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Abstract

Part I: Theory of Coordinated Agency — Coordinated decision making has long been the
topic of philosophical debate. In addition to standard game-theoretic models of coordination
based on individual rationality, explicitly group-level approaches, such as joint intentionality and
team reasoning, have been recently advanced as rational concepts of coordinated group behavior.
Whether the approaches are based on either individual or social notions of rationality, however,
coordination as discussed in the extant literature is implemented via solution concepts based on
psychological, sociological, and economic considerations that are exogenously attributed to the
individuals after individual preferences are established and the game’s mathematical structure
has been defined. Rather than focusing on ex post solution concepts that overlay the preference
model, this paper takes the position that social considerations should be incorporated ex ante
into the individual preference models, thereby enabling an endogenous concept of coordinated
behavior to emerge as the game is engaged. Conditional game theory provides a framework
within which to explore this alternative perspective. The key feature of this approach is to
apply the concepts of Bayesian conditionalization to enable agents to modulate their individual
preferences by conditioning them on the intentions of others, thereby actively responding to
social influence. This paper establishes a coordination mechanism that generates an emergent
social model as conditional preferences propagate through the group. The result is an operational
definition of coordinated agency and the creation of coordinated decision rules. The theory is
expanded to account for cyclic influence propagation by the use of the Markov convergence
theorem to establish the convergence of reciprocal preference propagation. Additionally, the
concept of mutual information, as developed via Shannon information theory, is applied to
define a quantitative measure of the innate ability of a group to coordinate as a result of social
influence. Finally, the theory is extended to account for stochastic entities that can influence
the behavior of deterministic agents and vice versa.
Part II: Application — The theory is applied to Bacharach’s three puzzles: Hi-Lo, Matching
Pennies, and the Prisoner’s Dilemma.
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1 INTRODUCTION

Part I: Theory of Coordinated Agency

1 Introduction

Order is not pressure which is imposed on society
from without, but an equilibrium which is set up
from within.

José Ortega y Gasset, Mirabeau: An Essay on
the Nature of Statesmanship

Coordinated multiagent decision making has long been an important subtopic of game theory.
Seminal works by Schelling (1960), Lewis (1969), Bicchieri (1993), and many others provide in-
depth analyses of coordination scenarios. Schelling introduces the notions of “tacit coordination,”
where “the player’s objective is to make contact with the other player through some imaginative
process of introspection, of searching for shared clues” (Schelling, 1960, p. 96). Lewis (1969) argues
that social convention is the basis for much of coordinated behavior. Bicchieri (1993) proposes that
coordination is learned as the end result of social evolution. Cooper (1999) expresses coordination in
terms of technological complementarity. Recently, Sugden (1993, 2000, 2003, 2014) and Bacharach
(1999, 2006) have proposed concepts of team reasoning, where individuals identify as members of
a team and modify their choices to conform with team aspirations.

Team reasoning is part of a larger conversation on collective intentionality, the study of group
action in terms of the mental states of the individuals, and involves notions of “we-intention” and
“joint commitments” (Searle, 1990, 1995; Gilbert, 1989) that, it is argued, cannot be constructed
from individual-level states. Bratman (1993, 1999, 2014) introduces a concept of “augmented in-
dividualism,” and asserts that there is no discontinuity between individual and joint intentionality
Rather, shared intentions consist primarily of interrelated attitudes of the individuals. Ross (2014)
is skeptical of building joint behavioral models that rely on internal mental phenomena, arguing
that, since mental states require context, they do not provide an objective account of the world. Al-
though intentional states may be needed to describe a scientific worldview, they are best understood
as descriptions of coupled informational and behavioral patterns.

Bratman’s and Ross’s observations provide a natural point of departure for this paper. We
assume that all relevant mental states have been incorporated into each individual’s preference
model, and that the key issue is to understand how these preferences generate coordinated behavior.
Coordination comes from the Latin: co (together) + ordinare (to regulate). The Oxford English
Dictionary defines coordinate as “to place or arrange (Things) in proper position relative to each
other and to the system of which they form parts; to bring into proper combined order as parts of
a whole” (Murray et al., 1991). To comply with this definition, coordination must be more than
cooperation. Even purely selfish individuals may cooperate if their interests happen to coincide,
and no notion of group behavior need be relevant. Coordination, however, is a more complex
concept that involves the relationship between individual and group behavior. For coordination
to occur, the individuals (the parts) must combine their behavior to form a properly constructed
group (the whole).

This paper develops a concept of coordinated agency that is distinct from approaches in the
extant literature. On the one hand, it differs from Bacharach’s (2006) team-reasoning in that it
does not require individuals to undergo agent and utility transformations from individual to group,
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1 INTRODUCTION 1.1 Coordination Vis-à-vis Performance

and it also differs from Sugden’s (2014) concept of intentional cooperation, where individuals reason
as members of a group with the intention of playing their parts in the interest of mutual benefit. On
the other hand, it is also distinct from conventional game-theoretic notions of coordination which
retain the individual game-theoretic payoff structure and focus on coordinated solution concepts.
We propose a middle ground that retains the game-theoretic assumption of individual preferences,
but extends the concept of individual rationality to include the incorporation of the interests of
others into one’s own interest, thereby enabling the emergent creation of mutual interest as a
consequence of social relationships. We establish an explicit operational definition of coordination
by introducing specific properties of the concept in terms of its existence and quantity. We a)
present a mathematical framework within which intentional attributes may be incorporated into
individual preferences, b) introduce a social interaction mechanism that produces endogenously
coordinated multiagent decisions, and c) provide an explicit metric to express the degree to which
a group possesses the intrinsic ability to coordinate as a function of its social structure.

1.1 Coordination Vis-à-vis Performance

We focus on the coordination of groups whose members possess the ability to respond to the social
influence exerted on them by each other. Examples include cooperative groups, such as teams and
business entities, mixed organizations such as families, which can encompass both cooperative and
conflictive influence, and adversarial groups such as athletic contests and military engagements
that express conflictive coordination. Team members coordinate by cooperating in the pursuit of
a common goal, business partners coordinate by dividing the labor, family members coordinate
by respecting (or not) each other’s opinions and priorities, and military opponents coordinate by
opposing each other in some systematic way.

Coordination is a principle of behavior on a parallel with, but different from, performance.
Individuals perform; groups coordinate. Performance deals with operational measures of efficiency
and effectiveness of individual behavior. Coordination, however, is an attribute of organizational
structure regarding how the members of a group function together. In terms of overall functionality,
it is often the case that the propensity of a group to coordinate is more relevant than the propensity
of the individuals to optimize. It is more relevant for a team to win the game than for each player
to maximize the number of points he or she scores. It is more relevant for a business entity to
settle on a productive division of labor than for each partner to maximize individual control. It is
more relevant for a family to function in a civil and equitable way than for the members to focus
exclusively on what is individually best for themselves. It is more relevant to the conducting of a
war for each opponent to seek victory rather than simply to destroy as many enemy resources as
possible.

Focusing on performance without considering coordination is an incomplete characterization
of group behavior. Similarly, focusing on coordination without considering performance is an
incomplete characterization of individual behavior. A football team may possess the organizational
structure required to win the game, but that structure is useless if the players do not attempt to
maximize the number of goals scored. A business firm may be well organized in terms of individual
responsibilities, but unless the partners exert control, the entity will not prosper. A family may
possess fair and equitable rules of conduct but will still be dysfunctional if the members do not
pursue their individual goals within that context. An army may have a strategic plan to win the
war, but that still requires the solders to fight effectively. Coordination without performance is
unproductive, and performance without coordination is equivocal. A full understanding of the
functionality of a group requires the assessment of both attributes. Coordination occurs when
individual contributions appropriately fit together to form a coherent organizational structure.
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1 INTRODUCTION 1.2 The Role of Game Theory

The synergistic relationship between coordination and performance paves the way for the rec-
onciliation of group and individual rationality. Specifically, we view group rationality in terms of
coordination, and we view individual rationality in terms of performance. Developing this relation-
ship, however, requires an operational definition of coordination that meshes with the operational
definition of performance. A truly operational notion of coordination must a) establish a math-
ematical representation of material interests and social relationships; b) define a mechanism to
combine the individual interests (the parts) to create a coordinated society (the whole); and c) de-
fine solution concepts through which the group achieves coordinated behavior and the individuals
achieve individually rational performance within the group context.

1.2 The Role of Game Theory

Game theory occupies a dominant position as a framework within which to model coordinated
decision making (cf. Schelling (1960); Lewis (1969); Bicchieri (1993); Cooper (1999); Goyal (2007);
Bacharach (1999, 2006); Sugden (1993, 2000, 2003, 2014); Jackson (2008); Shoham and Leyton-
Brown (2009); Easley and Kleinberg (2010); Gintis (2016)). A complex social problem is defined
and factors that are deemed to be relevant are encoded into mathematical expressions, while those
factors considered to be irrelevant are ignored. The classical game-theoretic approach is to make
minimal assumptions about individual preferences and investigate how they interact. The standard
approach is to endow each agent (player) with an individual action set and a linear (i.e., reflexive,
antisymmetric, transitive, and complete) preference ordering over the set of joint actions (profiles)
that produce its payoffs. Such preference orderings are assumed to account for all of the interests
that can affect the individual’s welfare. Once specified, they are categorical: unconditional, fixed,
and immutable. The payoffs are then juxtaposed into a payoff array, and each agent invokes a
strategy according to its solution concept.

A key attribute of the classical approach is that it divides the labor between the specification
of preferences and the specification of solution concepts. It complies with the observation by
Friedman (1962, p. 13) that “economic theory proceeds largely to take wants as fixed. This is
primarily a division of labor. The economist has little to say about the formation of wants; this
is the province of the psychologist. The economist’s task is to trace the consequences of any given
set of wants.” Friedman’s model is designed for scenarios where individual behavior is governed
by narrowly construed self-interest and payoffs are expressed in terms of material performance.
The critical feature of such an environment is that individuals behave reactively. They form their
strategies according to pre-calculated preferences as a reaction to the possible strategies that others
can invoke.

Since it is based on categorical individual preferences, classical game theory is expressly designed
to study individual performance. It is not designed to account for coordination. In fact, attempting
to deduce any notion of group rationality from individual rationality is problematic. Shubik (1982)
cautions against the “anthropomorphic trap” of building on “the shaky analogy between individual
and group psychology,” and argues that “It may be meaningful, in a given setting, to say that
group ’chooses’ or ’decides’ something. It is rather less likely to be meaningful to say that the
group ’wants’ or ’prefers’ something . . . . Game theory makes a special point of not requiring
‘society’ to be a generalized person, capable of making choices and judgments among actions or
outcomes on the basis of some sort of welfare function” (Shubik, 1982, p. 123-124). Luce and Raiffa
(1957) also argue that “the notion of group rationality is neither a postulate of the model nor does
it appear to follow as a logical consequence of individual rationality” (p. 193), and conclude that
“it may be too much to ask that any sociology be derived from the single assumption of individual
rationality” (p. 196).
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Simply put, relying on categorical preferences to model coordinated behavior limits the ability
to account for the social relationships that are necessary for the proper combining of the parts to
form a whole, since there no explicit mechanism to account for interrelationships. Although the
members of a team may have individual preferences that are consistent with cooperative behavior,
if there is no social linkage, they may each choose behaviors that, at least ostensibly, are consistent
with coordination but, in reality, are governed by individual goals and may result in poor results.
A family that does not coordinate is likely to be dysfunctional. If opposing armies have individual
preferences that are consistent with fighting but do not engage in reconnaissance or some other
form of coordination, their behaviors may not be consistent with the group-level behavior of a war.

It is tempting to encode social interests into categorical individual preferences, but doing so
runs the risk of conflating social issues with material issues. For example, including parameters to
account for “self-centered inequity aversion” (fairness), as introduced by Fehr and Schmidt (1999),
is an attempt to embed a fundamentally social concern into the evaluation of individual material
payoff. Essentially, it puts a price on fairness. Social interests, however, cannot be easily expressed
as material payoffs or other tangible or easily quantifiable rewards. Rather, they are intentions that
connect the individuals to each other in ways that enable them to achieve appropriate material
payoffs in a social context. To pursue such payoffs, individuals must possess the ability to respond
to social influence. To illustrate, suppose an athletic team member can either attempt to score a
goal directly or pass to a team member who has a better shot. Both options are consistent with
the material performance of scoring a goal, but the latter option requires a connection to the other
player in pursuit of the social interest of winning the game.

The question, therefore, is, where should such a connecting mechanism reside? Relegating the
mechanism to the solution concept that ex post overlays the payoff model perpetuates the division
of labor between modeling preferences and modeling rational behavior. Notions of coordination
that arise through the solution concept, rather than explicitly encoded into the payoff structure,
are extrinsic. This concept of coordination is imposed exogenously on the network — it is not an
innate property of an explicitly defined social structure.

Noncooperative game theory is based on the assumption (at least for single play) that the players
are unable to communicate during play, for if they did, they could renegotiate their preferences
and define a different game. Instead, game theory expects each player to have taken all relevant
issues into consideration at the moment of truth when the game is engaged. But if individuals are
responsive to social influence, then, as they engage, social relationships will develop dynamically,
thereby enabling an endogenous notion of intrinsically coordinated behavior to emerge as the parts
(the individuals) combine in a systematic way to form a whole (the society). A key issue in this
regard is how to express such emergent social behavior with a mechanism that does not violate the
communication assumption.

Conditional game theory, as developed by Stirling (2012), provides a framework that accommo-
dates the modeling of direct social influence and, consequently, enables the creation of an operational
definition of coordination that comports with the etymological and dictionary interpretations of the
concept. The key features of conditional game theory are as follows:

• Societies are modeled as networks — directed graphs with individuals as the vertices and
social influence linkages as the edges.

• Categorical individual preferences are replaced by conditional individual preferences that
enable players to incorporate the interests of others into their own rationality.

• Social relationships are formed as social influence propagates through the network, thereby
creating an emergent comprehensive coordination model.
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• An operational definition of coordination is defined in terms of a group-level coordination
metric, from which coordinated utilities may be derived.

• The coordination model may be used to generate a coordination index as an explicit measure
of coordinatability, or the theoretical degree to which the social structure of the group enables
coordination.

• Conditions are established for individuals to deliberate together to converge to a coordinated
solution.

• Stochastic entities that influence, and can be influenced by, decision-making agents may be
incorporated into the network.

A classical noncooperative game becomes a special case of conditional game for a network
with no edges, that is, a group where the preferences of all of the players are categorical. In this
case, there is no explicit social influence. This does not mean, of course, that the group cannot
coordinate extrinsically. But if they do, coordination is because of the coincidental alignment of
their individual categorical preferences and an appropriately applied solution concept, rather than
because of direct social influence.

Part I is organized as follows. In Section 2 we set notation, extend the concept of individual
rationality to incorporate the influence of others into one’s own rationality, and merge game theory
and network theory to define a conditional network game. Section 3 builds on this structure and
reviews the basic concepts of conditional game theory. Section 4 invokes Markov Convergence
theorem to extend conditional game theory to account for networks that contain influence cycles,
and Section 5 applies Shannon information theory to the coordination problem and introduces the
coordination index as a measure of the intrinsic coordinatability of a network. Section 6 then
extends the theory further to account for stochastic agents. A discussion of results is offered in
Section 7.

2 Game Theory Models

Complexity is no argument against a theoretical
approach if the complexity arises not out of the
theory itself but out of the material which any
theory ought to handle.

Frank R. Palmer, Grammar

2.1 Classical Game Theory Models

Definition 1. A normal form game comprises set of agents (players) {X1, . . . , Xn}, each of whom
possesses a finite action set Ai = {zi1, . . . , ziNi} and a categorical utility ui defined over the product
set A = A1×· · ·×An, the set of action profiles. A payoff array is an N1×· · ·×Nn dimensional struc-
ture such that the (k1, . . . , kn)th entry is the sub-array [u1(zik1 , . . . , znkn), . . . , un(zik1 , . . . , znkn)],
where ui(zik1 , . . . , znkn) is the payoff that Xi receives if the profile (zik1 , . . . , znkn) is actualized.
When n = 2, the payoff array is termed a payoff matrix.

Game theory is a powerful prescriptive model for multiagent decision making. One of the
reasons for its success is the virtually perfect match between the mathematical structure of the
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payoffs and the notion of individual rationality used to render a decision. If one is motivated
by narrow self-interest, a natural mechanism by which to express those interests is with a linear
ordering over the set of all outcomes. Conversely, if one possesses a linear ordering over all outcomes,
a natural solution concept is to choose the outcome that maximizes individual performance. But
this straightforward model of rational behavior can oversimplify and may even distort the decision
problem. Arrow has identified its limitations.

Rationality in application is not merely a property of the individual. Its useful and
powerful implications derive from the conjunction of individual rationality and other
basic concepts of neoclassical theory — equilibrium, competition, and completeness
of markets. . . . When these assumptions fail, the very concept of rationality becomes
threatened, because perceptions of others and, in particular, their rationality become
part of one’s own rationality (Arrow, 1986, p. 203).

Despite Arrow’s implicit warning, reliance on categorical utilities as the vehicle with which to
express preferences has essentially remained unchanged, although it has not remained unchallenged.
Sen notably threw down the gauntlet long ago:

A person is given one preference ordering, and as and when the need arises this is
supposed to reflect his interests, represent his welfare, summarize his idea of what
should be done, and describe his actual choices and behavior. Can one preference
ordering do all these things? A person thus described may be “rational” in the limited
sense of revealing no inconsistencies in his choice behavior, but if he has no use for
these distinctions between quite different concepts, he must be a bit of a fool. The
purely economic man is indeed close to being a social moron. Economic theory has
been much preoccupied with this rational fool decked in the glory of his one all-purpose
ordering. To make room for the different concepts related to his behavior we need a
more elaborate structure [italic emphasis in original, bold emphasis added] (Sen,
1977, pp. 335-336).

A narrow interpretation of individual rationality may be appropriate when individuals function
in an economic environment governed by the price system (Hayek, 1945; Friedman, 1962). Under
this system, prices guide both users and providers of products as they make decisions regarding
the various transactions they undertake. The price system frees individuals to focus their attention
on, and only on, their own interests, since the social effects of their behavior are automatically
regulated. If an individual changes the price of some product in the interest of its own welfare,
that signal will propagate through the society and others will respond by adjusting their demand
for the product in the interest of their individual welfare. This group-level automatic regulation
mechanism makes it possible to justify pursuing one’s own interests without concern for the welfare
of others. As Arrow (1974, p. 21) observes, “It makes a virtue out of selfishness.”

Perhaps few would dispute that the price system is a valuable characterization of behavior that
fits economic scenarios where markets clear and competition dominates behavior. But, as Arrow
(1974, p. 22) observes, “it cannot be made the complete arbiter of social life.” In particular, the
assumptions imposed by the price system are not applicable to the formation of teams, where it is
more natural to consider choices in the light of group-level behavior. Replacing solution concepts
based on narrowly construed self-interest with socially amenable solution concepts address a sig-
nificant shortcoming of classical game theory as a model of human behavior in social environments
that are not based on competition and the clearance of markets. Nevertheless, doing so continues to
rely on the mathematical model structure used by classical game theory — each individual comes to
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the game with completely defined ex ante categorical preferences. Although these preferences may
be transformed into group-level preferences by an ex post psychological mechanism, the underlying
mathematical structure of the game remains unchanged. It is not sufficient, however, simply to
assert that individuals behave in a certain way because the are motivated by psychological consid-
erations. This is the nub of the issue. As Elster argues, an action cannot be considered rational
unless it can be explained and justified.

Once we have constructed a normative theory of rational choice, we may go on to employ
it for explanatory purposes. We may ask, that is, whether a given action was performed
because it was rational. To show that it was, it is not sufficient to show that the action
was rational, since people are sometimes lead by accident or coincidence to do what is
in fact best for them. We must show, in addition, that the action arose in the proper
way, through a proper kind of connection to desires, beliefs, and evidence [emphasis in
original] (Elster, 1986, p. 2).

One might rightly ask, in the light of Elster’s assertion: Is there evidence in the mathematical
structure of the game that the players are disposed to act in accordance with any particular notion
of rational behavior? And if the model provides no such evidence, then one might ask for the source
of the connections between the preference model and rational behavior.

To establish a concept of socially amenable rational choice in a way that complies with Elster’s
injunction, the connections must be directly built into the preference models ex ante, rather than
applied ex post as an overlay of a structure that is designed from the perspective of narrowly
construed self-interest. In fact, such an incorporation is essential to the synthesis of artificial
multiagent systems which must be designed to function in accord with socially sophisticated human
behavior. It is one thing, from a third-party analysis perspective, to attribute observed behavior
to psychological motives, but it is quite another thing to imbue the members of a group of artificial
agents with “personalities” that exhibit the desired social attributes. This is the distinction between
non-causal and causal models. As an analysis tool, a model is non-causal — it may explain or predict
behavior, but it does not dictate behavior. But as a synthesis tool, a model is causal — it generates
the behavior of the artificial entities. In its role as an analysis tool, a model is used to reduce reality
to an abstraction, but in its role as a synthesis tool, it is used to create a (man-made, or artificial)
reality from an abstraction.

2.2 Network Theory Models

A natural way to incorporate social considerations into a group is to view it as a network whose
members are linked together by some means of communication or control that enables them to
exert social influence on each other. It must be emphasized that influence is inherently neutral. It
can be positive, in the sense of representing cooperative intentions, it can be negative, in the sense
of representing conflictive intentions, or it can be mixed, where propensities for both cooperation
and conflict co-exist.

A response for Sen’s (1977) call for a “more elaborate structure” is to expand beyond categorical
preferences by incorporating the influence linkages into the preference model. To introduce such a
structure, consider the simple network scenario involving two agents, X1 and X2, as illustrated by
the directed graph

X1
// X2

, (1)

where the direction of the arrow indicates that X1 influences X2 but X2 does not directly influence
X1. We assume the following conditions.
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Directionality: Although social influence is directed from the one who influences to the one who
is influenced, it is the receiver of the influence who activates the relationship. Thus, the influ-
encee can modulate its preferences in response according to its own volition. The influencer
does not control, dictate, or otherwise force preferences or behavior onto the influencee.

Conditionality: The influencee does not require knowledge of the preferences of the influencer in
order to establish the influence linkage.

Directionality and conditionality may appear to be problematic. How can the influencee respond
without knowledge of the influencer’s preferences? The answer to this question lies in the logical
structure of the influence mechanism, namely, the logic of conditionalization — a key concept of
Bayesian epistemology. Conditionalization takes the form of a hypothetical proposition “If . . .
then ,” where . . . is the antecedent and is the consequent. In a Bayesian context, one
incorporates evidence into an assessment of the probability that an event B is realized, conditioned
on knowledge that event A is realized, by the conditional probability P (B|A). The antecedent is
the hypothesis that A is realized, and the consequent is the event that B is realized as governed by
the conditional probability. The great strength and wide applicability of probability theory is the
facility to deal with hypothetical propositions. Indeed, one might say that this facility is its raison
d’être. As succinctly expressed by Glenn Shafer (cited in Pearl (1988, p. 15)): “probability is not
really about numbers; it is about the structure of reasoning.”

We employ this same conditionalization logic to model preferences. In this case, the antecedent
is a hypothesis that the outcome corresponding to a profile a ∈ A is intended by the influencer.
Conditioned on that hypothesis, the consequent is that the outcome corresponding to a profile
a′ ∈ A is intended by the influencee, and the influencee responds by defining its conditional
preference ordering according to its psychological disposition. Once the antecedent is specified, the
resulting preference ordering is a conventional linear ordering over the set of outcomes. This is
the mechanism by which influencees may express their intentions, such as social propensities for
cooperation, fairness, and altruism, or overtly antisocial propensities such as conflict, avarice, and
malevolence, as conditional responses to each of the hypothesized intentions of the influencer.

Modeling the influence mechanism according to the logical structure of conditionalization is
compatible with the concept of virtual bargaining, where individuals posit “agreements that the
social participants anticipate they would make, were they to engage in explicit bargaining . . . [and]
operates within the framework of rational-choice theory . . . [by] extend[ing] the scope of rational-
choice models of interaction” Misyak et al. (2014, p. 512). Conditionalization thus serves as a
mathematical vehicle with which to conduct though experiments such as virtual bargaining. An
individual may conduct a thought experiment and determine its response for each of the possible
intentions of those who influence it, thereby providing maximum flexibility in responding, especially
if the influencer is itself an influencee of a third agent. In such a case, both influencees will
be uncertain regarding their preferences until the preferences of the influencers are determined.
Uncertainty, in this context, is not regarding beliefs; rather it is uncertainty regarding preference.
The conventional application of the probability syntax is as a means of expressing epistemological
uncertainty regarding belief, but this same logical structure may be used to expressing behavioral
uncertainty regarding preference. One is epistemologically uncertain if one does not have complete
knowledge that a proposition is realized, and one is behaviorally uncertain if one is not completely
decisive that an action should be taken. To comply with this logical structure, we focus on preference
structures that admit conditionalization. It is convenient to employ the structure and syntax of
graph theory.
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Definition 2. The graph of a network consists of a set of vertices comprising the individuals Xi,
i = 1, . . . , n, and a set of edges, also termed linkages, that serve as the medium by which influence
is propagated between individuals. An edge is directed (denoted with the arrow symbol “→”) if the
propagation is unidirectional: Xj → Xi means that Xj directly influences Xi. A path of length k
from vertex Xi1 to vertex Xik is a sequence {Xi1 , . . . , Xik} of distinct vertices such that an edge
exists between Xij and Xij+1, j = 1 . . . , k− 1. A path never crosses itself, and movement along the
path never violates the directed-edge condition. If all of the edges along a path are directed, then
the path is a directed path. We write Xi 7→ Xj if there is a directed path from Xi to Xj. A path
is a cycle, or closed path, if Xj 7→ Xj for any Xj. A graph is said to be a directed acyclic graph
if all edges are directed and there are no cycles.

Definition 3. The parent set for Xi, denoted pa (Xi) = {Xj: Xj → Xi}, is the subset of individuals
that directly influence Xi. If Xi has qi > 0 parents, then pa (Xi) = {Xi1 , . . . , Xiqi

}, where Xik → Xi,
k = 1, . . . , qi. For notational convenience, let pa (i) = {i1, . . . , iqi} denote the indices corresponding
to the elements of pa (Xi).

Definition 4. A conjecture by Xi, denoted aii ∈ Ai, is a hypothetically intended action by Xi,
and we write Xi |= aii. A conjecture for Xj by Xi, denoted aij, is an action that Xi hypothesizes
as intended by Xj. A conjecture profile by Xj, denoted ai = (ai1, . . . , ain) ∈ A, is a profile of
hypothetically intended actions for the group {X1, . . . , Xn}, where aij ∈ Aj. If ai is a conjecture
profile by Xi, we write Xi |= ai. A joint conjecture set for {X1, . . . , Xn} is a set of conjecture profiles
(a1, . . . ,an) ∈ An, where Xj |= aj, j = 1, . . . , n. A conditioning conjecture set for pa (Xi) =
{Xi1 , . . . , Xiqi

} is a set of conjecture profiles αpa(i) = (ai1 , . . . ,aiqi ) ∈ Aqi, where Xik
|= aik , and

we write pa (Xi) |= αpa(i).

We introduce the notation

Hi|pa(i)(ai|αpa(i)): pa (Xi) |= αpa(i) ⇒ Xi |= ai , (2)

to express the hypothetical proposition that, if αpa(i) is a conditioning conjecture set for pa (Xi),
then Xi will conjecture ai. The conditioning symbol “|” separates the conditioned entity (the
consequent) on the left from the conditioning entity (the antecedent) on the right.

Definition 5. Given a parent set pa (Xi) = {Xi1 , . . . , Xiqi
} for Xi and a conditioning conjec-

ture set αpa(i) = (ai1 , . . . ,aiqi ) for pa (Xi), the conditional utility of the hypothetical proposition
Hi|pa(i)(ai|αpa(i)) is ui|pa(i)(ai|αpa(i)): A→ R. If pa (i) = ∅, then ui|pa(i) = ui, a categorical utility
for Xi.

A conditional utility involves a special logical structure as the consequent of a hypothetical
proposition whose antecedent is an assertion attributed to the conditioning entity. Thus, there
is a significant operational difference between a categorical utility and a conditional utility.1 The
former provides sufficient information for the individual to take action, whereas the latter is used to
define situational, or context dependent, relationships, and taking action requires the appropriate
context to be actualized. Thus, whereas the statement ui(ai) > ui(a

′
i) means that Xi prefers ai

to a′i under all circumstances, the statement “ui|pa(i)(ai|αpa(i)) > ui|pa(i)(a
′
i|αpa(i)) means that Xi

1A concept of a conditional utility that is syntactically similar to this approach is the notion of attribute dominance
introduced by Abbas and Howard (2005) and Abbas (2009), who create a conditional utility from a joint and marginal
utility, whereas we create a joint utility from conditional and marginal utilities. Although they share the same syntax,
the two usages are inverses of each other.
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2 GAME THEORY MODELS 2.2 Network Theory Models

prefers ai to a′i, given that αpa(i) is a conjecture for pa (Xi).
2 We emphasize that a conjecture is

not a strategy. A strategy is an action that conforms to a rule that defines what action should be
taken, but a conjecture is an action that might be intended, given appropriate circumstances.

Conditional utilities provide the mechanism by which individuals may incorporate the behavioral
influence of others into their own preferences. Given two agents X1 and X2 forming preferences
over a set A such that pa (X1) = ∅ and pa (X2) = {X1}, the conditional u2|1(a2|a1) characterizes
the degree to which the hypothesis X1 |= a1 influences X2’s preference for X2 |= a2. Notice that this
is exactly the same syntax employed by probability theory to incorporate the statistical influence
that other random phenomena have on a random phenomenon. Given two random variables Y1

and Y2 taking values in Y, the conditional probability mass function p2|1(y2|y1) characterizes the
degree to which the hypothesis Y1 = y1 influences the belief that Y2 = y2.

Furthermore, since positive affine transformations of utility preserve preference orderings uniquely,
we may assume without loss of generality that the utilities are normalized, meaning that they are
nonnegative and sum to unity; that is,

ui|pa(i)(ai|αpa(i)) ≥ 0 ∀ αpa(i) ∈ Aqi∑
ai

ui|pa(i)(ai|αpa(i)) = 1 ∀ αpa(i) ∈ Aqi . (3)

We refer to such normalized utilities as utility mass functions.
The application of the probability syntax to the behavioral domain is a departure from the

classical applications of probability theory which predominantly fall into the epistemological do-
main. As the following lemma establishes, however, the two domains are connected by an order
isomorphism.3

Lemma 1. An order isomorphism exists between ordering the strength of belief regarding proposi-
tions and ordering the strength of preference regarding alternatives.4 This isomorphism applies to
both categorical and conditional orderings.

Proof. Without loss of generality, we restrict attention to a two-agent group {X1, X2} defined over
the product set A = A1×A2, with X1 possessing a categorical utility u1: A→ R and X2 possessing
a family of conditional utilities {u2|1(·|a1): A → R ∀ a1 ∈ A}. Let Y1 and Y2 be arbitrary sets
of random propositions of distinct elements with cardinalities equal to the cardinalities of A1 and

2The notion of conditional preferences used here employs syntax similar to the well-known concept of state-
dependent preferences (cf. Karni and Schmeidler (1981); Karni et al. (1983); Karni (1985); Drèze (1987)), where
the decision maker’s preferences are modulated by the state of nature. The two notions, however, have different
semantics. State dependence yields a preference ordering corresponding to a particular state of nature, where a state,
as defined by Arrow (1971, p. 45), is “a description of the world so complete that, if true and known, the consequences
of every action would be known.” The state of nature is an assumption imposed on the decision maker that constrains
the preferences to a particular environment. The concept of conditional preferences used herein, however, deals with
an individual’s ability to modulate its preferences to account for the varying preferences of other individuals who are
participants in the multiagent decision dynamics. Rather than constraining the model to a particular environment,
the intent of such preferences is to extend the model to a more complex social environment. Conventional state-
dependent preferences are used to account for the presence of uncertainty, while the conditional preferences are used
herein to extend beyond narrow self-interest and accommodate a complex social structure.

3The isomorphic relationship simply means that beliefs and preferences can be expressed with the same mathe-
matical syntax. It does not imply any causal relationships between them, and doing so would be irrational: One who
interprets preferences as beliefs is a wishful thinker (if it is best, it must be true), and one who interprets beliefs as
preferences is a fatalist (if it is true, it must be best).

4Two sets are order isomorphic if one of the orderings can be obtained from the other by renaming the members
of the set (Itô, 1987).

Stirling 10 September 18, 2016
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A2, respectively, and let Y = Y1 ×Y2. Let g: A→ Y be a bijective mapping g: a 7→ y, and define
functions b1: A→ R and {b2|1(·|y1): Y → R ∀y1 ∈ Y} such that

b1(y) = u1[g−1(y)] = u1(a) (4)

and
b2|1(y2|y1) = u2|1[g−1(y2)|g−1(y1)] = u2|1(a2|a1) . (5)

This construction defines a marginal belief function b1 over Y such that, for y,y′ ∈ Y , b1(y) ≥
b1(y′) means that the belief that y will be realized is at least as great as the belief that y′ will
be realized. It also defines a family of conditional belief functions {b2|1(·|y1): Y → R ∀y1 ∈ Y}
such that b2|1(y2|y1) ≥ b2|1(y′2|y1) means that the belief that y2 is realized is at least a great as
the belief that y′2 is realized, given that y1 is realized. This mapping establishes the structural
equivalence of the preference criterion regarding A and the belief criterion regarding Y , thereby
establishing the order isomorphism.

Definition 6. A conditional network game comprises a set of individuals {X1, . . . , Xn}, a set of
conjecture profiles A = A1 × · · · ×An, and a family of sets of conditional utility mass functions of
the form

{ui|pa(i)(·|αpa(i))∀αpa(i) ∈ Aqi , i = 1, . . . , n} . (6)

2.3 Conventional Solutions to Network Games

An obvious extension to classical noncooperative game theory is to define Nash equilibria for net-
work games involving conditional utilities.

Definition 7. Let a = (a11, . . . , ann) be a fixed conjecture profile. For each Xi, let αpa(i) =
(a, . . . ,a) ∈ Api denote the conditioning conjecture set for pa (Xi) = {Xi1 , . . . , Xipi

} (notice that
all parents conjecture the same profile). Let ai = (a11, . . . , a

′
ii, . . . , ann) where a′ii 6= aii; that is, ai

differs from a in the ith position. The profile a is a conditioned Nash equilibrium if

ui|pa(i)(a|αpa(i)) ≥ ui|pa(i)(a
′
i|αpa(i)) (7)

for all a′i 6= ai and for all i = 1, . . . , n. If all utilities are categorical, the conditioned Nash equilib-
rium becomes a classical Nash equilibrium.

Example 1. The Battle of the Sexes game is often viewed as a coordination scenario. A man (M
– the row player) and a woman (W – the column player) can each attend either the dog race (D)
or the ballet (B). Thus, AM = AW = {D,B}, yielding A = AM ×AW . First, assume that M and
W possess categorical preferences defined by the payoff matrix displayed in Table 1. There are two
Nash equilibria, (D,D) and (B,B) but, unfortunately, game theory does not provide a definitive
solution, and instead invites a mixed strategy as a function of probabilities.

Problems such as this have received considerable attention in the literature. One well-known
approach introduced by Schelling (1960) is the concept of a focal point that would cause the players
to concentrate their attention on one of the equilibria. Suppose the players reside in a culture where
the man defers to the woman when deciding which social event to attend. The focal point would
then be (B,B), since that outcome is most preferred by the woman.

Relying on focal points forces the players to invoke social criteria that are not encoded into the
utilities. But if social criteria are relevant, then perhaps they should be explicitly incorporated into
the utilities. We may do so by establishing the influence link

W uM|W
// M . (8)
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2 GAME THEORY MODELS 2.3 Conventional Solutions to Network Games

Table 1: The payoff matrix in ordinal form for the Battle of the Sexes game.

W
M D B

D 4, 3 2, 2
B 1, 1 3, 4

Key: 4 = best; 3 = next-best; 2 = next-worst; 1 = worst

We may convert W ’s ordinal preferences into a parameterized utility mass function as

uW (D,D) = α, uW (D,B) = 0, uW (B,D) = 0, uW (B,B) = 1− α , (9)

where 0 ≤ α < 1/2.5 We form the conditional propositions for M as

HM|W (aM |aW ): XW |= aW ⇒ XM |= aM ∀ (aM ,aW ) ∈ A×A . (10)

The corresponding conditional utility mass function uM|W is specified as follows. If the conjecture
profile for W were (D,D), (D,B), or (B,D), then M would concentrate his entire utility on
(D,D), since that is his most preferred outcome. But if W ’s conjecture were (B,B), then M would
apportion β ∈ [0, 1/2) to (D,D) and 1−β to (B,B). The resulting conditional utilities are displayed
in Table 2.6

Table 2: M ’s conditional utility uM|W for the conditioned Battle of the Sexes game.

uM|W (aMM , aMW |aWM , aWW )

aWM , aWW

aMM , aMW D,D D,B B,D B,B

D,D 1 1 1 β
D,B 0 0 0 0
B,D 0 0 0 0
B,B 0 0 0 1− β

The conditioned payoff matrices are defined by juxtaposing W ’s utility given by (9) and each
column of Table 2, and are displayed in 3. Conditioning with respect to (D,D) , (D,B) and
(B,D) yields the payoffs displayed in Table 3(a), where we see that (D,D) and (B,B) are both
Nash equilibria but neither is dominant. Thus, as with the conventional case, conditioning on these
outcomes does not resolve the issue. Table 3(b) displays the payoff matrix when conditioning on
(B,B), which also reveals (D,D) and (B,B) as equilibria, but (B,B) is dominant, since α, β <
1/2. Thus, directly incorporating the social context into the utility structure apparently generates
the appropriate outcome. But a closer analysis reveals that applying conditional Nash equilibrium
logic merely begs the question — focal point analysis is ultimately used to prefer the equilibrium
conditioned on (B,B) over the other conditioned equilibria. Thus, at the end of the day, we are no
closer to a resolution that we were with the original formulation.

5When the individuals have specific names, it is convenient to replace the numerical indices with literations to
represent the individuals. Thus we write XM for X1, XW for X2, aMM for a11, aMW for a12, etc.

6In Section 3.2 we show how this formulation can easily be simplified.
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3 COHERENT COORDINATION

Table 3: The Conditioned payoff matrices for the Battle of the Sexes game: (a) corresponds to
conditioning on (D,D) (D,B), and (B,D), and (b) corresponds to conditioning on (B,B).

W
M D B

D 1, α 0, 0
B 0, 0 0, 1− α

(a)

W
M D B

D β, α 0, 0
B 0, 0 1− β, 1− α

(b)

3 Coherent Coordination

A mathematical formalism may be operated in
ever new, uncovenanted ways, and force on our
hesitant minds the expression of a novel
conception.

Michael Polanyi, Personal Knowledge

A conditioned Nash equilibrium takes into consideration the social influence that exists in the
network and, therefore, constitutes a useful extension of classical noncooperative game theory. If
that were the end of the story, then the introduction of conditional utilities would be a nice, but
somewhat modest, extension to game theory. But there is more to be said. The introduction
of explicitly modeled social influence into a network offers the possibility of defining entirely new
solution concepts that are not possible with the classical game-theoretic model. To identify such
concepts, we continue to exploit the mathematical machinery of probability theory.

The application of the conditionalization syntax as a means of modeling social influence, to-
gether with the order isomorphism between beliefs and preferences, suggests that there are natural
connections between a social network in the behavioral domain and a Bayesian network in the
epistemological domain.

Definition 8. A Bayesian network is a directed acyclic graph that satisfies the following conditions.

• The ith vertex corresponds to a discrete random variable Yi taking values in a finite set Y.

• The incoming edges to Yi constitute the conditional probability, denoted pi|pa(i)(yi|Υpa (i)), that
Yi = yi ∈ Y, given that its parents pa (Yi) = {Yi1 , . . . , Yiqi} assume the values Υpa (i) =
(yi1 , . . . , yiqi ) ∈ Y

qi. If pa (Yi) = ∅, then Yi is a root vertex and pi|pa(i) = pi, the unconditional
marginal probability mass function for Yi.

A Bayesian network provides a powerful framework within which to analyze the behavior of
either artificial or naturally existing groups of interacting elements. It is natural to start by con-
sidering the way the behavior of a given element is influenced by other elements that are in close
proximity either spatially, temporally, or functionally. From such local models of behavior one can
build a global model by piecing together the local components in appropriate ways. This approach,
pioneered by Pearl (1988), provides a powerful tool for the analysis of human networks and for
the design and synthesis of artificial networks. For additional discussions of Bayesian networks, see
Cowell et al. (1999), Lauritzen (1996), and Jensen (2001).
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Bayesian network theory establishes that a unique joint probability mass function, denoted
p1:n, can be constructed as the product of the conditional probability mass functions of all non-root
vertices and the marginal probability mass functions of the root vertices, yielding

p1:n(y1, . . . , yn) =

n∏
i=1

pi|pa(i)(yi|Υpa (i)) . (11)

In particular, consider the two-agent Bayesian network given by

Y1 p2|1
// Y2

. (12)

The joint probability mass function is then computed as

p12(y1, y2) = p1(y1)p2|1(y2|y1) . (13)

The synthesis of a joint probability mass function is the mechanism by which a notion of strict
individual belief, as expressed by the marginal probability p1, and an expanded notion of conditional
individual belief, whereby one takes into account the influence that the beliefs of others have on
one’s own beliefs as expressed by the conditional probability p2|1, are combined to form a notion
of belief connectivity as expressed by the joint probability p12. This connection does not generate
a group belief; belief is an innately individual concept. If a group were to believe something, then
it must function as a single organism.

It is immediate that the social network given by (1) is isomorphic to (12) and, accordingly,
we may combine the categorical and conditional utilities to form a new function defined over the
A×A of the form

u12(a1,a2) = u1(a1)u2|1(a2|a1) . (14)

The synthesis of such a function is the mechanism by which a notion of strict individual preference,
as expressed by the categorical utility u1, and an expanded notion of conditional individual pref-
erence, u2|1, whereby one takes into account the influence that the preferences of others have on
one’s own preferences, are combined to form a notion of preference connectivity as expressed by the
joint utility u12. Preference connectivity, however, is not group preference in the sense of the group
possessing wants or desires as a single entity. Preference, as expressed via the individual utilities, is
a measure of individual material benefit. Furthermore, no concept of group-level material benefit
is provided in the problem formulation. Thus, u12 cannot be a measure of material benefit for the
group. To be meaningful, it must be a measure of a phenomenon that is intrinsically social. To
motivate the identification of such a phenomenon, let us revisit the Battle of the Sexes game.

Example 2. Returning to the Battle of the Sexes game, let W ’s categorical utility be given by (9)
and M ’s conditional utility be given by Table 2. Applying (14) yields

uMW [(aMM , aMW ), (aWM , aWW )] = uM|W (aMM , aMW |aWM , aWW )uW (aWM , aWW ) , (15)

the results of which are displayed in Table 4. There are only three nonzero joint conjecture sets:
[(D,D), (D,D)], [(D,D), (B,B)], and [(B,B), (B,B)]. By straightforward calculations, these joint
conjecture sets are ordered as follows:

uMW [(D,D), (D,D)] > uMW [(B,B), (B,B)] > uMW [(D,D), (B,B)] for
1− 2α

1− α
< β < 1/2

uMW [(B,B), (B,B)] > uMW [(D,D), (B,B)] > uMW [(D,D), (D,D)] for
α

1− α
< β < 1/2

uMW [(B,B), (B,B)] > uMW [(D,D), (D,D)] > uMW [(D,D), (B,B)] for β < min

{
α

1− α
,

1− 2α

1− α

}
.

(16)
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Table 4: The coordination function uMW [(aMM , aMW ), (aWM , aWW )] for the conditional Battle of the
Sexes game.

aWM , aWW

aMM , aMW D,D D,B B,D B,B

D,D α 0 0 β − αβ
D,B 0 0 0 0
B,D 0 0 0 0
B,B 0 0 0 1− α− β + αβ

To analyze this situation, let us focus on the ordering

uMW [(B,B), (B,B)] > uMW [(D,D), (B,B)] > uMW [(D,D), (D,D)] , (17)

which obtains when α
1−α < β < 1/2. This string of inequalities generates a profound question. On the

one hand, the relation uMW [(B,B), (B,B)] > uMW [(D,D), (B,B)] makes intuitive sense: It seems
reasonable for the group to be more coordinated if both players conjecture the same outcome than
for them to conjecture different outcomes. On the other hand, the relation uMW [(D,D), (B,B)] >
uMW [(D,D), (D,D)] indicates that the group is more coordinated if the players conjecture different
outcomes rather than conjecturing the same outcome — a not so intuitive relation. To understand
these results, we note that the (α, β) region where this seeming conundrum occurs is where β > α,
that is, M ’s conditional utility for (D,D), given that W conjectures (B,B), is greater than W ’s
utility of (D,D). In other words, M ’s stubborn insistance on (D,D) conflicts with W ’s relatively
weak preference for (D,D). In the face of this conflict, it is more coordinated for them to express
their differences than for W to cave in to pressure. Clearly, the most coordinated relationship is
for both to conjecture (B,B).

Example 2 illustrates the kinds of complexity that can arise for even a rather simple social
relationship as a result of social influence. The function uMW [(aMM , aMW ), (aWM , aWW )] provides
an ordering of all joint conjecture profiles with respect to their compatibility, thereby providing an
assessment of the seriousness of disputes and the possibilities for compromise. A natural way to
interpret this function is as a measure of the degree to which the joint conjecture sets correspond
to some emergent notion of systematic behavior — in other words, to coordinate.

Definition 9. The coordination function of a conditional network game comprising {X1, . . . , Xn},
A, and {ui|pa(i)(·|αpa(i))∀αpa(i) ∈ Aqi , i = 1, . . . , n}, is given by

u1:n(a1, . . . ,an) =

n∏
i=1

ui|pa(i)(ai|αpa(i)) , (18)

where, if pa (Xi) = ∅, then ui|pa(i) = ui, a categorical utility.7

7To be precise, the coordination function is analogous to the joint probability mass function of a family of random
vectors {yi, 1, . . . , n} with yi = {yi1, . . . , yin}, where the jth yij a scalar random variable. This additional complexity
does not affect the validity of the isomorphism, since a Bayesian network can easily be extended such that each vertex
is a random vector comprising n random variables with marginal and conditional probability mass functions defined
over n variables.
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The coordination function provides an ordering over all possible combinations of joint conjecture
sets (a1, . . . ,an) ∈ A× · · ·×A. In this sense it captures all of the social relationships that develop
as the players interact. Since it is a function of n2 independent variables, it does not directly
establish a decision criterion. Rather, it serves as a foundation for the identification of coordinated
solution concepts.

3.1 Solution Concepts

3.1.1 Nash Equilibria

Building on classical game-theoretic solution concepts, the most obvious approach is exploit the
syntax of probability theory. In the epistemological context, once given the joint probability mass
function p12(y1, y2), one may compute the marginal probability mass functions

p1(y1) =
∑
y2

p12(y1, y2) and p2(y2) =
∑
y1

p12(y1, y2) . (19)

The marginal probability mass function expresses the degree of belief that Yi = yi after taking into
account the statistical relationships that exist between Y1 and Y2.

By the isomorphism, we may compute the ex post marginal utilities for each Xi, yielding

vi(ai) =
∑
∼ai

u1:n(a1, . . . ,an) i = 1, . . . , n , (20)

where the notation
∑
∼ai

means the sum is taken over all arguments of u1:n except ai. We may use
these marginals to form an ex post payoff array. For a 2×2 (two-peson, two-move) game, we endow
X1, the row player, with A1 = {z11, z12}, and X2, the column player, with A2 = {z21, z22}. The
ex post payoff matrix is of the form displayed in Table 5, to which we may apply classical solution
concepts.

Definition 10. Let a∗ = (a∗11, . . . , a
∗
ii, . . . , a

∗
nn) and let ai = (a∗11, . . . , a

′
ii, . . . , a

∗
nn). Then a∗ is an

ex post Nash equilibrium if vi(a
∗) ≥ vi(ai) for all a′ii 6= a∗ii and for all i = 1, . . . , n, where vi is

defined by (20).

Table 5: The ex post payoff matrix for a 2× 2 game.

X2

X1 z21 z22

z11 v1(z11, z21), v2(z11, z21) v1(z11, z22), v2(z11, z22)
z12 v1(z12, z21), v2(z12, z21) v1(z12, z22), v2(z12, z22)

Example 3. To compute the ex post Nash equilibrium for the Battle of the Sexes game, we compute
the marginal utility for M using Table 4, yielding

vM(D,D) = α+ β − αβ vM(D,B) = 0

vM(B,D) = 0 vM(B,B) = 1− α− β + αβ .
(21)

Since W ’s ex ante utility is categorical, her ex post marginal is the same as her ex ante categorical
utility, thus

vW (D,D) = α, vW (D,B) = 0, vW (B,D) = 0, vW (B,B) = 1− α . (22)
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The payoff matrix for the ex post Battle of the Sexes game is displayed in Table 6. Although there
are the same two Nash equilibria as before, (B,B) is the dominant equilibrium for all (α, β) ∈
(0, 1/2) × (0, 1/2). Notice that the ex post payoff matrix for the Battle of the Sexes actually turns
into a Hi-Lo game — one of Bacharach’s puzzles. Thus, a definitive solution remains unattained.
(The Hi-Lo game will be analyzed in detail in Section 1.1 of Part II.)

Table 6: The payoff matrix for the ex post Battle of the Sexes game.

W
M D B

D α+ β − αβ, α 0, 0
B 0, 0 1− α− β + αβ, 1− α

3.1.2 Coordination, Individual Performance, and Team Reasoning

Although the ex post payoffs incorporate social relationships into the individual unconditional
preferences, that does not change the fact that Nash equilibria solutions are based on individual
rationality and therefore do not establish a notion of socially rational behavior. This result rep-
resents a true generalization of classical game theory, but if we were to stop the analysis here,
then the coordination analysis offered by conditional game theory would be little more than an
exercise to refine the specification of categorical utilities in preparation for the ultimate application
of conventional theory.

But there is still more to be said. Recall that each conjecture profile is of the form ai = (ai1,
. . . , ain), where aii ∈ Ai is a conjecture by Xi and aij ∈ Aj is a conjecture for Xj by Xi. Each
Xi, however, has control only over aii, its own component of its conjecture profile. In terms of
coordinated behavior, what is most relevant is how the individual conjectures aii, i = 1, . . . , n, fit
together to generate a coordinated outcome. To make this assessment, we compute the marginal
coordination function with respect to the conjectures aii for each Xi.

Definition 11. Given a joint conjecture set (a1, . . . ,an), form the profile (a11, . . . , ann) by taking
the ith element of each Xi’s conjecture profile, i = 1, . . . , n, and summing the coordination function
over all elements of each ai except the iith elements to form the coordination utility w1:n for
{X1, . . . , Xn}, yielding

w1:n(a11, . . . , ann) =
∑
∼a11

· · ·
∑
∼ann

u1:n[(a11, . . . , a1n), . . . , (an1 . . . , ann)] . (23)

The function w1:n: A → [0, 1] is a group-level function but, as mentioned earlier, it is not
a measure of group-level material benefit. We reserve the term “utility” to refer to individual
expressions of material benefit (either conditional or unconditional). Instead, w1:n is a measure of
the degree to which the actions (the parts) of profile (a11, . . . , ann) ∈ A1 × · · · × An fit together to
form systematic social behavior (the whole). If the whole is cooperative, then coordination will be
high when players perform as a team, and if the whole is conflictive (e.g, a military engagement),
then coordination will be high when players are in opposition. The coordination utility is the
mechanism by which individual decisions can be defined.
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Definition 12. The coordinated individual rationality decision function for Xi is the ith marginal
of w1:n, that is,

wi(aii) =
∑
∼aii

w1:n(a11, . . . , a1n) . (24)

The coordinated individual decision for Xi is defined as

a∗ii = arg max
aii∈Ai

wi(aii) . (25)

Also, from the perspective of team reasoning, an alternative solution concept is for each indi-
vidual to select its component of the profile that maximizes the coordination utility.

Definition 13. Given a coordination utility w1:n, the generalized team-reasoning, or GTR, solution
is for each Xi to choose a†ii, its component of a† = (a†11, . . . , a

†
nn), where

a† = arg max
a∈A

w1:n(a) . (26)

If a†ii = a∗ii for i = 1, . . . , n, then a∗ is a consensus solution.

Unlike the Nash equilibrium solution concept that is imposed exogenously, the coordinated
individually rational and GTR solution concepts emerge endogenously as a consequence of the
social structure. Thus, this approach replaces the division of labor concept of separately defining
the preferences and the solution concept. Each agent’s decision automatically incorporates the
social influence that others exert on it, thereby integrating preference specification and the solution
concept. The coordination utility and the individually rational decision functions provide the
network with the ability to simultaneously evaluate the outcomes in terms of coordination (a social
concept) and performance (an individual concept).

Example 4. Returning again to the Battle of the Sexes conditional game and applying (23) and
Table 4, the coordination utility is

wMW (D,D) = uMW [(D,D), (D,D)] + uMW [(D,D), (B,D)] + uMW [(D,B), (D,D)] + uMW [(D,B), (B,D)]

wMW (D,B) = uMW [(D,D), (D,B)] + uMW [(D,D), (B,B)] + uMW [(D,B), (D,B)] + uMW [(D,B), (B,B)]

wMW (B,D) = uMW [(B,D), (D,D)] + uMW [(B,D), (B,D)] + uMW [(B,B), (D,D)] + uMW [(B,B), (B,D)]

wMW (B,B) = uMW [(B,D), (D,B)] + uMW [(B,D), (B,B)] + uMW [(B,B), (D,B)] + uMW [(B,B), (B,B) ,

(27)

yielding

wMW (D,D) = α

wMW (D,B) = β − αβ
wMW (B,D) = 0

wMW (B,B) = 1− α− β + αβ

. (28)

The coordinated utilities are

wM(D) = wMW (D,D) + wMW (D,B) = α+ β − αβ
wM(B) = wMW (B,D) + wMW (B,B) = 1− α− β + αβ

(29)

and

wW (D) = wMW (D,D) + wMW (B,D) = α

wW (B) = wMW (D,B) + wMW (B,B) = 1− α
. (30)
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β

α

III

III

β=
1/2−α
1−α

β= 1−2α
1−α

Figure 1: Plot of coordination regions for the Battle of the Sexes conditional game

The coordination utility is maximized at (B,B) for all (α, β) such that β < min{1/2, 1−2α
1−α } (Regions

I and II), and is maximized at (D,D) for 1−2α
1−α < β < 1/2 (Region III). The coordinated utility for

W satisfies wW (B) > wW (D) for 0 < α < 1/2, but the coordinated utility for M satisfies

wM(B) > wM(D) for 0 < β <
1/2− α
1− α

wM(D) > wM(B) for
1/2− α
1− α

< β < 1/2 .
(31)

Figure 1 displays the (α, β) regions for the coordination utility and for the coordinated decisions,
and Table 7 interprets the three (α, β) regions.

Table 7: The coordination utility and the coordinated individually rational decision functions for
the conditional Battle of the Sexes game.

(α, β) Coordination Individual GTR Consensus
Region utility M W decision choice?

ordering ordering ordering

I D,D �MW B,B D �M B B �W D D no
II B,B �MW D,D D �M B B �W D B no
III B,B �MW D,D B �M D B �W D B yes

3.2 Sociation

The assumption underlying game theory is that each individual’s payoff is a function the joint
actions of all agents, hence the requirement that categorical utilities are of the form ui(ai); that
is, the payoff is assumed to be a function of all elements of ai ∈ A. The development presented
in Section applies to conditional utilities of the form ui|pa(i)ai|αpa(i)), where ai ∈ A and αpa(i) ∈
Aqi . Although this structure is more complex than the utility structure of classical game theory,
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it also offers important opportunities for simplifications that the classical theory does not offer.
Many interesting multiagent decision problems are such that influence is with respect only to the
individual conjectures of the parents, rather than the entire conjecture profile. Suppose that Xj

is influenced by Xi’s component of aj ; that is, Xj preferences are conditioned on, but only on,
Xi’s individual action. To the extent that the influence of others depends only on the conjectured
actions of others, rather than on the entire conjecture profile of others, the influence is said to be
conjecture dissociated, and is completely conjecture dissociated if the influence depends on, and only
on, the conjectured actions of those who influence it.

Furthermore, to the extent that an individual’s conditional utility is a function of a subset of
its own conjectured profile, then the individual is said to be utility dissociated. If its utility is a
function of, and only of, its own conjectured actions, then it is completely utility dissociated.

If an individual is both completely conjecture dissociated and completely utility dissociated,
then it is completely dissociated. It should be noted that this simplification is not generally appli-
cable to games with categorical utilities.

Definition 14. A network is completely dissociated if all of its members are completely dissociated,
in which case, the coordination function is of the form

ui|pa(i)(ai|ai1 , . . . ,aiqi ,iqi ) = ui|pa(i)(aii|ai1i1 , . . . , aiqi iqi ) (32)

for = 1, . . . , n. In such a case, Xi’s utility depends on, and only on, its own action, conditioned
on the actions of, and only of, all who influence it. For a completely dissociated network, the
coordination utility coincides with the coordination function, yielding

w1:n(a11, . . . , ann) = u1:n(a11, . . . , ann) =
n∏
i=1

ui|pa(i)(aii|ai1i1 , . . . , aiqi iqi )) (33)

The ex post marginal utility mass function for the members of a completely dissociated network
coincides with the individual decision function, yielding

wi(aii) = vi(aii) =
∑
∼ai

w1:n(a11, . . . , ann) =
∑
∼ai

u1:n(a11, . . . , ann) . (34)

Example 5. We once again revisit the Battle of the Sexes game, and assume that both M and W
are completely dissociated; that is, W ’s categorical utility mass function is defined over only over
her actions, yielding

uW (D) = α, ũW (B) = 1− α . (35)

Also, suppose M has defined a conditional utility mass function over only his his actions given W ’s
actions, yielding

uM|W (D|D) = 1 uM|W (B|D) = 0

uM|W (D|B) = β uM|W (B|B) = 1− β
. (36)

Since both M and W are completely dissociated, the coordination function collapses to the coordi-
nation utility, hence

wMW (aM , aW ) = uM|W (aM |aW )uW (aW ) , (37)

yielding

wMW (D,D) = α wMW (B,D) = 0

wMW (D,B) = β − αβ, wMW (B,B) = 1− α− β + αβ ,
(38)
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and the coordinated individually rational decision becomes

uM(D) = α+ β − αβ, uM(B) = 1− α− β + αβ , (39)

which is identical with the results obtained with the fully sociated model previously developed.

It is instructive to compare the four versions of the Battle of the Sexes game. With the classical
formulation, M and W are modeled as selfish individuals with narrow-defined concepts of self-
interest. This model is based on minimal assumptions and it is difficult for one to view this as a
realistic social scenario, since no social relationships are included in the model. Furthermore, the
game resolves nothing. To settle the issue, the game must be overlaid with a focal point assumption.
This situation is a manifestation of the limited ability to express social interests with a mechanism
that is designed to express material interest.

If a social assumption is required to settle the issue, then why not build it directly into the model
in the first place? Neither conditioned Nash equilibrium nor ex post Nash equilibrium resolve the
issue. The fully sociated coordinated approach solves the problem, but requires M to consider all of
the possible joint conjectures for W when defining his conditional utilities. This entails considerable
work, and seems, at least in this case, to be a bit over overkill for such a simple problem. The
dissociated conditional game scenario, however, is much simpler than either the traditional game
formulation or the fully sociated conditional game formulation, yet is captures all of the relevant
social structure. Given that there is an actual social relationship between the two individuals and
W has preferences over the venue choices only, then all that is required of M is that his preferences
over the venue choices are governed by her preferences. This formulation of the issue is no more
complicated than it needs to be. What could be simpler and more natural?

3.3 Coherence

Thus far in the development, we have invoked the logic of conditionalization to motivate the migra-
tion of the syntax of probability theory from the epistemological domain to the behavioral domain.
We have not, however, justified the wholesale adoption of the probability syntax as a meaningful
way to express and combine agent preferences, nor have we discussed any delimitations of such a
practice. Thus, the next step is to provide additional rationale for this approach.

Let µ1:n denote a function defined over A (not necessarily generated by (23)), and let µi denote
individual utilities defined over Ai,i = 1, . . . , n (not necessarily generated by (24)), and suppose
there were to exist an agent Xi such that, if

µi(a
∗
ii) > µi(aii) (40)

for all aii 6= a∗ii, then

µ1:n(a11, . . . , a
∗
ii, . . . , ann) < µ1:n(a11, . . . , aii, . . . , ann) (41)

for all aii 6= a∗ii and for all (a11, . . . , ai−1 i−1, ai+1 i+1, . . . , ann) ∈ A1 × Ai−1 × Ai+1 × An. Such
an agent would be subjugated. No matter which of its possible actions it considered best, the
coordination of any profile that contained that action would be worse (in terms of coordination)
for the group than any other profile. A subjugated agent would be the victim of a particularly
harsh and irrational form of discrimination: The mere fact that such an individual would prefer
any action, no matter what it would be, essentially renders the group dysfunctional.

Subjugation is a generalization of the social choice notion of suppression discussed by Fishburn
(1973, p. 211). An individual is suppressed if, whenever it prefers alternative a to a′, then society
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chooses a′ over a.8 It is also important to observe that the opposite notion of subjugation is
subversion. An individual is a subverter if the inequality in (41) is reversed. Such an individual
would possess the power to enforce its will on the group — an absolute dictator.

The ability to subjugate an individual is an extremely powerful collective attribute, but having
that power does not mean that a group will use it. Also, the ability to subvert the group is a
powerful attribute, but having that power does not mean that an individual will use it. Nevertheless,
these attributes are extremely dangerous and have the potential to render a group unstable if not
dysfunctional. Denying such power is perhaps the weakest concept of behavior that could qualify
as democratic. It would ensure that every member of the group has a “seat at the table” in that its
most preferred action, no matter what it might be, is a possible coordination maximizing action.

Perhaps surprisingly, stipulating that it must be impossible to for any individual to subvert
the group or for any individual to be subjugated provides a powerful constraint on the operational
concept of coordination. It is perhaps equally unsurprising, however, given the isomorphism, that
complying with this constraint leads directly to a connection to probability theory. We proceed by
establishing that subjugation is isomorphic to the gambling notion of a sure loss — a gamble such
that, no matter what the outcome, the gambler’s payout is less than the entry fee.

Lemma 2. The Isomorphism Lemma Subjugation is isomorphic to sure loss.

Proof. Without loss of generality, we restrict attention to a two-agent completely dissociated group.
Let Y1 and Y2 be two sets of distinct propositions with cardinalities equal to the cardinalities of A1

and A2, respectively. Let u1: A1 → R be a categorical utility and let u2|1(·|a1): A2 → R for each
a1 ∈ A1be conditional utilities defined over A2. Let gi: Ai → Yi, i = 1, 2, be bijective mappings
and define the belief functions b1: Y1 → R and b12:Y1 × Y2 → R such that

b1(y1) = u1[g−1
1 (y1)]

b12(y1, y2) = u12[g−1
1 (y1), g−1

2 (y2)] .
(42)

Let y∗1 ∈ Y1 be such that
b1(y∗1) > b1(y1) ∀y1 ∈ Y1\{y∗1} , (43)

but
b12(y∗1, y2) < b12(y1, y2) (44)

for all y1 ∈ Y1 \{y∗1} and for all y2 ∈ Y2. Thus, even though y∗1 is the most strongly believed
proposition in Y1, the belief regarding the realization of any joint proposition for which y∗1 is X1’s
component is weaker than the belief regarding the realization of the corresponding joint proposition
with any other y1 as X1’s component.

If, on the basis of (43) one were to enter a lottery to earn $1 if y∗1 is realized, a fair entry fee
would be q1 > 1/2. On the other hand, if, on the basis of (44), one were to earn $1 if y∗1 is not
realized, then a fair entry fee for that lottery would be q2 > 1/2. By combining these two lotteries
into one with an entry fee of q1 + q2 > 1 with the (false) hope of winning $2, one would win exactly
$1 regardless of the outcome — a sure loss. It is immediate by the order isomorphism that the
relationships given by (40) and (43) and by (41) and (44) are identical.

It follows immediately by reversing the relevant inequality (i.e., exchanging rolls of the gambler
and the bookie) that subversion is isomorphic to a scenario where the gambler’s payout is guaranteed
to be greater than the entry fee — a sure win. A gambling scenario where the gambler suffers a
sure loss is called a Dutch book. The key result in this regard is the famous Dutch Book Theorem.

8As Fishburn put it, one who is suppressed is “a dictator turned upside down” (Fishburn, 1973, p. 211).
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Theorem 1. The Dutch Book Theorem. Suppose a gambler places a bet to win a payout of S.
A fair entry fee for this gamble is pS, where p is the gambler’s degree of belief of winning.
(Necessity) If the degree of belief p violates the probability axioms, then it is possible to construct a
lottery such that the payout is less (more) than the entry fee — a sure loss (win).
(Sufficiency) If p conforms to the probability axioms, then it is not possible to construct a lottery
such that the gambler sustains a sure loss (win).

Necessity (the original theorem) was independently established by de Finetti (1937) (who intro-
duced the terminology that a belief system that avoids sure loss is coherent) and Ramsey (1950), and
sufficiency (the converse theorem) was independently established by Kemeny (1955) and Lehman
(1955). Combining the Isomorphism Lemma and the Dutch Book Theorem results immediately in
the following theorem.

Theorem 2. For it to be impossible for either subjugation or subversion to occur, the coordination
utility and the individual decision functions must comply with the axioms and syntax of probability
theory.

Following de Finetti’s terminology, we offer the following definition.

Definition 15. A network is socially coherent if the individual utilities (both categorical and con-
ditional) are expressed and combined according to the syntax of probability theory.

Since the coordination utility is the marginal of the coordination function, it follows that co-
herence requires that the conditional utilities must be utility mass functions, and the coordination
function must be synthesized as given by (18).

The lack of social coherence does not mean that if the utilities are not structured according to
the probability theorem then subjugation is sure to occur. Rather, it means that if the utilities are
so structured and combined, then subjugation is impossible.

The restriction to acyclicity limits the generality of this approach. Nevertheless, this model still
represents an important generalization from mutual social independence, where all agents possess
categorial utilities and thus all social influence is trivially acyclical. In Section 4 we extend the
theory to cyclical networks.

3.4 Invariance

The assumptions of directionality, conditionality, and coherence make the appropriation of the
probability syntax an attractive and potentially useful framework within which to model social
influence. Before simply adopting this syntax, however, we must ensure that this formulation
complies with one additional condition that is assumed, often implicitly, with probability theory.

Invariance: The coordination function must be independent of the way the coordination function
is synthesized, as long as exactly the same information is used for its construction.

To address invariance, we again resort the probability analogy. One of the key properties of prob-
ability theory is that a joint probability mass function is invariant to the way it is framed, that
is,

p12(y1, y2) = p1(y1)p2|1(y2|y1) = p1|2(y1|y2)p2(y2) = p21(y2, y1) . (45)

Invariance is easily verified when probability is used with frequentist scenarios such as predicting
outcomes of coin flips and dice rolls. The situation is more problematic, however, under subjective
interpretations involving beliefs. Let y1 be the event that an athletic team wins the game, with
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probability p(y1), and let y2 be the event that the star player does not play, with probability p(y2).
Now let p1|2(y1|y2) denote the conditional probability that the team wins, given that the star player
does not participate, and let p2|1(y2|y1) denote the conditional probability that star player does
not play, given that the team wins the game. Invariance requires that the joint probability satisfies
(45). There is no objective mechanism, however, that relates these conditional events in the way
that the number of faces that turn up when dice are rolled are conditionally related. These latter
relationships can be empirically computed, but the conditional relationships between the team
winning and the star player not playing are based on subjective beliefs.

The vulnerability of subjective probability to invariance violations is often ignored in practice
because the analyst would most likely use only one framing and would not be inclined to confirm
consistency with alternate framings. Nevertheless, invariance is implicitly invoked in the synthesis
of probability models used to characterize the way people organize information. Pearl argues that,
in practice, multivariate distributions are rarely determined by specifying all of the entries in a
joint-distribution table. “Probabilistic judgments on a small number of propositions are issued
swiftly and reliably, while judging the likelihood of a conjunction of propositions entails much
difficulty and hesitancy. This suggests that the elementary building blocks of human knowledge
are not entries of a joint-distribution table. Rather, they are low-order marginal and conditional
probabilities defined over small clusters of propositions” (Pearl, 1988, p. 78). Given this hypothesis,
a natural way to construct a joint distribution is to synthesize it from conditional and marginal
distributions. But that is not how the classical development of probability theory actually works.
Under the conventional development of probability theory, conditional and marginal probability
mass functions are derived from a joint probability mass function as the primitive component.
Nevertheless, as Pearl observes, it is common and extremely useful to view the conditional and
marginal probability mass functions as primitives with which to construct the joint mass function.

Since the goal is to synthesize a coordination function, invariance is also relevant in the behav-
ioral domain. The assumption behind invariance is that, although there are many possible ways
to organize a network, if they all are based on the same information set and if the information is
used in a consistent and logical way without distorting or discarding any data, then they should
all generate the same coordination function. It is not presumed that invariance will apply to all
social situations, but it is a reasonable condition that will apply to many human decision making
scenarios. Its application to the design of artificial systems, however, is less controversial. Artificial
agents must operate according to the model that is used to design them. If they are designed
to use all of the available information in a consistent way, then it is not unreasonable to require
invariance. In fact, it would be highly desirable as a fundamental regularity property that would
reduce or eliminate inconsistent or contradictory behavior.

4 Reciprocity

One is not, in tacit coordination, trying to guess
what another will do in an objective situation;
one is trying to guess what the other will guess
one’ self to guess the other to guess, and so on ad
infinitum.

Thomas C. Schelling, The Strategy of Conflit

Thus far, our considerations of social influence have been unidirectional — from parent to
child. With this model, the child is able to modulate its preferences according to the hypothesized
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intentions of the parent, but there is no reciprocal way for the child to influence the parent. In
other words there is no opportunity for dialogue — a dynamic process whereby individuals may
work together with the hope of converging to a result that is rational, fair, and legitimate. Such
communication can be accomplished either by explicit bargaining or, if that is not possible, by
virtual bargaining as discussed by Misyak et al. (2014). Conditionalization provides a natural
mechanism, especially in the case of virtual bargaining, for individuals to engage in discourse. In
this section we extend conditional game theory to accommodate networks that contain cycles; that
is, where influence propagates bidirectional between agents.

In the probabilistic context, acyclicity is imposed because conditional relationships are tightly
coupled. Given P (A|B), one can compute the inverse relationship with the formula P (B|A) =
P (A|B)P (B)/P (A). Probability theory does not permit independent specifications of the two
conditional probabilities. Many useful social networks, however, do involve the independent speci-
fication of conditional utilities. Consider the two-agent scenario

X1

u2|1
,,
X2

u1|2

ll , (46)

where X1 influences X2 who in turn influences X1 and so forth, and for which there is no constraint
binding u1|2 and u2|1. Such a cyclic influence relationship could result in an infinite regression with
no ultimate resolution. Indeed, Bacharach (2006) argues that such phenomena make it impossible
to generate group-level intentions from individual intentions.

But the situation need not be so bleak. In fact, there is a natural and powerful way to resolve this
problem. The key observation is to recognize that a cyclic network can be expressed dynamically
as a time sequence of acyclic networks. From this perspective, we may view (46) as

X1 u2|1, s=0
// X2 u1|2, s=δ

// X1 u2|1, s=2δ
// X2 u2|1, s=3δ

// · · · , (47)

where s denotes time and δ is the time interval between transmission of information between the
agents.

Given this dynamic structure, the issue devolves around whether this time sequence of updates
converges. To develop this theory, it is convenient to introduce notation that is amenable to the
dynamic nature of this representation.

4.1 Matrix Form Dynamics Model

Definition 16. Recall, from Definition 2, that a path Xj to Xj is a cycle. A k-member cycle is
called a simple k-cycle if every vertex has exactly one incoming edge and one outgoing edge.

Consider the simple k-cycle illustrated in Figure 2. We may view this cyclic network as a
sequence of influence operations that evolve in time, Let s = 0, δ, 2δ, · · · , and consider the equivalent
dynamic network displayed in Figure 3.

Let us first consider the segment X1 u2|1, s=0
// X2

.

At s = 0, X1’s marginal utility mass function is v1(a1, 0). At t = δ, the coordination function
is, following (14),

u12(a1,a2, δ) = u2|1(a2|a1)v1(a1, 0) , (48)

from which we may compute X2’s marginal using (20):

v2(a2, δ) =
∑
a1

u12(a1,a2, δ) . (49)
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X1

u2|1

��

Xk

u1|koo

X2 u3|2
// X3

OO

Figure 2: A simple k cycle.

X1 u2|1, s=0
// X2 u3|2, s=δ

// · · ·
u1|k, t=kδ

// X1
u2|1, s=(k+1)δ

// · · ·

Figure 3: An equivalent dynamic network.

Now consider the next segment X2 u3|2, t=δ
// X3

. At s = 2δ the coordination function is

u23(a2,a3, 2δ) = u3j2(a3|a2)v2(a2, δ) , (50)

and X3’s marginal is

v3(a3, 2δ) =
∑
a2

u23(a2,a3, 2δ) . (51)

We may continue this process for s = 3δ, s = 4δ, etc. To do so, however, it is convenient to
introduce matrix notation. Let us denote the elements of A, as

A = A1 × · · · × An = {z1, . . . , zN} , (52)

where each profile zk is of the form

zk = (z1k1 , . . . , znkn) (53)

where ziki is the kith element of Ai, and define the utility mass vector

vi(s) =

 vi(z1, s)
...

vi(zN , s)

 . (54)

We next define the state-to-state transition matrix

Ti+1|i =

ui+1|i(z1|z1) · · · ui+1|i(z1|zN )
...

...
...

ui+1|i(zN |z1) · · · ui+1|i(zN |zN )

 . (55)

With this notation, we may combine the operations defined by (48) and (49) with the single
expression

v2(δ) = T1|2v1(0) , (56)

and replace (50) and (51) with
v3(2δ) = T3|2v2(δ) . (57)
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X1

T2|1

��

Xk

T1|koo

X2 T3|2
// X3

OO

Figure 4: A k-cycle

Figure 4 displays the k-cycle with the linkages represented by the transition matrices. As we
trace the path from Xi around the cycle back to Xi, the marginal mass vector vi is updated k
times, where the indices are incremented mod k:

vi+1(δ) = Ti+1|ivi(0)

vi+2(2δ) = Ti+2|i+1Ti+1|ivi(0)

...

vi+k−1(k − 1)δ) = Ti+k−1|i+k−2 · · ·Ti+2|i+1Ti+1|ivi(0) .

The loop is closed with the final update of the cycle, yielding

vi+k(kδ) = Ti+k|i+k−1Ti+k−1|i+k−2 · · ·Ti+2|i+1Ti+1|ivi(0) (58)

or, since all indices are incremented mod k,

vi(kδ) = Ti|i+k−1Ti+k−1|i+k−2 · · ·Ti+2|i+1Ti+1|ivi(0) . (59)

Now let us define the closed-loop transition matrix

Ti = Ti|i+k−1Ti+k−1|i+k−2 · · ·Ti+2|i+1Ti+1|i . (60)

Also, it is convenient to express time in units equal to the interval kδ. Thus, we may write (59) as

vi(1) = Tivi(0) (61)

for i = 1, . . . , k. The closed-loop transition matrices for the cycle are as follows.

T1 = T1|kTk|k−1 · · ·T3|2T2|1

T2 = T2|1T1|k · · ·T4|3T3|2
...

Tk = Tk|k−1Tk−1|k−2 · · ·T3|2T2|1

After t cycles, we have

vi(t) = Tivi(t− 1)

= TiTivi(t− 2)

...

= Ti · · ·Tivi(0)

= T ti vi(0) .

Stirling 27 September 18, 2016



4 RECIPROCITY 4.2 Convergence of Closed-Loop Transition Matrices

The key issue devolves around the behavior of T ti as t → ∞. To address this issue, we must
explore the convergence properties of this matrix.

4.2 Convergence of Closed-Loop Transition Matrices

Definition 17. Let T = [tij ] be a square matrix. T is nonnegative, denoted T 6< 0, if tij 6< 0 ∀ i, j.
T is positive, denoted T ≥ 0, if tij 6< 0∀ i, j and tij > 0 for at least one element. T is strictly
positive, denoted T > 0, if tij > 0 ∀ i, j.

The key theoretical results underlying this approach are the following theorems:

Theorem 3 (Frobeneius-Peron). If a square matrix T k is strictly positive for some finite integer
k, then T has a unique largest eigenvalue with positive eigenvector.

Definition 18. A square matrix T is a regular transition matrix if T k is strictly positive for some
finite integer k and each column sums to unity.

Applying the Frobeneius-Peron theorem to regular transition matrices yields the following result.

Theorem 4 (Markov Convergence). If T is a regular transition matrix, there exists a unique mass
vector v such that

• Tv = v

• T = limt→∞ T
t =

[
v · · · v

]
• v = Tv(0) for every initial mass vector v(0)

Thus, a network whose dynamic behavior is governed by regular transition matrices will, in the
limit, converge to a network where the agents possess constant marginal utility mass functions,
that is,

lim
t→∞

vi(t) = vi =

vi(zi1)
...

v(ziN )

 . (62)

These utilities are termed steady-state utilities, and correspond to the marginal utilities defined for
acyclic networks by (20). As been established by Doob (1953), the convergence is exponentially
fast. Thus, as a practical matter, convergence will effectively be reached in only a few cycles.

Throughout this development, we have assumed a condition of stationarity: the transition
matrix does not change as time progresses. This constraint, however, is not a necessary condition.
It is also possible for a non-stationary process to converge. Let T (k) denote the transition matrix
at time k. Then the study of convergence requires convergence of the product T (k)T (k−1) · · ·T (0)
rather than the much simpler product T k. This analysis rather complex and will not be detailed in
this paper, but we briefly sketch the essential concept. If the elements of the transition matrices are
of bounded variation, then, subject to technical constraints, the columns of T (k)T (k−1) · · ·T (0) all
converge to the same vector as k →∞. For details, see Anily and Federgruen (1987). Essentially,
this means that if the variations in the transition matrices diminish sufficiently over time, then a
steady-state solution exists.

Stirling 28 September 18, 2016



4 RECIPROCITY 4.3 Coordination Function for Networks with Cycles

4.3 Coordination Function for Networks with Cycles

When a network contains cycles, we must first let each cycle achieve steady-state and then compute
the coordination function with the utilities that correspond to the members of each cycle replaced
by their steady-state unconditional utilities. In this paper we focus on simple n-cycle networks. In
the interest of brevity and without loss of generality, we further restrict attention to 2×2 networks
defined by (46) with steady-state marginal utilities v1 and v2 as defined by (62). The steady-state
coordination function may be synthesized as

u12[(a11, a12), (a21, a22)] = u1|2(a11, a12|a21a22)v2(a21, a22) (63)

or, by invoking invariance,

u12[(a11, a12), (a21, a22)] = u2|1(a21, a22|a11a12)v2(a11, a12) . (64)

We may then extract the coordination utility by computing the marginal

w12(a11, a22) =
∑

a12,a21

u12[(a11, a12), (a21, a22)] (65)

and the steady-state coordinated individually rational decision functions become

w1(a11) =
∑
a22

w12(a11, a22)

w2(a22) =
∑
a11

w12(a11, a22) .
(66)

Example 6. We recast the dissociated Battle of the Sexes as a cyclic game as follows:

W

uM|W
,,
M

uW |M

ll (67)

with conditional utilities given by

uW |M(D|D) = 1− α
uW |M(B|D) = α

uW |M(D|B) = 0

uW |M(B|B) = 1

uM|W (D|D) = 1

uM|W (B|D) = 0

uM|W (D|B) = β

uM|W (B|B) = 1− β ,

(68)

with corresponding state-to-state transition matrices

TW |M =

[
1− α 0
α 1

]
TM|W =

[
1 β
0 1− β

]
. (69)

The closed-loop transition matrices are

TW = TW |MTM|W =

[
1− α β − αβ
α 1− β + αβ

]
(70)

and

TM = TM|WTW |M =

[
1− α+ αβ β
α− αβ 1− β

]
, (71)
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resulting in the steady-state marginal utilities (which, due to dissociation, become the individual
decision functions)

wW =

[
wW (D)
wW (B)

]
=

1

α+ β − αβ

[
β − αβ
α

]
(72)

and

wM =

[
wM(D)
wM(B)

]
=

1

α+ β − αβ

[
β

α− αβ

]
. (73)

It is immediate that M ’s coordinated decision rule is to choose D when β < α
1−α , and W will choose

D when β < α
1+α . Furthermore, we may compute the steady-state coordination utility as

wMW (aMM , aWW ) = uM|W (aMM |aWW )wW (aWW ) , (74)

yielding

wMW (D,D) =
β − αβ

α+ β − αβ

wMW (D,B) =
αβ

α+ β − αβ
wMW (B,D) = 0

wMW (B,B) =
α− αβ

α+ β − αβ
.

(75)

Figure 5 displays the steady-state regions as a function of (α, β), and Table 8 interprets the four
regions.

β

α

I
II III

IV

β= α
1−α

β= α
1+α

β=α

Figure 5: Plot of coordination regions for the cyclic Battle of the Sexes conditional game

5 Coordinatability

Any good mathematical commodity is worth
generalizing.

Michael Spivak, Calculus on Manifolds
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5 COORDINATABILITY

Table 8: The coordination utility and the coordinated individual decision functions for the cyclic
Battle of the Sexes game.

(α, β) Coordination i ndividual GTR Consensus
Region utility M W decision choice?

ordering ordering ordering

I D,D �MW B,B D �M B D �W B D yes
II D,D �MW B,B B �M D D �W B D no
III B,B �MW D,B B �M D D �W B B no
IV B,B �MW D,B B �M D B �W D B yes

The coordination utility and the coordinated individual decision functions can be used to form
an operational definition of coordination. To introduce this development, we continue to explore the
isomorphism and focus on the two-dimensional network defined by (1) and (12), its epistemological
dual. Using (13), we may form the marginal probabilities via . If Y1 and Y2 are statistically
independent, then conditioning on Y1 has no effect on Y2, and p2|1 ≡ p2, in which case the joint
probability mass function defined by (13) assumes the form p12(y1, y2) = p1(y1)p2(y2). But if Y1 and
Y2 are not statistically independent, then it is not possible to synthesize the joint probability mass
function as the product of the marginals. Thus, marginalization, as defined by (5), and synthesis,
as defined by (13), are not reversible operations. It is of great theoretical interest, therefore, to
investigate the effect of assuming that Y1 and Y2 are statistically independent when, in fact, they are
not. In other words, if we are provided only the marginals and use them to synthesize the joint mass
function under the assumption of independence, how different are p12(y1, y2) and p1(y1)p2(y2)? One
way to address this question is to compute the mutual information between Y1 and Y2, as defined
by the expression

I(Y1, Y2) =
∑
y1,y2

p12(y1, y2) log2

p12(y1, y2)

p1(y1)p2(y2)
. (76)

It can be shown (e.g., (Cover and Thomas, 1991)) that mutual information is nonnegative and is
zero if, and only if, Y1 and Y2 are statistically independent.9 Mutual information is a measure of the
degree of statistical interdependence between Y1 and Y2 and serves as an operational definition of
statistical dependence.10 The larger the mutual information, the more significant the dependence.
The notion of mutual information generalizes to multivariate case comprising n random variables.

Now let us now apply the concept of mutual information to the behavioral domain by computing
the mutual information with respect to the coordination utility (23) and the individual decisions
functions (24), yielding

I(X1, . . . , Xn) =
∑

a11,...,ann

w1:n(a11, . . . , ann) log2

w1:n(a11, . . . , ann)

w1(a11) · · ·wn(ann)
. (77)

9Mutual information is a special case of a more general concept, the Kullback-Leibler divergence (Kullback and

Leibler, 1951) between two probability mass functions p and q, defined as D(p||q) =
∑
y p(y) log p(y)

q(y)
. The Kullback-

Liebler divergence is not a true metric (it is not symmetric and does not satisfy the triangle inequality), but it is
nonnegative and is zero if and only if p ≡ q. Mutual information is a key concept of information theory, as developed
by Shannon (1948) to characterize the theoretical performance of communication systems. Base 2 logarithms are
used because digital communication systems typically encode messages with binary digits, or bits.

10It is interesting that introductory treatments of probability theory provide an operational definition of statistical
independence, and treat a condition of statistical dependence simply as not statistical independence.
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5 COORDINATABILITY 5.1 Coordination Index for Two Agents

Operationally, coordination is the behavioral analogue to the statistical concept of dependence.11

Thus, mutual information, viewed in the behavioral domain, is a measure of the degree of coordi-
nation among X1, . . . , Xn. If I(X1, . . . , Xn) = 0, then all individuals possess categorical utilities
and there is no social linkage among the agents — they are socially uncoordinated. This is true
even if the individual interests of all agents are identical. Coincidence of interest is not the same
as coordinated interest. With the former, the agents just happen to be in the fortuitous situation
where they can each take advantage of the fact that they all desire the same output without having
any actual social contact. An example is the Hi-Lo game, where two individuals independently
choose between a high and a low reward and receive their chosen rewards if they agree, otherwise
both receive nothing. Under the classical formulation, the payoffs are categorical, and the mutual
information (i.e., the strength of the social linkage between them) is zero. But if there is a social
relationship between them such that I(X1, X2) > 0, then a degree of shared interest exists and
there is an opportunity to make a coordinated decision. In Section 5 we will discuss this concept
more thoroughly.

5.1 Coordination Index for Two Agents

Mutual information for a 2× 2 network {X1, X2} is

I(X2, X2) =
∑

a11,a22

w12(a11, a22) log2

w12(a11, a22)

w1(a11)w2(a22)
. (78)

To develop this concept more thoroughly, we introduce the notion of entropy, which we approach
first from the epistemological perspective.

Definition 19. Let {Y1, Y2} be discrete random variables defined over finite sets Y1 and Y2, let p1,
and p2 be marginal probability mass functions for Y1 and Y2, respectively, and let p12 be the joint
probability mass function for {Y1, Y2}. The entropy of Yi is

H(Yi) = −
∑
yi

pi(yi) log2 pi(yi) i = 1, 2 , (79)

and the joint entropy of {Y1, Y2} is

H(Y1, Y2) = −
∑
y1,y2

p12(y1, y2) log2 p12(y1, y2) . (80)

For a detailed treatment of entropy, see Cover and Thomas (1991). Entropy is a central concept
in the development of information theory, as introduced by Shannon (1948), and is used extensively
as an analysis tool to study the behavior of communication systems. In this context, entropy is
viewed as a numerical measure of the average epistemic uncertainty associated with a random
phenomenon. It is straightforward to see that entropy is zero if all of the probability mass is
concentrated on one outcome, and it is maximized if the probability mass is equally distributed
between the two outcomes. It is also straightforward to show that if Y1 and Y2 are independent
random variables, then

H(Y1, Y2) = H(Y1) +H(Y2) . (81)

11Arrow (1974) formed the analogy of passing data between economic agents with the communications activity of
passing a message from a transmitter to a receiver. Although he broached the idea of using Shannon information
theory for the analysis of communication within an organization, he focused mainly on the qualitative insight that
the analogy offers, rather than the quantitative possibilities.
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In other words, if Y1 and Y2 are independent, then the average uncertainty of their joint realization
is the sum of the average uncertainties of each individual realization.

It is straightforward to show that there is a close relationship between mutual information, as
defined by (76) and entropy, namely,

I(Y1, Y2) = H(Y1) +H(Y2)−H(Y1, Y2) . (82)

We interpret this expression as follows. If we assume (incorrectly) that Y1 and Y2 are independent,
then the joint entropy is the sum of the two individual entropies. The difference between this
incorrect expression for joint entropy and the actual joint entropy is a measure of the seriousness
of the incorrect assumption. Another way to think of that error is that it is the amount that
knowledge is increased (or, equivalently, uncertainty is decreased) regarding the outcome of one
random variable, given the outcome of the other random variable — hence the interpretation as
mutual information, or information that is shared between the two random variables.

The isomorphism between probability theory and utility theory allows us to apply entropy in
the behavioral domain. For a two-agent network {X1, X2} and a profile set A1 × A2, let w1 and
w2 be coordinated utilities for X1 and X2, respectively, as defined by (24), and let w12 be the
coordination utility for {X1, X2} as defined by (23). The entropy of Xi is

H(Xi) = −
∑
aii

wi(aii) log2wi(aii) i = 1, 2 , (83)

the joint entropy of {X1, X2} is

H(X1, X2) = −
∑

a11,a22

w12(a11, a22) log2w12(a11, a22) , (84)

and the mutual information of X1 and X2 is

I(X1, X2) = H(X1) +H(X2)−H(X1, X2) . (85)

In the behavioral context, entropy is a measure of the average behavioral uncertainty regarding
preference (i.e.,the lack of decisiveness) when choosing from among alternatives. In other words,
it is a measure of the average opportunity cost (i.e., the utility of the alternatives not chosen)
involved in making a choice. Entropy is zero if all of the utility mass is concentrated on one
outcome, meaning that there is no opportunity cost when a choice is decisive, but if the utilities
are information to the unit interval, thereby providing an automatic calibration of the degree of
coordination.

Definition 20. For a two-agent network {X1, X2}, the function

d(X1, X2) = H(X1, X2)− I(X1, X2) = 2H(X1, X2)−H(X1)−H(X2) (86)

is the dispersion function.

Theorem 5. Let {X1, X2, X3} be three agents. The dispersion function satisfies the following
conditions.

d(X1, X2) = d(X2, X1) (symmetry) (87)

d(X1, X2) ≥ 0(non-negativity) (88)

d(X1, X2) = 0 if and only if X1 ⇔ X2(strict positivity) (89)

d(X1, X2) ≤ d(X1, X3) + d(X3, X2) (triangle inequality) , (90)
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where the notation X1 ⇔ X2 means that there exist permutations π1|2, π2|1: A→ A such that

uj|i(aj |ai) =

{
0 if aj 6= πj|i(ai)

1 if aj = πj|i(ai)
, i, j ∈ {1, 2}, i 6= j , (91)

in which case Xj is slaved to Xi. Thus d(X1, X2)is a true metric.

A proof of this result may be found in Kraskov et al. (2003) and Li et al. (2001).
The dispersion function (86) expresses the “distance” between the interests of X1 and X2 as a

function of their social relationship. This distance is minimized when they are slaved together and
social influence is maximized. The distance is maximized if X1 and X2 are socially uncoordinated
and thus exert no social influence on each other. We may refine this concept by normalizing
the distance by the joint entropy, which gives rise to an explicit quantification of the degree of
coordination as a direct result of social influence.

Definition 21. The relative dispersion D(Xi, Xj) is defined by

D(Xi, Xj) =
d(Xi, Xj)

H(Xi, Xj)
(92)

and the coordination index is given by

C(Xi, Xj) = 1−D(Xi, Xj) =
H(Xi) +H(Xj)−H(Xi, Xj)

H(Xi, Xj)
. (93)

Example 7. Let us compute the coordination index for the cyclic Battle of the Sexes. We compute
the coordination index as the product of the conditional utilities (75) and the steady-state utilities
(68), yielding

wMW (aMM |aWW )wW (aWW )], . (94)

The coordination index is given by

C(M,W ) =
H(M) +H(W )−H(M,W )

H(M,W )
. (95)

Figure 6 illustrates a contour plot of the coordination index for the cyclic Battle of the Sexes game
over the region (α, β) ∈ [0, 1/2]× [0, 1/2].

5.2 Coordination Index for n > 2 Agents

When n > 2, we may expand the definition of dispersion to become

d(X1, . . . , Xn) = nH(X1, . . . , Xn)−
n∑
i=1

H(Xi) (96)

The relative dispersion function for n > 2 becomes

D(X1, . . . , Xn) =
1

n− 1

d(X1, . . . , Xn)

H(X1, . . . , Xn)
(97)

This function is symmetric and non-negative, and is zero if and only if there exist permutations
πi|j : A→ A such that

ui|pa(i)(ai|ai1 , . . . ,aiqi ) =

{
0 if ai 6= πi|ik(ai), k = 1, . . . , qi

1 if ai = πi|ik(ai), k = 1, . . . , qi
, i = 1, . . . , n . (98)

D(X1, . . . , Xn) is a a measure of how much the utilities of the group are in conflict, and achieves
its maximum when all of the Xi’s are mutually uncoordinated, in which case D(X1, . . . , Xn) = 1.
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α

β

0.2

0.4

0.6

Figure 6: The coordination index for the cyclic Battle of the Sexes game.

Definition 22. The coordination index of the network is

C(X1, . . . , Xn) = 1−D(X1, . . . , Xn) =

∑n
i=1H(Xi)−H(X1, · · · , Xn)

(n− 1)H(X1, · · · , Xn)
. (99)

The coordination index is a measure of the degree to which the members of a network are socially
connected, and serves as a measure of the intrinsic ability of the individuals to align their interests
as a result of direct social influence. Alignment can be positive, in which case the individuals have
compatible shared interests (e.g., teams), or it can be negative, in which case they have conflicting
shared interests (e.g, athletic contests). When all of the utilities are categorical, as is the case with
classical noncooperative game theory, the individuals are mutually socially uncoordinated and the
relative dispersion is maximum. Consequently, the coordination index is zero — the members have
no shared social interests (although they may have shared material interests). This is true even
if u1 = · · · = un. Common material interests do not imply shared social interests. This does not
mean, of course, that mutually socially uncoordinated individuals cannot be aligned, nor does a lack
of an intrinsic ability to align their interests mean that the agents will not function harmoniously.
Rather, it means that if they do, it is simply by coincidence, rather than by social design.

The coordination index is the theoretical upper bound on the intrinsic ability of a network to
align its interests. Basically, it tells how theoretically amenable a given organizational or network
structure is for socially coordinated behavior. But it cannot tell whether that structure supports
the kind of coordination that one desires.

One way to think of the coordination index is as a measure of the ecological fitness of a given
network to function appropriately in its environment. It can also be used as a design tool to
evaluate the ecological fitness of a proposed network structure. A low coordination index may
prompt structural changes such as inserting additional linkages or modifying existing links.

6 Extension to Stochastic Agents

Conditional game theory has appropriated the syntax of probability theory in several ways: the
concept of conditioning to form the social influence linkages between individuals; the concept of
coherence (avoiding subjugation) to motivate the need to express preferences in terms of conditional
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mass functions that are manipulated according to the probability syntax; Bayesian network theory
to develop an explicit social model as a coordination ordering over conjectures; Shannon information
theory to define an operational concept of coordination; and Markov convergence theory has been
applied to deal with cyclic networks. What we have not yet done, however, is apply probability
theory in its traditional usage as a means to model epistemological uncertainty.

One way for uncertainty to arise is if some of the members of the network are random variables
whose realizations can influence the interests of the deterministic members of the network. For
example, agents may be influenced by phenomena beyond their control, such as environmental
factors, and ignoring such factors could distort or invalidate the social model. Consider the network
illustrated in Figure 7, where Y is a discrete random variable defined over some finite set Y that
influences X, where X is whose a deterministic agent defined over an alternative set A, and Z is a
discrete random variable defined over a finite set Z.

Y uX|Y
// X pZ|X

// Z

Figure 7: Transitions between stochastic and deterministic individuals.

The function uX|Y has the syntax of a conditional utility mass function whose conditioning
entity is a stochastic phenomenon, rather than another individual, and pZ|X has the syntax of
a conditional probability mass function whose conditioning entity is a deterministic individual,
rather than another stochastic phenomenon. This structure involves the mixing of epistemological
phenomena with behavioral phenomena. By invoking the isomorphism, coherence, and invariance,
the syntax of probability theory and the syntax of utility theory are compatible. Referring to Figure
7, the function uX|Y is a conditional utility mass function whose conditioning entity is a random
phenomenon, and pZ|X is a probability mass function whose conditioning entity is a behavioral
phenomenon. Thus, epistemological entities can be seamlessly absorbed into a behavioral network
and treated without distinction as far as constructing the coordination function is concerned.

Definition 23. Let {X1, . . . , Xn} denote a network of n deterministic agents, and let {Y1, . . . , Ym}
denote a set of discrete stochastic agents (random variables) where Yj is defined over a finite set Bj,
j = 1, . . . ,m. The combined set of individuals {X1, . . . , Xn, Y1, . . . , Ym} is defined over the product
set An × B1 × · · · × Bm. comprise a stochastic network.

A stochastic conjecture profile is an array (a1, . . . ,an, b1, . . . , bm) ∈ An × B1 × · · · × Bm such
that (a1, . . . ,an) is a conjecture profile for {X1, . . . , Xn} and (b1, . . . , bm) is a stochastic profile for
{Y1, . . . , Ym}.

A stochastic coordination function is a function u1:n 1:m: An × B1 × · · · × Bm → [0, 1] that
characterizes all of the social relationships that exist among the deterministic agents, the stochastic
dependency relationships that exist among the stochastic agents, the stochastic relationships that the
deterministic agents exert on the stochastic agents, and the social relationships that the stochastic
agents exert on the deterministic agents.

Suppose Xi has pi deterministic parents and qi stochastic parents, and Yj has rj deterministic
parents and sj stochastic parents, that is,

pa (Xi) = {Xi1 , . . . , Xipi
, Yk1 , . . . , Ykqi}

pa (Yj) = {Xj1 , . . . , Xjrj
, Yl1 , . . . , Ylsj }

. (100)
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For any stochastic conjecture profile (a1, . . . ,an, b1, . . . , bm), let

αpa(i) = (ai1 , . . . , aipi , bk1 , . . . , bkqi )

bpa (j) = (aj1 , . . . , ajrj , bl1 , . . . , blsj )
(101)

denote the conditioning conjectures of pa (Xi) and pa (Yj), respectively.
The stochastic coordination function is of the form

û1:n 1:m(a1, . . . ,an, b1, . . . , bm) =

n∏
i=1

m∏
j=1

ui|pa(i)(ai|αpa(i))pj| pa (j)(bj |bpa (j)) . (102)

Although the stochastic agents influence the preferences of the deterministic agents, they are not
able to make choices. Thus, to make a choice, we must compute the expected coordination function
obtained by summing over the stochastic states, yielding

û1:n(a1, . . . ,an) =
∑

b1,...,bm

u1:n 1:m(a1, . . . ,an, b1, . . . , bm) . (103)

The expected coordination utility and the expected individual decision functions are thus

ŵ1:n(a11, . . . , ann) =
∑
∼a11

· · ·
∑
∼ann

û1:n[(a1n, . . . , a1n), . . . , (an1 . . . , ann)] . (104)

and
ŵi(aii) =

∑
∼aii

ŵ1:n(a11, . . . , a1n) . (105)

Example 8. Returning to the Battle of the Sexes, let A denote the availability of tickets to the
Ballet, and let S denote a sold-out venue. Suppose that W ’s preferences are influenced by the
availability of tickets to the Ballet. Let Y be a discrete random variable defined over the sample
space Y = {A,S}, with probability mass function

pY (A) = γ

pY (S) = 1− γ .
(106)

Building on the completely dissociated model given in Example 5, suppose, under the hypothetical
proposition that tickets are available, that W ’s preferences are as defined previously, but under the
hypothetical proposition that the venue is sold out, then W will abandon her desire to attend the
Ballet and place her entire conditional mass on D. The resulting conditional utility for W is

uW |Y (D|A) = α uW |Y (B|A) = 1− α
uW |Y (D|S) = 1 uW |Y (B|S) = 0

. (107)

We continue to suppose that M ’s conditional preferences are as given (36). The stochastic coordi-
nation utility thus becomes

wMWY (aM , aW , y) = uM|W (aM |aW )uW |Y (aW |y)pY (y) , (108)
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yielding

wMWY (D,D,A) = αγ

wMWY (D,D, S) = 1− γ
wMWY (D,B,A) = (1− α)βγ

wMWY (D,B, S) = 0

wMWY (B,D,A) = 0

wMWY (B,D, S) = 0

wMWY (B,B,A) = (1− α)(1− β)γ

wMWY (B,B, S) = 0 .

(109)

The expected coordination utility is

ŵMW (aM , aW ) =
∑
y

wMWY (aM , aW , y) , (110)

yielding

ŵMW (D,D) = 1− γ + αγ ŵMW (B,D) = 0

ŵMW (D,B) = (1− α)βγ ŵMW (B,B) = (1− α)(1− β)γ ,
. (111)

and the expected individual decision functions are

ŵM(D) = 1− (1− α)(1− β)γ ŵM(B) = (1− α)(1− β)γ (112)

and
ŵW (D) = 1− γ + αγ ŵW (B) = γ − αγ . (113)

Notice that when γ = 1 (i.e., the probability of ticket availability is unity), then the result agrees
with Example 5.

Example 9. As a final example involving the Battle of the Sexes, we consideer the model

Y 22 W

uM|W
,,
M

uW |Y M

ll (114)

W ’s preferences are conditioned on Y and M thus become

uW |Y M(D|A,D) = 1− α
uW |Y M(B|A,D) = α

uW |Y M(D|A,B) = 0

uW |Y M(B|A,B) = 1

uW |Y M(D|S,D) = 1

uW |Y M(B|S,D) = 0

uW |Y M(D|S,B) = 1

uW |Y M(B|S,B) = 0 ,

(115)

yielding

TW |YM =

[
1− α 0 1 1
α 1 0 0

]
. (116)
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To compute the conditional utility of Y and M , we note that Y and M are conditionally independent,
given W , thus uYM|W = pY |WuM|W = pY uM|W , where the last equality holds since Y is not influenced
by W . There resulting conditional utility for {Y,M} is

uY M|W (A,D|D) = pY (A)uM|W (D|D) = γ

uY M|W (A,B|D) = pY (A)uM|W (B|D) = 0

uY M|W (S,D|D) = pY (S)uM|W (D|D) = (1− γ)

uY M|W (S,B|D) = pY (S)uM|W (B|D) = 0

uY M|W (A,D|B) = pY (A)uM|W (D|B) = γβ

uY M|W (A,B|B) = pY (A)uM|W (B|B) = γ(1− β)

uY M|W (S,D|B) = pY (S)uM|W (D|B) = (1− γ)β

uY M|W (S,B|B) = pY (S)uM|W (B|B) = (1− γ)(1− β),

(117)

yielding the transition matrix

TYM|W =


γ γβ
0 γ(1− β)

1− γ (1− γ)(1− β)
0 (1− γ)(1− β) ,

 (118)

from which the closed-loop transition matrix is computed as

TW = TW |YMTYM|W =

[
1− αγ 1− γ + βγ − αβγ
αγ γ − βγ + αβγ .

]
(119)

The expected steady-state coordinated individual decision vectors are[
wW (D)
wW (B)

]
=

[
1−γ+βγ−αβγ

1−γ+βγ+αγ−αβγ
αγ

1−γ+βγ+αγ−αβγ

]
(120)

[
wM(D)
wM(B)

][ 1−γ+βγ
1−γ+βγ+αγ−αβγ

αγ−αβγ
1−γ+βγ+αγ−αβγ

]
. (121)

Notice that when γ = 1, these results become identical with the results given in Example 6.

7 Discussion

Classical game theory provides a model of how individuals might behave in group settings; it does
not provide a model of how a group might behave. Except for what Shubik terms “inessential
games,” games are not really “solved” in the sense that an incontrovertible solution exists.

The general n-person game postulates a separate “free will” for each of the contending
parties and is therefore fundamentally indeterminate. To be sure, there are limiting
cases, which game-theorists call “inessential games,” in which indeterminacy can be
resolved satisfactorily by applying the familiar principle of self-seeking utility maxi-
mization or individual rationality. But there is no principle of societal rationality, of
comparable resolving power, that can cope with the “essential” game, and none is in
sight. Instead, deep-seated paradoxes, challenging our intuitive ideas of what kinds of
behavior should be called “rational,” crop up on all sides as soon as we cross the line
from “inessential” to “essential” (Shubik, 1982, p. 2).
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This paper does not claim to introduce a notion of societal rationality in the sense of establish-
ing concepts of group preference, group performance, or group choice. It certainly does not deny
the existence of such phenomena, but does suggest that classical game theory is not an adequate
mathematical tool with which to model them. Instead, we circumvent such on-going psychologi-
cal/sociological/philosophical discussions and argue that coordinated agency is the operative con-
cept when discussing group behavior. We do not conflict with the classical game-theoretic premise
that preferences are innately individual. We do assert, however, that coordination is innately a
group-level concept, and that a complete model of a group requires the integration of both aspects
of behavior.

The logical mechanism that integrates individual performance and group coordination is condi-
tionalization. This mechanism enables individuals to modulate their preferences in response to the
social context. This logic is identical to the conditionalization logic of Bayesian epistemology, where
conditional probability serves as the vehicle by which individual belief regarding the realization of
some random phenomenon is modulated by belief regarding the realization of another random
phenomenon. Bayesian conditionalization enables these beliefs to be connected in a coherent and
systematic way. This connection does not result in a concept of group belief; rather, it establishes
statistical dependence — a state where the beliefs regarding different phenomena influence each
other to some extent but nevertheless remain individual.

Since beliefs and preferences are order isomorphic, the conditionalization syntax serves as the
vehicle by which individual preferences regarding the actualization by some agent is modulated by
preferences regarding the actualization by another agent. This approach enables the preferences
to be connected in a coherent and systematic way. This connection does not result in a concept
of group preference; rather, it establishes social coordination — a state where the preferences of
different individuals influence each other but nevertheless remain individual.

This research has appropriated several well-known mathematical operations associated with
probability theory: conditionalization, Bayesian networks, coherence (via the Dutch Book theo-
rem), Shannon information theory, and Markov convergence theory. Although these operations are
traditionally associated with probability theory as applied to epistemological uncertainty, they are
context-neutral and apply equally well as a framework within which to model behavioral uncer-
tainty.

Table 9 summarizes the contrast between classical noncooperative game theory and conditional
game theory.
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Table 9: Contrasts between classical and conditional game theory.

Issue Classical Game Theory Conditional Game Theory

Game
structure

Divison of labor: preference
model and solution concept
defined separately

Social influence integrated into
conditional preference model

Preference
model

Categorical — fixed and im-
mutable

Conditional — modeled after
Bayesian conditionalization

Rationality
concept

Individual rationality with re-
gard to material performance

Individual rationality with
regard to material benefit as
modulated by social influence

Solution
concept

Individual: constrained opti-
mization (Nash equilibrium)
Group: individuals possess a
concept of shared intentions
(team reasoning)

Individual: maximize the coor-
dinated individual rationality
utility
Group: maximize coordination
utility (generalized team rea-
soning)

Coordination
concept

Extrinsic: exogenously defined
social solution concept applied
to payoffs

Intrinsic: endogenously emerges
as social influence propagates
through the network
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Part II: The Three Bacharach Puzzles

In his posthumously published book Beyond Individual Choice, Bacharach (2006) discusses
what he termed “the three puzzles of game theory,” comprising three games for which uniquely
best solutions are seemingly obvious, but game theory fails to identify them: Hi-Lo, Matching
Pennies, and Prisoner’s Dilemma. Hi-Lo is game involving two players who may choose between
alternatives A and B, with A the one of greater value. They both receive the reward if, and only
if, they agree; otherwise, neither receives anything. There are two pure-strategy Nash equilibria,
(A,A) and (B,B), but game theory does not provide a formal rational mechanism for choosing the
one with greater value. Bacharach argues that such paradoxes arise because solution concepts based
exclusively on narrow self-interest provide an incomplete model of rational behavior: “Ultimately,
the reason why (B,B) is a solution is that it is consistent with all the facts about rationality that
game theory can muster. (B,B) is a solution because game theory has mustered no fact about
rationality that excludes B” (Bacharach, 2006, p. 47). The paradox he associates with Matching
Pennies is that, although people are much more likely to choose heads over tails, game theory’s best
answer is a mixed strategy with equal probabilities (which is Parato-dominated by the two pure
strategy equilibria). Bacharach’s problem with the Prisoner’s Dilemma is that, although mutual
defection is the unique pure-strategy Nash equilibrium, it has been empirically established that
humans often do not behave accordingly. We now analyze each of these examples by recasting
them as games of bilateral social coordination, where the members of a two-agent network seek a
coordinated solution. Notationally, we designate the row player as Xr and the column player as
Xc.

1 Hi-Lo and Matching Pennies

Hi-Lo is a coordination game with payoff matrix displayed in Table 10(a). Without communicating,
each player must choose between A and B. Bacharach argues that, for situations such as this, where
the intuitive choice is incontrovertible, a theory of rational choice ought to single out (A,A) as the
only rational outcome. But game theory identifies (B,B) as rational as well, since it is also a
Nash equilibrium. The paradox exists because game theory cannot definitively predict that (A,A)
will be chosen. Thus, the only way to resolve the paradox is to overlay the payoff matrix with
psychological assumptions that are not part of the game definition. This suggests that something
is missing in the way the game is defined.

The team reasoning approach does indeed impose an additional psychological component to the
model; namely, that each agent undergoes an agent transformation from the status of a completely
autonomous individual to a member of a team, and also undergoes a utility transformation from
an individual utility to a group utility wherewith the group acts as an individual entity. The payoff
matrix for the team reasoning formulation is given in Table 10(b) and clearly resolves the paradox
in favor of (A,A) as the uniquely best team response.

The Matching Pennies scenario is as follows: Two players who are not allowed to communicate
are shown a coin with one side “heads” (H) and the other side “tails” (T ), and are given the
following instruction: “Complete the sentence: A penny was tossed. It came down .” If both
complete the sentence in the same way, they both receive a penny, but if they differ, then neither
receives anything. The payoff matrix for this game is displayed in Table 11. This game has two Nash
equilibria, both with the same payoffs, and classical game theory provides no way to distinguish
between them. Experimental evidence establishes, however, that in such scenarios a substantial
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Table 10: The payoff matrix for the Hi-Lo game: (a) The original payoff matrix, (b) the payoff
array for the team {Xr, Xc}.

Xc

Xr A B

A 2, 2 0, 0
B 0, 0 1, 1

(a)

Outcome Team Payoff

A,A 2, 2
B,B 1, 1
A,B 0, 0
B,A 0, 0

(b)

majority of players both choose “heads,” although, on the face of it, there is no compelling reason
to favor “heads” over “tails.”

Table 11: Payoff matrix for Matching Pennies with H = heads, T= tails.

Xc

Xr H T

H 1, 1 0, 0
T 0, 0 1, 1

Under the assumptions of both Hi-Lo and Matching Pennies, the players do not communicate.
However, as argued by Misyak et al. (2014), the players may certainly engage in virtual communica-
tion by independently reasoning how the other might be reasoning. Such scenarios are examples of
Schelling’s concept of focal points, also termed salience. “People can often concert their intentions
or expectations with others if each knows that the other is trying to do the same. Many situations
— perhaps every situation for people who are practiced at this kind of game — provide some clue
for coordinating behavior, some focal point for each person’s expectations of what the other expect
him to expect to be expected to do” (Schelling, 1960, p. 57). This kind of conditional reasoning
is of the form described by Bacharach (2006, p. 138): “I will if and only if you will; but I know
that you will if and only if you know that I will; hence I will if and only if I know you know that I
will; hence, similarly, I will if and only if I know you know I know you will; and so on.” Bacharach
argues that this leads to an endless sequence of implications that does not result in either joint or
individual categorical intentions.

We assert, however, that such a pessimistic conclusion is premature, and that it is indeed
possible for such iterated reasoning to converge to unconditional coordinated intentions. The only
difference between the two scenarios is that, with Hi-Lo, the issue is choosing definitively between
two equilibra with different material preference, and with Matching Pennies, the issue is choosing
definitively between two equilibria with the same material preference, but with different social
preference.
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1.1 Hi-Lo

With the Hi-Lo scenario, the action set is Ar = Ac = {A,B} and the hypothetical propositions are
of the form

Hi|j(A|A): Xj |= A⇒ Xi |= A

Hi|j(B|A): Xj |= A⇒ Xi |= B

Hi|j(A|B): Xj |= B ⇒ Xi |= A

Hi|j(B|B): Xj |= B ⇒ Xi |= B

(122)

for i, j,∈ {r, c}, i 6= j. The task is to define conditional utilities that comport with these hypothet-
ical propositions. Consider the hypothetical scenarios Hi|j(A|A) and Hi|j(B|B). Under Hi|j(A|A),
Xi would rationally assume that Xj prefers A to B, which agrees with the fact that both know
that A > B. Under Hi|j(B|B), Xi would also rationally assume that Xj prefers B to A, which
would indicate to Xi that Xj has made a mistake. Let hi denote Xi’s probability that Xj has not
made a mistake by conjecturing A, and let `i denote Xi’s probability that Xj has made a mistake
by conjecturing B. Then 1− hi is Xi’s probability that Xj has made a mistake by conjecturing A,
and 1− `i is Xi’s probability that Xj has not made a mistake by conjecturing B.

Suppose that Xi assumes that Xj intends to be rational but is also succecptable to error. Then
Xi would constrain hi and `i to be greater than one half. If we also suppose that Xi’s probability
of Xj correctly conjecturing A is greater than Xi’s probability that Xj will mistakenly conjecture
B, then hi > `i > 1/2. In the interest of brevity and in keeping with the symmetry of the original
problem formulation, we assume that hr = hc = h and `r = `c = `, thereby yielding the following
symmetric conditional utilities.

uj|i(A|A) = ui|j(A|A) = h

uj|i(B|A) = ui|j(B|A) = 1− h
uj|i(A|B) = ui|j(A|B) = 1− `
uj|i(B|B) = ui|j(B|B) = ` ,

(123)

where h > ` > 1− ` > 1− h. This formulation of Hi-Lo is completely dissociated (see Section 3.2),
and results in a cyclic network of the form

Xj

ui|j
,,
Xi

uj|i

ll . (124)

Following (55), the state-to-state transition matrices are

Ti|j = Tj|i =

[
h 1− `

1− h `

]
(125)

and, following (60), the closed-loop transition matrices are

Ti = Tj = Tj|iTi|j =

[
h2 + (1− h)(1− `) (h+ `)(1− `)

(h+ `)(1− h) (1− h)(1− `) + `2

]
(126)

for i, j ∈ {r, c}. The steady coordinated decision function is the eigenvector corresponding to the
unit eigenvalue of (126), which is

vr = vc = v =

[
v(A)
v(B)

]
=

[
1−`

2−h−`
1−h

2−h−`

]
. (127)
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Following the development in Section 4.3 and applying (123) and (127), the steady-state coor-
dination utility is

wrc =


wrc(A,A)
wrc(A,B)
wrc(B,A)
wrc(B,B)

 =


ur|c(A|A)v(A)

ur|c(A|B)v(B)

ur|c(B|A)v(B)

ur|c(B|B)v(B)

 =


h(1−`)
2−h−`

(1−`)(1−h)
2−h−`

(1−h)(1−`)
2−h−`
`(1−h)
2−h−`

 . (128)

The coordinated utilities are

wr =

[
wr(A)
wr(B)

]
=

[
wrc(A,A) + wrc(A,B)
wrc(B,A) + wrc(B,B)

]
=

[
1−`

2−h−`
1−h

2−h−`

]

wc =

[
wc(A)
wc(B)

]
=

[
wrc(A,A) + wrc(B,A)
wrc(A,B) + wrc(B,B)

]
=

[
1−`

2−h−`
1−h

2−h−`

]
,

(129)

which are consistent with (34) and (127). It immediately follows that the coordination utility is
maximized at (A,A) and the coordinated utilities are identical and are maximized at A. Thus, the
coordinated decision is for each to choose A.

We next investigate the coordination properties of this network. It will be instructive first to
consider extrinsic coordination, that is coordination in terms of the solution concept. From both
the coordinated utilities and the payoff matrix of the steady-state game, there is no conflict, and
both agents would, even from a position of narrow self-interest, choose A, since h > `. Thus,
intuitively, the network is highly extrinsically coordinated.

Intrinsic coordination, however, is not a function of the solution concept. Rather, it is a function
of the influence relationships, and is determined by the coordination index, which is a function of
the values of h and `. From (129), we have

H(Xi) = −wi(A) log2wi(A)− wi(B) log2wi(B), i = r, c , (130)

and, using (128),

H(Xr, Xc) =
∑
arr

∑
acc

wrc(arr, acc) log2wrc(arr, acc) , (131)

yielding the coordination index

C(Xr, Xc) =
H(Xr) +H(Xc)−H(Xr, Xc)

H(Xr, Xc)
. (132)

Figure 8 displays the coordination index over the (h, `) range (1/2, 1) × (1/2, 1). We see that coor-
dination increases as ` → h → 1. Since, by constraint, ` < h, we may set ` = h − ε, where ε > 0,
and take the limit as h→ 1, yielding

lim
h→1

[
w(A)
w(B)

]
= lim

h→1

[
1−h−ε
2−2h−ε

1−h
2−2h−ε

]
=

[
ε
ε
0
ε

]
=

[
1
0

]
. (133)

Since this limit holds for all ε, it follows that w(A)→ 1 and w(B)→ 0 as h→ 1 and `→ h. Thus,
the network is maximally coordinated when the probability of no error under conjecture A and the
probability of error under conjecture B are both unity, in which case both agents choose A with
probability one.
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`

h

0.1

0.3

0.5
0.7

Figure 8: Coordination index for the Hi-Lo game.

This example illustrates the seamlessness of the isomorphism between conditional utility the-
ory and Bayesian epistemology: The conditional utilities are not only isomorphic to conditional
probabilities, they actually are conditional probabilities. In fact, had the Hi-Lo scenario been origi-
nally expressed via probability theory rather than game theory, this scenario would never have been
viewed as a puzzle. Clearly, probability theory (and conditional utility theory via the isomorphism)
is a more powerful mathematical vehicle than game theory with which to model this scenario, since
it provides a natural mechanism with which to incorporate ex ante contextual information into the
preference model.

1.2 Matching Pennies

The action set for the Matching Pennies game is Ar = Ac = {H,T}, and the hypothetical propo-
sitions are

Hi|j(H|H): Xj |= H ⇒ Xi |= H

Hi|j(T |H): Xj |= H ⇒ Xi |= T

Hi|j(H|T ): Xj |= T ⇒ Xi |= H

Hi|j(T |T ): Xj |= T ⇒ Xi |= T .

(134)

As with Hi-Lo, we examine the relationship between Hi|j(H|H) and Hi|j(T |T ). Given that H is
a focal point, we may assume, by arguments similar to the development of the Hi-Lo conditional
game, that the probability that Xj will correctly prefer H to T , given the conjecture H, is greater
than the probability that it will mistakenly prefer T to H, given the conjecture T , and that the
probability of preferring T to H, given the conjecture T , is greater than the probability of preferring
H to T , given the conjecture T . Assuming symmetry, the analysis of this game is identical with
that of Hi-Lo by replacing {A,B} with {H,T} and defining the conditional utilities

uj|i(A|A) = ui|j(A|A) = h

uj|i(B|A) = ui|j(B|A) = 1− h
uj|i(A|B) = ui|j(A|B) = 1− t
uj|i(B|B) = ui|j(B|B) = t ,

(135)

Stirling 46 September 18, 2016



2 PRISONER’S DILEMMA

where h > t > 1−t > 1−h, where h is the conditional probability that Xj does not make a mistake
under conjecture H, and t is the conditional probability that Xj makes a mistake under conjecture
T .

2 Prisoner’s Dilemma

2.1 Model Definition

Whereas Hi-Lo and Matching Pennies are obvious coordination scenarios where there is no overt
conflict between the players, the Prisoner’s Dilemma provides a more complex and challenging
problem. With this game, the players, denoted {Xr, Xc}, each take actions in the sets Ar = Ac =
{C,D} (where C corresponds to cooperation and D corresponds to defection). The joint action set
is

A = {(C,C), (C,D), (D,C)), (D,D)} . (136)

The standard normal form payoff matrix for the Prisoner’s Dilemma for Xr and Xc is given in Table
12. To qualify as a Prisoner’s Dilemma, the payoff values must comply with the Axelrod conditions
(Axelrod, 1984): T > R > P > S and R > (T +S)/2. The Prisoner’s Dilemma serves as a model of

Table 12: The payoff matrix for Prisoner’s Dilemma: R = reward for mutual coopertion; S =
sucker’s payoff; T = temptation to defect; and P = punishment for mutual defection.

Xc

Xr C D

C R,R S, T
D T, S P, P

scenarios where there is an incentive to cooperate, but doing so leaves one vulnerable to exploitation.
The puzzle arises because the unique individually rational choice is the Nash equilibrium (D,D)
(the next worst outcome for both players), but the Pareto efficient choice (C,C) (the next best
outcome for both) is the outcome that many allegedly rational people play when subjected to
psychological experimentation. The problem for Bacharach is that game theory does not provide a
definitive argument for either case: On the one hand, defensive play is prudent and understandable
given the risk of exploitation while, on the other hand, cooperation is intuitively appealing and
yields a greater payoff. This latter sentiment is motivation for a team reasoning approach to
this game, which, according to Bacharach’s thesis, invokes the group-identity hypothesis: “I come
now to the hypothesis that perceived ‘interdependence’ prompts group identification . . . . The
overwhelmingly most frequent example of a scenario in which a sense of interdependence is said
to promote group identification is certainly a case of strong interdependence. It is the Prisoner’s
Dilemma” (Bacharach, 2006, p. 84).

We may test Bacharach’s hypothesis by expressing the Prisoner’s Dilemma as a cyclic condi-
tional game of the form

Xr

uc|r
,,
Xc

ur|c

ll (137)

to see if deliberation alters the logic. Unlike Hi-Lo and Matching Pennies, for which a completely
dissociated conditional game model is adequate, the Prisoner’s Dilemma requires a fully sociated
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model involving the hypothetical propositions

Hi|j(air, aic|ajr, ajc): Xj |= (ajr, ajc)⇒ Xi |= (air, aic) , (138)

where (air, aic), (ajr, ajc) ∈ A for i, j ∈ {r, c}, i 6= j. The corresponding conditional utilities
are of the form ui|j(air, aic|ajr, ajc). We are guided in the valuation of these utilities by two
assumptions. First, we assume the obvious: given that Xj conjectures mutual defection (D,D),
then Xi will ascribe highest preference also to (D,D), rather than stubbornly insisting on a higher,
but clearly unattainable, outcome. This assumption is entirely consistent with the Nash equilibrium
solution. The second assumption is perhaps less obvious, but still consistent with the Prisoners
Dilemma scenario: Given that Xj conjectures mutual cooperation (C,C), then Xi should also favor
(C,C), the Pareto efficient outcome, even though exploiting the other perhaps within the realm
of possibility, given that Xj is at least disposed toward cooperation. In other words, if the other
were committed to cooperation, then it would be in one’s best interest to agree. Failure to do
so would eliminate any possibility of achieving a coordinated result. Invoking these assumptions,
we structure the remaining entries in the conditional utility according to the categorial ordering
defined by Table 12, yielding the ordinal conditional payoffs as defined in Table 13.

Table 13: The ordinal conditional preference orderings for the Prisoner’s Dilemma game: (a)
corresponds to ur|c (row player conditioned on column player) and (b) corresponds to uc|r (column
player conditioned on row player).

ur|c(arr, arc|acr, acc)
acr, acc

arr, arc C,C C,D D,C D,D

C,C 4 3 3 2
C,D 1 1 1 1
D,C 3 4 4 3
D,D 2 2 2 4

(a)

uc|r(acr, acc|arr, arc)
arr, arc

acr, acc C,C C,D D,C D,D

C,C 4 3 3 2
C,D 3 4 4 3
D,C 1 1 1 1
D,D 2 2 2 4

(b)

Ordinal ranking: 4 = best; 3 = next-best; 2 = next-worst; 1 = worst

To express these preferences in terms of the probability syntax, we must ascribe numerical
values to each ranking. Let α, π ∈ (0, 1) be ordered such that

π > α > 1− α > 1− π . (139)

Notice that this ordering corresponds to the Axelrod conditions by setting π = T , α = R, 1−α = P ,
and 1 − π = S, and enables defining the payoff matrix in terms of these parameters, as displayed
in Table 14.

Restricting α and π to the unit interval creates no loss of generality, since utilities are invariant
with respect to positive affine transformations. The paramaters (α, π) can be used to define the
psychological state of the agents which, in the interest of clarity, simplicity, and consistency with
the symmetric structure of the classical categorical formulation, we assume are the same for both
(although not required by the theory). The psychological trait that might be associated with α is
avarice. One with a high avarice index is focused exclusively on material gain without regard for
the effect doing so has on others. We associate the psychological trait of pragmatism with π. A
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Table 14: The payoff matrix for Prisoner’s Dilemma expressed in terms of the parameters (α, π)
with π > α > 1− α > 1− π.

Xc

Xr C D

C α, α 1− π, π
D π, 1− π 1− α, 1− α

high pragmatism index suggests that one behaves logically and deliberately and is not swayed by
emotions. Certainly, other psychological traits may be attributed to these parameters, but these
interpretations adequate for this development. This model assumes that pragmatism dominates
avarice, which would motivate the individuals to engage in compromise to achieve at least its
security level, rather than stubbornly holding out for a better outcome that entails risk.

The transition matrices Tr|c and Tc|r are constructed according to the orderings given in Table
13 with the modification that each entry must be divided by 2 to ensure that each column sums to
unity. The resulting transition matrices are as follows:

Tr|c = 1/2


π α α 1− α

1− π 1− π 1− π 1− π
α π π α

1− α 1− α 1− α π



Tc|r = 1/2


π α α 1− α
α π π α

1− π 1− π 1− π 1− π
1− α 1− α 1− α π

 .
(140)

Clearly, the closed-loop transition matrices Ti = Ti|jTj|i are regular for all pairs (α, π) ∈ (0, 1)×
(0, 1), i, j ∈ {r, c}, i 6= j, thus ensuring that the network will converge to steady-state unconditional
utilities. According to the Markov convergence theorem, the steady-state utilities for Xi correspond
to the eigenvector associated with the unique unit eigenvalue of Ti, i = r, c. To compute these
eigenvectors, first note that Tr and Tc are related by a permutation transform defined by the
matrix

P =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (141)

It is straightforward to see that

Ti|j = PTj|iP , i, j ∈ {1, 2} , i 6= j (142)

and it follows that
Ti = Ti|jTj|i = PTj|iPPTi|jP = PTj|iTi|jP = PTjP , (143)

since PP = I. Now let vi and vj denote the eigenvectors of Ti and Tj that correspond to the unit
eigenvalues of Ti and Tj , respectively. Then

Tivi = PTjPvi = vi (144)
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and, multiplying all terms by P yields

PTivi = PPTjPvi = Pvi

= TjPvi = Pvi .
. (145)

Thus, Pvi = vj and the steady-state utilities are related by the permutation matrix P . Conse-
quently, both eigenvectors can be obtained from any column of either Tr or Tc. The first column
of Tr is (with the help of Mathematica)

vr =


vr(C,C)
vr(C,D)
vr(D,C)
vr(D,D)

 =


1+α2−απ

6+α−α2−5π+π2

1−π
2

α+π+απ−π2

4+2α−2π
1−α

3−α−π

 (146)

and, since vc = Pvr, it follows that

vc =


vc(C,C)
vc(C,D)
vc(D,C)
vc(D,D)

 = Pvr =


1+α2−απ

6+α−α2−5π+π2

α+π+απ−π2

4+2α−2π
1−π

2
1−α

3−α−π

 (147)

Thus, the two steady-state utilities differ by reversing the order of the outcomes (C,D) and (D,C).
We now investigate several solution concepts.

2.2 Socially Coordinated Solution

Given the steady-state utilities vr and vc for Xr and Xc, respectively, we may compute the ex
post payoff array as defined by Table 5, yielding the payoff matrix displayed in Table 15. The

Table 15: The payoff matrix for the steady-state Prisoner’s Dilemma game.

Xc

Xr C D

C vr(C,C), vc(C,C) vr(C,D), vc(C,D)
D vr(D,C), vc(D,C) vr(D,D), vc(D,D)

classical solution concept would be to base decisions on ex post Nash equilibria. Although an ex
post Nash equilibrium takes the social relationships into consideration, it is a solution concept
based on individual rationality, and does not constitute a truly coordinated decision. To compute
a socially coordinated solution, we must compute the coordination utility and the coordinated
individual decision functions. Following (65) and (66), the steady-state coordination utility is

wrc =


wrc(C,C)
wrc(C,D)
wrc(D,C)
wrc(D,D)

 =



(−8−α3(−1+π)+17π−17π2+7π3−π4+α2(−2−π+π2)+α(−7+15π−7π2+π3)
4(2+α−π)(−3+α+π)

(−8+α3(−1+π)+5π+5π2−5π3+π4−α2π(1+π)−α(−5+9π−7π2+π3)
4(2+α−π)(−3+α+π)

(−8+α3(−1+π)+5π+5π2−5π3+π4−α2π(1+π)−α(−5+9π−7π2+π3)
4(2+α−π)(−3+α+π)

(−α3(−1+π)+α2(6+3π+π2)+α(−7+3π−7π2+π3)−π(7−3π−3π2+π3)
4(2+α−π)(−3+α+π)

 , (148)
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and the coordinated utilities are

wr = wc = w =

[
w(C)
w(D)

]
=

−8+11π−6π2+π3−α2(1+π)+α(−1+3π)
2(2+α−π)(−3+α+π)

−4+α+π+3απ−4π2+π3−α2(3+π)
2(2+α−π)(−3+α+π)

 . (149)

Notice that each agent will use exactly the same coordinated decision function to make a coordinated
decision.

It is instructive to examine the behavior of the network as a function of the psychological
parameters (α, π). To comply with the Axelrod conditions as expressed via the payoff matrix
defined by Table 14 in terms of psychological parameters, we require 1/2 < α < π. For the ex post
payoff matrix also to comply with the Axelrod conditions, we require

vr(D,C) > vr(C,C) > vr(D,D) > vr(C,D)

vc(C,D > vc(C,C) > vc(D,D) > vc(D,C)
(150)

and

vr(C,C) >
vr(D,C) + vr(D,C)

2

vc(C,C) >
vc(C,D) + vc(C,D)

2
.

(151)

Straightforward calculations reveal that the ex post payoff matrix does indeed satisfy the Axelrod
conditions for all 1/2 < α < π < 1. In addition, the coordination utility wrc is maximized with
(arr, acc) = (D,D), and the coordinated decision rule w is maximized at arr = acc = D. Thus, the
coordinated decision agrees with the Nash solution.

The coordination index is computed with respect to the coordination utility and the coordinated
utilities, yielding

C(Xr, Xc) =
(H(Xr) +H(Xc)−H(Xr, Xc)

H(Xr, Xc)
, (152)

where
H(Xr) = H(Xc) = −w(C) log2w(C)− w(D) log2w(D) (153)

and

H(Xr, Xc) = −wrc(C,C) log2wrc(C,C)− wrc(C,D) log2wrc(C,D)

− wrc(D,C) log2wrc(D,C)− wrc(D,D) log2wrc(D,D) . (154)

Computer simulations establish that the coordination index C(Xr, Xc) ≈ 0 for all 1/2 < α < π < 1.
This is a significant result that tells us a lot about the Prisoner’s Dilemma. There is essentially
no intrinsic ability for the players to form a meaningful team in order to cooperate, and there is
also essentially no intrinsic ability for the players to form adversarial relationships to compete in
any meaningful way. Contrary to Bacharach’s argument that the Prisoner’s Dilemma is a model of
situations where a sense of interdependence promotes group identification, we argue instead that
the Prisoner’s Dilemma is a model of situations that are virtually impervious to team formation.
The fact that literally thousands of papers and books have been devoted to this game over the
years without resolving the issue is itself a testament to the profoundness of the social conundrum
invoked by the game. Thus, the claim that the Prisoner’s Dilemma is a puzzle because it defies
intuitive concepts of rational behavior is really no puzzle at all. In fact, it would be puzzling if,
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under any meaningful notion of individually rational behavior, individuals who are really playing
according to preferences defined by the payoff matrix were to deviate.

But this is not the end of the story, nor does it explain why people often do deviate from the
“rational” choice. We have expressed the model in terms of the psychological parameters (α, π),
where we have ascribed the attribute of avarice to α and pragmatism to π. If pragmatism really
does dominate avarice (i.e., π > α) for both players, then, cold, hard logic suggests that the risk of
attempting to cooperate with someone who is very willing to exploit one’s cooperative aspirations
is unacceptably high. But what if, in reality, α > π? What if both players discount the risk of
exploitation and focus more heavily on increasing their payoff? To address this question, let us
examine the behavior of this system in more detail.

If 1/2 < π < α < 1, then the payoff matrix structure displayed in Table 14 no longer meets
the Axelrod conditions. In such a situation, even though the actual payoffs are defined by the
payoff matrix displayed in Table 12, if α > π, the players should behave, at least according to their
psychological attributes, as if they are really playing Concord, a no-conflict game whose ordinal
preferences are given in Table 16, for which (C,C) is the unique dominant equilibrium.12

Table 16: Payoff matrices for the Concord game.

Xc

Xr C D

C 4, 4 2, 3
D 3, 2 1, 1

If we simply assume that both players really intend to play a Concord game in terms of prefer-
ences but with actual payoffs determined by the Prisoner’s Dilemma, then they would immediately
agree to (C,C) and the game would be over. But to leap immediately to that explanation would ig-
nore Bacharach’s demand to address the puzzle and would also obviate Elster’s demand for evidence
of connections between rationality and behavior. Suppose the players begin their deliberations with
π > α but, as time progresses, the condition α > π eventually obtains. (In Section 4.2 we briefly
discuss the convergence of non-stationary Markov chains.) Incorporating this eventual preference
reversal into the transition matrices given by (140) results in ordinal rankings of the conditional
utilities as displayed in Table 17. This ordering generates preferences for which meaningfully co-
ordinated behavior appears to be even less likely than with the original Axelrod-based ordering.
On the one hand, if the conditioning conjecture were either (C,C) or (D,D), one’s highest ranked
outcome would be to exploit the other. On the other hand, if the conditioning conjecture were
either to exploit or be a sucker, then one’s highest-ranked outcome would be mutual cooperation.
In other words, if the other were to favor any agreement, then one would favor conflict, but if the
other were to favor any conflict, then one would favor agreement. These conditional preferences
would appear to lead to behavior that is bizzarre, if not irrational. This certainly does not look
like a Concord game. Nevertheless, it is instructive to examine the steady-state behavior as the
end result of deliberation.

Figure 9 illustrates the behavior of the steady-state game for the (α, π) rectangle [1/2, 1 ×[1/2, 1].
The triangular section above the dashed line is the region where π > α > 1/2, the parameter values
that correspond to the Axelrod conditions as expressed via the psychological payoff matrix given

12Using the terminology provided by Bruns (2015), Concord is a 2 × 2 no-conflict game where moves following
dominant strategies raise the payoffs by one rank and Harmony is a no-conflict game where moves following dominant
strategies raise the payoff by two ranks.
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Table 17: The ordinal conditional preference orderings for the Prisoner’s Dilemma game with
reversed parametric ordering (α > π): (a) corresponds to ur|c and (b) corresponds to uc|r (compare
with Table 13).

ur|c(arr, arc|acr, acc)
acr, acc

arr, arc C,C C,D D,C D,D

C,C 3 4 4 1
C,D 2 2 2 2
D,C 4 3 3 4
D,D 1 1 1 3

(a)

uc|r(acr, acc|arr, arc)
arr, arc

acr, acc C,C C,D D,C D,D

C,C 3 4 4 1
C,D 4 3 3 4
D,C 2 2 2 2
D,D 1 1 1 3

(b)

Ordinal ranking: 4 = best; 3 = next-best; 2 = next-worst; 1 = worst

in Table 14. The (α, π) values between the dashed line and the curve labeled “PD/SD” denotes
the region where the steady-state game satisfies the Axelrod conditions, even though the preference
reversal has occurred. This artifact is an indication of the robustness of the Prisoner’s Dilemma
scenario.

The region between the curves labeled “PD/SD” and “SD/Concord” corresponds the parameter
values where the ex post payoff matrix is such that

vr(C,C) > vr(D,C) > vr(C,D) > vr(D,D)

vc(C,C > vc(C,D) > vc(D,C) > vc(D,D) .
(155)

Interestingly, these conditions correspond to a Snowdrift game (also called Chicken), whose ordinal-
form payoff matrix given is in Table 18. The difference between Snowdrift and Prisoner’s Dilemma

Table 18: Payoff matrix for the Snowdrift game.

Xc

Xr C D

C 3, 3 2, 4
D 4, 2 1, 1

is that with Snowdrift, mutual defection is the worst outcome for both, rather than next-worst.
Snowdrift has two pure-strategy Nash equilibria — the conflictive outcomes (C,D) and (D,C) and,
hence, does not provide a definitive solution (although a mixed-strategy solution can be defined in
terms of probabilities, but that approach is also not very satisfying).

The curve labeled “w(C) = w(D)” denotes the locus where w(C) = w(D). Above that line,
w(D) > w(C) and the coordination utility is maximized at (D,D), and below that line, w(C) >
w(D) and the coordination utility is maximized at (C,C). Thus, above this locus, the coordinated
decision is mutual defection, and is mutual cooporation below the line. For parameter values below
the “SD/Concord” line, the steady-state game becomes a Concord scenario where the coordination
utility is maximized at (C,C) and w(C) > w(CD).
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Figure 9: Parameter regions corresponding to ex post payoff structures for the cyclic Prisoner’s
Dilemma.

Thus, as the ratio α/π increases, the steady-state game starts as a Prisoner’s Dilemma with
mutual defection as the coordinated outcome, then transforms into a Snowdrift with mutual de-
fection remaining the coordinated outcome, then transforms into a Snowdrift for which mutual
cooperation becomes the coordinated outcome, and finally transforms into a Concord game with
mutual cooperation as the obvious coordinated outcome. Thus, for α sufficiently greater than π,
the players converge after deliberation to the game that their psychological parameters dictate that
they should be playing.

Table 19 displays the ex post payoff matrices for four scenarios: (a) a Prisoner’s Dilemma sce-
nario with (α, π) = (0.7, 0.75) (mutual defection); (b) a Snowdrift scenario with (α, π) = (0.85, 0.75)
(mutual defection); (c) a Snowdrift scenario with (α, π) = (0.9, 0.75) (mutual cooperation); and (d)
a Concord scenario with (α, π) = (0.98, 0.75) (mutual cooperation). The corresponding coordina-
tion utilities, coordinated utilities, and coordination indices are displayed in Table 20.
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Table 19: Ex post payoffs for the Prisoner’s Dilemma game for (a) (α, π) = (0.70, 0.75), (b) (α, π) =
(0.85, 0.75), (c) (α, π) = (0.90, 0.75), and (d) (α, π) = (0.99, 0, 75).

Xc

Xr C D

C 0.32, 0.32 0.13, 0.36

D 0.36, 0.13 0.19, 0.19

(a)

Xc

Xr C D
C (0.37, 0.37) (0.13, 0.40)

D (0.40, 0.13) (0.11, 0.11)

(b)

Xc

Xr C D
C 0.27, 0.27 0.13, 0.41

D 0.41, 0.13 0.07, 0.07

(c)

Xc

Xr C D
C 0.44, 0.44 0.13, 0.43

D 0.43, 0.13 0.01, 0.01

(d)

Table 20: The coordination utilities, coordinated individual decision functions, and coordination
index for the Prisoner’s Dilemma game for (α, π) = (0.70, 0.75), (α, π) = (0.85, 0.75), (α, π) =
(0.90, 0.75), and (α, π) = (0.99, 0.75).

(α, π)
(0.70, 0.75) (0.85, 0.75) (0.90, 0.75) (0.99, 0.75)

wrc(C,C) 0.22 0.25 0.27 0.30
wrc(C,D) 0.23 0.24 0.25 0.27
wrc(D,C) 0.23 0.24 0.25 0.27
wrc(D,D) 0.33 0.27 0.24 0.17

w(C) 0.44 0.49 0.52 0.56
w(D) 0.56 0.51 0.48 0.44

C(Xr, Xc) 0.003 0.0005 0.0006 0.002
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