky (2016) for details.
For one-dimensional Lévy subordinator Tt , t ≥ 0, we have

Kθ (t) = tl(θ) (4)

in (2) with

l (θ) = bθ +

ˆ
∞

0

(
eθx−1

)
ν (dx) , (5)

where ν is a one-dimensional Lévy measure. Here l (θ) is called the Laplace exponent of the Lévy subor-
dinator Tt . Obviously, l (θ) is an increasing and convex function with l (θ) ≤ l (0) = 0 for θ ≤ 0. In the
case max(b,ν ((0,∞]))> 0, we have limt→∞ E

[
e−Tt

]
= 0, which implies that limt→∞ Tt = ∞ almost surely.

Hence XLT in (3) is a stochastic distortion with E
[
XLT (u)

]
= u,u ∈ [0,1].

Example 2.2. For the one-dimensional Lévy subordinator Tt , t ≥ 0, we assume b = 0 and focus on the Lévy
measure ν with the additional restriction E [Tt ] = t, i.e.,

ˆ
∞

0
xν (dx) = 1.

When the tail of the Lévy measure decays exponentially, i.e.,

ν (x) =
1

Γ(1−α)

(
1−α

κ

)1−α e−(1−α)x/κ

x1+α
1x>0, (6)

where κ is a positive constant and 0≤ α < 1, the corresponding Lévy subordinator is called as a tempered
stable subordinator. The family of tempered stable subordinators includes two special types of processes,
the Gamma process (α = 0) and the inverse Gaussian process (α = 1/2). The parameter α is the index of
stability and it determines the relative importance of small jumps in the path of the process. The parameter
κ =Var(T1) describes the randomness of the time-change process. When κ tends to zero, the effect of time-
change perturbation tends to be vanished. By (5), the Laplace exponent of the tempered stable subordinator
can be expressed as

l (θ) =

{
1−α

κα

[
1−
(
1− κθ

1−α

)α
]
, 0 < α < 1,

− ln(1−κθ)
k , α = 0.

(7)

Thus from (4) and (7), by applying (2) and (3), we can derive the expression for the stochastic distortion
transformed from the tempered stable subordinator.

Remark 2.1. Let Tt be the first time required for u+Wu to reach the value t, where Wu is a standard Brownian
motion. Then it is known that Tt is an inverse Gaussian process with E [Tt ] = t and Var (T1) = 1. In other
words, the inverse Gaussian process can be seen as the first passage time of the drifted Brownian motion.
Thus Example 2.2 shows that we can apply Brownian motion to construct stochastic distortions as well.

2.2.2 Laplace transform of the additive subordinator

Additive subordinator is an extension of Lévy subordinator without assuming stationary increment.
Thus it is generally time inhomogeneous. For an additive subordinator Tt , t ≥ 0 and θ ≤ 0, it satisfies that

E
[
eθTt
]
= e
´ t

0 l(θ ,y)dy, t ≥ 0
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with
l (θ ,y) = θb(y)+

ˆ
∞

0

(
eθx−1

)
ν (y,dx) ,

where b(y)≥ 0 and
´

∞

0 (x∧1)ν (y,dx)< ∞. Thus we have

Kθ (t) =
ˆ t

0
l (θ ,y)dy

in (2) and (3). It is easy to verify that T0 = 0. On the other hand, if
´

∞

0 l (θ ,y)dy = −∞, we have
limt→∞ E

[
eθTt
]
= 0, which implies that limt→∞ Tt = ∞ almost surely.

2.2.3 Laplace transform of the absolutely continuous time-change process

The stochastic distortions transformed by Lévy subordinators and additive subordinators are jump pro-
cesses. In the following, we will introduce stochastic distortions transformed from absolutely continuous
time-change processes.

Let Vt be a nonnegative activity rate process with the initial value V0. The cumulative activity rate
Tt =
´ t

0 Vsds, t > 0 is an absolutely continuous process. The choice of an activity rate process Vt is flexible,
such as the square of any non-vanished stochastic process. For instance, if the activity rate process Vt is
chosen as a CIR process

dVt = b(a−Vt)dt +σ
√

VtdWt ,

where a,b,σ are positive constants and Wt is the standard Brownian motion, then we have

Kθ (t) = α (θ , t)+β (θ , t)V0,θ ≤ 0

in (2) and (3), where α (θ , t) and β (θ , t) are the exponential affine coefficients of the CIR process. See
Duffie et al. (2000) for the mathematical expression of α (θ , t) and β (θ , t). By Duffie et al. (2000), we have

lim
t→∞

E
[

exp
(
−
ˆ t

0
Vsds

)]
= 0,

which implies Tt =
´ t

0 Vsds→ ∞ almost surely as t→ ∞.

3 Stochastic distorted copula
In this section, we will show how stochastic distortion can be employed to construct new copulas.

3.1 Definition of stochastic distorted copula
Given n-dimensional copula function B and multivariate stochastic distortion

X(u) = (X1 (u) , . . . ,Xn (u)),

for ui ∈ [0,1], i = 1, . . . ,n we define

CX|B (u1, . . . ,un) = E [B(X1 (u1) ,X2 (u2) , . . . ,Xn (un))] . (8)

The above definition combines the information of the copula function B with the multivariate stochastic
distortion (X1 (u) , . . . ,Xn (u)). An interesting question is when the above formula defines a new copula.

7



To begin with, we recall the definition of positive quadrant dependent (PQD) order, which is the most
common stochastic order of positive dependence in the literatures. Let U = (U1,U2, . . . ,Un) be a random
vector with distribution F and survival function F̂ , and V = (V1,V2, . . . ,Vn) be a random vector with distri-
bution G and survival function Ĝ. If F(u)≤G(u) and F̂(u)≤ Ĝ(u) for all u, then we say U is smaller than
V in the PQD order, denoted by U≤PQD V or F ≤PQD G. By selecting u = (∞, . . . ,∞,ui,∞, . . . ,∞), we can
see that only the random vectors with the common univariate marginal distributions can be compared in the
PQD order. For more details on PQD order, see Chapter 9 of Shaked and Shanthikumar (2007).

In the family of copula functions, we denote the Fréchet upper bound by C+(u1, . . . ,un)=min(u1, . . . ,un),
u1, . . . ,un ∈ [0,1], the product copula by Π(u1, . . . ,un) = ∏

n
i=1 ui,u1, . . . ,un ∈ [0,1], and the Fréchet lower

bound by C−(u1, . . . ,un) = max(u1 + . . .+un−n+1,0) ,u1, . . . ,un ∈ [0,1]. It is known that the Fréchet
lower bound C−(u1, . . . ,un) is a copula function only when n = 2. Here we also call C+(u1, . . . ,un) as the
comonotonic copula, and C−(u1,u2) as the countermonotonic copula.

Theorem 3.1. (Stochastic distorted copula) Suppose that for i = 1, . . . ,n, the stochastic distortion Xi satis-
fies E [Xi (u)] = u,u ∈ [0,1] and B is a copula function.
(1) The function CX|B in (8) is a copula function. Moreover, if the random vector (U1, . . . ,Un) has distri-
bution B and (U1, . . . ,Un) is independent of the stochastic distortions Xi (u) ,u ∈ [0,1], i = 1, . . . ,n, then the
random vector

(
X−1

1 (U1) , . . . ,X−1
n (Un)

)
has distribution CX|B.

(2) For copula functions B1,B2 satisfying that B1 ≤PQD B2, we have

CX|B1 ≤PQD CX|B2. (9)

(3) When n = 2, we have

CX|C− ≤PQD CX|B ≤PQD CX|C+, ρCX|C− ≤ ρCX|B ≤ ρCX|C+ , (10)

where ρC represents the correlation index of copula function C, including linear correlation coefficient,
Kendall’s τ , Spearman’s ρ , and Blomquist’s q. Specially, if X1 (u1) and X2 (u2) are mutually independent,
we have

CX|C− ≤PQD Π≤PQD CX|C+, ρCX|C− ≤ 0≤ ρCX|C+ . (11)

For the copula function defined in (8), we call it a stochastic distorted copula, and the copula function
B is named as the base copula of the stochastic distorted copula. The stochastic distorted copula CX|B can
be regarded as changing each component of the copula function B by the stochastic distortions X1, . . . ,Xn.
Note that the stochastic distortions X1, . . . ,Xn may be correlated or independent.

It follows from Theorem 3.1 that the stochastic distortions keep the PQD order and the correlation index
ρCX|B is bounded by ρCX|C− ≤ ρCX|B ≤ ρCX|C+ in the two-dimensional case.

Another fundamental transformation-based method for constructing copula function is the convex sum.
Combining the ideas of stochastic distortion and convex sum, we directly have the following corollary. Its
proof is omitted.

Corollary 3.1. Assume that the parameter Z ∈ Ξ is a random variable and for each z ∈ Ξ the function Bz
is a copula. If for each fixed i = 1, . . . ,n, conditional on Z the random process Xi is a stochastic distortion
with E [Xi (u)|Z] = u,u ∈ [0,1], then

CX,Z|BZ (u1, . . . ,un), E [BZ (X1 (u1) , . . . ,Xn (un))] ,u1, . . . ,un ∈ [0,1]

is a copula function.
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One example of the above stochastic distorted copula is constructed as follows. Let Z be an index
variable with distribution P(Z = j) = α j, j ≥ 1. Consider n-dimensional copula functions B j, j = 1,2, . . .,
and different distortion functions Di, j, i, j ≥ 1 satisfying

∑
j

α jDi, j (u) = u, u ∈ [0,1] .

Put Xi (u) = Di,Z (u) ,u ∈ [0,1]. Then Xi, i = 1, . . . ,n, are stochastic distortions satisfying the condition in
Corollary 3.1 with finite trajectories

P
(
Xi (u) = Di, j (u) ,u ∈ [0,1]

)
= P(Z = j) = α j, i = 1, . . . ,n, j ≥ 1.

Therefore it follows from Corollary 3.1 that

CX,Z|BZ (u1, . . . ,un) = E[BZ (D1,Z (u1) , . . . ,Dn,Z (un)] = ∑
j

α jB j
(
D1, j (u1) , . . . ,Dn, j (un)

)
(12)

is a copula function, which is consistent with the Distorted Mix Method (DMM) in Li et al. (2014). In other
words, the above method in Corollary 3.1 can be viewed as a generalization of the DMM method in Li et
al. (2014).

The following proposition shows that the survival copula of a stochastic distorted copula also has the
form of (8) with survival base copula and dual stochastic distortions.

Proposition 3.1. Under the conditions of Theorem 3.1, CX̂|B̂ is the survival copula of CX|B, where B̂ is the
survival copula of B and X̂i is the dual stochastic distortion of Xi, i = 1, . . . ,n.

Proof. Let (U1, . . . ,Un) be a random vector with distribution B and assume that (U1, . . . ,Un) is independent
of the stochastic distortions X1, . . . ,Xn. Then (1−U1, . . . ,1−Un) has copula B̂. By Theorem 3.1, we have

ĈX|B(u1, . . . ,un) = P
(
1−X−1

1 (U1)≤ u1, . . . ,1−X−1
n (Un)≤ un

)
= P

(
X−1

1 (U1)≥ 1−u1, . . . ,X−1
n (Un)≥ 1−un

)
.

Note that X−1
i (Ui) is Uniform [0,1] random variable, it follows from the above equation that

ĈX|B(u1, . . . ,un) = P
(
X−1

1 (U1)> 1−u1, . . . ,X−1
n (Un)> 1−un

)
= P(U1 > X1 (1−u1) , . . . ,Un > Xn (1−un)) .

Since X̂i (ui) = 1−Xi (1−ui), we further have

ĈX|B(u1, . . . ,un) = P
(

1−U1 < X̂1 (u1) , . . . ,1−Un < X̂n (un)
)

= P
(

1−U1 ≤ X̂1 (u1) , . . . ,1−Un ≤ X̂n (un)
)

= E
[
B̂
(

X̂1 (u1) , . . . , X̂n (un)
)]

= CX̂|B̂(u1, . . . ,un), u1, . . . ,un ∈ [0,1],

which completes the proof.

Indeed some correlation models in credit risks can be derived by using a stochastic distorted copula.
The following example illustrates such an application of stochastic distorted copula in credit portfolio.

9



Example 3.1. Suppose that each entity in the financial market has a business time reflecting the information
rate. Let τ̃1, τ̃2, . . . , τ̃n be the default times of n entities in business time and each τ̃i has a constant intensity
λ̃i. We denote the calendar default times of the n entities by τ1,τ2, . . . ,τn. For i = 1, . . . ,n, the business
time τ̃i and the calendar time τi are connected by τ̃i = T (i)

τi , where T (i)
t is a stochastic time-change process

mapping calendar time to business time, and we also assume that T (i)
t is independent of τ1,τ2, . . . ,τn. The

copula function among τ̃1, τ̃2, . . . , τ̃n is denoted by C. Then for Ui = 1− exp
(
−λ̃iτ̃i

)
, i = 1, . . . ,n, we have

C (u1, . . . ,un) = P(U1 ≤ u1, . . . ,Un ≤ un) .

The survival function of τ̃i can be expressed as Si (ti) = exp
(
−λ̃iti

)
.

Following the assumption in Gordy and Szerszen (2015), we suppose that T (i)
t is an inverse Gaussian

process with mean t and variance κit, i.e., its Laplace transform is E
[
eθT (i)

t

]
= exp(tψi (θ)) with ψi (θ) =

1
κi

(
1−
√

1−2κiθ
)
, θ ≤ 0. Under the above setup, the joint distribution of τ1,τ2, . . . ,τn can be expressed

as

P(τ1 ≤ t1, . . . ,τn ≤ tn) = P
(

τ̃1 ≤ T (1)
t1 , . . . , τ̃n ≤ T (n)

tn

)
= E

[
C
(

1− exp
(
−λ̃1T (1)

t1

)
, . . . ,1− exp

(
−λ̃nT (n)

tn

))]
with marginal distribution P(τi ≤ ti) = 1−E

[
exp
(
−λ̃iT

(i)
ti

)]
= 1− exp

(
tiψi

(
−λ̃i

))
. Thus the copula

function among τ1,τ2, . . . ,τn can be expressed as

Ctc (u1, . . . ,un) = E
[
C
(

1− exp
(
−λ̃1T (1)

Θ1(1−u1)

)
, . . . ,1− exp

(
−λ̃nT (n)

Θn(1−un)

))]
(13)

with Θi (ui) = ln(ui)/ψi

(
−λ̃i

)
, where

Xi (u) = 1− exp
(
−λ̃iT

(i)
Θi(u)

)
,u ∈ (0,1), and Xi (0) = lim

u→0+
Xi (u) , Xi (1) = lim

u→1−
Xi (u) , (14)

which is a stochastic distortion with E [Xi (u)] = u, i = 1, . . . ,n,u ∈ [0,1]. Hence, it follows from Theorem
3.1 that the function Ctc in (13) is a stochastic distorted copula.

The stochastic distorted copula Ctc comes from the base copula C by adding the perturbation of the
stochastic distortions X1, . . . ,Xn. Note that κi equals to the variance of T (i)

1 , thus T (i)
t converges to t almost

surely as κi tends to zero. That is, Ctc (u1, . . . ,un) converges to C (u1, . . . ,un) as κi, i = 1, . . . ,n all tend to
zero. Note that the dual stochastic distortion of the stochastic distortion (14) is a special type of the tempered
stable subordinator distortion with α = 1/2,θ =−λ̃ in (7).

3.2 Density function of the stochastic distorted copula
For the stochastic distorted copula introduced above, one may wonder how to calculate its density func-

tion. In the following, we show this can be done by simply using the transition operator for Markov pro-
cesses and the infinitesimal generator for Feller processes.

To begin with, we first review the transition operator for Markov processes and the infinitesimal gener-
ator for Feller processes. The transition operator for a Markov process Xt , t ≥ 0 is defined as

Pt f (x) = E [ f (Xt + x)] .
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Let C0 be the set of continuous functions vanishing at infinity. The Markov process Xt is called a Feller pro-
cess if for any f ∈C0 and fixed t > 0, the function Pt f (x),x∈ (−∞,∞) belongs to C0 and limt→0+ Pt f (x)=
f (x) ,x ∈ (−∞,∞). A Feller process can be described by its infinitesimal generator A defined as

A f (x) = lim
t→0+

1
t
(Pt f (x)− f (x)) = lim

t→0+

1
t
(E [ f (Xt + x)]− f (x)) (15)

for f ∈ D (A ). Here D (A ) represents the domain of the infinitesimal generator of Xt , that is, the subset
of C0 such that the right-hand side of (15) exists. As we know, a Lévy process is a Feller process. Below
we will use the stochastic distorted copula constructed from the Lévy subordinator to show how the density
function of a stochastic distorted copula can be computed.

Consider the Lévy subordinator distortions

Xi (u) = 1− exp
(

θiT
(i)

ω̂i(u)

)
,u ∈ (0,1), and Xi (0) = lim

u→0+
Xi (u) , Xi (1) = lim

u→1−
Xi (u)

with ω̂i (u) = ln(1−u)/li (θi) , i = 1, . . . ,n, each of which is the dual stochastic distortion of the stochastic
distortion defined in (2)-(5). The reason for selecting the dual form follows from Table 1, where T (i)

ω̂i(u)
tends

to T (i)
0 when u tends to zero. Assume that b = 0 in (5). Using Proposition 1.9 in Page 285 of Revuz and Yor

(1999), the infinitesimal generator of the Lévy subordinator T (i)
t satisfies that

A
T (i)
·

f (x) = lim
t→0+

1
t

(
E
[

f
(

T (i)
t + x

)]
− f (x)

)
=

ˆ
∞

0
( f (x+ y)− f (x))νi (dy) ,x > 0 (16)

for f ∈ C0, where νi is the Lévy measure of the subordinator T (i)
t . Further the infinitesimal generator of

T (i)
ω̂i(u)

is

A
T (i)

ω̂i(·)
f (x) = lim

u→0+

1
u

(
E
[

f
(

T (i)
ω̂i(u)

+ x
)]
− f (x)

)
= A

T (i)
·

f (x) · ω̂
′
i (0) =−

´
∞

0 ( f (x+ y)− f (x))νi (dy)
li (θi)

,x > 0. (17)

When the Lévy subordinator distortions Xi, i = 1, . . . ,n are independent, we can calculate the density
function of the stochastic distorted copula according the following procedure. For the base copula B and
the independent Lévy subordinator distortions Xi, i = 1, . . . ,n, we denote

h1(x1;X2 (u2) , . . . ,Xn (un)) = B(1,X2 (u2) , . . . ,Xn (un))−B(1− exp(θ1x1) ,X2 (u2) , . . . ,Xn (un)) ,x1 ≥ 0.

For simplicity, we use h1 (x1) to represent h1 (x1;X2 (u2) , . . . ,Xn (un)) in the following. Since h1 ∈ C0, we
know that h1 ∈D

(
A

T (1)
·

)
. Then by the Lipschitz continuity of copula function, we have

1
|s|

∣∣∣E [h1

(
T (1)

ω̂1(u1+s)

)
−h1

(
T (1)

ω̂1(u1)

)∣∣X2(u2), . . . ,Xn(un)
]∣∣∣

≤ 1
|s|

E
[∣∣h1

(
T (1)

ω̂1(u1+s)

)
−h1

(
T (1)

ω̂1(u1)

)∣∣∣∣∣X2(u2), . . . ,Xn(un)
]

=
1
|s|

E
[∣∣B(1− exp

(
θ1T (1)

ω̂1(u1+s)

)
,X2 (u2) , . . . ,Xn (un)

)
−B
(

1− exp
(

θ1T (1)
ω̂1(u1)

)
,X2 (u2) , . . . ,Xn (un)

)∣∣∣∣∣X2(u2), . . . ,Xn(un)
]

≤ 1
|s|

E
[∣∣exp

(
θ1T (1)

ω̂1(u1)

)
− exp

(
θ1T (1)

ω̂1(u1+s)

)∣∣] .
11



Applying ET (1)
ω̂1(u1)

= u1,ET (1)
ω̂1(u1+s) = u1 + s, we have

E
[
| exp

(
θ1T (1)

ω̂1(u1)

)
− exp

(
θ1T (1)

ω̂1(u1+s)

)
|
]
≤ E

[
|T (1)

ω̂1(u1)
−T (1)

ω̂1(u1+s)|
]
= |s|.

Thus combining the above inequalities, we show that

1
|s|

∣∣∣E [h1

(
T (1)

ω̂1(u1+s)

)
−h1

(
T (1)

ω̂1(u1)

)
|X2(u2), . . . ,Xn(un)

]∣∣∣≤ 1.

Using the dominated convergence theorem, the first-order partial derivative of the stochastic distorted copula
satisfies that

∂

∂u1
CX|B (u1, . . . ,un) = − lim

s→0+

1
s

E
[
h1

(
T (1)

ω̂1(u1+s)

)
−h1

(
T (1)

ω̂1(u1)

)]
= − lim

s→0+

1
s

E
[
E
[
h1

(
T (1)

ω̂1(u1+s)

)
−h1

(
T (1)

ω̂1(u1)

)
| X2(u2), . . . ,Xn(un)

]]
= −E

[
lim

s→0+

1
s

E
[
h1

(
T (1)

ω̂1(u1+s)

)
−h1

(
T (1)

ω̂1(u1)

)
| X2(u2), . . . ,Xn(un)

]]
.

Given X2(u2), . . . ,Xn(un), the function h1 belongs to the domain of the infinitesimal generator of Tω̂1(u1)
,

thus by Proposition 1.2 in Page 282 of Revuz and Yor (1999) we have

∂

∂u1
CX|B (u1, . . . ,un)

= E
[ˆ

∞

0
(B(1− e

θ1(T
(1)

ω̂1(u1)
+y)

,X2(u2), . . . ,Xn(un))−B(1− e
θ1T (1)

ω̂1(u1),X2(u2), . . . ,Xn(un)))ν1(dy)
]

· −1
l1(θ1)

,

where l1(θ) is the Laplace exponent of T (1)
t . Repeating the above procedure, we can obtain the density

function of the Lévy subordinator distorted copula.
The density expression of the bivariate case is given in the following proposition by using the above idea.

A detailed proof will be given in the appendix. In the following, we denote by VB ([a,b]) the probability
volume of copula B on the rectangular [a,b].

Proposition 3.2. Consider the bivariate Lévy subordinator distorted copula

CX|B (u1,u2) = E [B(X1 (u1) ,X2 (u2))] ,u1,u2 ∈ [0,1],

where Xi, i = 1,2 are the dual version of Lévy subordinator distortions defined in (2)-(5) with b = 0. If the
stochastic distortions X1 and X2 are independent, then the density function cX|B of CX|B can be expressed as

cX|B(u1,u2) =
1

l1 (θ1) l2 (θ2)
E
[ˆ

∞

0

ˆ
∞

0
VB ([a(u1,u2),b(u1,u2;y1,y2)])ν1 (dy1)ν2 (dy2)

]
,u1,u2 ∈ (0,1),

where

a(u1,u2) =

(
1− e

θ1T (1)
ω̂1(u1),1− e

θ2T (2)
ω̂2(u2)

)
,b(u1,u2;y1,y2) =

(
1− e

θ1(T
(1)

ω̂1(u1)
+y1),1− e

θ2(T
(2)

ω̂2(u2)
+y2)
)
.
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The above proposition states that if the stochastic distortions are mutually independent, the family of
Lévy subordinator distortions defined in (2)-(5) with b = 0 can guarantee the existence of the density func-
tion even if the base copula is not differentiable.

Generally, given the density function cX|B of the stochastic distorted copula CX|B, for any A∈B ([0,1]n)
we have ˆ

A
cX|B (u)du = P

((
X−1

1 (U1) , . . . ,X−1
n (Un)

)
∈ A

)
= P((U1, . . . ,Un) ∈ X(A)) ,

where (U1, . . . ,Un) has distribution B, X(A) = {(X1 (u1) , . . . ,Xn (un)) : (u1, . . . ,un) ∈ A} and (U1, . . . ,Un)
is independent of (X1 (u1) , . . . ,Xn (un)).

3.3 Tail dependence of stochastic distorted copula
Consider the stochastic distorted copula with the base copula B and the multi-dimensional stochastic

distortion X(u) = (X1 (u) ,X2 (u) , . . . ,Xn (u)). The tail dependence coefficient of the stochastic distorted
copula can be directly expressed by the infinitesimal generator of X(u) = (X1 (u) ,X2 (u) , . . . ,Xn (u)).

When the multi-dimensional stochastic distortion X(u) = (X1 (u) ,X2 (u) , . . . ,Xn (u)) is a Feller process
with E [Xi (u)] = u, i = 1, . . . ,n, then the lower tail dependence coefficient of the stochastic distorted copula
CX|B (u1, . . . ,un) is given by

λ
L
CX|B , lim

u→0+

CX|B (u, . . . ,u)
u

= lim
u→0+

E [B(X1 (u) ,X2 (u) , . . . ,Xn (u))]
u

(18)

whenever the limit exists.
For a stochastic distortion constructed from the Lévy subordinator, the lower tail dependence coefficient

has the following expression.

Proposition 3.3. Consider the Lévy subordinator distorted copula

CX|B (u1, . . . ,un) = E [B(X1 (u1) , . . . ,Xn (un))] ,u1, . . . ,un ∈ [0,1]

where θ < 0,

Xi (u) = 1− exp
(

θS(i)
ω̂(u)

)
,u ∈ (0,1), and Xi (0) = lim

u→0+
Xi (u) , Xi (1) = lim

u→1−
Xi (u) ,

here ω̂ (u) = ln(1−u)/l (θ) and l (θ) = γθ +
´

∞

0

(
eθx−1− x1|x|≤1

)
ν (dx) is the common Laplace expo-

nent of the Lévy subordinator S(i)t , i = 1, . . . ,n. When the base copula B is differentiable at 0 = (0, . . . ,0),
the lower tail dependence coefficient of CX|B can be expressed as

λ
L
CX|B =

1
l (θ)

(
γθ

n

∑
i=1

∂B
∂ui

(0)−
ˆ
Rn
+

(
B
(

1− eθy1, . . . ,1− eθyn
)
+

n

∑
i=1

θ
∂B
∂ui

(0)yi1||y||≤1

)
N(dy)

)
, (19)

where N is the joint Lévy measure of St =
(

S(1)t , . . . ,S(n)t

)
.

Proof. From (18), we can express the lower tail dependence coefficient of the Lévy subordinator distorted
copula as

λ
L
CX|B =− lim

t→0+

E
[
H
(

Sω̂(t)

)
−H (0)

]
t

=− lim
t→0+

E [H (St)−H (0)]
t

ω̂
′(0) =−A H (0) ω̂

′(0), (20)
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where
H (x1, . . . ,xn) = 1−B(1− exp(θx1) , . . . ,1− exp(θxn)) , lim

||x||→∞

H (x) = 0, (21)

and A is the infinitesimal generator of X(u) defined in (15). Since the base copula B is continuous and
lim||x||→∞ H (x) = 0, we know H belongs to the domain of the infinitesimal generator of X(u). The purpose
that we introduce H here is to make a transformation for B so that the function H belongs to the domain of
the infinitesimal generator of X(u).

Using Proposition 3.16 in Cont and Tankov (2004) we know that the infinitesimal generator of St =(
S(1)t , . . . ,S(n)t

)
equals to

A H (x) = lim
t→0+

1
t
(E [H (St +x)]−H(x))

= γ

n

∑
i=1

∂H
∂xi

(x)+
ˆ
Rn
+

(
H (x+y)−H (x)−

n

∑
i=1

∂H
∂xi

(x)yi1||y||≤1

)
N(dy) . (22)

Combining (20)-(22) and ω̂ ′(0) =− 1
l(θ) , we get (19).

Since
´
Rn
+
(||x||∧1)N(dx) < ∞ and ∂B

∂ui
(0) , i = 1, . . . ,n are bounded, the integral (19) is finite. More-

over, when the subordinators are pure jump processes (i.e., zero drift speeds) and they are mutually inde-
pendent, the lower tail dependence of the subordinator distorted copula vanishes even if the base copula has
tail dependence.

4 Some families of stochastic distorted copulas
As noted before, the stochastic distorted copula defined in (8) consists of two components: the base

copula function B and the stochastic distortions Xi, i ≤ n. In this section, we will give some families of
stochastic distorted copulas to demonstrate the versatility of stochastic distortions.

It is argued that FGM copula, comonotonic copula and countermonotonic copula are three important
copulas in modeling dependence. For example, FGM copula has been widely-used due to its simple poly-
nomial form (Nelsen, 2006); Comonotonicity and countermonotonicity are important dependence structures
used in finance and insurance (Deelstra et al., 2011; Yang et al., 2009). In the following, first we choose
FGM copula as the base copula to illustrate the influence of the stochastic distortions on correlation. Sec-
ond we use the comonotonic copula and countermonotonic copula as the base copula to show the effect
of stochastic distortions on copula’s desingularization. Finally, by choosing the product copula as the base
copula and applying the factor-structured stochastic distortions we present one type of stochastic distorted
copulas to reflect the correlation structure of a linear factor model.

In the following, we focus our discussion on the stochastic distortions constructed from Lévy subordi-
nators.

4.1 FGM copula as the base copula
The n-dimensional FGM copula is given by

CFGM (u1, . . . ,un) =
n

∏
i=1

ui

(
1+

n

∑
k=2

∑
1≤ j1<···< jk≤n

η j1 j2··· jk ū j1 ū j2 · · · ū jk

)
,u1, . . . ,un ∈ [0,1], (23)
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where ūi = 1−ui, i≤ n and | η j1 j2··· jk |≤ 1 for all 1≤ j1 < · · ·< jk ≤ n. When FGM copula is chosen as the
base copula and the marginal stochastic distortions are mutually independent or the same, the corresponding
stochastic distorted copula is given in the following proposition. The proof will be given in the appendix.

Proposition 4.1. Assume that the base copula is chosen as FGM copula in (23), and the multivariate
stochastic distortions are Lévy subordinator distortions

Xi (u) = exp
(

θiT
(i)

ωi(u)

)
,u ∈ (0,1), and Xi (0) = lim

u→0+
Xi (u) , Xi (1) = lim

u→1−
Xi (u) ,

where for each i = 1, . . . ,n, the parameter θi < 0, ωi (u) = ln(u)/li (θi) and T (i)
t is the Lévy subordinator

with Laplace exponent li (θi).
(a) If the Lévy subordinators T (i)

t , i = 1, . . . ,n are independent, then the stochastic distorted copula is given
by

CΠ
FGM (u1, . . . ,un)

=
n

∏
i=1

ui

[
1+

n

∑
k=2

∑
1≤ j1<···< jk≤n

η j1 j2··· jk

k

∏
m=1

(
1−u

lm(2θ jm)/lm(θ jm)−1
jm

)]
,u1, . . . ,un ∈ [0,1]. (24)

(b) In the two-dimensional case, if θ1 = θ2 = θ < 0 and the Lévy subordinators T (1)
t = T (2)

t with the same
Laplace exponent l(θ), then the two-dimensional stochastic distorted copula is given by

CM
FGM (u1,u2) = (η12 +1)u

l(2θ)
l(θ) −1

(1) u(2)

+η12

[
u

l(4θ)−l(2θ)
l(θ)

(1) u
l(2θ)
l(θ)
(2) −u

l(3θ)−l(θ)
l(θ)

(1) u(2)−u
l(3θ)−l(2θ)

l(θ)
(1) u

l(2θ)
l(θ)
(2)

]
,u1,u2 ∈ [0,1], (25)

where u(1) = u1∨u2, u(2) = u1∧u2.

Proposition 4.1 shows that when the marginal stochastic distortions are independent, the corresponding
stochastic distorted copula has a simple expression. In the bivariate case, the stochastic distorted copula in
(24) can be expressed as

CΠ
FGM (u1,u2) = u1u2

[
1+η12

(
1−ul1(2θ1)/l1(θ1)−1

1

)(
1−ul2(2θ2)/l2(θ2)−1

2

)]
, (26)

and its Spearman’s ρ equals to

ρ
Π
FGM = η12

[
3−6

l1 (2θ1)/l1 (θ1)+ l2 (2θ2)/l2 (θ2)

(1+ l1 (2θ1)/l1 (θ1))(1+ l2 (2θ2)/l2 (θ2))

]
.

Since li (θ) is nondecreasing and convex with li (0) = 0, we have 1 ≤ li (2θ)/li (θ) ≤ 2. Further it can be
verified that

0≤ 3−6
l1 (2θ1)/l1 (θ1)+ l2 (2θ2)/l2 (θ2)

(1+ l1 (2θ1)/l1 (θ1))(1+ l2 (2θ2)/l2 (θ2))
≤ 1

3
.

The first equality holds when l1 (2θ1)/l1 (θ1) = l2 (2θ2)/l2 (θ2) = 1, and the second equality holds when
l1 (2θ1)/l1 (θ1) = l2 (2θ2)/l2 (θ2) = 2. Thus if η12 ≥ 0, ρΠ

FGM in the bivariate case satisfies that

0≤ ρ
Π
FGM ≤

1
3

η12 = ρFGM
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and if η12 < 0,

ρFGM =
1
3

η12 ≤ ρ
Π
FGM ≤ 0,

where ρFGM denotes the Spearman’s ρ of the bivariate FGM copula. The above inequalities show that when
the base copula is chosen as FGM copula, the independent stochastic distortions have the effect of reducing
the correlation of the base copula. In addition, it is easy to verify that the stochastic distorted copula (26)
has no upper and lower tail dependence.

For the tempered stable subordinator (7), we have that for m > 0,

li (mθi)/li (θi) =


(1−αi)

αi−(1−αi−mκiθi)
αi

(1−αi)
αi−(1−αi−κiθi)

αi , 0 < αi < 1,
ln(1−mκiθi)
ln(1−κiθi)

, αi = 0,
(27)

and
lim

κi→0
li (mθi)/li (θi) = m, lim

κi→∞
li (mθi)/li (θi) = mαi, (28)

where κi and αi are the parameters in li (θi). In this case, the stochastic distorted FGM copula (26) has the
following limits

lim
κ1,κ2→0

CΠ
FGM (u1,u2) =CFGM (u1,u2) , 0≤ αi < 1,

lim
κ1,κ2→∞

CΠ
FGM (u1,u2) = Π(u1,u2) , α1 ·α2 = 0.

Therefore, as the variance parameters κ1 and κ2 of the time-change processes tend to zero, that is, the
stochastic effect vanishes, the stochastic distorted copula tends to the base copula. When both κ1 and
κ2 go to infinity, the stochastic distorted copula converges to the independent copula for α1,α2 satisfying
α1 ·α2 = 0.

Also applying (27) and (28) to the stochastic distorted copula (25), we have

lim
κ→0

CM
FGM (u1,u2) =CFGM (u1,u2) , 0≤ α < 1,

lim
κ→∞

CM
FGM (u1,u2) = min(u1,u2) , α = 0,

where κ and α are the parameters in l (θ). The stochastic distorted copula tends to the base copula when κ

goes to zero, and the stochastic distorted copula tends to the comonotonic copula for α = 0 when κ goes to
infinity. Thus the same stochastic distortions can distort the negative correlation copula to the comonotonic
copula, which reflects the strong capability of the stochastic distortions.

4.2 Comonotonic copula and countermonotonic copula as the base copulas
As mentioned above, comonotonic copula and countermonotonic copula are two important families

in modeling dependence in finance and insurance. In this subsection, we will apply independent inverse
Gaussian processes to comonotonic copula and countermonotonic copula to obtain the analytic expression
of the corresponding stochastic distorted copulas, which shows the desingularization effect of stochastic
distortions.

Consider the stochastic distortions defined in (2)-(5). For each fixed i = 1, . . . ,n and θi < 0, let

Xi (u) = exp
(

θiT
(i)

ωi(u)

)
,u ∈ (0,1), and Xi (0) = lim

u→0+
Xi (u) , Xi (1) = lim

u→1−
Xi (u) , (29)
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where ωi (u) = ln(u)/li (θi) and T (i)
t is an inverse Gaussian process with E

[
T (i)

t

]
= t,Var

(
T (i)

t

)
= κit

and the Laplace exponent li (·). Then li (θi) =
(
1−
√

1−2κiθi
)
/κi. In addition, each T (i)

t has the explicit

density function p(i)t (x) and distribution function F(i)
t (x) with κi replacing κ in the following expressions,

pt (x) =

√
t2

2πκx3 exp

(
−(x− t)2

2κx

)
1x>0

and

Ft (x) = Φ

(√
x
κ
−
√

1
κx

t

)
+ e2t/κ

Φ

(
−
√

x
κ
−
√

1
κx

t

)
,x > 0,

where Φ(·) denotes the standard normal distribution function. When T (i)
t , i = 1, . . . ,n are independent, the

corresponding stochastic distorted copula can be expressed as

CIG
B (u1, . . . ,un) , E

[
B
(

exp
(

θ1T (1)
ω1(u1)

)
, . . . ,exp

(
θnT (n)

ωn(un)

))]
=

ˆ
∞

0
· · ·
ˆ

∞

0
B(exp(θ1x1) , . . . ,exp(θnxn))

(
n

∏
i=1

p(i)
ωi(ui)

(xi)

)
dx1 · · ·dxn. (30)

When the base copula in (30) is chosen as comonotonic copula or countermonotonic copula, the corre-
sponding stochastic distorted copulas are denoted by

CIG
+ (u1, . . . ,un), E

[
C+

(
exp
(

θ1T (1)
ω1(u1)

)
, . . . ,exp

(
θnT (n)

ωn(un)

))]
(31)

and

CIG
− (u1,u2), E

[
C−
(

exp
(

θ1T (1)
ω1(u1)

)
,exp

(
θ2T (2)

ω2(u2)

))]
, (32)

respectively. Their analytic formulas are given in the following proposition, and its proof is omitted.

Proposition 4.2. For the independent stochastic distortions Xi, i = 1, . . . ,n defined in (29) and u1, . . . ,un ∈
[0,1], we have

CIG
+ (u1, . . . ,un) =

ˆ 1

0

n

∏
i=1

[
Φ

(
ai
√
− lny−bi

lnui√
− lny

)
+Φ

(
−ai
√
− lny−bi

lnui√
− lny

)
u2aibi

i

]
dy

and

CIG
− (u1,u2)

= u1−
ˆ 1

0

(
Φ

(
a1
√
− lny−b1

lnu1√
− lny

)
+u2a1b1

1 Φ

(
−a1

√
− lny−b1

lnu1√
− lny

))
·

(
Φ

(
−a2

√
− ln(1− y)+b2

lnu2√
− ln(1− y)

)
−u2a2b2

2 Φ

(
−a2

√
− ln(1− y)−b2

lnu2√
− ln(1− y)

))
dy,

where ai = 1/
√
−θiκi,bi =

√
−θi/κi/li (θi), i = 1, . . . ,n.
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Proposition 4.2 gives an example for desingularizing the Frechét copula (singular copula) via indepen-
dent stochastic distortions, which provides enough flexibility to model different kinds of dependence.

Note that a Gamma process also has an explicit density function. If T (i)
t , i = 1, . . . ,n in (29) are indepen-

dent Gamma process with E
[
T (i)

t

]
= t and Var

(
T (i)

t

)
= κit, we can similarly get the stochastic distorted

copula. Note that if T (i)
t follows the Gamma distribution, its density function p(i)t and distribution function

F(i)
t can be expressed as

p(i)t (x) =
1

Γ(t/κi)kt/κi
xt/κi−1e−x/κi1x>0, F(i)

t (x) =
γ (t/κi,x/κi)

Γ(t/κi)
,x > 0, (33)

where the incomplete Gamma function γ (a,b) =
´ b

0 e−tta−1dt.

4.3 Stochastic distorted copula generated by linear factor models
Multidimensional subordinators can be used to introduce many features in financial modeling, such as

dependent jumps, stochastic volatility, default clustering, etc. As the most convenient class of multidi-
mensional subordinators for practical applications, linear factor models were discussed in Mendoza and
Linetsky (2016) for introducing dependency among several stochastic processes. In the following, we will
present one family of stochastic distorted copula by applying linear factor models.

For independent Lévy subordinators S( j)
t , j = 0,1, . . . ,M, their Laplace exponents are denoted as l j

(
θ j
)
,

j = 0,1, . . . ,M, respectively. We assume that for ai, j ≥ 0, i = 1 . . . ,n, j = 0,1, . . . ,M, ∑
M
m=0 ai,m = 1 and

T (i)
t =

M

∑
j=0

ai, jS
( j)
t , i = 1 . . . ,n. (34)

The above linear factor model adopts a parsimonious approach to introduce dependency. See Mendoza and
Linetsky (2016) and Barndorff-Nielsen et al. (2001) for details.

Using the time-change processes defined in (34), we can define multivariate stochastic distortions as
follows. For fixed θi < 0, i = 1, . . . ,n, let ωi (u) = lnu

∑
M
j=0 l j(ai, jθi)

,u ∈ (0,1) and

Xi (u) = exp
(

θiT
(i)

ωi(u)

)
,u ∈ (0,1), and Xi (0) = lim

u→0+
Xi (u) , Xi (1) = lim

u→1−
Xi (u) . (35)

Then Xi (u) is a stochastic distortion satisfying that E [Xi (u)] = u,u ∈ [0,1]. By choosing the product copula
Π(u1, . . . ,un) = ∏

n
j=1 u j as the base copula, we have the following stochastic distorted copula. The proof

will be given in the appendix.

Proposition 4.3. When the product copula is chosen as the base copula and the stochastic distortions
Xi (u) , i = 1, . . . ,n are modeled by applying the linear factor models in (35), the stochastic distorted copula
is given by

Π
sd
M (u1, . . . ,un) = exp

(
M

∑
j=0

n

∑
k=1

(
ωπ(k)

(
uπ(k)

)
−ωπ(k−1)

(
uπ(k−1)

))
l j(

n

∑
i=k

θπ(i)aπ(i), j)

)
, (36)

where u1, . . . ,un ∈ [0,1] and
(
uπ(1), . . . ,uπ(n)

)
is a permutation of (u1, . . . ,un) such that

ωπ(1)
(
uπ(1)

)
≤ ωπ(2)

(
uπ(2)

)
≤ . . .≤ ωπ(n)

(
uπ(n)

)
and ωπ(0)

(
uπ(0)

)
= 0.
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In this paper, we call the above stochastic distorted copula as the linear factor stochastic distorted copula
(LFSDC).

Consider one simplified version of LFSDC. Assume that S( j)
t , j ≥ 1 have identical Laplace transform,

i.e., l j (θ) = l1 (θ) for j≥ 1. Let M = n, θi = θ ,ai,0 = a,ai,i = b,ai, j = 0 for j 6= i. Then the model (34) can
be expressed as

T (i)
t = aS(0)t +bS(i)t , a≥ 0,b≥ 0 ,a+b = 1. (37)

In the above model, S(0)t is the systematic component of T (i)
t and S(i)t is the idiosyncratic component of T (i)

t .
Then we have ωi (u)≡ ω (u) = lnu

l0(aθ)+l1(bθ) . Thus the stochastic distorted copula (36) can be expressed as

Π
sd
M (u1, . . . ,un) =

n

∏
k=1

(
u(k)

u(k−1)

) l0((n−k+1)θa)+(n−k+1)l1(θb)
l0(aθ)+l1(bθ)

, u1, . . . ,un ∈ [0,1], (38)

where
(
u(1), . . . ,u(n)

)
is a permutation of (u1, . . . ,un) such that u(1) ≥ u(2) ≥ ·· · ≥ u(n) and u(0) = 1. When

b = 0, we have a = 1 and the copula function can be simplified as

Π
sd
M (u1, . . . ,un) =

n

∏
k=1

(
u(k)

u(k−1)

)l0(θ(n+1−k))/l0(θ)

. (39)

Moreover, if the Lévy subordinator S(0)t is a tempered stable subordinator discussed in Example 2.2 with
parameters κ0 and α0, by applying (27) and (28) the distorted product copula (39) has the following limits

lim
κ0→0

Π
sd
M (u1, . . . ,un) = Π(u1, . . . ,un) , 0≤ α0 < 1, (40)

lim
κ0→∞

Π
sd
M (u1, . . . ,un) =C+ (u1, . . . ,un) , α0 = 0. (41)

The limit (40) states that when the variance of the time-change process tends to zero the stochastic dis-
torted copula converges to the product copula. The limit (41) states that when the time-change process is a
Gamma process, i.e., α0 = 0, the stochastic distorted copula (39) converges to the comonotonic copula as
the variance of the Gamma process tends to infinity. Note that the product copula Π(u1, . . . ,un) has zero
tail dependence and the comonotonic copula C+ (u1, . . . ,un) has perfect tail dependence. Thus this example
shows that the dependent stochastic distortions can change the tail dependence of the base copula. Specially,
in the two-dimensional case the upper tail dependence coefficient of the copula Πsd

M in (39) can be expressed
as

λ
U
Πsd

M
= lim

u→0+

Π̂sd
M (u,u)

u
= 2− l0 (2θ)

l0 (θ)
,

where Π̂sd
M is the survival copula of Πsd

M .

5 Application in portfolio credit risk

5.1 Correlation structure among default times
In this section, we will apply the linear factor stochastic distorted copula (LFSDC) in Proposition 4.3

to model the default correlation in a credit portfolio. The advantage of using LFSDC is that it has tail
dependence, and the structure of the linear factor model is implied by the copula. Note that the idea of using
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a linear factor model is widely employed in modeling credit risk (Laurent and Gregory, 2005; Burtschell et
al., 2012; Hull and White, 2004).

Suppose we observe n correlated default times τ1, . . . ,τn in the calendar time for n credit entities with
marginal distributions Fi, i = 1, . . . ,n. In order to model the dependency among the default times, we intro-
duce random factors T (1)

t , . . . ,T (n)
t . Assume that T (1)

t , . . . ,T (n)
t are modeled as combinations of systematic

factor and idiosyncratic factors in (37) with a = ρ,b = 1− ρ, where
(

S(0)t ,S(1)t , . . . ,S(n)t

)
are n+ 1 inde-

pendent Gamma processes. Here S(0)t is the systematic factor with E
[
S(0)t

]
= t,Var

[
S(0)1

]
= κ0 and the

Laplace exponent l0 (θ) = − ln(1−κ0θ)/κ0,θ ≤ 0, and S(1)t , . . . ,S(n)t are the idiosyncratic factors with
common E

[
S( j)

t

]
= t, Var

[
S( j)

1

]
= κ1 and the Laplace exponent l j (θ) = l1 (θ) =− ln(1−κ1θ)/κ1,θ ≤ 0,

j = 1, . . . ,n. Then T (1)
t , . . . ,T (n)

t have the same Laplace exponent l (θ) = l0 (ρθ)+ l1 ((1−ρ)θ). For each
fixed i, let ω (u) = ln(u)/l (θ) and

Xi (u) = exp
(

θT (i)
ω(u)

)
,u ∈ (0,1), and Xi (0) = lim

u→0+
Xi (u) , Xi (1) = lim

u→1−
Xi (u) .

Note that X̂i (u) = 1−Xi (1−u) is the dual stochastic distortion of Xi (u).
We introduce i.i.d. uniform [0,1] random variables U1, . . . ,Un, which are independent of the stochastic

distortions X̂1(u), . . . , X̂n(u). Then X̂−1
1 (U1), . . . , X̂−1

n (Un) are uniform [0,1] random variables. Assume that
the marginal distributions Fi, i = 1, . . . ,n are continuous, and the default times τ1, . . . ,τn are defined as

τ1 = F−1
1 (X̂−1

1 (U1)), . . . ,τn = F−1
n (X̂−1

n (Un)).

Then we have
F1 (τ1) = X̂−1

1 (U1), . . . ,Fn (τn) = X̂−1
n (Un)

and (
X̂1 (F1 (τ1)) , . . . , X̂n (Fn (τn))

)
= (U1, . . . ,Un) . (42)

Let C be the copula function of (τ1, . . . ,τn). Then we have

C (u1, . . . ,un) = E

[
n

∏
i=1

X̂i (ui)

]
= Π̂sd

M (u1, . . . ,un) , (43)

where Π̂sd
M is the survival copula of Πsd

M in (38). By (38), we know that each bivariate marginal copula of
C (u1, . . . ,un) has the lower tail dependence coefficient

λ
L
C = 2− ln(1−2ρθκ0)κ1 +2ln(1−2(1−ρ)κ1)κ0

ln(1−ρθκ0)κ1 + ln(1− (1−ρ)κ1)κ0
. (44)

For simplicity, we call the above copula function as LFSDC with one factor Gamma process.
Equation (42) implies that T (1)

ω(1−F1(τ1))
, . . . ,T (n)

ω(1−Fn(τn))
are independent. In other words, there exist

appropriate time-change transformations such that the transformed default times are mutually independent.
And we have

ω (1−Fi (τi)) =
(

T (i)
)−1

(
1
θ

ln(1−Ui)

)
, i = 1, . . . ,n. (45)

We can simulate the above model by the following steps:
(1) Generate n independent identically Uniform [0,1] random variables U1, . . . ,Un;
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(2) Calculate ξ1, . . . ,ξn by ξi =
(

T (i)
)−1 ( 1

θ
ln(1−Ui)

)
, i = 1, . . . ,n. A simple way to generate the first

cross time
(

T (i)
)−1

( 1
θ

ln(1−Ui)) is to select a small enough time step ∆, then simulate Gamma distributed

increment T (i)(n∆)− T (i)((n− 1)∆) and accumulate path T (i)(n∆) until the accumulated path cross over
1
θ

ln(1−Ui). Hence the first cross time Ni∆ is an approximation of
(

T (i)
)−1 ( 1

θ
ln(1−Ui)

)
, i.e.,

Ni = inf
{

K :
K

∑
n=1

(
T (i)(n∆)−T (i)((n−1)∆)

)
≥ 1

θ
ln(1−Ui)

}
.

Then let ξi = Ni∆. For a detailed introduction on generating Gamma distributed random variables and
Gamma processes, see Chapter 6 in Cont and Tankov (2004).
(3) Use (45) to obtain the default times τ1, . . . ,τn by τi = F−1

i
(
1−ω−1 (ξi)

)
, i = 1, . . . ,n.

Denote by N (s) = ∑
n
i=1 1{τi≤s} the number of defaults in the credit portfolio until time s. Given the

systematic factor S(0)t , t ≥ 0, the default times are conditionally independent and the probability generating
function of N(s) can be expressed as

ψN(s) (z) = E
[
zN(s)

]
= E

[
E
[
zN(s) | S(0)·

]]
= E

[
n

∏
i=1

[
z+(1− z)P

(
τi > s | S(0)·

)]]
,

where the conditional survival function can be expressed as

P
(

τi > s | S(0)·
)
= exp

(
θρS(0)

ω(1−Fi(s))

)
exp(ω (1−Fi (s)) l1 ((1−ρ)θ)) .

The probability function of N (s) is important in collateralized debt obligation (CDO) pricing. For details
on CDO pricing methodology, we refer to the Appendix.

5.2 Numerical results on probability function of the number of defaults
In the next, we study the distribution of the number of defaults N(5) under our model through a nu-

merical example. Here θ is set to be −1. Consider a credit portfolio with 100 entities and the marginal
distributions of default times are assumed to be exponentially distributed with intensity parameters

λi = 0.02+0.001× (i−1), i = 1, . . . ,100.

The numerical results of the probability function P(N(5) = n) are presented in Figures 1 and 2.
Note that ρ,κ0 and κ1 represent the systematic factor weight, the variance of the systematic Gamma

variable S(0)1 and the variance of the idiosyncratic Gamma variable S(1)1 , respectively. From Figure 1 we
can see that as the systematic factor weight ρ increases, the probability function of the number of defaults
moves to the left but it keeps the right tail decreasing. From Figure 2 we can see that as the variances κ0,κ1
increase, the probability function of the number of defaults N(5) squeezes to both left side and right side.
Note that this property is very favorable for calibrating CDO market data (Hull and White, 2004). Figure 2
also manifests that our model can produce an increasing tail for the probability function of the number of
defaults, which reflects the tail dependence and default clustering.
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Figure 1: The impact of the systematic factor weight ρ on the probability function of the number of defaults.
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Figure 2: The impact of the variances κ0,κ1 of the Gamma processes on the probability function of the
number of defaults.

5.3 Market data calibration on CDO
A CDO is a type of structured asset-backed security. It can be thought of as a promise to pay investors

in a prescribed sequence. Based on the cash flow, the CDO collects from the pool of bonds or other assets it
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owns. Default correlation is essential in pricing a CDO tranche. The market benchmark pricing model for
CDO tranches is the one factor Gaussian copula model, see Hull and White (2004).

We proceed to apply our LFSDC with one factor gamma process to the synthetic CDO market data to
model the correlation between default times. In the following, θ is set to be−1 again. We look at the iTraxx
Europe S24 5-year tranches at April 25, 2016, which is based on 125 names. Table 2 gives the basic tranches
pricing information. The market data can be obtained from Bloomberg, which is listed in the appendix.

Pricing Date Reference Portfolio Maturity
4-25-2016 iTraxx Europe S24 5-year 12-20-2020

Table 2: iTraxx Europe S24 pricing information

It is assumed that the marginal default times are exponentially distributed. We firstly calculate the linear
interpolated CDS spread according to the time to maturity of index tranches and then imply the marginal
intensity from the interpolated CDS spread for each name. We assume a recovery rate of 40% and adopt
Europe standard swap rate curve from Bloomberg to discount cash flows. For a detailed introduction on
CDS valuation, see O’Kane and Turnbull (2003).

In order to make comparisons with other models in the literature, we did not optimize the whole param-
eters to perfectly match the market price. Instead we simply calibrate the systematic factor weight such that
the model price matches the market quote of equity tranche with given variance parameters of the Gamma
processes. The calibration results are presented in Tables 3-5. In these tables, notation “Γ(κ0)−Γ(κ1)”
represents our LFSDC with one factor gamma process (43), where κ0 and κ1 are the variance parameters of
the systematic Gamma process and the idiosyncratic Gamma process, respectively. The market quotes for
the first two tranches are up-front quotes, which are different with the spread quotes of the next two tranches.
For instance, the up-front quote of 38.75% for the equity tranche [0%,3%] means that the protection seller
receives the running spread quarterly on the outstanding principal plus an initial payment of 38.75% of the
tranche principal. Here, the running spreads of the first two tranches are 100 bps equally.

In Table 3, for each fixed variance parameters κ0,κ1, we calibrate the systematic factor weight ρ̂ such
that the model quote of equity tranche perfectly matches the market quote of the equity tranche, and we
can see “Γ(7)−Γ(7)” simultaneously fits the equity tranche, senior tranche and lower intermediate tranche
well. Based on the results of Table 3, we set the variance parameters κ0 = κ1 = 7 in Table 4 and calculate
the model quote for some specific systematic factor weight ρ . We further get the implied systematic factor
weight ρ̂ such that model quote equals to market quote for each tranche and find that the implied system-
atic factor weights ρ̂ present a smile shape, that is, the implied systematic factor weights are smaller for
intermediate tranches.

Table 5 lists the pricing results for different models. Here, “Gaussian”, “Clayton” and “t (2.1)-t (2.1)”
represent the copula among the default times are modeled by one factor Gaussian model, Clayton copula
and double t copula with freedom 2.1 equally, respectively. The double t copula model can be expressed as

τi = F−1
i (Hi (Zi)) , Zi = ρ

(
ν−2

ν

)1/2

Z +
√

1−ρ2
(

ν̄−2
ν̄

)1/2

Z̄i, i = 1, . . . ,n,

where Z, Z̄i are independent random variables following Student t distributions with ν and ν̄ degrees of
freedom and ρ ∈ [0,1], and Hi denotes the distribution function of Zi. The calibration results for different
freedom of double t copula are presented in Table 6, which shows that freedom 2.1 can best fit all tranches
simulataneouly. For more details about these three copulas, see Burtschell et al. (2012). The comparison
result shows our model outperforms the Gaussian copula and Clayton copula. In addition, the calibration
effect of our model is analogous to the double t copula. The two variance parameters of the Gamma
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processes play the same role as the two freedom parameters of double t copula, which can be used to adjust
the left-side and right-side of the distribution of the number of default times just as Figure 2.

Tranches [0%,3%] [3%,6%] [6%,12%] [12%,100%]
Market Quotes 38.75% 6.73% 98.83 (bps) 30.7 (bps)
Model Quotes : LFSDC with one factor Gamma Process
Γ(4)-Γ(4) ρ̂=0.8558 38.75% 7.42% 186.49 27.29
Γ(5)-Γ(5) ρ̂=0.8668 38.75% 7.26% 179.03 27.91
Γ(6)-Γ(6) ρ̂=0.8716 38.75% 7.08% 174.34 28.93
Γ(7)-Γ(7) ρ̂=0.8715 38.75% 6.58% 169.68 29.08
Γ(8)-Γ(8) ρ̂=0.8747 38.75% 6.44% 169.46 29.29
Γ(9)-Γ(9) ρ̂=0.8779 38.75% 6.29% 166.15 29.56
Γ(10)-Γ(10) ρ̂=0.8803 38.75% 6.02% 165.50 30.06

Table 3: LFSDC with one factor Gamma process for iTraxx Europe tranches. The prices are quoted by
up-front (%) for the first two tranches and spread (bps) for the next two tranches.

Tranches [0%,3%] [3%,6%] [6%,12%] [12%,100%]
Market Quotes 38.75% 6.73% 98.83 (bps) 30.7 (bps)

ρ Model Quotes for Γ(7)-Γ(7)
0.0 84.44% 13.48% 2.78 0
0.2 70.68% 7.81% 88.40 9.0
0.4 61.91% 6.31% 117.14 16.3
0.6 54.25% 5.94% 136.31 22.0
0.8 44.27% 6.18% 156.60 25.6
0.9 36.21% 6.80% 175.44 30.7

Tranche Implied ρ̂ 0.8715 0.2575 0.2797 0.9000

Table 4: Given Γ(7)-Γ(7), LFSDC with one factor Gamma process for iTraxx Europe tranches. The prices
are quoted by up-front (%) for the first two tranches and spread (bps) for the next two tranches.

Tranches [0%,3%] [3%,6%] [6%,12%] [12%,100%]
Market Quotes 38.75% 6.73% 98.83 (bps) 30.7 (bps)
Γ(7)-Γ(7) , ρ̂ = 0.8715 38.75% 6.58% 169.68 29.08
Gaussian, ρ̂ = 0.7035 38.75% 16.11% 242.06 14.53
Clayton, Kendallτ̂ = 0.1508 38.75% 15.90% 243.22 14.56
t (2.1)-t (2.1) , ρ̂ = 0.8194 38.75% 6.53% 141.68 28.49

Table 5: Compare the different models’s quotes for iTraxx Europe tranches. The prices are quoted by
up-front (%) for the first two tranches and spread (bps) for the next two tranches.
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Tranches [0%,3%] [3%,6%] [6%,12%] [12%,100%]
Market Quotes 38.75% 6.73% 98.83 (bps) 30.7 (bps)
Model Quotes : Double t copula
t (2.1)-t (2.1) ρ̂ = 0.8194 38.75% 6.53% 141.68 28.49
t (2.5)-t (2.5) ρ̂ = 0.7997 38.75% 7.64% 148.03 26.96
t (3)-t (3) ρ̂ = 0.7850 38.75% 8.70% 157.64 25.81
t (4)-t (4) ρ̂ = 0.7676 38.75% 10.38% 173.68 22.95
t (5)-t (5) ρ̂ = 0.7556 38.75% 11.55% 186.54 21.44

Table 6: Calibration results for double t copula. The prices are quoted by up-front (%) for the first two
tranches and spread (bps) for the next two tranches.

Based on the above analysis, the following conclusions can be drawn. Theoretically compared with one
factor Gaussian model, this proposed new portfolio credit risk model has sensible financial implications and
can incorporate the tail dependence, hence it is capable to capture the extreme default clustering. For CDO
tranches pricing, our model outperforms the one factor Gaussian model and produces the similar results to
the double t copula. Note that double t copula doesn’t have an explicit expression, but the proposed new
model has an explicit copula expression. It is known that the tail dependence coefficient of each bivariate
marginal copula of double t copula equals to

λ
L
tt =

1

1+
(√

1−ρ2/ρ

)ν 1{ν=ν̄}+1{v<ν̄}. (46)

Comparing the two equations (44) and (46), it can be seen that double t copula has tail dependence only
when ν = ν̄ and the proposed model is more flexible in modeling tail dependence of defaults. Some addi-
tional remarks are as follows.
Remark 5.1. (1) We can directly extend the proposed model to a more general version, i.e., Proposition 4.3
without changing the above model properties.
(2) The factor structure of the time-change processes can be extended to a stochastic correlation version
analogous to Burtschel and Gregory (2005), i.e.,

T (i)
t = ςiS

(0)
t +(1− ςi)S(i)t , i = 1, . . . ,n,

where ς1, . . . ,ςn are independent random variables taking value in [0,1] and ς1, . . . ,ςn are independent with
S(0)t ,S(1)t , . . . ,S(n)t .

6 Conclusions
This paper first generalizes the notion of the widely-used deterministic distortion function to a random

process, named as stochastic distortion. A method for constructing stochastic distortions is provided and
some stochastic distortions are given by focusing on some time-change processes. Secondly transforming
each component of a copula function by a stochastic distortion, we construct a so-called stochastic distorted
copula. Some families of stochastic distorted copulas are given to demonstrate the versatility of stochastic
distortions, such as the copula function LFSDC with linear factor property. Finally, LFSDC is applied to
model the default correlation in managing portfolio credit risk, and a numeric study shows the advantage of
LFSDC over Gaussian copula and double t copula in terms of fitting accuracy and catching tail dependence.
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A Appendix

A.1 Proof of Proposition 2.1
(1) Since X(u),u ∈ [0,1] is a non-decreasing process and E[X(u)],u ∈ [0,1] is continuous, we have

lim
h→0+

P(| X(u+h)−X(u) |≥ ε)≤ lim
h→0+

1
ε

E [| X(u+h)−X(u) |] = lim
h→0+

E(X(u+h)−E(X(u))
ε

= 0

and limh→0− P(| X(u+h)−X(u) |≥ ε) = 0 as well.

(2) We know that for each ε > 0,

{a≤ X (b+ ε)} ⊇
{

X−1 (a)≤ b
}
⊇ {a≤ X (b)} ,

which implies that
P(a≤ X (b+ ε))≥ P(X−1 (a)≤ b)≥ P(a≤ X (b)).

Note that when E[X(u)],u ∈ [0,1] is continuous, the process X(u),u ∈ [0,1] is stochastic continuous, then

P(a≤ X (b+ ε))−P(a≤ X (b))→ 0

as ε → 0. Thus we have
P(X−1 (a)≤ b) = P(a≤ X (b))

and
P
({

X−1 (a)≤ b
}

∆{X(b)≥ a}
)
= 0.

(3) We first prove the sufficiency. It follows from the second result that

P
(
X−1 (U)≤ u

)
= E

[
P
(
X−1 (U)≤ u |U

)]
= E [P(U ≤ X (u) |U)]

= E [P(U ≤ X (u) | X (u))]
= E [X (u)]
= u

holds for u ∈ [0,1], i.e., X−1 (U) equals to U in law.
For the necessity, based on the assumption on X−1 (U), for u ∈ [0,1] we know that P(X−1 (U) = u) = 0.

Since

{X−1 (U)≤ u} ⊇ {X (u)≥U} ⊇ {X−1 (U)< u},

we have
u = P

(
X−1 (U)≤ u

)
= P(X (u)≥U) ,u ∈ [0,1],

which completes the proof of necessity.
(4) For any convex function φ , we have

E [φ (U)] = E [φ (E [X(U) |U ])]≤ E [E [φ (X(U)) |U ]] = E [φ (X(U))] ,

where the inequality holds because of the Jessen Inequality. Hence X (U) is larger than U in convex order.
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A.2 Proof of Theorem 3.1
(1) From Proposition 2.1, for i = 1, . . . ,n, the variable X−1

i (Ui) is Uniform [0,1] random variable, and

P
(
X−1

1 (U1)≤ u1, . . . ,X−1
n (Un)≤ un

)
= E

[
P
(
X−1

1 (U1)≤ u1, . . . ,X−1
n (Un)≤ un |U1, . . . ,Un

)]
= E [P(U1 ≤ X1 (u1) , . . . ,Un ≤ Xn (un) |U1, . . . ,Un)]

= P(U1 ≤ X1 (u1) , . . . ,Un ≤ Xn (un))

= E [B(X1 (u1) , . . . ,Xn (un))] =CX|B (u1, . . . ,un) ,

which implies that the function CX|B (u1, . . . ,un) is a copula, and
(
X−1

1 (U1) , . . . ,X−1
n (Un)

)
has distribution

CX|B (u1, . . . ,un). The first part of the theorem follows.
(2) Suppose that (U1,U2, . . . ,Un) has distribution B1 and (V1,V2, . . . ,Vn) has distribution B2, and the vec-

tors (U1,U2, . . . ,Un) and (V1,V2, . . . ,Vn) are independent of the stochastic distortions X1(u),X2(u), . . . ,Xn(u),
u ∈ [0,1].

For any u1,u2, . . . ,un ∈ [0,1], by Proposition 2.1 we have

P
(
X−1

1 (U1)≤ u1,X−1
2 (U2)≤ u2, . . . ,X−1

n (Un)≤ un
)

= P(U1 ≤ X1 (u1) ,U2 ≤ X2 (u2) , . . . ,Un ≤ Xn (un))

= E [P(U1 ≤ X1 (u1) ,U2 ≤ X2 (u2) , . . . ,Un ≤ Xn (un) | X1(u1),X2(u2), . . . ,Xn(un))]

≤ E [P(V1 ≤ X1 (u1) ,V2 ≤ X2 (u2) , . . . ,Vn ≤ Xn (un) | X1(u1),X2(u2), . . . ,Xn(un))]

= P(V1 ≤ X1 (u1) ,V2 ≤ X2 (u2) , . . . ,Vn ≤ Xn (un))

= P
(
X−1

1 (V1)≤ u1,X−1
2 (V2)≤ u2, . . . ,X−1

n (Vn)≤ un
)
, (47)

where the inequality in (47) comes from the PQD order of B1,B2. Thus we have CX|B1 (u) ≤ CX|B2 (u).
Similarly we can prove ĈX|B1 (u)≤ ĈX|B2 (u). Therefore we have CX|B1 ≤PQD CX|B2 .

(3) The first claim is a direct result of part 2 and the remaining results can be obtained by using the
Proposition 7.4 and Corollary 7.1 in Yanagimoto and Okamoto (1969), which show that linear correlation
coefficient, Kendall’s τ , Spearman’s ρ , and Blomquist’s q are preserved under PQD order.

A.3 Proof of Proposition 3.2
Using the notation of VB ([a,b]), we can rewrite the first derivative of the bivariate stochastic distorted

copula as

∂

∂u1
CX|B (u1,u2)

=
−1

l1 (θ1)
E
[(ˆ

∞

0
VB

([
R
(

T (1)
ω̂1(u1)

,T (2)
ω̂2(u2)

)
,R
(

T (1)
ω̂1(u1)

+ y1,T
(2)

ω̂2(u2)

)])
ν1 (dy1)

)]
,
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where R(x1,x2) =
(
1− eθ1x1,1− eθ2x2

)
. Then following the discussion in Section 3.2, we have

∂

∂u2

∂

∂u1
CX|B (u1,u2)

= lim
s→0

1
s

[
∂

∂u1
CX|B (u1,u2 + s)− ∂

∂u1
CX|B (u1,u2)

]
= lim

s→0

−1
sl1 (θ1)

E[
ˆ

∞

0
[VB

([
R
(

T (1)
ω̂1(u1)

,T (2)
ω̂2(u2+s)

)
,R
(

T (1)
ω̂1(u1)

+ y1,T
(2)

ω̂2(u2+s)

)])
−VB

([
R
(

T (1)
ω̂1(u1)

,T (2)
ω̂2(u2)

)
,R
(

T (1)
ω̂1(u1)

+ y1,T
(2)

ω̂2(u2)

)])
]ν1 (dy1)]

= lim
s→0

−1
sl1 (θ1)

E
[ˆ

∞

0
VB

([
R
(

T (1)
ω̂1(u1)

,T (2)
ω̂2(u2)

)
,R
(

T (1)
ω̂1(u1)

+ y1,T
(2)

ω̂2(u2+s)

)])
ν1 (dy1)

]
.

Furthermore, we can exchange the order of limit and expectation, that is,

lim
s→0

1
s

E
[ˆ

∞

0
VB

([
R
(

T (1)
ω̂1(u1)

,T (2)
ω̂2(u2)

)
,R
(

T (1)
ω̂1(u1)

+ y1,T
(2)

ω̂2(u2+s)

)])
ν1 (dy1)

]
= lim

s→0

1
s

E
[

E
[ˆ

∞

0
VB

([
R
(

T (1)
ω̂1(u1)

,T (2)
ω̂2(u2)

)
,R
(

T (1)
ω̂1(u1)

+ y1,T
(2)

ω̂2(u2+s)

)])
ν1 (dy1) | T

(1)
·

]]
= E

[
lim
s→0

1
s

E
[ˆ

∞

0
VB

([
R
(

T (1)
ω̂1(u1)

,T (2)
ω̂2(u2)

)
,R
(

T (1)
ω̂1(u1)

+ y1,T
(2)

ω̂2(u2+s)

)])
ν1 (dy1) | T

(1)
·

]]
,

which is due to the fact that

1
s
| E
[ˆ

∞

0
VB

([
R
(

T (1)
ω̂1(u1)

,T (2)
ω̂2(u2)

)
,R
(

T (1)
ω̂1(u1)

+ y1,T
(2)

ω̂2(u2+s)

)])
ν1 (dy1) | T

(1)
·

]
|

≤ 2
1
s

E

[ˆ
∞

0
| e

θ2

(
T (2)

ω̂2(u2+s)

)
− e

θ2

(
T (2)

ω̂2(u2)

)
| ν1 (dy1)

]
= 2

and the dominated convergence theorem. We denote

h2

(
x2;T (1)

ω̂1(u1)

)
= E

[ˆ
∞

0
VB

([
R
(

T (1)
ω̂1(u1)

,x2

)
,R
(

T (1)
ω̂1(u1)

+ y1,x2

)])
ν1 (dy1) | T

(1)
·

]
,

and then we have

∂

∂u2

∂

∂u1
CX|B (u1,u2)

=
−1

l1 (θ1)
E
[

lim
s→0

1
s

E
[ˆ

∞

0
VB

([
R
(

T (1)
ω̂1(u1)

,T (2)
ω̂2(u2)

)
,R
(

T (1)
ω̂1(u1)

+ y1,T
(2)

ω̂2(u2+s)

)])
ν1 (dy1) | T

(1)
·

]]
=

−1
l1 (θ1)

E
[
−1

l2 (θ2)

ˆ
∞

0

(
h2

(
T (2)

ω̂2(u2)
+ y2;T (1)

ω̂1(u1)

)
−h2

(
T (2)

ω̂2(u2)
;T (1)

ω̂1(u1)

))
ν2 (dy2)

]
=

1
l1 (θ1) l2 (θ2)

E
[ˆ

∞

0

(
h2

(
T (2)

ω̂2(u2)
+ y2;T (1)

ω̂1(u1)

)
−h2

(
T (2)

ω̂2(u2)
;T (1)

ω̂1(u1)

))
ν2 (dy2)

]
=

1
l1 (θ1) l2 (θ2)

E
[ˆ

∞

0

ˆ
∞

0
VB

([
R
(

T (1)
ω̂1(u1)

,T (2)
ω̂2(u2)

)
,R
(

T (1)
ω̂1(u1)

+ y1,T
(2)

ω̂2(u2)
+ y2

)])
ν1 (dy1)ν2 (dy2)

]
,

where equation (16) is applied above for changing the order of the limit and the expectation. The proof is
completed.
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A.4 Proof of Proposition 4.1
(a) For the first part, by Theorem 3.1 we have

CΠ
FGM (u1, . . . ,un)

= E
[
CFGM

(
exp
(

θ1T (1)
ω1(u1)

)
, . . . ,exp

(
θnT (n)

ωn(un)

))]
=

n

∑
k=2

∑
1≤ j1<···< jk≤n

η j1 j2··· jk ∏
i/∈{ j1,..., jk}

E
[
exp
(

θiT
(i)

ωi(ui)

)]
×

k

∏
m=1

E
[

exp
(

θ jmT ( jm)
ω jm(u jm)

)(
1− exp

(
θ jmT ( jm)

ω jm(u jm)

))]
+

n

∏
i=1

E
[
exp
(

θiT
(i)

ωi(ui)

)]
=

n

∏
i=1

ui +
n

∑
k=2

∑
1≤ j1<···< jk≤n

η j1 j2··· jk ∏
i/∈{ j1,..., jk}

ui

k

∏
m=1

(
u jm−u

l(2θ jm)/l(θ jm)
jm

)

=
n

∏
i=1

ui

[
1+

n

∑
k=2

∑
1≤ j1<···< jk≤n

η j1 j2··· jk

k

∏
m=1

(
1−u

l(2θ jm)/l(θ jm)−1
jm

)]
.

(b) For the second part, first we have

E
[
Xa (u1)Xb (u2)

]
= E

[
exp
(
θaTω(u1)

)
· exp

(
θbTω(u2)

)]
= E

[
exp
(

θ (a+b)T
ω(u(1))

)
· exp

(
θb
(

T
ω(u(2))

−T
ω(u(1))

))]
= u

l(θ(a+b))−l(θb)
l(θ)

(1) u
l(θb)
l(θ)
(2) .

By Theorem 3.1, we then get

CM
FGM (u1,u2)

= E [CFGM (X (u1) ,X (u2))]

= E [X (u1)X (u2)+η12X (u1)X (u2)(1−X (u1))(1−X (u2))]

= (η12 +1)u
l(2θ)
l(θ) −1

(1) u(2)+η12

[
u

l(4θ)−l(2θ)
l(θ)

(1) u
l(2θ)
l(θ)
(2) −u

l(3θ)−l(θ)
l(θ)

(1) u(2)−u
l(3θ)−l(2θ)

l(θ)
(1) u

l(2θ)
l(θ)
(2)

]
.

A.5 The proof of Proposition 4.3
By Theorem 3.1, we have

Π
sd
M (u1, . . . ,un) = E

[
n

∏
i=1

exp

(
θi

M

∑
j=0

ai, jS
( j)
ωi(ui)

)]
=

M

∏
j=0

E

[
exp

(
n

∑
i=1

θiai, jS
( j)
ωi(ui)

)]
.

Since
(
uπ(1), . . . ,uπ(n)

)
is a permutation of (u1, . . . ,un) such that

ωπ(1)
(
uπ(1)

)
≤ ωπ(2)

(
uπ(2)

)
≤ . . .≤ ωπ(n)

(
uπ(n)

)
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and ωπ(0)
(
uπ(0)

)
= 0, we finally obtain

Π
sd
M (u1, . . . ,un)

=
M

∏
j=0

E

[
exp

(
n

∑
k=1

(
n

∑
i=k

θπ(i)aπ(i), j

)(
S( j)

ωπ(k)(uπ(k))
−S( j)

ωπ(k−1)(uπ(k−1))

))]

=
M

∏
j=0

exp

(
n

∑
k=1

(
ωπ(k)

(
uπ(k)

)
−ωπ(k−1)

(
uπ(k−1)

))
l j

(
n

∑
i=k

θπ(i)aπ(i), j

))

= exp

(
M

∑
j=0

n

∑
k=1

(
ωπ(k)

(
uπ(k)

)
−ωπ(k−1)

(
uπ(k−1)

))
l j

(
n

∑
i=k

θπ(i)aπ(i), j

))
.

A.6 CDO pricing formula with detailed results and data
We first give the detailed formula for CDO tranche pricing according to Hull and White (2004). Let

L(s) be the cumulative loss on the CDO portfolio at time s. If each component of the CDO portfolio has the
same nominal FV and recover rate REC, then L(s) can be expressed as

L(s) = FV · (1−REC) ·N(s),

where N (s) = ∑
n
i=1 1{τi≤s} is the number of defaults in the credit portfolio until time s. Consider a tranche

with a lower threshold K1 and upper threshold K2. Let M (s) be the cumulative loss of the tranche, i.e.,

M(s) = min(max(L(s)−K1,0),K2−K1) .

Suppose that 0 = T0 < T1 < · · · < TK < TM are the premium payment dates and T0,TM are the initial date
and maturity date, respectively. Then we can express the price of the default leg of the given tranche as

De f ault leg = E

[
K

∑
k=0

D(0,Tk) · (M (Tk+1)−M (Tk))

]
,

where M (0) = 0, TK+1 = TM and D(0, t) represents the discount factor. When the CDO tranche price is the
up-front quote, the premium leg can be expressed as

Premium leg = RuningSpread ·E[
K

∑
k=0

D(0,Tk) ·max(K2−K1−M (Tk) ,0)]+Up-front · (K2−K1) ,

where running spread is a fixed premium, e.g. 100bp for iTraxx first two tranches. Here up-front is quoted
by percentage such that Premium leg = De f ault leg. When the CDO price is conventionally quoted by
premium, we have

Premium leg = Premium ·E[
K

∑
k=0

D(0,Tk) ·max(K2−K1−M (Tk) ,0)],

where the premium is determined at the initial time such that Premium leg = De f ault leg. The tranche
premium is used to compensate the default leg of the given tranche, that is, the higher default leg the higher
premium.

The following two tables list the interest rate curve and CDS spreads of CDO’s components used in
Section 5.
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1M 2M 3M 6M 1Y 2Y 3Y 4Y 5Y
-0.342 -0.288 -0.249 -0.143 -0.011 -0.151 -0.116 -0.045 0.048

Table 7: Europe standard swap rate curve. The unit is %.

Name 1Y 2Y 3Y 4Y 5Y
1 19.68 26.63 33.72 44.69 51.38
2 28.26 45.55 62.26 81 98.62
3 26.65 36.01 46.25 61.32 70.5
4 26.63 32.9 39.15 46.96 53.97
5 15.85 25.05 33.99 43.81 54.29
6 16.24 20.05 24.67 32.03 36.55
7 87.59 213.85 309.82 387.13 497.91
8 25.68 34.76 43.83 55.94 67.5
9 45.51 58.65 71.96 87.52 101.21
10 9.03 14.97 22.64 28.76 36
11 21.44 31.99 43.55 53.68 64.26
12 12.95 19.59 28.49 39.64 50.39
13 35.19 45.63 56.1 70.59 79.41
14 25.17 38.61 51.81 64.04 76.5
15 12.14 16.48 21.98 30.19 38.5
16 26.2 35.74 43.66 60.97 71.5
17 23.61 31.98 50.57 67.63 82.8
18 45.17 59.14 73.61 97.82 112.52
19 46.14 60.95 76.36 99.5 113.56
20 71.58 79.4 87.32 100.5 108.51
21 14.47 19.4 25.19 31.73 38.29
22 20.95 30.12 40.28 50.96 61.5
23 22.18 33.28 42.88 54.56 65
24 4.67 9.64 15.19 24.67 34
25 12.14 22.43 32.23 42.42 53.79
26 12.05 20.32 30.35 40.65 50.5
27 25.66 39.05 53.22 68.72 82.21
28 16.52 30.92 44.98 59.84 74.5
29 19.28 30.32 40.61 53.83 66.5
30 112.68 161.85 200.18 236.97 259.26
31 34.97 48.26 64.09 79.96 96.8
32 13.97 21.46 30.6 41.01 51.79
33 16.35 26.1 35.13 47.1 59.2
34 57.12 68.65 80.11 93.67 101.9
35 8.28 12.56 17 22.89 29.35
36 16.41 23.27 33.09 45.75 59.9
37 19.36 29.99 40.42 52.9 60.5
38 24.73 33.78 43.17 60.78 71.5

Name 1Y 2Y 3Y 4Y 5Y
39 91.13 96.74 101.98 117.46 126.88
40 20.77 29.86 39.51 50.86 62
41 9.13 17.46 25.7 35.51 45.5
42 17.63 25.57 35.24 47.53 60.33
43 135.98 140.43 140.99 148.99 153.83
44 15.63 21.92 28.05 36.9 46
45 10.91 17.86 25.29 33.42 42.19
46 25.79 40.35 56.11 74.65 93.6
47 18.67 32.64 46.65 62.6 72.3
48 15.76 26.64 39.18 50.65 62.2
49 12.31 18.83 27.04 37.95 48.7
50 16.9 32.62 46.49 63.81 79.8
51 29.81 36.49 43 51.21 59.49
52 26.42 39.19 50.94 73.47 91.4
53 9.16 13.74 20.47 27.33 34.5
54 15.05 27.82 39.75 55.5 71.4
55 17.37 33.49 50.38 66.33 80.4
56 87.83 157.01 216.81 278.64 353.33
57 54.44 60.13 67.24 81.08 89.5
58 10.61 17.77 23.72 32.95 38.6
59 26.32 32.29 39.07 52.7 61
60 36.65 53.81 76.24 99.08 121
61 18.88 29.95 41.91 55.29 69
62 51.57 67.77 82 100.66 112
63 20.65 31.19 42.48 54.72 66.6
64 11.3 18.39 26.05 37.67 49.5
65 8.56 13.89 19.78 27.4 35.5
66 17.1 26.62 39.76 53.56 67.2
67 10.02 16.89 24.3 33.77 43.33
68 8.34 22.47 36.78 52.26 68.1
69 10.86 16.3 23.56 30.83 38.5
70 24.06 43.32 63.17 78.96 96.1
71 8.08 13.95 20.38 26.62 32.68
72 42.58 57.15 70.68 82.48 89.66
73 36.31 57.72 79.92 108.11 132.2
74 98.29 117.15 133.62 150.04 160
75 11.44 15.62 20.89 30.53 36.4
76 12.52 17.74 24.86 33.07 41.8
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Name 1Y 2Y 3Y 4Y 5Y
77 6.77 11.68 16.06 20.49 25.5
78 31.39 47.72 62.82 78.71 95
79 17.24 29.42 41.4 52.28 66.24
80 32.21 48.38 65.36 85.53 105
81 14.73 25.05 36.22 49.46 64.1
82 13.64 22.93 32.56 44.76 57.65
83 17.26 29.48 44.21 58.96 74.17
84 10.41 17.45 24.77 33.88 43
85 38.83 57.22 77.21 100.34 122.8
86 17.92 27.01 35.43 47.48 58.29
87 75.7 98.82 140.01 177.85 211.33
88 32.6 56.26 84.87 104.81 123.24
89 68.83 77.07 82.81 98.9 108.67
90 16.43 25.1 33.74 50.07 64.39
91 7.59 11.9 16.25 19.89 24.5
92 25.02 42.53 59.97 83.24 106
93 6.66 9.75 14.99 24.55 30.4
94 8.97 15.88 22.97 30.56 39
95 25.78 37.64 52.72 72.25 90.67
96 27.92 36.71 43.17 60.78 71.5
97 23.38 39.9 57.96 75.01 91.7
98 70.03 80.68 91 114.95 129.49
99 14.32 22.87 31.4 44.68 55.8

100 18.08 33.26 48.66 65.21 82.19
101 11.52 15.84 21.39 31.43 37.57

Name 1Y 2Y 3Y 4Y 5Y
102 30 48.26 71.94 93.67 115.5
103 14.41 21.74 32.32 44.1 55.6
104 16.11 27.08 38.53 53.22 65.5
105 24.15 36.28 49.87 67.39 85
106 33.56 52.22 72.88 95.08 117
107 15.67 27.87 37.96 52.42 66.94
108 17.79 25.49 33.69 42.67 51.7
109 15.2 22.98 31.43 42.35 53.1
110 34.17 40.93 47.14 54.46 61.13
111 84.58 101.78 116.17 138.05 151.34
112 5.57 10.39 14.48 19.36 24.5
113 9.75 19.78 34.63 53.86 72.6
114 16.66 29.95 42.32 58.35 74.61
115 12.49 21.64 31.62 41.91 52.19
116 18.26 26.99 37.65 48.31 59.49
117 9.66 18.31 26.1 34.72 43.78
118 16.49 26.26 35.99 47.5 59.5
119 24.11 39.61 55.96 74.09 92.49
120 65.29 85.96 106.64 122.61 140
121 25.92 41.9 60.94 79.97 99
122 15.13 21.81 29.37 40.87 53
123 23.31 43.68 66.47 94.7 122.5
124 7.94 12.98 19.33 26.85 34.5
125 11.21 18.58 24.31 33.45 39.03

Table 8: Marginal CDS spread for each component of iTraxx Europe S24. The unit is basis point.
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