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Abstract. Recently Haezendonck-Goovaerts risk measure is receiving much attention in actu-

arial science with applications in the study of optimal portfolio and optimal reinsurance policy.

Nonparametric estimation is proposed by Ahn and Shyamalkumar (2014), where the derived

asymptotic limit can be employed to construct an interval for the Haezendonck-Goovaerts risk

measure. In this paper, we propose an alternative empirical likelihood inference for this risk

measure. A simulation study shows the good performance of the proposed method.
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1 Introduction

Let ψ : [0,∞]→ [0,∞] be a convex function satisfying ψ(0) = 0, ψ(1) = 1 and ψ(∞) =∞, i.e.,

a normalized Young function. Suppose X is a loss variable. For a fixed number q ∈ (0, 1) and

each β > 0, let α = α(β) be a solution to

E{ψ(
(X − β)+

α
)} = 1− q, (1)

where x+ = max(x, 0). Then, the so-called Haezendonck-Goovaerts risk measure with level q is

defined as

θq = inf
β>0
{β + α(β)}. (2)

This risk measure originates from Haezendonck and Goovaerts (1982) by considering the pre-

mium calculation principle induced by an Orlicz norm.
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Recently there has been an increasing interest in studying this risk measure with applications

in actuarial science. For example, Goovaerts, Kaas, Dhaene and Tang (2004) showed that this

risk measure preserves the convex order property; Bellini and Gianin (2008a, 2012) provided

a dual representation for this risk measure; Goovaerts, Linders, Van Weert and Tank (2012)

investigated a relationship between this risk measure and others; Cheung and Lo (2013) obtained

a lower bound for this risk measure when a sum of random variables is concerned; studies of

optimal portfolio and optimal reinsurance under this risk measure are given by Bellini and

Gianin (2008b) and Zhu, Zhang and Zhang (2013), respectively; Tang and Yang (2012, 2014)

derived a first order approximation for this risk measure when the underlying distribution is in

the domain of attraction of an extreme value distribution, which is of importance in predicting

extreme risks; a second order approximation for this risk measure is obtained by Mao and Hu

(2012), which is necessary for the study of estimating this risk measure nonparametrically when

the level q depends on the sample size and goes to one as the sample size tends to infinity;

nonparametric estimation for this risk measure is proposed by Ahn and Shyamalkumar (2014)

and its asymptotic limit is derived too.

Although some nice theoretical properties and applications of this Haezendonck-Goovaerts

risk measure have been found in the literature, statistical inference is quite underdeveloped.

For example, how does one effectively construct a confidence interval for the Haezendonck-

Goovaerts risk measure θq at a given level q ∈ (0, 1)? Quantifying variability of a risk measure

is of importance in risk management such as backtesting. A simple way to obtain an interval

for θq is to either estimate the asymptotic variance of the nonparametric estimator of θq in

Ahn and Shyamalkumar (2014) or use a bootstrap method. In general this simple method does

not lead to an accurate interval. Alternatively one can investigate the possibility of developing

an empirical likelihood method for this risk measure since empirical likelihood methods are

powerful in interval estimation and hypothesis tests. We refer to Owen (2001) for an overview
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on empirical likelihood methods and their advantages. Recently empirical likelihood methods

have been proposed for constructing intervals for some risk measures in the literature; see Peng

and Qi (2006) for high quantiles; Chan, Deng, Peng and Xia (2007) for conditional Value-at-

Risk; Baysal and Staum (2008) for Value-at-Risk and expected shortfall. A standard way to

formulate an empirical likelihood function is via estimating equations; see Qin and Lawless

(1994). By noting that the Haezendonck-Goovaerts risk measure can be written as a solution

to two estimating equations, we are able to employ the empirical likelihood method in Qin

and Lawless (1994) to estimate this risk measure and to construct a confidence interval for it.

However the results in Qin and Lawless (1994) can not be applied due to the involved non-

smoothing functionals when the Haezendonck-Goovaerts risk measure is written as a solution

to estimation equations. Instead, we develop our theoretical results by combining techniques in

the empirical process and the empirical likelihood method.

We organize this paper as follows. Section 2 presents the methodology and main results,

where the imposed regularity conditions are different from those in Ahn and Shyamalkumar

(2014) since we focus on the case of having a normal limit. These conditions can be verified

straightforwardly. A simulation study is given in Section 3, which shows that the new method

has good finite sample performance and provides a more accurate interval than the normal

approximation method based on the nonparametric estimator in Ahn and Shyamalkumar (2014).

All proofs are put in Section 4. Some conclusions are made in Section 5.

2 Methodology and Main Results

Throughout supposeX,X1, · · · , Xn are independent random variables with common distribution

function F (x), and we use notations
p→,

d→,
a.s.→ , op(1), Op(1) and I(·) to denote convergence in

probability, convergence in distribution, convergence almost surely, small order in probability,

bounded in probability and indicate function, respectively. The nonparametric estimator for the
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Haezendonck-Goovaerts risk measure proposed by Ahn and Shyamalkumar (2014) first solves

the following equation with respect to α for each fixed β:

1

n

n∑
i=1

ψ(
(Xi − β)+

α
) = 1− q. (3)

This equation is the sample version of equation (1). Denote this solution by α̂(β). Next, using

(2), Ahn and Shyamalkumar (2014) defined their nonparametric estimator for θq as

θ̂ASq = inf
β>0
{β + α̂(β)}, (4)

and derived its asymptotic limit. As shown by Ahn and Shyamalkumar (2014), the limit could

be non-normal. Under some conditions, the limit is normal, and Ahn and Shyamalkumar (2014)

proposed an estimator for the asymptotic variance and stated that it is important to study

methods for interval estimation such as bootstrap method, but they did not conduct any em-

pirical/theoretical investigation.

Although equations (1) and (2) have a unique solution for a given q ∈ (0, 1) when ψ is strictly

convex (see Bellini and Gianin (2012)), θ̂ASq may not exist for a large q and finite n due to the

first step estimation α̂(β); see the simulation results in Table 1 below.

By taking derivative with respect to β in (1), we obtain

E{ψ′(X − β
α(β)

)
−α(β)− (X − β)α′(β)

α2(β)
I(X > β)} = 0. (5)

Equation (2) implies that we have to solve the equation 1 + α′(β) = 0, which, combining with

(5), results in the following estimating equation

E{ψ′(X − β
α(β)

)(X − β − α(β))I(X > β)} = 0. (6)

Hence, it follows from (1) and (6) that θq(> β) and β satisfy the following estimating equations:
E{ψ(Xi−βθq−β )I(Xi > β)} = 1− q,

E{ψ′(Xi−βθq−β )(Xi − θq)I(Xi > β)} = 0.

(7)
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A rigorous derivation can be found in Tang and Yang (2014) under some conditions. The above

view of Haezendonck-Goovaerts risk measure motivates us to consider the following maximum

empirical likelihood estimator for θq and empirical likelihood based confidence intervals. Note

that moment estimator based on (7) can be employed too, but its asymptotic behavior will be

the same as that of the proposed maximum empirical likelihood estimator.

For i = 1, · · · , n, put

Yi(θq, β) =
(
ψ(
Xi − β
θq − β

)I(Xi > β)− 1 + q, ψ′(
Xi − β
θq − β

)(Xi − θq)I(Xi > β)
)T
.

Then it follows from Qin and Lawless (1994) that the empirical likelihood function for (θq, β) is

defined as

L(θq, β) = sup{
n∏
i=1

(npi) : p1 ≥ 0, · · · , pn ≥ 0,

n∑
i=1

pi = 1,

n∑
i=1

piYi(θq, β) = 0}.

By the Lagrange multiplier technique, we have

l(θq, β) := −2 logL(θq, β) = 2
n∑
i=1

log(1 + λTYi(θq, β)), (8)

where λ = λ(θq, β) satisfies
n∑
i=1

Yi(θq, β)

1 + λTYi(θq, β)
= 0. (9)

As in Qin and Lawless (1994), the maximum empirical likelihood estimator for (θq, β) is defined

as

(θ̂MEL
q , β̂MEL) = arg min

θq>β>0
l(θq, β).

When an interval for θq is concerned, one needs to consider the profile empirical likelihood ratio

function lP (θq) = minβ<θq l(θq, β).

In order to derive the asymptotic limit of (θ̂MEL
q , β̂MEL) and to show that Wilks theorem

holds for the above empirical likelihood method, conditions and theorems in Qin and Lawless

(1994) can not be applied since our functionals are non-smooth due to the factor I(Xi > β).

One way to overcome this issue is to smooth the indicator function as Chen and Hall (1993) for
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quantile estimation and Chen, Peng and Zhao (2009) for copulas. Unfortunately this smoothing

technique can not be employed here due to the fact that ψ(t) is defined only for t ≥ 0. Recently

Molanes Lopez, Van Keilegom and Veraverbeke (2009) gave some general regularity conditions to

show that Wilks theorem holds for non-smooth functionals, but did not provide the asymptotic

limit of the maximum empirical likelihood estimator. Here we prove our results by combining

expansions in empirical processes and empirical likelihood method, which results in the following

regularity conditions:

• C1) ψ is a strictly convex function on [0,∞] with ψ(0) = 0, ψ(1) = 1, ψ(∞) =∞, and ψ(t)

has a continuous second derivative on (0,∞) with |ψ′(0+)| <∞ and 0 ≤ ψ′′(0+) <∞;

• C2) F is continuous;

• C3) E{sup(θq ,β)T∈Ω |ψ(X−βθq−β )|2δ1I(X > β)} < ∞ and E{sup(θq ,β)T∈Ω |ψ′(
X−β
θq−β )|2δ1 |X −

θq|2δ1I(X > β)} <∞ for some δ1 > 1,

sup(θq ,β)T∈Ω

∫∞
β F δ2(x){1− F (x)}δ2

{
|ψ′( x−βθq−β )|+ ψ′′( x−βθq−β )x+ ψ( x−βθq−β )|ψ′( x−βθq−β )|

+|ψ′( x−βθq−β )|ψ′′( x−βθq−β )(x− θq)2 + (ψ′( x−βθq−β ))2|x− θq|

+ψ( x−βθq−β )ψ′′( x−βθq−β )(x− β)|x− θ|
}
dx <∞

for some δ2 ∈ (0, 1/2),

sup(θq ,β)T∈Ω

{
|
∫∞
β ψ′′( x−βθq−β )(x− θq)2 dF (x)|+ |

∫∞
β ψ′′( x−βθq−β )(x− θq)(x− β) dF (x)|

+|
∫∞
β ψ′( x−βθq−β )ψ′′( x−βθq−β )(x− θq)3 dF (x)|+ |

∫∞
β ψ′( x−βθq−β )ψ′′( x−βθq−β )(x− θq)2(x− β) dF (x)|

+|
∫∞
β ψ( x−βθq−β )ψ′′( x−βθq−β )(x− θq)2 dF (x)|+ |

∫∞
β ψ( x−βθq−β )ψ′′( x−βθq−β )(x− θq)(x− β) dF (x)|

}
<∞,

where Ω is an open set including (θ0,q, β0)T . Here (θ0,q, β0)T is the solution to equations

(1) and (2).

Theorem 1. Under conditions C1)–C3), we have
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i)

ΣT
1 Σ−1

0 Σ1

√
n

 β̂MEL − β0

θ̂MEL
q − θ0,q

 d→ N(0,ΣT
1 Σ−1

0 Σ1)

as n→∞, where Σ1 =

a1 b1

a2 b2

 and Σ0 =

 σ2
1 σ12

σ12 σ2
2

 with

a1 =

∫ ∞
β0

ψ′(
x− β0

θ0,q − β0
)

x− θ0,q

(θ0,q − β0)2
dF (x), b1 =

∫ ∞
β0

ψ′(
x− β0

θ0,q − β0
)

β0 − x
(θ0,q − β0)2

dF (x),

a2 = −ψ′(0+)(β0 − θ0,q) +

∫ ∞
β0

ψ′′(
x− β0

θ0,q − β0
)

(x− θ0,q)
2

(θ0,q − β0)2
dF (x),

b2 =

∫ ∞
β0

{ψ′′( x− β0

θ0,q − β0
)
(β0 − x)(x− θ0,q)

(θ0,q − β0)2
− ψ′( x− β0

θ0,q − β0
)} dF (x),

and

σ2
1 = E{ψ2(

X − β0

θ0,q − β0
)I(X > β0)} − (1− q)2,

σ12 = E{ψ(
X − β0

θ0,q − β0
)ψ′(

X − β0

θ0,q − β0
)(X − θ0,q)I(X > β0)},

σ2
2 = E{(ψ′( X − β0

θ0,q − β0
))2(X − θ0,q)

2I(X > β0)}.

ii) lP (θ0,q) converges in distribution to a chi-squared limit with one degree of freedom as n→∞,

which ensures that the proposed empirical likelihood confidence interval below has an asymp-

totically correct level.

Remark 1. When Σ1 has rank 2, then i) in Theorem 1 becomes

√
n

 β̂ − β0

θ̂MEL
q − θ0,q

 d→ N(0,Σ−1
1 Σ0(Σ−1

1 )T ).

In Figure 1 below, we plot the determinant of Σ1 for the uniform distribution and Pareto distri-

butions used in the simulation study, which are positive, i.e., Σ1 has rank 2.

Remark 2. Note that we do not assume ψ′(0+) = 0. Instead we assume F is continuous to

ensure (7) holds. So conditions C1) and C2) appear in Tang and Yang (2014). The first two
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Figure 1: Determinant of Σ1 in Theorem 1.

inequalities with respect to δ1 in C3) ensure Lemmas 2 and 3, which are standard for an empirical

likelihood method. The other two inequalities in C3) are similar to the bounded conditions for

partial derivatives with respect to parameters in Qin and Lawless (1994), which are employed

in the proof of Lemma 1. We employ these different conditions due to non-differentiability. All

conditions C1)–C3) can be checked straightforward.

Based on the above theorem, a confidence interval for θ0,q with level ξ is obtained as

IELξ = {θq : lP (θq) ≤ χ2
1,ξ},

where χ2
1,ξ denotes the ξ−th quantile of a chi-squared distribution with one degree of freedom.

We remark that the above regularity conditions are different from those in Ahn and Shya-

malkumar (2014). A theoretical comparison for these two estimators is hard due to their com-

plicated asymptotic variances. Instead a simulation comparison is given in Section 3, which

shows that the new method has some advantages. Moreover, if one is interested in a confidence

region for risk measures θq1 , · · · , θqm at several different levels q1, q2, · · · , qm, the above empirical

likelihood method can easily be extended by considering corresponding 2m equations. We skip

details.
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3 Simulation study

In this section, we examine the finite sample behavior of the proposed maximum empirical

likelihood estimator and the empirical likelihood based confidence interval, and compare them

with the nonparametric estimator in Ahn and Shyamalkumar (2014) in terms of mean squared

errors and coverage accuracy.

First we compare the finite sample behavior of these two estimators θ̂MEL
q and θ̂ASq in terms of

mean squared errors and biases. For computing these quantities, we employ ψ(x) = x2+x
2 I(x >

0) and draw 10, 000 random samples with sample size n = 500 and 2, 000 from one of the

following two distributions

F1(x) =


0 if x ≤ 0

x if 0 < x < 1

1 if x ≥ 1

and F2(x; γ, σ) =


0 if x ≤ 0

1− (1 + σx)−γ if x > 0,

where σ > 0 and γ > 4. For these two distributions, an explicit formula for θq is available

in Ahn and Shyamalkumar (2014). It is easy to check that conditions C1–C3) in Theorem 1

are satisfied. For example, one can choose any δ1 > 1 and δ2 ∈ (0, 1
2) in C3) for distribution

F1(x), and choose any 1 < δ1 <
γ+1

4 and 2
γ < δ2 <

1
2 in C3) for distribution F2(x; γ, σ) when

Ω is chosen small enough. In Table 1 we report the bias, standard deviation and square root

of mean squared error for these two estimators at different levels q = 0.9, 0.95, 0.99. We also

report the number of times when the minimization fails to give a solution. From Table 1, we

observe that i) θ̂MEL
q has a smaller mean squared error than θ̂ASq for distribution F1(x) except

the case n = 500 and q = 0.99, where θ̂ASq can not be calculated for 517 out of 10, 000 times; ii)

θ̂ASq has a smaller mean squared error than θ̂MEL
q for distribution F2(x; 1, 15), but sometimes

has a larger mean squared error for distribution F2(x; 1, 5); iii) θ̂ASq has a computational issue

especially when q = 0.99, i.e., minimization fails sometimes.

Next we compare the proposed empirical likelihood based confidence interval with the normal
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approximation method based on θ̂ASq in terms of coverage probability by drawing 1, 000 random

samples with sample size n = 500 and 2, 000. We employ the same Young function ψ(x) and

distribution functions F1(x) and F2(x; γ, σ) as above. For computing the empirical coverage

probability of the proposed empirical likelihood method, we first use the R package ’emplik’

to compute l(θ0,q, β) for each β, and then use the R package ’nlm’ to minimize l(θ0,q, β) over

β < θ0,q so as to get lP (θ0,q). For comparison with the interval, denoted by IASξ , obtained from

the nonparametric estimator θ̂ASq , we employ the naive bootstrap method by drawing 1, 000

resamples from the original sample to construct the bootstrap confidence interval. We also

compute the bootstrap calibrated empirical likelihood based confidence interval, denoted by

IBELξ , by drawing 1, 000 resamples from the original sample and using these 1, 000 bootstrapped

versions of lP (θ̂MEL
q ) to obtain the critical value; see Owen (2001) for details on calibration

for empirical likelihood methods. We report the empirical coverage probabilities for these three

intervals with levels ξ = 0.9 and 0.95 for different q = 0.9, 0.95, 0.99 in Table 2, which show that

i) the proposed empirical likelihood method performs better than the normal approximation

method based on θ̂ASq in most cases; ii) the proposed bootstrap calibrated empirical likelihood

method gives most accurate coverage probability; iii) coverage accuracy for these three intervals

improves when either the sample size increases or γ in the distribution F2(x;σ, γ) increases, i.e.,

tail becomes lighter.

In summary, the proposed maximum empirical likelihood estimator θ̂MEL
q and empirical

likelihood based confidence interval IELξ perform well in comparison with the corresponding

methods based on the nonparametric estimator θ̂ASq in Ahn and Shyamalkumar (2014) in terms

of mean squared error, coverage probability and computational difficulty.
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4 Proofs

Throughout we define the empirical distribution as Fn(x) = 1
n

∑n
i=1 I(Xi ≤ x) and empirical

process as αn(x) =
√
n{Fn(x)− F (x)}. Then by the classical theory in empirical processes and

Skorohod construction, we have

sup
−∞<x<∞

|αn(x)−B(x)| a.s.→ 0 and sup
−∞<x<∞

|αn(x)|
F ν(x)(1− F (x))ν

= Op(1) (10)

for any ν ∈ (0, 1
2), where B(x) is a Gaussian process with zero mean and covariance

E{B(x1)B(x2)} = F (x1 ∧ x2)− F (x1)F (x2);

see Shorack and Wellner (1986).

Lemma 1. Under conditions of Theorem 1, when |β − β0| + |θq − θ0,q| = ∆n
p→ 0 as n → ∞,

we have

1
n

∑n
i=1 ψ(Xi−βθq−β )I(Xi > β)− 1 + q

=
∫∞
β0
{F (x)− Fn(x)}ψ′( x−β0

θ0,q−β0 ) 1
θ0,q−β0 dx

+(β − β0)
∫∞
β0
ψ′( x−β0

θ0,q−β0 )
x−θ0,q

(θ0,q−β0)2
dF (x)

+(θq − θ0,q)
∫∞
β0
ψ′( x−β0

θ0,q−β0 ) β0−x
(θ0,q−β0)2

dF (x) + op(
1√
n

+ ∆n),

1
n

∑n
i=1 ψ

′(Xi−βθq−β )(Xi − θq)I(Xi > β)

= ψ′(0+)(β0 − θ0,q){F (β0)− Fn(β0)}

+
∫∞
β0
{F (x)− Fn(x)}{ψ′′( x−β0

θ0,q−β0 )
x−θ0,q
θ0,q−β0 + ψ′( x−β0

θ0,q−β0 )} dx

+(β − β0){−ψ′(0+)(β0 − θ0,q) +
∫∞
β0
ψ′′( x−β0

θ0,q−β0 )
(x−θ0,q)2
(θ0,q−β0)2

dF (x)}

+(θq − θ0,q)
∫∞
β0
{ψ′′( x−β0

θ0,q−θ0 )
(x−θ0,q)(β0−x)

(θ0,q−β0)2
− ψ′( x−β0

θ0,q−β0 )} dF (x) + op(
1√
n

+ ∆n),

1
n

∑n
i=1 ψ

2(Xi−βθq−β )I(Xi > β)−
∫∞
β0
ψ2( x−β0

θ0,q−β0 ) dF (x)

= 2
∫∞
β0
{F (x)− Fn(x)}ψ( x−β0

θ0,q−β0 )ψ′( x−β0
θ0,q−β0 ) 1

θ0,q−β0 dx

+(β − β0)
∫∞
β0

2ψ( x−β0
θ0,q−β0 )ψ′( x−β0

θ0,q−β0 )
x−θ0,q

(θ0,q−β0)2
dF (x)

+(θq − θ0,q)
∫∞
β0

2ψ( x−β0
θ0,q−β0 )ψ′( x−β0

θ0,q−β0 ) β0−x
(θ0,q−β0)2

dF (x) + op(
1√
n

+ ∆n),
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1
n

∑n
i=1{ψ′(

Xi−β
θq−β )}2(Xi − θq)2I(Xi > β)−

∫∞
β0
{ψ′( x−β0

θ0,q−β0 )}2(x− θ0,q)
2 dF (x)

= {F (β0)− Fn(β0)}{ψ′(0+)}2(β0 − θ0,q)
2

+2
∫∞
β0
{F (x)− Fn(x)}{ψ′( x−β0

θ0,q−β0 )ψ′′( x−β0
θ0,q−β0 )

(x−θ0,q)2
θ0,q−β0 + (ψ′( x−β0

θ0,q−β0 ))2(x− θ0,q)} dx

+(β − β0){−(ψ′(0+))2(β0 − θ0,q)
2 + 2

∫∞
β0
ψ′( x−β0

θ0,q−β0 )ψ′′( x−β0
θ0,q−β0 )

(x−θ0,q)3
(θ0,q−β0)2

} dF (x)

+(θq − θ0,q)
∫∞
β0
{2ψ′( x−β0

θ0,q−β0 )ψ′′( x−β0
θ0,q−β0 )

(β0−x)(x−θ0,q)2
(θ0,q−β0)2

+ 2(ψ′( x−β0
θ0,q−β0 ))2(θ0,q − x)} dF (x)

+op(
1√
n

+ ∆n)

and

1
n

∑n
i=1 ψ(Xi−βθq−β )ψ′(Xi−βθq−β )(Xi − θq)I(Xi > β)−

∫∞
β0
ψ( x−β0

θ0,q−β0 )ψ′( x−β0
θ0,q−β0 )(x− θ0,q) dF (x)

=
∫∞
β0
{F (x)− Fn(x)}{(ψ′( x−β0

θ0,q−β0 ))2 x−θ0,q
θ0,q−β0 + ψ( x−β0

θ0,q−β0 )ψ′′( x−β0
θ0,q−β0 )

x−θ0,q
θ0,q−β0

+ψ( x−β0
θ0,q−β0 )ψ′( x−β0

θ0,q−β0 )} dx

+(β − β0)
∫∞
β0
{(ψ′( x−β0

θ0,q−β0 ))2 (x−θ0,q)2
(θ0,q−β0)2

+ ψ( x−β0
θ0,q−β0 )ψ′′( x−β0

θ0,q−β0 )
(x−θ0,q)2
(θ0,q−β0)2

} dF (x)

+(θq − θ0,q)
∫∞
β0
{(ψ′( x−β0

θ0,q−β0 ))2 (β0−x)(x−θ0,q)
(θ0,q−β0)2

+ ψ( x−β0
θ0,q−β0 )ψ′′( x−β0

θ0,q−β0 )
(β0−x)(x−θ0,q)

(θ0,q−β0)2

−ψ( x−β0
θ0,q−β0 )ψ′( x−β0

θ0,q−β0 )} dF (x) + op(
1√
n

+ ∆n).

Proof. It follows from the Taylor expansion that

1
n

∑n
i=1 ψ(Xi−βθq−β )I(Xi > β)− 1 + q

=
∫∞
β ψ( x−βθq−β ) dFn(x)−

∫∞
β0
ψ( x−β0

θ0,q−β0 ) dF (x)

= −
∫∞
β ψ( x−βθq−β ) d{F (x)− Fn(x)}+

∫∞
β ψ( x−βθq−β ) dF (x)−

∫∞
β0
ψ( x−β0

θ0,q−β0 ) dF (x)

=
∫∞
β {F (x)− Fn(x)}ψ′( x−βθq−β ) 1

θq−β dx+ (β − β0)
∫∞
β1
ψ′( x−β1θ1−β1 ) x−θ1

(θ1−β1)2
dF (x)

+(θ − θ0,q)
∫∞
β1
ψ′( x−β1θ1−β1 ) β1−x

(θ1−β1)2
dF (x)

=
∫∞
β0
{F (x)− Fn(x)}ψ′( x−β0

θ0,q−β0 ) 1
θ0,q−β0 dx+ (β − β0){Fn(β2)− F (β2)}ψ′(0+) 1

θ2−β2

+(β − β0)
∫∞
β2
{F (x)− Fn(x)}{ψ′′( x−β2θ2−β2 ) x−θ2

(θ2−β2)3
+ ψ′( x−β2θ2−β2 ) 1

(θ2−β2)2
} dx

+(θq − θ0,q)
∫∞
β2
{F (x)− Fn(x)}{ψ′′( x−β2θ2−β2 ) β2−x

(θ2−β2)2
+ ψ′( x−β2θ2−β2 ) 1

(θ2−β2)2
} dx

+(β − β0)
∫∞
β1
ψ′( x−β1θ1−β1 ) x−θ1

(θ1−β1)2
dF (x) + (θ − θ0,q)

∫∞
β1
ψ′( x−β1θ1−β1 ) β1−x

(θ1−β1)2
dF (x)

:= I1 + · · ·+ I6,

(11)

where (θ1, β1)T = λ1(θq, β)T + (1−λ1)(θ0,q, β0)T and (θ2, β2)T = λ2(θq, β)T + (1−λ2)(θ0,q, β0)T

12



for some λ1, λ2 ∈ [0, 1]. It follows from (10) that

I2 = Op(
1√
n

∆n) = op(
1√
n

+ ∆n). (12)

By (10) and condition C3), we have

I3 = Op(
1√
n

∆n) = op(
1√
n

+ ∆n) and I4 = Op(
1√
n

∆n) = op(
1√
n

+ ∆n). (13)

Note that the condition E{sup(θq ,β)T∈Ω |ψ′(
X−β
θq−β )|2δ1 |X − θq|2δ1I(X > β)} <∞ for some δ1 > 1

in C3) implies that 
sup(θq ,β)T∈Ω

∫∞
β |ψ

′( x−βθq−β )| dF (x) <∞

sup(θq ,β)T∈Ω

∫∞
β |ψ

′( x−βθq−β )|x dF (x)} <∞
(14)

by noting that |ψ′(0+)| <∞. Similarly, the condition sup(θq ,β)T∈Ω

∫∞
β ψ′′( x−βθq−β )(x−θq)2 dF (x) <

∞ in C3) implies that 
sup(θq ,β)T∈Ω

∫∞
β ψ′′( x−βθq−β )x2 dF (x) <∞

sup(θq ,β)T∈Ω

∫∞
β ψ′′( x−βθq−β )x dF (x) <∞

sup(θq ,β)T∈Ω

∫∞
β ψ′′( x−βθq−β ) dF (x) <∞.

(15)

Hence it follows from (14), (15) and the Taylor expansion that
I5 = (β − β0)

∫∞
β0
ψ′( x−β0

θ0,q−β0 )
x−θ0,q

(θ0,q−β0)2
dF (x) +Op(∆

2
n)

I6 = (θq − θ0,q)
∫∞
β0
ψ′( x−β0

θ0,q−β0 ) β0−x
(θ0,q−β0)2

dF (x) +Op(∆
2
n).

(16)

Therefore, the first equation in Lemma 1 follows from (11), (12), (13) and (16). The rest can

be shown similarly.

Lemma 2. Under conditions of Theorem 1, we have

1√
n

n∑
i=1

Yi(θ0,q, β0)
d→ N(0,Σ0)

and

1

n

n∑
i=1

Yi(θ0,q, β0)Y T
i (θ0,q, β0)

p→ Σ0,

where Σ0, given in Theorem 1, is positive definite.

13



Proof. We only need to show that Σ0 is positive definite since the rest directly follows from the

central limit theorem and the weak law of large numbers, or by using Lemma 1 and (10). Hence,

we need to show that V ar
(

(a, b)Yi(θ0,q, β0)
)
> 0 for any a2 + b2 6= 0.

If (a, b)Yi(θ0,q, β0) is degenerate, then

aψ(
x− β0

θ0,q − β0
) + bψ′(

x− β0

θ0,q − β0
)(x− θ0,q) = c (17)

for some constant c and all x > β0. Obviously, when b = 0, (17) can not be true since ψ is a

strictly convex function. By assuming b 6= 0, it follows from (17) that

aψ′(
x− β0

θ0,q − β0
)

1

θ0,q − β0
+ bψ′′(

x− β0

θ0,q − β0
)
x− θ0,q

θ0,q − β0
+ bψ′(

x− β0

θ0,q − β0
) = 0

for all x > β0, i.e.,

(logψ′(
x− β0

θ0,q − β0
))′ = −(

a

b(θ0,q − β0)
+ 1)

1

x− θ0,q
for x > β0,

i.e.,

logψ′(
x− β0

θ0,q − β0
) = −(

a

b(θ0,q − β0)
+ 1) log |x− θ0,q|+ c1

for some constant c1 and all x > β0, which is impossible since the left hand side is an increasing

function of x, but the right hand side is not. Hence (17) can not be true, i.e., Σ0 is positive

definite.

Lemma 3. Under conditions of Theorem 1, we have

sup
1≤i≤n

sup
(θ,β)T∈Ω

||Yi(θ, β)|| = op(n
1
2γ )

for some γ ∈ (1, δ1), where || · || denotes L2 norm.

Proof. Note that

P (sup1≤i≤n sup(θ,β)T∈Ω ψ(Xi−βθ−β )I(Xi > β) ≥ n
1
2γ )

≤
∑n

i=1 P (sup(θ,β)T∈Ω ψ(Xi−βθ−β )I(Xi > β) ≥ n
1
2γ )

≤ n
nδ1/γ

E sup(θ,β)T∈Ω ψ
2δ1(X1−β

θ−β )I(X1 > β)

→ 0.

.

14



Similarly

P ( sup
1≤i≤n

sup
(θ,β)T∈Ω

|ψ′(Xi − β
θ − β

)(Xi − θ)I(Xi > β)| ≥ n
1
2γ )→ 0.

Hence, the lemma follows.

Proof of Theorem 1. i) Like the proof of Owen (1990), it follows from Lemmas 1–3 and C3) that

λ = { 1

n

n∑
i=1

Yi(θq, β)Y T
i (θq, β)}−1 1

n

n∑
i=1

Yi(θq, β)(1 + op(1)),

and further

l(θq, β) = 2
∑n

i=1 λ
TYi(θq, β)−

∑n
i=1 λ

TYi(θq, β)Y T
i (θq, β)λ+ op(1)

= { 1√
n

∑n
i=1 Yi(θq, β)}T { 1

n

∑n
i=1 Yi(θq, β)Y T

i (θq, β)}−1{ 1√
n

∑n
i=1 Yi(θq, β)}+ op(1)

= { 1√
n

∑n
i=1 Yi(θq, β)}TΣ−1

0 { 1√
n

∑n
i=1 Yi(θq, β)}+ op(1).

(18)

Put ν/
√
n = (β − β0, θq − θ0,q)

T . Then it follows from (18) and Lemmas 1–2 that

l(θq, β) = { 1√
n

n∑
i=1

Yi(θ0,q, β0) + Σ1ν}TΣ−1
0 {

1√
n

n∑
i=1

Yi(θ0,q, β0) + Σ1ν}+ op(1),

which is minimized at

ΣT
1 Σ−1

0 Σ1ν = −ΣT
1 Σ−1

0

1√
n

n∑
i=1

Yi(θ0,q, β0) + op(1),

i.e., i) holds.

ii) Put ν1/
√
n = β − β0 and a = (a1, a2)T . As above, we can show that

l(θ0,q, β0) = { 1√
n

n∑
i=1

Yi(θ0,q, β0)}TΣ−1
0 {

1√
n

n∑
i=1

Yi(θ0,q, β0)}+ op(1)

and

l(θ0,q, β) = { 1√
n

n∑
i=1

Yi(θ0,q, β0) + νa}TΣ−1
0 {

1√
n

n∑
i=1

Yi(θ0,q, β0) + νa}+ op(1).

Hence

l(θ0,q, β)− l(θ0,q, β0)

= νaTΣ−1
0 { 1√

n

∑n
i=1 Yi(θ0,q, β0)}+ { 1√

n

∑n
i=1 Yi(θ0,q, β0)}TΣ−1

0 {νa}

+νaTΣ−1
0 {νa}+ op(1),
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which is minimized at

ν =
−aTΣ−1

0
1√
n

∑n
i=1 Yi(θ0,q, β0)

aTΣ−1
0 a

+ op(1),

i.e.,

lP (θ0,q) = l(θ0,q, β0)−
aTΣ−1

0 {
1√
n

∑n
i=1 Yi(θ0,q ,β0)}aTΣ−1

0 {
1√
n

∑n
i=1 Yi(θ0,q ,β0)}

aTΣ−1
0 a

+ op(1)

= { 1√
n

∑n
i=1 Yi(θ0,q, β0)}TΣ

−1/2
0 Σ

−1/2
0 { 1√

n

∑n
i=1 Yi(θ0,q, β0)}

−{ 1√
n

∑n
i=1 Yi(θ0,q, β0)}TΣ

−1/2
0

Σ
−1/2
0 aaTΣ

−1/2
0

aTΣ−1
0 a

Σ
−1/2
0 { 1√

n

∑n
i=1 Yi(θ0,q, β0)}

= { 1√
n

∑n
i=1 Yi(θ0,q, β0)}TΣ

−1/2
0 {I2×2 −

Σ
−1/2
0 aaTΣ

−1/2
0

aTΣ0a
}Σ−1/2

0 { 1√
n

∑n
i=1 Yi(θ0,q, β0)}

+op(1),

where I2×2 denotes the 2 by 2 identity matrix. Since I2×2 −
Σ
−1/2
0 aaTΣ

−1/2
0

aTΣ0a
is symmetric, idem-

potent and its trace equals to one, ii) follows from Lemma 2.

5 Conclusions

By writing the Haezendonck-Goovaerts risk measure as a solution to two estimating equations,

we study the maximum empirical likelihood estimator and the empirical likelihood based confi-

dence interval for this risk measure. Due to non-differentiability, conditions and theorems in Qin

and Lawless (1994) can not be applied. Instead results are derived by combining techniques in

empirical processes and empirical likelihood method, which results in some different regularity

conditions from those in Ahn and Shyamalkumar (2014). The imposed regularity conditions are

straightforward to check such as uniform distribution, Pareto distribution and exponential distri-

bution. Comparison with the nonparametric estimator in Ahn and Shyamalkumar (2014) shows

that the proposed empirical likelihood inference has good finite sample performance. Moreover,

the new method is easy to implement by using existing R packages ’emplik’ and ’nlm’, and to

extend to a joint inference for several levels (q1, · · · , qm) by using 2m estimating equations.
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Table 1: Estimation. We report the bias (Bias), standard deviation (SD), square root of mean

squared error (SRMSE) for both estimators θ̂MEL
q and θ̂ASq at different levels q = 0.9, 0.95, 0.99

and with sample size n = 500 and 2, 000. We also report the number of times when the

minimization fails (NoNS).

CDF (n, q) θ̂MEL
q θ̂MEL

q θ̂MEL
q θ̂MEL

q θ̂AS
q θ̂AS

q θ̂AS
q θ̂AS

q

Bias SD SRMSE NoNS Bias SD SRMSE NoNS

F1(·) (500, 0.9) -1.107e-4 6.745e-3 6.746e-3 0 -8.223e-4 7.242e-3 7.288e-3 0

F1(·) (500, 0.95) -1.630e-4 4.895e-3 4.898e-3 0 -8.597e-4 5.311e-3 5.380e-3 0

F1(·) (500, 0.99) -6.728e-4 1.296e-2 1.298e-2 0 -1.105e-3 2.644e-3 2.865e-3 517

F1(·) (2000, 0.9) -2.584e-5 3.439e-3 3.439e-3 0 -2.506e-4 3.611e-3 3.619e-3 0

F1(·) (2000, 0.95) 6.258e-5 2.424e-3 2.425e-3 0 -2.082e-4 2.559e-3 2.568e-3 0

F1(·) (2000, 0.99) -1.082e-6 1.174e-3 1.174e-3 0 -2.118e-4 1.224e-3 1.243e-3 10

F2(·; 1, 5) (500, 0.9) -1.523e-2 1.451e-1 1.459e-1 0 -1.405e-2 1.669e-1 1.675e-1 0

F2(·; 1, 5) (500, 0.95) -3.104e-2 2.187e-1 2.209e-1 0 -3.249e-2 2.195e-1 2.219e-1 0

F2(·; 1, 5) (500, 0.99) -1.243e-1 5.574e-1 5.711e-1 0 -1.068e-1 5.311e-1 5.418e-1 76

F2(·; 1, 5) (2000, 0.9) -5.211e-3 8.629e-2 8.645e-2 0 -5.118e-3 8.043e-2 8.059e-2 0

F2(·; 1, 5) (2000, 0.95) -1.253e-2 1.200e-1 1.206e-1 0 -1.218e-2 1.216e-1 1.222e-1 0

F2(·; 1, 5) (2000, 0.99) -4.879e-2 3.429e-1 3.464e-1 0 -4.770e-2 3.290e-1 3.324e-1 45

F2(·; 1, 15) (500, 0.9) -1.101e-3 2.294e-2 2.297e-2 0 -1.629e-3 2.147e-2 2.154e-2 3

F2(·; 1, 15) (500, 0.95) -2.839e-3 3.159e-2 3.172e-2 0 -3.583e-3 3.091e-2 3.112e-2 2

F2(·; 1, 15) (500, 0.99) -1.198e-2 7.219e-2 7.318e-2 0 -1.621e-2 7.116e-2 7.298e-2 14

F2(·; 1, 15) (2000, 0.9) -1.110e-4 1.455e-2 1.456e-2 0 -4.944e-4 1.085e-2 1.086e-2 0

F2(·; 1, 15) (2000, 0.95) 7.363e-4 1.708e-2 1.710e-2 0 -1.023e-3 1.586e-2 1.589e-2 0

F2(·; 1, 15) (2000, 0.99) -3.981e-3 3.929e-2 3.949e-2 0 -4.747e-3 3.902e-2 3.931e-2 15
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Table 2: Coverage accuracy. We report coverage probabilities for intervals IELξ , IBELξ and IASξ

with levels ξ = 0.9 and 0.95 for different q = 0.9, 0.95, 0.99 and sample size n = 500 and 2, 000.

CDF (n, q) IEL
0.9 IBEL

0.9 IAS
0.9 IEL

0.95 IBEL
0.95 IAS

0.95

F1(·) (500, 0.9) 0.901 0.890 0.883 0.951 0.949 0.930

F1(·) (500, 0.95) 0.904 0.897 0.852 0.950 0.948 0.902

F1(·) (500, 0.99) 0.846 0.933 0.809 0.883 0.959 0.825

F1(·) (2000, 0.9) 0.892 0.890 0.887 0.951 0.944 0.929

F1(·) (2000, 0.95) 0.907 0.901 0.888 0.946 0.943 0.933

F1(·) (2000, 0.99) 0.916 0.890 0.861 0.954 0.940 0.904

F2(·; 1, 5) (500, 0.9) 0.780 0.842 0.793 0.861 0.903 0.840

F2(·; 1, 5) (500, 0.95) 0.753 0.816 0.751 0.838 0.890 0.812

F2(·; 1, 5) (500, 0.99) 0.557 0.781 0.634 0.606 0.825 0.704

F2(·; 1, 5) (2000, 0.9) 0.831 0.871 0.837 0.905 0.923 0.896

F2(·; 1, 5) (2000, 0.95) 0.825 0.868 0.818 0.895 0.914 0.875

F2(·; 1, 5) (2000, 0.99) 0.765 0.833 0.771 0.838 0.908 0.861

F2(·; 1, 15) (500, 0.9) 0.868 0.879 0.845 0.929 0.940 0.912

F2(·; 1, 15) (500, 0.95) 0.864 0.883 0.813 0.912 0.929 0.883

F2(·; 1, 15) (500, 0.99) 0.642 0.818 0.703 0.691 0.898 0.757

F2(·; 1, 15) (2000, 0.9) 0.873 0.887 0.865 0.929 0.937 0.929

F2(·; 1, 15) (2000, 0.95) 0.872 0.886 0.864 0.936 0.942 0.917

F2(·; 1, 15) (2000, 0.99) 0.866 0.894 0.824 0.917 0.940 0.878
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