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Conditional Coordination Games and Team Reasoning

Wynn C. Stirling

Abstract: This paper presents a coordination model to characterize how individuals may
combine their individual interests to form a coordinated decision. Using the concept of
team reasoning as a point of departure, conditional game theory is presented as a vehicle
for individuals to incorporate the rationality of others into their own rationality. A model
is developed to enable individuals to deliberate via the cyclic propagation of social influence
expressed in the form of conditional utilities. Necessary and sufficient conditions are estab-
lished for this process to converge to unconditional individual utilities that incorporate all
social influence, thereby enabling a coordinated choice. The theory is illustrated via analysis
of Bacharach’s “three puzzles of game theory.”

1 Introduction

Game theory has been at the forefront of multiagent decision theory for decades and has
provided a powerful, yet simple, framework. A complex social problem is defined and factors
that are deemed to be relevant are encoded into mathematical expressions, while those factors
considered to be irrelevant are ignored. The classical way to construct a game-theoretic
model is to make only minimal assumptions about the behavior of the individuals and then
investigate what can be deduced about the behavior of the collective. Any such model must
focus, therefore, on only selected aspects of the notion of rationality that governs the mutual
interaction of the individuals. Perhaps the least complex model of rational behavior is that
individuals are motivated by narrow self-interest: one does best by maximizing individual
welfare, regardless of the effect doing so has on others. Game theory comports with this
model by requiring that preferences must be defined at the individual level and must be
expressed in terms of utility functions that, once defined, are fixed and immutable—the are
categorical. In fact, game theory makes a point of not requiring society to make decisions as
a single entity in order to avoid what Shubik (1982, pp. 123-124) calls the “anthropomorphic
trap” of building on “the shaky analogy between individual and group psychology.” Luce
and Raiffa (1957) also argue that “the notion of group rationality is neither a postulate of
the model nor does it appear to follow as a logical consequence of individual rationality”
(p.193), and conclude that “it may be too much to ask that any sociology be derived from
the single assumption of individual rationality” (p.196).

A consequence of the categorical model structure, however, is that it leaves unanswered,
or at least not completely answered, questions that, even to one whose values are osten-
sibly compatible with self-interest, might be legitimately considered to be obvious when
considered in a larger social context. In his posthumously published book entitled Beyond
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Individual Choice, Bacharach argues that such paradoxes arise because solution concepts
based exclusively on narrow self-interest provide an incomplete model of behavior. His the-
sis is that, in many social scenarios, group identification is more fundamental than narrow
self-interest. When individuals identify with a group, the association motivates team rea-
soning, from which joint, rather than individual, intentions are created, leading directly to a
group utility. Bacharach thereby either escapes from or falls into Shubik’s anthropomorphic
trap, depending on one’s point of view.

This paper presents an alternative that, in a sense to be made precise, wants to have
it both ways: On the one hand, rationality lies, ultimately, with individuals, and on the
other, group-level coordination can emerge through the interaction of individuals who exert
social influence on each other. This approach is based on the premise that, if social influence
exists among the players, then it should be explicitly and directly incorporated into the
mathematical expressions that define the model, rather than relegated to solution concepts
that overlay the mathematical model. In other words, rather than assuming a division of
labor between the way preferences are formed and the way a solution is reached, the labor
should be shared. This approach is in contrast to the assertion by Friedman (1962, p. 13)
that “economic theory proceeds largely to take wants as fixed. This is primarily a division
of labor. The economist has little to say about the formation of wants; this is the province
of the psychologist. The economist’s task is to trace the consequences of any given set of
wants.” Game theory, per se, is not concerned with how one manages to express all of one’s
social, economic, psychological, and ethical features in to a single linear ordering over all
outcomes. It simply assumes that such an exercise can be successfully accomplished and
that it is adequate to motivate an individual’s behavior for the social context to which the
game applies.

This blanket assertion has been challenged by many, notably by Sen, who calls for a
replacement. “Economic theory has been much preoccupied with this rational fool decked in
the glory of his one all-purpose ordering. To make room for the different concepts related to
his behavior we need a more elaborate structure [emphasis in original]” (Sen, 1977, pp. 335-
336). This paper offers a way to respond to Sen’s invitation by providing a mechanism for the
explicit incorporation of social, as well as material, benefit into the utility structure, thereby
enabling utilities to be sensitive and responsive to social relationships. As these utilities
are combined, they generate an endogenous social model that leads to the emergence of a
coordinated choice. Frankly put, categorical utilities are simply not up to the job. They
must be replaced with a more complex utility structure that enables individuals to respond
to the social context. The classical game theory model then becomes a special case of this
more complex structure.

To establish the context for this development, it is important first to summarize the team
reasoning approach, which represents a marked departure from the classical assumption that
preferences are formed at the individual level. Next, it is important to examine current game-
theoretic research regarding the modeling of complex social structures under the assumption
that interests are indeed vested in the individual.
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1.1 Team Reasoning

In his book, Bacharach addresses what he termed “the three puzzles of game theory.” He
argues that game theory does not provide a definitive answer to problems for which a uniquely
best solution is obvious. His first example of such a game is Hi-Lo, where two players may
choose between A and B, with A the one of greater value. They both receive the reward if,
and only if, they agree, otherwise, neither receives anything. There are two pure-strategy
Nash equilibria, but game theory does not provide a formal rational mechanism for choosing
the one with greater value. Bacharach argues thusly: “Ultimately, the reason why (B,B) is
a solution is that it is consistent with all the facts about rationality that game theory can
muster. (B,B) is a solution because game theory has mustered no fact about rationality
that excludes B” (Bacharach, 2006, p. 47).

The other two members of Bacharach’s trio of puzzles are the Matching Pennies (MP) and
Prisoner’s Dilemma (PD) games. The paradox he associates with MP is that, although people
ar much more likely to choose heads over tails, game theory’s best answer is a mixed strategy
with equal probabilities (which is Parato-dominated by the two pure strategy equilibria).
Bacharach’s problem with PD is that, although mutual defection is the unique pure-strategy
Nash equilibrium, it has been empirically established that humans often do not behave
accordingly.

The approach taken by Bacharach (2006) and Sugden (2000, 2003), is to develop a the-
ory of team reasoning. The central thesis of this approach is that individuals may frame
the decision scenario in multiple ways—one in terms of their individual payoffs, and one
in terms of the payoffs for the team with which they associate. Bacharach argues that this
transformation involves a process of entification: “if and when the entification is from within,
that is, the individual sees herself as part of this entified humanity, she will be led through
transformations of utility and agency to seek to play her part in the profile of actions that
maximizes the expected value of total happiness” (Bacharach, 2006, p. 137). This transfor-
mation thus involves framing the issues as ‘What shall we do?’ rather than ‘What shall I
do?’ Bacharach argues that this concept of team reasoning will emerge endogenously when
there are circumstances that tend to make people group-identify.

Essentially, Bacharach’s position is that when game scenarios include social relationships,
then the classical assumption that each player is categorically intent on maximizing her own
benefit, regardless of the effect doing so on others, is not an adequate characterization.
Rather, in a social environment, behavior is not confined to the consideration of individual
intentions, but is more appropriately viewed as a manifestation of joint intentions. The
issue, then, is to understand the mechanism that underlies the creation of joint intentions.
Bacharach rejects the premise, held by Bratman (1993) and others, that joint intentions can
be derived from individual intentions, arguing that attempting to do so leads inevitably to
an infinite regress. Instead, he argues that team reasoning produces a joint intention based
on common knowledge of conditional intentions (C1) and (C2) of the form “(C1) P1 intends
to do x if and only if she believes that P2 will do y” (Bacharach, 2006, p. 139), with (C2)
the counterpart condition.

To illustrate with the Hi-Lo scenario, Bacharach argues that, since interests of the players
perfectly coincide and there are no countervailing features, an obvious group identity exists,
and the group payoff is the common individual payoff, thereby yielding A, the higher value.
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Bacharach succinctly summarizes this process: “The heart of this explanation is endogenous
group identification in the player set, and the stimulation by group identity of team reason-
ing” (Bacharach, 2006, p. 144). Team reasoning then leads to joint intentions, resulting in a
group utility, which can then be unequivocally maximized.

1.2 Related Work

Social psychologists and mathematicians have studied social influence network theory since
the 1950s, with much of the research focusing on the organizational structure of so-called
small groups, defined as as loosely coupled collectives of mutually interacting autonomous
individuals Weick (1995). Specifically, much of the emphasis has been placed on the structure
of such organizations (cf. French (1956); DeGroot (1974); Friedkin (1986); Friedkin and
Johnson (1990); Friedkin (1990); Friedkin and Johnson (1997); Friedkin (1998); Friedkin
and Johnson (2011)). The basic model is that an individual’s socially adjusted utility is
a convex combination of its own categorical utility and a weighted sum of the categorical
utilities of those agents who influence it. Karni and Schmeidler (1981) introduce the concept
of state-dependent preferences where the decision maker’s preferences are modulated by the
state of nature. Hu and Shapley (2003a,b) apply a command structure to model player
interactions by simple games. Grabisch and Rusinowska (2010, 2011, 2013) and Förster
et al. (2013), build on this structure to study social influence in the context of simple “yes”
or “no” voting games by introducing influence functions that allow agents to modify their
opinions as a result of the inclinations of others.

To account for social relationships that exist among the members of a collective, several
innovations have been applied to classical game theory. Behavioral game theory (Bolton and
Ockenfels, 2005; Fehr and Schmidt, 1999; Camerer, 2003; Camerer et al., 2004b,a; Henrich
et al., 2005) is a response to the desire to introduce psychological realism and social influence
into game theory by incorporating notions such as fairness and reciprocity into the utilities,
in addition to considerations of material benefit. The closely related field of psychological
game theory (Geanakoplos et al., 1989; Dufwenberg and Kirchsteiger, 2004; Colman, 2003;
Battigalli and Dufwenberg, 2009; Gilboa and Schmeidler, 1988) also employs utilities that
account for beliefs as well as actions and takes into consideration belief-dependent motiva-
tions such as guilt aversion, reciprocity, regret, and shame. Regardless of the issues used to
define the preferences, however, these approaches to game theory differ from the approach
taken in this paper in that they use unconditional linear preference orderings (i.e., categori-
cal utilities) over the outcomes and, therefore, the solution concepts used by classical game
theory continue to apply.

2 Conditional Game Theory

In one sense, conditional game theory is similar to Bacharach’s, in that it also employs a form
of conditioning. However, whereas conditioning à la Bacharach is with respect to intentions,
conditioning in the conditional game-theoretic sense is with respect to the preferences that
players assign to consequences. Rather than expressing preference with categorical utilities
that are fixed and immutable once the game is engaged, preferences are expressed with
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conditional utilities that enable players to modulate their preferences as a function of specific
social situations. This approach is motivated by Arrow’s recognition that a narrow view of
individually rational behavior is limited to a specific set of conditions.

Rationality in application is not merely a property of the individual. Its useful
and powerful implications derive from the conjunction of individual rationality
and other basic concepts of neoclassical theory—equilibrium, competition, and
completeness of markets. . . .When these assumptions fail, the very concept of
rationality becomes threatened, because perceptions of others and, in particular,
their rationality become part of one’s own rationality (Arrow, 1986, p. 203).

If the concept of self-interest expands such that the rationality of others becomes part
of one’s own rationality, then the utilities used to characterize one’s preferences should also
be expanded in order to incorporate the preferences of others into one’s own preferences.
For a collective to function as a team, each member ought to have an expanded concept of
preference, but it should still be an individual preference. An alternative concept is for the
group to have a goal, and for each member of the group to do its part in order to achieve
the goal. However, there is no guarantee that the players all have the same concept of how
to achieve the goal. Suppose a manager assigns two employees with complementary skills
to perform some task that requires their complete cooperation with the expectation that
both will do their parts as they collectively pursue the goal. But even if both have the
same group-level goal, that does not mean that they automatically agree regarding how each
individual should behave. Suppose one member unilaterally chooses a particular approach
without taking into consideration how that will affect the productivity of the other team
member, with the likely result that the goal will not be achieved, or at least will not be
achieved as well as it could be if they were to coordinate their actions in such a way that
achieving the task emerges as a consequence of their coordinated behavior. In other words,
coordination requires both individuals to incorporate the rationality of the other into their
individual concepts of rational behavior.

This paper presents an extension of classical noncooperative game theory that is based
on three premises. First, true coordination is an emergent phenomenon that arises, if it
does, as a result the social influence that the players exert on each other. Even the existence
of a strong exogenously imposed group identity does not guarantee that the players will
function effectively in accordance with the group-level objective. Second, social influence
is not easily expressed in terms of material benefit. A more natural way to express social
influence is for the players to evaluate their material benefit in response to social influence.
Third, the extension should not be a departure from the basic game-theoretic philosophy
that preferences should be defined at the individual level. Thus, classical noncooperative
game theory should be a special case of this extended theory.

2.1 Network Games

Conditional game theory, as introduced by Stirling (2012), is an extension to classical nonco-
operative game theory, and serves as a model for an influence network: a finite collective of
individuals who exert social influence on each other. It models such a collective as a graph
whose vertices are the individuals, denoted {X1, . . . , Xn}, and whose edges represent the
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influence linkages between individuals. An edge is directed (denoted with the arrow symbol
“→”) if the linkage is unidirectional: Xj → Xi means that Xj directly influences Xi. The
parent set for Xi, denoted pa (Xi) = {Xj: Xj → Xi} is the subset of individuals that directly
influence Xi. A path from Xj to Xi is a sequence of directed edges from Xj to Xi, denoted
Xj 7→ Xi. A path is a cycle, or closed path, if Xj 7→ Xj . A graph is said to be a directed
acyclic graph if all edges are directed and there are no cycles.

Following the standard game-theoretic setup, each Xi possesses an action set Ai, i =
1, . . . , n. The Cartesian product set A = A1 × · · · × An comprises the set of profiles of
the form a = (a1, . . . , an), where ai ∈ Ai. A profile ai ∈ A is a conjecture for Xi if it is
under consideration for Xi as the profile that will or should be activated. Symbolically, the
statement that Xi conjectures ai is written Xi |= ai.

The effect of influence is modeled by a utility that governs Xi’s preferences over con-
jectures for it given conjectures for those who influence it. For pa (Xi) = {Xi1 , . . . , Xipi

},
let pa (i) = {i1, . . . , ipi} denote the indices corresponding to the elements of pa (Xi). Also,
let cpa (Xi) = {ai1 , . . . , aipi

: Xik |= aik , k = 1, . . . , pi} denote the set of conditioning con-
jectures for the parents of Xi. Let ui|pa(i)[·| cpa (Xi)]: A → R denote a conditional utility.
The expression ui|pa(i)[ai| cpa (Xi)] is the consequent for Xi |= ai of the hypothetical proposi-
tion whose antecedent is the joint conjecture {Xi1 , . . . , Xipi

} |= {ai1 . . . , aipi
}. This expanded

utility structure results in an extension to classical noncooperative game theory, defined as
follows.

Definition 1 A normal form network game comprises a) a collective {X1, . . . , Xn}; b) a
finite action set Ai for each Xi; and c) a family of conditional utilities

{ui|pa(i)[·| cpa (Xi)]: A → R, ∀ cpa (Xi) ∈ A
pi , i = 1, . . . , n} .

If an individual is not influenced by any others, then it possesses a categorical utility
ui: A → R. Whereas a conditional utility is designed to respond to context—the social
environment of those who influence it—a categorial utility is context independent. In general,
it will be the case that a network will comprise a mixture of individuals with conditional
and categorical utilities. Thus, if pa (i) = ∅, then ui|pa(i) = ui.

2.2 Coordination

As influence propagates through the network, social relationships are created as the indi-
viduals interact, resulting in an emergent social structure that governs the organizational
behavior of the collective. One of the issues associated with this emergent structure is the
innate ability of the individuals to coordinate in the sense of serving as components of a
societal whole. Thus, in contrast to classical noncooperative game theory, which makes no
assumptions regarding group-level preferences or choices, the social model that emerges as
a result of social influence may indeed possess some, perhaps abstract, systematic notion of
emergent group-level behavior.

A natural way to account for the social relationships that emerge as a result of influence
propagation is to define a coordination function that characterizes all of the social relation-
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ships the arise as the members of a society interact.1 Indeed, according to the Oxford English
Dictionary, “[To coordinate is] to place or arrange (things) in proper position relative to each
other and to the system of which they form parts; to bring into proper combined order as
parts of a whole” (Murray et al., 1991). Whereas cooperation and conflict involve the com-
patibility of agents with respect to their individual objectives and do not require even the
existence of group-level objectives (e.g., the classical PD model), coordination involves the
compatibility of individual objectives (the parts) with respect to group-level objectives (the
whole).

There are many possible ways to define a coordination function. For such a function
to be meaningful, however, it should possess the following properties. First, it should be
endogenous, in that it emerges as a result of the social interrelationships that exist among
the members of the collective—it should not be exogenously imposed. Second, it should be
comprehensive, in that it provides a means of assessing the degree or coordination among
the individuals, accounts for the seriousness of disputes, and enables the evaluation of the
possibilites for compromise. Both endogeny and comprehensiveness conditions are met by
requiring the coordination function to be of the form

u1:n(a1; · · · ; an) = f [ui|pa(i)[ai| cpa (Xi)], i = 1, . . . , n] , (1)

where cpa (Xi) = {ai1 , . . . , aipi
} ⊂ {a1, . . . , an} and f is to be determined. This structure

guarantees that coordination arises from, and only from, the social relationships that emerge
as a result of social interrelationships. By requiring that coordination be a function of the
conjectures of all individuals, it enables the evaluation of coordination when the individuals
conjecture different profiles.

The third criterion is that coordination should be socially coherent in that it does not
permit pathological or manifestly undemocratic behavior. Specifically, no individual should
have absolute dictatorial power over the behavior of the society, and no individual should
be the victim of systematic and categorical discrimination by the rest of society (i.e., “a
dictator turned upside-down” —Fishburn (1973, p. 211)). These two pathological behaviors
are termed tyranny and subjugation, respectively.

Suppose there exists a ∈ A such that, if

ui(a) > ui(a
′) ∀a′ ∈ A\{a} , (2)

then
u1:n(a1, . . . , ai−1, a, ai+1, . . . , an) > u1:n(a1, . . . , ai−1, a

′, ai+1, . . . , an) (3)

for all a′ ∈ A\{a} and for all {a1, . . . , ai−1, ai+1, . . . , an} ∈ A
n−1. Then Xi is a tyrant. If

Xi is a tyrant, then Xi’s most preferred profile maximizes coordination, regardless of the
profiles preferred by others. Although Xi cannot force others to change their preferences, it
overrides them to enforce whatever organizational behavior it favors.

1In Stirling (2012), the coordination function is called the concordance function. Concordance, however,
typically conotes “a state in which things agree and do not conflict with each other” (Merriam-Webster,
2015). Coordination, by contrast, is a neutral concept, and captures the notions of both cooperation and
conflict (e.g., members of a team would coordinate cooperatively, but opponents in an athletic contest or
military engagement would coordinate conflictively).
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Alternatively, suppose there exists a ∈ A such that, if

ui(a) > ui(a
′) ∀a′ ∈ A\{a} , (4)

then
u1:n(a1, . . . , ai−1, a, ai+1, . . . , an) < u1:n(a1, . . . , ai−1, a

′, ai+1, . . . , an) (5)

for all a′ ∈ A\{a} and for all {a1, . . . , ai−1, ai+1, . . . , an} ∈ A
n−1. Xi is then subjugated. If

Xi is subjugated, then any joint conjecture that includes Xi’s most preferred profile will be
less coordinated than all profiles that do not include Xi’s most preferred profile.

Definition 2 A coordination function is socially coherent if neither tyranny nor subjugation
is possible.

The key result of conditional game theory is that there is a unique mathematical structure
that complies with the endogeny, comprehensiveness, and coherence criteria. Results for
acyclic networks are considered first, and Section 3 then generalizes to the cyclic case.

Theorem 1 (Coordination) The coordination function for an acyclic network game is
socially coherent if, and only if, a) the individual utilities are expressed as utility mass
functions, that is,

ui|pa(i)[ai| cpa (Xi)] ≥ 0 ,

and
∑

a∈A

ui|pa(i)[ai| cpa (Xi)] = 1

for all cpa (Xi) ∈ A
pi, i = 1, . . . , n; and b) the coordination function is of the form

u1:n(a1; · · · ; an) =
n
∏

i=1

ui|pa(i)[ai| cpa (Xi)] , (6)

where cpa (Xi) = {ai1 , . . . , aipi
} ⊂ {a1, . . . , an}.

Proof This result is established by first appealing to the Dutch Book theorem (de Finetti,
1937; Ramsey, 1950) and its converse (Lehman, 1955; Kemeny, 1955), which together estab-
lish that a sure loss (win) is impossible if, and only if, the gambler’s beliefs conform to the
probability axioms.2 The Dutch Book theorem is connected to the present problem by the
following lemma, which is proven in Appendix A.

Lemma 1 Subjugation is isomorphic to sure loss and tyranny is isomorphic to sure win.

By applying the isomorphism to the Dutch Book theorem, it follows that neither subjugation
nor tyranny can occur if and only if all utility functions possess the mathematical structure of
probability mass functions and are combined and manipulated according to the mathematical
syntax of probability theory. The resulting acyclic network is then isomorphic to a Bayesian

2A Dutch Book a gambling scenario where the gambler’s outcome is always less (greater) than the entry
fee—a sure loss (win). This is an alternative to the proof provided in Stirling (2012), which relies on the
associativity equation (Cox, 1946; Jaynes, 2003).
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network (Pearl, 1988; Cowell et al., 1999; Jensen, 2001). A fundamental property of Bayesian
networks is the Markov condition: nondescendent nonparents of a vertex have no influence
on the vertex, given the state of its parent vertices (Cozman, 2000). Consequently, the joint
probability distribution of a collective of random vectors is the product of the probability
distributions of each of its members as conditioned on the realizations of its parents. By
the isomorphism, the coordination function of a collective of agents is the product of the
utilities of the agents as conditioned by the preferences of its parents. In other words, the
coordination function is defined by the chain rule of probability. ✷

Conditional utilities may be interpreted analogously to conditional probability mass
functions and combined according to probability syntax. For example, given two discrete
random vectors Y1 and Y2 taking values y1,y2 ∈ R

n, p2|1(y2|y1) is the conditional prob-
ability of Y2 = y2, given that Y1 = y2, and the joint probability mass function is the
product: p12(y1,y2) = p1(y1)p2|1(y2|y1). The analogous game-theoretic interpretation is
that, given two individuals possessing action profiles a1, a2 ∈ A, u2|1(a2|a1) is the condi-
tional utility of X2 |= a2 given that X1 |= a2, and the coordination function is the product:
u12(a1, a2) = u1(a1)u2|1(a2|a1). Thus, the coordination function is syntactically equivalent
to a joint probability mass function for a set of discrete random vectors. Just as a joint
probability mass function captures all of the innate statistical dependencies among a set
of random vectors, the coordination function captures all of the innate social relationships
among a set of networked individuals.

Since the coordination function is analogous to the probability mass function of a collec-
tive of random vectors, all of the probabilistic syntax may be applied. In particular, the ex
post utility for each Xi may be computed by marginalization, yielding

vi(ai) =
∑

∼ai

u1:n(a1, . . . , an) , (7)

where the notation
∑

∼ai
means the sum is taken over all arguments of u1:n except ai.

These ex post utilities are now unconditional, and standard game-theoretic solutions, such
as Nash equilibrium, may be applied. However, such solution concepts are not necessarily
coordinated, since they respond to, and only to, the narrow self-interest of the players.

Thus, to obtain a truly coordinated decision, more must be done. Fortunately, there is
much more information contained in the coordination function since it is a function of all
joint conjectures (a1, . . . , an}—a function of n2 variables. It is therefore possible to define
a group-level utility as a function of n variables as follows. Let aii denote the ith element
of ai = (ai1, . . . , ain), where aij ∈ Aj; that is, aij is the jth component of Xi’s conjecture
profile. The group utility is then the group-level marginal of the coordination function, given
by

w1:n(a11, . . . , ann) =
∑

∼a11

· · ·
∑

∼ann

u1:n(a11, . . . , a1n; · · · ; an1, . . . , ann) . (8)

The maximally coordinated decision is the profile that maximizes w1:n, yielding

a∗ = argmax
a∈A

w1:n(a) . (9)

Summarizing, the coordination process involves two steps. First, the ex ante conditional
utilities are combined via (6) to form a coordination function, and then a group-level utility
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is derived by computing the group-level marginal utility, accounting for all of the social
relationships that emerge as the ax ante conditional utilities propagate through the network.

3 Network Games with Influence Cycles

A necessary condition for Theorem 1 to apply is that the network is acyclic; that is, if Xi 7→
Xj, then Xj 67→ Xi. This condition restricts the application of the theorem to hierarchical
networks. Many important networks, however, involve cycles. In particular, coordination
between individuals is difficult if they cannot deliberate and reach a joint resolution, or at
least find a compromise. Consider the two-agent cyclic network

X1 X2
. (10)

X1 influences X2, who influences X1, and so on, ad infinitum. At first glance, this sit-
uation may appear to be a manifestation of the concern expressed by Bacharach (2006)
that attempting to derive joint intentions from individual intentions can lead to an infinite
regress with no resolution. This is a legitimate concern that must be addressed. The issue
devolves around the question of convergence: Does the cycle of influence propagation oscil-
late endlessly with each individual repeatedly changing its mind, or does it converge in the
sense that each individual ultimately possesses an individual steady-state utility? Thus, to
extend conditional game theory to cyclic networks, it is necessary to establish conditions
for convergence. If the utilities do converge, their steady-state values represent the end
point of bilateral deliberations with each individual taking the preferences of the other into
consideration.

To study the convergence properties of a cyclic network, first recall that a network that
satisfies the coherence condition is isomorphic to a collective of random vectors. Thus,
the probability syntax may be used to study cyclic networks. The key observation in this
regard is that the network defined by (10) is a Markov chain, and the convergence of such
probabilistic entities is well studied, which is now reviewed.

3.1 Matrix Form Dynamics Model

A k-member closed path is called a simple k-cycle if every vertex in the path has exactly one
incoming edge and one outgoing edge.3 Consider the simple k-cycle illustrated in Figure 1.
Insight can be gained by viewing this cyclic network as a sequence of influence operations
that evolve in time. Let δ denote the time interval required for information to transit between
individuals. At time t = 0, when the cycle is initiated, each Xi will be in some utility state
vi(ai, 0). Without loss of generality, analysis my begin with X1. For t = 0, δ, 2δ, · · · , consider
the equivalent dynamic network displayed in Figure 2.

Let us first consider the segment X1 u2|1

t=0

X2
. At t = δ, X1’s conditional prefer-

ences are received by X2, and the resulting coordination function for {X1, X2} is, following

3Although this discussion is restricted to the analysis of simple cycles, the theory easily generates to more
complicated cycles.
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X1

u2|1

Xk

u1|k

X2 u3|2
X3

Figure 1: A simple k cycle.

X1 u2|1

t=0

X2 u3|2

t=δ

· · · uk|k−1

t=(k−1)δ

Xk u1|k

t=kδ

X1 u2|1

t=(k+1)δ

· · ·

Figure 2: An equivalent dynamic network.

(6),
u12(a1, a2, δ) = u2|1(a2|a1)v1(a1, 0) , (11)

from which X2’s ex post marginal may be computed via (7):

v2(a2, δ) =
∑

a1

u12(a1, a2, δ) . (12)

Now consider the next segment X2 u3|2

t=δ

X3
. At t = 2δ the coordination function

for {X2, X3} is
u23(a2, a3, 2δ) = u3|2(a3|a2)v2(a2, δ) , (13)

and X3’s ex post marginal is

v3(a3, 2δ) =
∑

a2

u23(a2, a3, 2δ) . (14)

Continuing this process for t = 3δ, t = 4δ, · · · , may be facilitated by reformulating the issue
in terms of matrix notation. Let us denote the elements of A as

A = {z1, . . . , zN} (15)

and define the utility mass vector at time t by

vi(t) =







vi(z1, t)
...

vi(zN , t)






. (16)

Next, define the state-to-state transition matrix

Ti+1|i =







ui+1|i(z1|z1) · · · ui+1|i(z1|zN)
...

...
ui+1|i(zN |z1) · · · ui+1|i(zN |zN)






. (17)
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With this notation, the operations defined by (11) and (12) can be combined in to the single
expression

v2(δ) = T1|2v1(0) , (18)

and (13) and (14) can be combined to yield

v3(2δ) = T3|2v1(δ) . (19)

Figure 3 displays the k-cycle with the linkages represented by the transition matrices.
Tracing the path fromXi around the cycle back to Xi, the marginal mass vector vi is updated
k times, where the indices are incremented mod k:

vi+1(δ) = Ti+1|ivi(0)

vi+2(2δ) = Ti+2|i+1Ti+1|ivi(0)

...

vi+k−1(kδ) = Ti+k−1|i+k−2 · · ·Ti+2|i+1Ti+1|ivi(0) .

The loop is closed with the final update of the cycle, yielding

vi+k[(k + 1)δ] = Ti+k|i+k−1Ti+k−1|i+k−2 · · ·Ti+2|i+1Ti+1|ivi(0) (20)

or, since all indices are incremented mod k.

vi[(k + 1)δ)] = Ti|i+k−1Ti+k−1|i+k−2 · · ·Ti+2|i+1Ti+1|ivi(0) . (21)

Now define the closed-loop transition matrix

Ti = Ti|i+k−1Ti+k−1|i+k−2 · · ·Ti+2|i+1Ti+1|i . (22)

Also, it is convenient to express time in units equal to the interval kδ, resulting in expressing
(21) as

vi(1) = Tivi(0) (23)

for i = 1, . . . , k. The closed-loop transition matrices for the cycle are as follows.

T1 = T1|kTk|k−1 · · ·T3|2T2|1

T2 = T2|1T1|k · · ·T4|3T3|2

...

Tk = Tk|k−1Tk−1|k−2 · · ·T3|2T2|1

.

After t cycles,

vi(t) = Tivi(t− 1)

= TiTivi(t− 2)

...

= Ti · · ·Tivi(0)

= T t
i vi(0) .

The key issue devolves around the behavior of T t
i as t → ∞, which motivates a study of

the convergence properties of this matrix.
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Figure 3: A k-cycle expressed in terms of transition linkages.

3.2 Convergence of Closed-Loop Transition Matrices

Definition 3 Let Ti = [tjk] be a square matrix with tjk denoting the entry in the jth row
and kth column. Ti is nonnegative, denoted T 6< 0, if tjk 6< 0 ∀ j, k. Ti is positive, denoted
Ti ≥ 0, if tjk 6< 0 ∀ j, k and tjk > 0 for at least one element. Ti is strictly positive, denoted
Ti > 0, if tjk > 0 ∀ j, k.

Definition 4 A square matrix Ti is a regular transition matrix if T k
i is strictly positive for

some finite integer k and each column sums to unity.

The key theoretical results underlying this approach are the following theorems:

Theorem 2 (Frobeneius-Peron) If a square matrix T k
i is strictly positive for some finite

integer k, then Ti has a unique largest eigenvalue with positive eigenvector. In particular,
the unique largest eigenvalue of a regular transition matrix is unity.

Applying the Frobeneius-Peron theorem to regular transition matrices yields the following
result.

Theorem 3 (Markov Convergence) If Ti is a regular transition matrix, there exists a
unique mass vector ui such that4

• Tiui = ui,

• T i = limt→∞ T t
i =

[

ui · · · ui

]

, and

• ui = T ivi for every mass vector vi.

For proofs of these theorems, see Gantmacher (1959); Doob (1953).
The content of the convergence theorem is that the cyclic network illustrated in Figure 1

with linkages expressed by ex ante conditional utilities can be replaced by a network with no
edges, as displayed in Figure 4, with each vertex possessing a constant unconditional utility
of the form

ui =







ui(z1)
...

ui(zN)






= lim

t→∞
vi(t) . (24)

4A mass vector has all nonnegative entries that sum to unity.
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Mathematically, these utilities are structured the same as ex ante categorical utilities, but
they are now ex post utilities as the end result of social influence. In other words, the ex
ante conditional utilities ui|i−1(ai|ai−1) are replaced by steady-state unconditional utilities
ui(ai). The coordination function (6) thus becomes

u1:n(a1; · · · ; an) =

n
∏

i=1

ui(ai) (25)

and, from (8), the coordination utility is

w1:n(a11, . . . , ann) =
∑

∼a11

· · ·
∑

∼ann

n
∏

i=1

ui(ai) . (26)

X1 Xk

X2 X3

Figure 4: A converged cyclic network.

4 A Bilateral Coordination Model

Bilateral coordination occurs when the members of a two-agent network seek a solution that
meets the objectives of the network as well as the individuals. Developing coordination mod-
els for Bacharach’s puzzles, however, first requires investigating the possible mechanisms by
which influence is propagated. Second, understanding the significance of the time dynamics
that underly the convergence process is critical.

One possible mechanism is the existence of an explicit communication linkage between
the players, whereby they may transmit information back and forth. Such a situation is
tantamount to a collaboration problem where the individuals iteratively seek to achieve a
common goal, such as two employees who are tasked by their manager to accomplish some
task. Let A and B denote two distinct approaches and suppose, for example, thatX1 initially
prefers approach A, and X2 initially prefers approach B and the group is therefore likely, at
the outset, to settle for an inferior outcome. The conditional utilities, however, are defined
independently of the initial preferences of either. In fact, it may turn out that both X1 and
X2 initially prefer B. But as they begin to take into consideration the conditional preferences
of the other, the eventually (and perhaps rapidly) converge to a consensus.

Suppose, however, that there is no direct communication between the two individuals.
The lack of an explicit means of transmitting information, however, does not imply the
non-existence of a social connection. It is possible, by methods similar to those involved
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in Bacharach’s concept of group identification, for each player to construct a model of how
it would respond to the preferences of the other. This type of reasoning is consistent with
Schelling’s concept of focal points: “Most situations . . . provide some clue for coordinating
behavior, some focal point for each person’s expectation of what the other expects him
to expect to be expected to do” (Schelling, 1960, p. 57): The mechanism advanced by
Schelling involves an imaginative process of introspection: “In the pure-coordination game,
the player’s objective is to make contact with the other player through some imaginative
process of introspection, of searching for shared clues” (Schelling, 1960, p. 96). Thus, each
player could engage in a virtual deliberation, or thought experiment, whereby they define the
model and establish convergence.

Regardless of whether influence is propagated through direct communication or by some
imaginative process of virtual deliberation, the Markov convergence theorem involves a time
sequence of influence propagation. In a sequential context where information is transmitted,
it cannot be done instantaneously. The time increment δ between transmission and reception
must be non-zero, and it need not be constant. All that matters is that enough communi-
cation transpires to obtain a reliable approximation to the steady-state values. In the case
of implicit influence propagation, each participant performs its own convergence exercise,
which is simply a matter of deliberation, and the cyclic model, along with the convergence
theory, is really nothing more than a mathematical characterization of such a deliberative
process.

4.1 Sociation

In the interest of complete generality, conditional game theory has been developed under the
assumption that conditioning will be with respect to cpa (Xi) = {ai1 , . . . , aipi

}, the entire
profiles of all members of pa (Xi) = {Xi1, . . . , Xipi

}. It may turn out, however, that the
conditioning will not be with respect to all components of each aik . To the extent that
the influence of others depends only on the conjectured actions others, rather on on the
entire conjecture profile of others, the conditioning conjectures are conjecture dissociated.
The conditioning conjectures are completely conjecture dissociated if the influence depends
on, and only on, the conjectured actions of those who influence it.

It may also turn out that an individual’s utility may not be a function of every component
of ai. To the extent that an individual’s conditional utility is a function of a subset of its
own conjectured profile, then the individual is said to be utility dissociated. If its utility is a
function of, and only of, its own conjectured actions, then it is completely utility dissociated.
If an individual is both completely conjecture dissociated and completely utility dissociated,
then it is completely dissociated, in which case the coordination function is of the form

ui|pa(i)(ai|ai1 , . . . , aipi
) = ui|pa(i)(ai|ai1 , . . . , aipi ) , (27)

that is, Xi’s utility depends on, and only on, its own action, conditioned on the actions of,
and only of, all who influence it.

A network is uniformly dissociated if all of its members are completely dissociated. For
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a uniformly dissociated network, the coordination function (6) becomes

u1:n(a1, . . . , an) =
n
∏

i=1

ui|pa(i)(ai|ai1 , . . . , aipi ) . (28)

Furthermore, in the uniformly dissociated case, the group utility coincides with the coordi-
nation function, since the latter is now a function of only n variables. Thus,

w1:n(a1, . . . , an) =

n
∏

i=1

ui|pa(i)(ai|ai1 , . . . , aipi ) . (29)

Also, the individual marginal utilities (7) become, in the uniformly dissociate case,

vi(ai) =
∑

∼ai

w1:n(a1, . . . , an) i = 1, . . . , n . (30)

Although uniformly dissociated networks constitute a small subset of general networks,
they still serve as useful behavioral models for many interesting networks. If a network
is uniformly dissociated, then each player’s preferences are with respect to its own choices
only, rather than the entire profile, and the conditioning is with respect to the conjectured
choices only of its parents. Under the special case where all players have categorical utilities,
a uniformly dissociated model would have preferences over its own action set only, and
the game would reduce to the trivial case, comprising a set of n completely decoupled
agents whose behavior does not affect each other. But when influence linkages influence the
players, a uniformly dissociated game is far from trivial. It will be convenient to use this
reduced structure to study the Hi-Lo and MP games, but it will be necessary to revert to
the completely sociated model when discussing the PD game.

4.2 Hi-Lo

The payoff matrix for the Hi-Lo game is displayed in Table 1. To reiterate, the paradox
defined by Friedman (1962, p. 13)Bacharach (2006) is that, although (A,A) is clearly the
unique best outcome, classical game theory does not provide a formal theoretical reason
for eliminating (B,B) since, as a Nash equilibrium, that outcome enjoys equal status with
(A,A) as a rational group choice. Under the team reasoning approach, both players agents

Table 1: The Hi-Lo game.

X2

X1 A B
A 2, 2 0, 0
B 0, 0 1, 1

undergo an agent transformation from the status of a completely autonomous individual to

Stirling October 28, 2015 11:11 p.m.



17

a member of a team, and also undergo a utility transformation from an individual utility to
the group utility. The payoffs, however, remain unchanged. The essential difference between
this formulation and the classical non-cooperative game formulation is that the utilities
are no longer correspond to individual payoffs. The payoff matrix for the team reasoning
formulation is given in Table 2.

Table 2: Payoff matrix for the team reasoning Hi-Lo game.

X1, X2

A,A 2, 2
B,B 1, 1

Consider modeling this scenario as a conditional game, where each player’s preferences
are modulated by the preferences of the other. Since this game is symmetric, the utilities
of both players are the same. Before proceeding, observe that the team reasoning approach
required a utility transformation, but that did not change the game, since the players are still
subject to the original payoffs as defined by Table 1. Similarly, this approach also requires
that the utilities be such that, although not defined as the payoffs, they will reflect the values
associated with the payoffs depending on the social circumstances. Whatever the decision,
however, the payoffs will be distributed according to the entries in Table 1.

The goal is to define conditional utilities of the form ui|j, for i, j ∈ {1, 2}, with i 6= j.
Under the uniformly dissociated assumption, each player’s preferences over its own action
set are conditioned on the other player’s preferences over its action set. If the completely
sociated model were employed, then each player would need to define preferences over the
joint action set conditioned by the preferences of the other, also over the joint action set
(which would require the specification of sixteen conditional utility functions with much of
the information being redundant). Because of the simple structure of this game, however,
the uniformly dissociated formulation retains the essence of the completely sociated case,
and results in a simpler and more intuitive solution (requiring the specification of only four
utility functions).

Given that Xi conjectures A, Xj would place its utility mass on A according to the
strength of belief that Xi conjectures A. Xj would then place the remaining utility mass on
B. Thus, the conditional utilities are of the form

uj|i(A|A) = ui|j(A|A) = h (31)

uj|i(B|A) = ui|j(B|A) = 1− h (32)

uj|i(A|B) = ui|j(A|B) = 1− ℓ (33)

uj|i(B|B) = ui|j(B|B) = ℓ , (34)

where 0 < ℓ < h < 1, which is consistent with the rational assumption that Xj more strongly
believes that Xi will conjecture A rather than B. The resulting cyclic network is

Xj

ui|j

Xi
uj|i

. (35)
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To study the convergence properties of the Hi-Lo game, it is necessary first express the
player’s utilities using matrix notation and define the transition matrix. Following (16), the
utility mass vectors are given by

vi(t) =

[

vi(A, t)
vi(B, t)

]

(36)

vj(t) =

[

vj(A, t)
vj(B, t)

]

(37)

Also, following (17), the state-to-state transition matrices are

Ti|j = Tj|i =

[

h 1− ℓ
1− h ℓ

]

(38)

and, following (22), the closed-loop transition matrix is

Ti = Tj = Ti|jTj|i =

[

h2 + (1− h)(1− ℓ) (h+ ℓ)(1− ℓ)
(h+ ℓ)(1− h) (1− h)(1− ℓ) + ℓ2

]

. (39)

The closed-loop transition matrix is clearly regular for h, ℓ ∈ (0, 1), thus a steady state exists
and the cyclic network defined by (10) converges to the steady state network

X1 X2
, (40)

with unconditional utilities given by the steady-state utility vectors ui and uj, which, by the
convergence theorem, are equal to the eigenvector of Ti corresponding to the unit eigenvalue.
Thus,

ui = uj =

[

uj(h)
uj(ℓ)

]

=

[

1−ℓ
2−h−ℓ
1−h

2−h−ℓ

]

. (41)

By the structure of the game, 0 < ℓ < h < 1 and, since the two components of the eigen-
vector have the same denominator, it is clear that uj(h) > uj(ℓ), This analysis definitively
establishes that A is the unique best solution, thereby resolving the paradox that game the-
ory does not provide a definitive formal mechanism for establishing that (A,A) is preferred
to (B,B). In fact, it is not necessary that the game be symmetric. The result holds if X1 and
X2 have different values of h and ℓ, so long as they satisfy the constraint that 0 < ℓi < hi,
i ∈ {1, 2}.

The limiting closed-loop game is equivalent to a classical noncooperative game with payoff
matrix given by Table 3, for which (1−ℓ, 1−ℓ) is the unique pure-strategy Nash equilibrium.
It must be stressed, however, that this limiting game is not a Hi-Lo game, since the payoffs
for non-agreement are nonzero. However, the actual payoffs received by the players are in
accord with the values displayed in Table 1.

4.3 Matching Pennies

The payoff matrix for MP is displayed in Table 4. The only difference between this game
and Hi-Lo is that the rewards are the same for both of the pure-strategy Nash equilibria.
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Table 3: The payoff matrix for the limiting closed-loop Hi-Lo game.

X2

X1 A B
A 1− ℓ, 1− ℓ 1− ℓ, 1− h
B 1− h, 1− ℓ 1− h, 1− h

Bacharach’s puzzle arises because game theory does not identify heads as the salient outcome.
A closed-loop formulation of this game, therefore, will have exactly the same structure as
the Hi-Lo game, except that the conditional utilities will express preferences that correspond
to salience. Thus, heads will be associated with the Hi-Lo outcome A, and tails with B,
yielding the limiting closed-loop solution of both players calling heads.

Table 4: Payoff matrix for Matching Pennies with H = heads, T= tails.

X2

X1 H T
H 1, 1 0, 0
T 0, 0 1, 1

4.4 Prisoner’s Dilemma

The payoff matrix for PD for X1 (the row player) and X2 (the column player), is given in
Table 5, with C corresponding to cooperation and D to defection. To qualify as a PD, the
payoff values must comply with what may be termed the Axelrod conditions (Axelrod, 1984):
T > R > P > S and R > (T + S)/2.

Table 5: The payoff matrix for Prisoner’s Dilemma: R = reward for mutual coopertion, S
= sucker’s payoff, T = temptation to defect, and P = punishment for mutual defection.

X2

X1 C D
C R,R S, T
D T, S P, P

A team reasoning approach to this game would invoke the group-identity hypothesis: “I
come now to the hypothesis that perceived ‘interdependence’ prompts group identification”
(Bacharach, 2006, p. 84). He then argues that “The overwhelmingly most frequent example
of a scenario in which a sense of interdependence is said to prompt group identification is
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currently a case of strong interdependence. It is the Prisoner’s Dilemma” (Bacharach, 2006,
p. 84).

As an alternative to relying on a notion of group identification, PD can be addressed
using individual, albeit conditional, utilities. Recasting it as a network game results in the
following structure.

X1

u2|1

X2
u1|2

. (42)

The goal is to identify appropriate structures for u1|2 and u2|1. Unlike Hi-Lo, however, the
non-agreement components of PD are antisymmetric, thus this game is considerably more
complex in structure than Hi-Lo. To capture this complexity in a conditional game it is
necessary to use the completely sociated model.

The traditional game theory model expresses the preferences of the individuals in terms
of, and only of, material benefit. This model, however, does not account for the social
dispositions of the players, who may possess traits that influence their behavior in addition to
the desire for material benefit. There are many possible ways to introduce such dispositions,
but for the purposes of this development, attention is focused on two traits that are consistent
with the usual PD scenario. Let αi ∈ [0, 1] denote an assertiveness index: if αi ≈ 1, then Xi

is confident or decisive but if αi ≈ 0, then Xi is diffident or reserved. Also, let πi denote an
pragmatism index: if πi ≈ 1, then Xi is practical or efficient. If πi ≈ 0, then Xi unrealistic
or impractical.

Of course, other behavioral traits could be used to characterize a social situation such
as a PD, but the assertiveness and pragmatism descriptors are deontologically neutral and
uncorrelated (knowing the assertiveness of an individual tells little about her pragmatism).5

However, even if one objects to these descriptors, they at least serve the purpose of illustrating
how social parameters can be inserted into a game.

In the PD context, pragmatism is the more dominant behavioral trait, followed by as-
sertiveness, and both of them should be high, resulting in the following ordering:

πi > αi > 1− αi > 1− πi . (43)

To define the conditional utilities in terms of these social parameters, it is necessary to
examine the consequent ordering for Xi, given the antecedent by Xj, i, j ∈ {1, 2}, i 6= j.
Consider X1’s responses to conjectures for X2. Clearly, the worst (least pragmatic) response
in all cases is (C,D). Now let us consider X1’s response given that X2 conjectures (C,C).
X1’s pragmatic response is also to cooperate, yielding (C,C). The choice of which is the next-
best and next-worst out of (D,C) and (D,D) is somewhat arbitrary, given the antecedent.
However, since X1’s payoff is greater for (D,C) than for (D,D) the more assertive response
is (D,C). If X2 were to conjecture (C,D), X1 would be conflicted with regard to what is
its best response. However, since the individual payoff is greater for (D,C) than for (C,C),
the pragmatic response is (D,C), since it has a higher individual payoff, with (C,C) next-
best. Next, if X2 were to conjecture (D,C), the best (most pragmatic) response for X1

is obviously (D,C), which would maximize X1’s individual welfare. In keeping with prior

5In Stirling (2012), an acyclic version of PD is developed. In that formulation, the behavioral traits are
specified in terms of cooperation and exploitation indices.
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reasoning, the next-best response would be (C,C). Finally, if X2 were to conjecture (D,D),
X1’s pragmatic response would clearly be (D,D), and next-best response would be (D,C).
By a similar analysis, the conditional utilities for X2 given X1’s conjectures may be defined.
The resulting conditional preference orderings for X1 and X2 are displayed in Table 6(a)
for u1|2 and in Table 6(b) for u2|1. The columns correspond to Xj’s conjecture, (aj1, aj2),
and the corresponding row entries define Xi’s resulting conditional utility for its conjecture
(ai1, ai2). The transition matrices T1|2 and T2|1 comprise the entries in these tables with the
modification that each entry must be divided by 2 to ensure that each column sums to unity.

Table 6: The conditional preference orderings for the Prisoner’s Dilemma game: (a) corre-
sponds to u1|2 (row player) and (b) corresponds to u2|1 (column player).

u1|2(a11, a12|a21, a22)
X1 X2

a21, a22
a11, a12 C,C C,D D,C D,D
C,C π1 α1 α1 1− α1

C,D 1− π1 1− π1 1− π1 1− π1

D,C α1 π1 π1 α1

D,D 1− α1 1− α1 1− α1 π1

(a)

u2|1(a21, a22|a11, a12)
X2 X1

a11, a12
a21, a22 C,C C,D D,C D,D
C,C π2 α2 α2 1− α2

C,D α2 π2 π2 α2

D,C 1− π2 1− π2 1− π2 1− π2

D,D 1− α2 1− α2 1− α2 π2

(a)

Clearly, the closed-loop transition matrices Ti = Ti|jTj|i are regular for all pairs (αi, πi) ∈
(0, 1)×(0, 1), i, j ∈ {1, 2}, i 6= j, thus ensuring that the network will converge to steady-state
unconditional utilities. In the interest of maintaining symmetry between the two players,
attention is restricted to α1 = α2 = α and π1 = π2 = π.

According to the Markov convergence theorem, the steady-state utilities for Xi corre-
spond to the eigenvector associated with the unique unit eigenvalue of Ti, i = 1, 2. To
compute these eigenvectors, first note that the structure of T1 and T2 are related by a per-
mutation transform defined by the permutation matrix

P =









1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1









. (44)

It is straightforward to see that

Ti|j = PTj|iP , i, j ∈ {1, 2} , i 6= j (45)

and it follows that

Ti = Ti|jTj|i = PTj|iPPTi|jP = PTj|iTi|jP = PTjP , (46)

since PP = I. Now let ui and uj denote the eigenvectors of Ti and Tj , respectively, that
correspond to the unit eigenvalues of Ti and Tj. Then

Tiui = PTjPui = ui (47)
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and, multiplying all terms by P yields

PTiui = PPTjPui = Pui

= TjPui = Pui .
. (48)

Thus, Pui = uj and the steady-state utilities are related by the permutation matrix P .
Consequently, both eigenvectors can be obtained from any column of either T1 or T2. The
first column of T1 is

u1 =









u1(C,C)
u1(C,D)
u1(D,C)
u1(D,D)









. (49)

Since u2 = Pu1, it follows that

u2 =









u2(C,C)
u2(C,D)
u2(D,C)
u2(D,D)









= Pu1 =









u1(C,C)
u1(D,C)
u1(C,D)
u1(D,D)









. (50)

The limiting coordination function (26) is

w12(a11, a22) =
∑

a12

∑

a21

u1(a11, a12)u2(a21, a22) , (51)

and the maximally coordinated decision is

(a∗11, a
∗
22) = max

a11,a22
w12(a11, a22) . (52)

Computer simulations confirm that

max{w12(C,C), w12(D,D)} ≥ max{w12(C,D), w12(C,D)} (53)

for all values of (α, π) ∈ (0, 1)× (0, 1). Thus, the maximally coordinated decision is either
(C,C) or (D,D). Figure 5 displays a contour plot of the ratio w12(C,C)/w12(D,D). Points
above the line of demarcation where the ratio = 1 correspond to (D,D), mutual defection,
as the maximally coordinated decision, with points below the line corresponding to (C,C),
mutual cooperation, as the maximally coordinated choice. This result ensures complete
coordination: The individuals will either mutually cooperate or mutually defect. Thus, mixed
outcomes are impossible when both players have the same assertiveness and pragmatism
indices.

Expressing preferences in terms of behavioral traits provides a resolution to Bacharach’s
complaint with PD. Whereas the categorical utilities provided in Table 5 are with respect
to material benefit without regard to social context, the conditional preferences provided in
Table 6 ascribe material benefit in a social context. Of course, once the decisions are made,
the players receive the rewards given in Table 5.

Notice that it is also possible to recast the PD game in terms of the social parameters by
setting T = π, R = α, P = 1 − α, and S = 1− π, as displayed in Table 7. The (α, π) pairs
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Table 7: The Prisoner’s Dilemma payoff matrix expressed in terms of the assertiveness and
pragmatism indices, where π > α > 1/2.

X2

X1 C D
C α, α 1− π, π
D π, 1− π 1− α, 1− α

α

π

❅
❅

❅
❅■

ratio = 1

Mutual Cooperation

Mutual Defection

�
�
�
�
�
�
�
��

π = α

α = 1/2

PD

Figure 5: Contour plots of the ratio w12(C,C)/w12(D,D) for Prisoner’s Dilemma.

that meet the Axelrod criterion (43) are illustrated in Figure 5, and lie in the region bounded
by the lines α = 1/2 and π = α, marked PD. Thus, the coordination regions defined by the
line of demarcation include PD as a special case.

This theory extends, of course, to the asymmetric case, where the individuals have dif-
ferent assertiveness and pragmatism indices, but the behavior illustrated in Figure 5 does
not apply, since there are four parameters in play, rather than just two. In such cases, all
four outcomes are possible, depending on the alignment of interests among the players.

5 Conclusion

The coordination game model serves as an alternative to the notion of team reasoning ad-
vanced by Bacharach (2006) and Sugden (2000, 2003) as a way to account for social context.
Rather than relying on concepts of group identity and manifesting such phenomena through
variable frames and utility transformations, social relationship are incorporated by modeling
the collective as a network with individuals as vertices and influence linkages as edges in the
form of conditional preferences. The preference model employed by standard game theory
then becomes a special case—a network with no edges whose socially isolated vertices are
characterized by categorical utilities. This approach appears to be philosophically compat-
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ible to the notion of team-centered choice suggested by Ross (2014), who argues that any
such theory should be technically integrated with traditional game theory.

A fundamental distinction between this approach and team reasoning is that, whereas
team reasoning defines intensions at the group level, this approach retains the fundamentally
individualistic foundations of game theory, but has enlarged the notion of individual ratio-
nality to accommodate the interests of others into one’s own rationality. Group preferences,
if they exist, then emerge endogenously as a consequence of social interaction as social in-
fluence propagates throughout a network of individuals who are connected by explicit social
linkages.

Conditional game theory, as originally introduced by Stirling (2012), was restricted to
acyclical influence structures. This paper extends the theory to account for influence cycles.
This extension enables the development of conditional coordination games, where the players
exert bilateral social influence on each other in order to achieve a coordinated decision. To the
extent that the ex post interests are socially aligned, the resulting joint decision corresponds
to emergent systematic group behavior. It is important to appreciate that such group-level
behavior is not exogenously imposed. It emerges as a result of, and only of, the interest that
is shared by the members of the network. Furthermore, the sense in which interest is shared
is neutral—it applies to cooperative agents for whom the emergent systematic group-level
behavior corresponds to teamwork, and it applies equally well to conflictive agents for whom
the emergent systematic group-level behavior is to work in opposition, as would be the case
for athletic contests and military engagements.

Formulating a decision problem such as the Prisoner’s Dilemma results in a structure
that is more complex than the original payoff matrix and reliance on Nash equilibria as the
solution concept. But it is not more complex than it needs to be in order to capture the
social aspects of the issue, which are completely lacking with the classical formulation. As
expressed Palmer (1971, p. 184), “Complexity is no argument against a theoretical approach
if the complexity arises not out of the theory itself but out of the material which any theory
ought to handle.”

A Proof of the Isomorphism Lemma

Lemma 1 Subjugation is isomorphic to sure loss and tyranny is isomorphic to sure win.

Proof Establishing this result requires first proving that the categorical and conditional util-
ities are order isomorphic to marginal and conditional probability mass functions. Without
loss of generality, attention is restricted to a two-agent collective {X1, X2} defined over the
product set A = A1 × A2, with X1 possessing a categorical utility u1: A → R and X2

possessing a family of conditional utilities {u2|1(·|a1): A → R ∀ a1 ∈ A}. Let Ω1 and Ω2 be
arbitrary sets of propositions of distinct elements with cardinalities equal to the cardinalities
of A1 and A2, respectively, and let Ω = Ω1 × Ω2. Let b1: Ω → R be a belief function such
that, for ω,ω′ ∈ Ω, b1(ω) ≥ b1(ω

′) means that the belief that ω will be realized is at least
as great as the belief that ω′ will be realized. Also, let {b2|1(·|ω1): Ω → R ∀ω1 ∈ Ω} be a
family of conditional belief functions over Ω such that b2|1(ω2|ω1) ≥ b2|1(ω

′
2|ω1) means that

the belief that ω2 is realized is at least a great as the belief that ω′
2 is realized, given that
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ω1 is realized. Now let g: A → Ω be a bijective mapping of the form g: a 7→ ω such that

u1(a) = b1[g(a)] = b1(ω) (54)

and
u2|1(a2|a1) = b2|1[g(a2)|g(a1)] = b2|1(ω2|ω1) (55)

for all a1 ∈ A. It is immediate that this mapping establishes the structural equivalence
of the benefit criterion regarding A and the belief criterion regarding Ω. Furthermore, the
conjecture a1 and the realization assertion ω1 are both antecedents of hypothetical propo-
sitions whose consequents are u2|1(a2|a1) and b2|1[g(a2)|g(a1)], respectively. This establishes
the order isomorphism.

To establish the isomorphism between subjugation and sure loss, Let b12: Ω
2 → R be

a belief function such that b12(ω1,ω2) ≥ b12(ω
′
1,ω

′
2) means that the belief that (ω1,ω2) is

realized is at least as great as the belief that (ω′
1,ω

′
2) is realized.

Suppose there exists ω ∈ Ω such that

b1(ω) > b1(ω
′) ∀ω′ ∈ Ω\{ω} , (56)

but
b12(ω,ω2) < b12(ω

′,ω2) (57)

for all ω′ ∈ Ω\{ω} and for all ω2 ∈ Ω. Thus, even though ω is the most strongly believed
event, the belief regarding the realization of any joint event for which ω is the realization
is weaker than the belief regarding the realization of the corresponding joint event with any
other ω′ the realization.

If, on the basis of (56) one were to enter a lottery to earn $1 if ω is realized, a fair entry
fee would be q1 > 1

2
. On the other hand, if, on the basis of (57), one were to earn $1 if ω

is not realized, then a fair entry fee would be q2 >
1
2
. By combining these two bets into one

with an entry fee of q1 + q2 > 1 with the (false) hope of winning $2, one would win exactly
$1 regardless of the outcome—a sure loss. It is immediate by the order isomorphism that
the relationships given by (4) and (56) and by (5) and (57) are identical.

A sure win can occur as follows. On the basis of (56), a fair entry fee for a bet that ω is
not realized would be q1 < 1

2
. If the positons of ω and ω

′ in (57) are reversed, then a fair
entry fee for a bet that ω sill be realized is q2 <

1
2
. Thus, one would win exactly $1 with an

entry fee of q1 + q2 < 1—a sure win. Thus, a sure loss is isomorphic to subjugation and a
sure win is isomorphic to tyranny. ✷

References

K. J. Arrow. Rationality of self and others in an economic system. In R. M. Hogarth and
M. W. Reder, editors, Rational Choice. University of Chicago Press, Chicago, 1986.

R. Axelrod. The Evolution of Cooperation. Basic Books, New York, 1984.

M. Bacharach. Beyond Individual Choice: Teams and Frames in Game Theory. Princeton
University Press, Princeton, NJ, 2006.

Stirling October 28, 2015 11:11 p.m.



26

P. Battigalli and M. Dufwenberg. Dynamic psychological games. Journal of Economic
Theory, 144:1–35, 2009.

G. E. Bolton and A. Ockenfels. A stress test of fairness measures in models of social utility.
Economic Theory, 24(4), 2005.

M. E. Bratman. Shared intentions. Ethics, 104:97–113, 1993.

C. Camerer. Behavioral Game Theory: Experiments in Strategic Interaction. Princeton
Univ. Press, Princeton, NJ, 2003.

C. Camerer, G. Lowenstein, and M. Rabin, editors. Advances in Behavorial Economics.
Princeton Univ. Press, Princeton, NJ, 2004a.

C. Camerer et al. Foundations of Human Sociality: Economic Experiments and Ethnographic
Evidence from Fifteen Small-scale Societies. Oxford University Press, Oxford, UK, 2004b.

A. M. Colman. Cooperation, psychological game theory, and limitations of rationality in
social interaction. Behavioral and Brain Sciences, 26:139–198, 2003.

R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter. Probabilistic Networks
and Expert Systems. Springer Verlag, New York, NY, 1999.

R. T. Cox. Probability, frequency, and reasonable expectation. American Journal of Physics,
14:1–13, 1946.

F. G. Cozman. Credal networks. Artificial Intelligence, 120:199–233, 2000.
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