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Abstract

A nonstationary dividend yield, having a unit root, is seen as proof of bub-

bles (Craine 1993). This inference is not valid. A sufficient condition for the

absence, respectively presence of bubbles is the uniform divergence, respec-

tively uniform convergence of the dividend yield series. I use this criterion to

show that a random walk dividend yield must be bubble-free if a positive deter-

ministic trend or a large positive drift is present. I also construct an example

where the equilibrium dividend yield is a random walk without a deterministic

trend or drift, but bubbles are still absent.
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1 Introduction

Testing for bubbles, defined as the price of an asset in excess of the discounted

present value of dividends, requires assumptions on the stochastic discount factor

(SDF henceforth), which is unobservable. The early tests of bubbles (for a survey,

see Gurkaynak 2008) assumed a constant SDF, which contradicts a large amount

of evidence on returns predictability and time-varying risk premium (Campbell, Lo,

and MacKinlay 1997, Chapter 2).

Craine (1993) proposed an elegant way to bypass the SDF misspecification prob-

lem, predicated only on the stationarity of the SDF. A stationary SDF and a sta-

tionary dividend growth result in a stationary dividend yield if bubbles are absent.

Therefore nonstationarity of the dividend yield, or prices that are more explosive

than dividends, is interpreted as evidence of bubbles, while stationarity of the divi-

dend yield is seen as proof of no bubbles.

Evans (1991) shows, through simulations, that the presence of periodically col-

lapsing bubbles is virtually undetectable by standard unit root and cointegration

tests. Such bubbles can be made in fact stationary and lead to a stationary divi-

dend yield, as shown in Bidian (2014c). Therefore stationary dividend yields do not

guarantee the absence of bubbles.

This paper shows that nonstationary dividend yields do not guarantee the exis-

tence of bubbles either. Even when the (log) dividend yield has a unit root (follows

a random walk), what matters for the existence of bubbles, first and foremost, is the

presence of (deterministic) time trends. A positive time trend guarantees the absence

of bubbles, despite the presence of a unit root. A negative time trend ensures that

bubbles are present, even if the dividend yield is trend-stationary.
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These results are demonstrated without any assumptions on the stochastic dis-

count factor, using a criterion involving the convergence of the dividend yield series.

Montrucchio (2004) proves that if the dividend yield series diverges uniformly, then

bubbles cannot exist. I show that the converse also holds: if the dividend yield series

converges uniformly, then bubbles must exist.

In the absence of a time trend but with a non-zero drift, the criterion can still

be applied if the error terms of the random walk are small relative to the size of

the drift. In this case, a positive (negative) drift ensures the absence (presence) of

bubbles. Without a drift or with a small drift relative to the size of the errors, the

uniform convergence or divergence of the dividend yield cannot be established. In this

situation, it is unclear whether the nonstationarity of the dividend yield guarantees

that bubbles exist. I show that this is not the case, by constructing an economy with

a bubble-free equilibrium in which the dividend yield follows a random walk with

zero or positive drift (and no deterministic time trend).

In the example economy, the SDF is nonstationary, while dividend growth is

stationary. Craine (1993) argues that the SDF is “at least mean stationary”, due to

indirect evidence such as the apparent stationarity of returns. However, even mean

stationarity of the SDF is questionable. For instance, Hall, Anderson, and Granger

(1992) report the inability to reject unit roots in interest rates. Moreover, assuming

stationary returns when one tests for bubbles is tantamount to rule out most bubbles,

and represents a circular reasoning. Indeed, the returns on a bubbly asset are a

weighted average of the fundamental (bubble-free) returns and the rate of growth of

the bubble component. The weight of the fundamental return in the bubbly return

is given by the ratio of the fundamental to the bubbly price. Therefore a bubble

with nonstationary rate of growth or with a nonstationary ratio of the fundamental
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to the bubble-inflated price would create nonstationary returns.

Craine (1993) cannot reject the null hypothesis of a unit root in the annual and

quarterly log dividend yield process for the NYSE index for the period 1927-1989,

and for the annual S&P composite index for the period 1872-1988. He concludes that

bubbles are present in (some of) the constituents of those indexes, but points out that

the apparent unit root in the log dividend yield might actually reflect the existence of

a low frequency component in the SDF. Another issue of unit root tests is that they

have low power against different alternatives. In fact, Koustas and Serletis (2005),

using exactly the same data set as Craine (1993), reject the hypothesis of a unit

root in the log dividend yield in favor of stationary fractionally integrated processes.

Similarly, Diba and Grossman (1988) find that prices and dividends for the annual

S&P composite index for the period 1871-1986 are cointegrated and interpret this as

proof of absence of bubbles.

By contrast, I show that even if all the econometric problems can be tackled

and the dividend yield is guaranteed to be a random walk, bubbles do not have

to exist. Moreover, I point out that stationarity-based tests do not pay attention

to deterministic time trends or drifts in the dividend yield process, which have a

first-order effect on the existence of bubbles, and trump the presence of a unit root.

2 Convergence of the dividend yield series and

bubbles

Time periods are indexed by the set N := {0, 1, . . .}. The uncertainty is described

by a probability space (Ω,F , P ) and by the filtration (Ft)∞t=0, which is an increasing
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sequence of σ-algebras on the set of states of the world Ω. Each σ-algebra Ft is

interpreted as the information available at date t. The conditional expectation given

Ft (with respect to the probability P ) is denoted by Et(·), with E0(·) being simply

written as E(·). The notation (xt)
∞
t=0 (or just (xt)) represents a process, that is a

sequence of random variables such that xt : Ω → R is Ft-measurable for all t ∈ N.

All equalities and inequalities (implicitly) hold only P -almost surely (a.s.).

Consider an asset with dividends (dt) and strictly positive ex-dividend prices

(pt). The “fundamental theorem of asset pricing”, which follows from the absence

of arbitrage opportunities, ensures under mild conditions the existence of a strictly

positive state price density (at) that martingale-prices all the assets:

atpt = Etat+1(pt+1 + dt+1),∀t ≥ 0. (2.1)

In particular, martingale-pricing holds when agents are subject to wealth restrictions

in the form of debt (respectively borrowing) constraints, requiring the beginning

(respectively end) of period value of their portfolio to exceed some specified bounds

(Bidian 2014a). Iterating in (2.1),

pt =
1

at
Et

(
∞∑

s=t+1

asds

)
︸ ︷︷ ︸

ft

+
1

at
lim
s→∞

Etasps︸ ︷︷ ︸
bt

. (2.2)

The term ft is the fundamental value of the asset at t computed as the present value

of dividends discounted by (as). The term bt represents the price of the asset in

excess of its fundamental value, and it is interpreted as a bubble at period t. By

(2.1), the process (atbt) is a martingale. Hence prices (pt) are free of bubbles with

respect to the state price density (at) (bt = 0 for all t) if and only if b0 = 0, or
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equivalently,

lim
t→∞

Eatpt = 0. (2.3)

Let Rt+1 := (pt+1 + dt+1)/pt, respectively Rf
t+1 := (ft+1 + dt+1)/ft be the actual

return, respectively the “fundamental” return of the asset from t to t+1. The returns

on an asset containing a bubble are a weighted average between the fundamental

returns and the bubble rate of growth,

Rt+1 =
ft
pt
·Rf

t+1 +

(
1− ft

pt

)
bt+1

bt
. (2.4)

Bubbles with nonstationary growth or bubbles that lead to a nonstationary ratio of

the fundamental to the actual price will result in general in nonstationary returns.

The empirical literature testing for bubbles focuses on the stationarity of the

dividend yield, rather than the stationarity of returns. The dividend yield in the

absence of bubbles is stationary, as long as the SDF is stationary and the dividend

growth is stationary. This is explained in detail in Craine (1993), and it is due to

the fact that stationarity is preserved by measurable transformations of a process

(Kallenberg 2002, Lemma 10.1). The failure to reject the existence of a unit root in

the dividend yield is interpreted as evidence of bubbles. Stationarity of the dividend

yield is viewed as evidence of no bubbles.

In economies with more severe portfolio constraints, such as short sale constraints

(rather than wealth constraints), martingale-pricing might not hold. However, the

assets are nevertheless supermartingale-priced (Bidian 2014a), thus there exists a

strictly positive process (at) such that for any asset (with prices (pt) and dividends

(dt)),

atpt ≥ Etat+1(pt+1 + dt+1),∀t ≥ 0. (2.5)
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Let gt := pt − Et at+1

at
(pt+1 + dt+1) and mt = 1

at
Et
∑

s≥t asgs, for all t ≥ 0. Iteration

in (2.5) shows that the asset price admits the decomposition pt = ft +mt + bt. The

additional component mt can be interpreted as the resale option or the convenience

yield from holding the asset at t (Bidian 2014a). The results of this paper hold under

supermartingale-pricing, rather than just martingale-pricing.

The behavior of the dividend yield process is crucially related to bubbles, but

rather than its nonstationarity (stationarity), it is the uniform divergence (conver-

gence) of the dividend yield series that is a sufficient condition for the absence (pres-

ence) of bubbles. This is true without any assumptions imposed on the unobservable

SDF. For all t ≥ 0, let

ξt :=
t∏

s=0

(
1 +

ds
ps

)
and ζt :=

t∑
s=0

ds
ps
. (2.6)

Since exp(ζt) ≥ ξt ≥ ζt, the convergence (divergence) of the dividend yield series (ζt)

is equivalent to the convergence (divergence) of (ξt).

The series (ζt) diverges uniformly if

∀N ∈ N,∃TN ∈ N such that ζt ≥ N,∀t ≥ TN . (2.7)

Similarly, the series (ζt) converges uniformly is (ζt) is bounded from above by a real

number.

Proposition 2.1. If the dividend yield series diverges uniformly, then there are no

bubbles.
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Proof. Using (2.5) and (2.6),

atptξt ≥ Etat+1pt+1ξt+1. (2.8)

Thus (atptξt) is a (positive) supermartingale. Since (ζt) diverges uniformly, it follows

that (ξt) diverges uniformly. Therefore for all N ∈ N, there exists TN ∈ N such that

a0p0ξ0 ≥ E(atptξt) ≥ N · E(atpt),∀t ≥ TN .

It follows that E(atpt)→ 0.

Proposition 2.1 was obtained by Montrucchio (2004, Theorem 2) for the martingale-

pricing case. Unfortunately the uniform divergence condition is quite strong. Clearly,

if the dividend yield process is bounded from below, that is if there exists a ν > 0

such that

dt
pt
≥ ν,∀t ≥ 0, (2.9)

then the uniform boundedness condition is trivially satisfied. However it is unclear

how to relax the uniform divergence assumption or condition (2.9) further. Bidian

(2011) gives an example where (2.9) holds infinitely often1 but bubbles exist. In that

example the dividend yield series diverges a.s. but not uniformly.

Proposition 2.1 admits a converse.

Proposition 2.2. If the dividend yield series converges uniformly, then bubbles must

be present under any state price density that martingale-prices the assets.

Proof. Assume that there exists N ∈ R such that ζt ≤ N , for all t. It follows that

1This means that P (∩n≥0 ∪t≥n dt/pt ≥ ν) = 1.
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ξt ≤ eN , for all t. Therefore if (at) martingale-prices the assets,

E(atpt) ≥ E(atptξt · exp(−N)) = a0p0ξ0 · exp(−N) > 0,∀t,

which shows that a bubble must be present.

3 Random walk dividend yield

I show that bubbles do not have to exist, even when econometricians identify without

any doubt the presence of a unit root in the dividend yield. Indeed, assume that the

dividend yield follows a random walk with (possibly) drift and deterministic trend:

ln
dt+1

pt+1

= α + δ(t+ 1) + ln
dt
pt

+ νt+1,∀t ≥ 0. (3.1)

The error terms (νt) are assumed to be i.i.d. with zero mean and support [ν, ν̄], for

some ν < 0 < ν̄. It follows that

dt
pt

=
d0

p0

exp

(
αt+ δt(t+ 1)/2) +

t∑
n=1

νn

)
,∀t ≥ 1, (3.2)

and therefore

d0

p0

t∑
s=0

exp(αs+δs(s+1)/2+νs) ≤
t∑

s=0

ds
ps
≤ d0

p0

t∑
s=0

exp(αs+δs(s+1)/2+ ν̄s). (3.3)

The inequalities in (3.3) can be used to obtain sufficient conditions for the uniform

convergence or divergence of the dividend yield series.
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3.1 Deterministic time trend

I consider first the case when deterministic time trends are present (δ 6= 0).

If δ > 0, (3.3) shows that the dividend yield series diverges uniformly and there-

fore bubbles cannot exist (Proposition 2.1), despite the dividend yield process being

a nonstationary process and having a stochastic trend.

If δ < 0, notice that exp(αs+δs(s+1)/2+ ν̄s) < exp(δs), for all s > (α+ s̄)/(−δ).

The dividend yield series converges uniformly by (3.3). Therefore with a negative

deterministic trend, bubbles must exist (Proposition 2.2) if the assets are martingale-

priced. This remains true even in the absence of a stochastic trend, that is, for trend

stationary processes. Indeed, assume for example that ln dt

pt
= α + δt + νt for all t,

and δ < 0. The dividend yield is trend stationary. Nevertheless the dividend yield

series converges uniformly and bubbles must be present, by Proposition 2.2:

∞∑
t=0

dt
pt
≤ exp(α + ν̄)

∞∑
s=0

exp(δt) =
exp(α + ν̄)

1− exp(δ)
.

3.2 Drift but no deterministic time trend

Assume now that there is no deterministic time trend (δ = 0) but there is a drift

(α 6= 0). By the law of large numbers and (3.2), limt→∞

(
dt

pt

)1/t

= exp(α) a.s.

If α < 0, respectively α > 0, Cauchy’s root test implies that the dividend yield

series
∑

dt

pt
converges, respectively diverges, a.s. Moreover, by (3.3) with δ = 0,

the dividend yield series converges (respectively diverges) uniformly if α > −ν > 0

(respectively α < −ν̄ < 0). Therefore with small errors relative to the size of the

drift one can conclude that a positive drift rules out bubbles, while a negative drift

and martingale-pricing guarantees the presence of bubbles.
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However, with arbitrarily large error terms (νt), a non-zero drift guarantees just

the a.s. convergence or divergence of the dividend yield series. This divergence

(convergence) was not proved to be uniform, therefore bubbles cannot be ruled out

(shown to exist) using this argument.

3.3 No drift or deterministic time trend

When α = 0 and δ = 0, lim supt→∞
∑t

s=1 νt = ∞ (Kallenberg 2002, Proposition

9.14) and therefore

lim sup
t→∞

t∑
s=1

dt
pt
≥ lim sup

t→∞

dt
pt

=
d0

p0

lim sup
t→∞

exp

(
s∑

n=1

νs

)
≥ d0

p0

(1 + lim sup
t→∞

s∑
n=1

νs) =∞.

The dividend yield series diverges a.s., but the divergence might not be uniform.

4 Example

Without a deterministic trend or without a large drift relative to the size of errors,

the issue whether bubbles must exist due to the presence of a stochastic trend is left

unresolved by the previous analysis.

In what follows, I construct an economy where the equilibrium log dividend yield

follows a random walk without deterministic trend, and with a drift that can be

zero or any positive real number. In this example, there are no bubbles, despite the

nonstationarity of the dividend yield.

There is a continuum of agents. Each agent has preferences E
∑

t≥0 β
tu(cit),

where β ∈ (0, 1) and u(c) = −c−1. There is only one asset, with dividends (dt) with

stationary growth ((dt+1/dt) stationary). Dividends are chosen such that (1/dt) is
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uniformly integrable and E 1
dt
→ 0. The aggregate endowment is (ct), with ct = γtdt,

where γt ≥ 1. Notice that the utility of the “representative” agent is finite, since

E
∑
t≥0

βt
1

ct
≤ E

∑
t≥0

βt
1

dt
=
∑
t≥0

βtE
1

dt
<∞.

Let (νt) be a sequence of i.i.d. zero-mean shocks, independent of (dt). Construct

the asset prices (pt) such that

ln
dt+1

pt+1

= α + ln
dt
pt

+ νt+1,∀t ≥ 0,

where d0/p0 is normalized to one and α ≥ 0. Equivalently, dt

pt
= eαt+zt , where

z0 := 0 and zt :=
∑t

n=1 νn for t ≥ 1. I assume that the aggregate endowment grows

sufficiently fast: (
γt+1

γt

)2

≥ β
dt
dt+1

· 1 + eα(t+1)+zt+1

eα+νt+1
. (4.1)

The SDF is taken to be

at+1

at
:=

pt
pt+1

· 1

1 + dt+1/pt+1

=
pt
pt+1

· ξt
ξt+1

=
dt
dt+1

· exp(α + νt+1)

1 + exp(α(t+ 1) + zt+1)
. (4.2)

By construction, the fundamental valuation equation (2.1) is satisfied and (atpt) is a

decreasing sequence. By the monotone convergence theorem,

Eatpt → 0⇔ atpt → 0 a.s.⇔ ξt →∞ a.s. ⇔ ζt →∞ a.s..

From Sections 3.2 and 3.3, it is known that (ξt) and (ζt) diverge a.s. since α ≥ 0

(see (2.6) for the definition of (ξt), (ζt)). Therefore there are no bubbles in the asset

under this SDF.
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I show next that the posited dividend yield and SDF can be sustained in a

no-trade equilibrium, where agents have symmetric holdings of the asset. The con-

struction follows Constantinides and Duffie (1996). I need to verify their conditions

(5) and (6), which are

Eat → 0,
at+1

at
≥ β

(
ct+1

ct

)−2

. (4.3)

Using (4.2) and (4.1), (4.3) is indeed satisfied:

Eat = E(exp(αt+ zt)d
−1
t ξ−1

t ) < Ed−1
t → 0,

at+1

at
=

dt
dt+1

exp(α + νt+1)

1 + exp(α(t+ 1) + zt+1)
≥ β

γ2
t

γ2
t+1

d2
t

d2
t+1

= β

(
ct+1

ct

)−2

.

Equations (8)-(10) in Constantinides and Duffie (1996) show how to construct agents’

individual endowments to guarantee that there exists an equilibrium with no trade

that supports the price process (pt) as an equilibrium (their Proposition 1).

5 Conclusion

A nonstationary (stationary) dividend yield is equated to the presence (absence) of

bubbles in the literature testing for bubbles. I show that the presence of unit roots in

the dividend yield, and hence its nonstationarity, does not guarantee the existence of

a bubble. On the other hand, stationarity of the dividend yield does not guarantee

the absence of bubbles (Evans 1991, Bidian 2014c). These two facts combined paint

a bleak picture of stationarity-based tests for bubbles.

It is the uniform convergence (respectively divergence) of the dividend yield series
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that ensures the presence (respectively absence) of bubbles, rather than the station-

arity of the dividend yield. When the log dividend yield is nonstationary and follows

a random walk, a positive deterministic time trend or a large positive drift relative

to the size of errors dwarfs the presence of the stochastic trend (unit root) and en-

sures that bubbles cannot exist, as the dividend yield series diverges uniformly. Even

in the absence of a deterministic trend or a large (relative to errors) positive drift,

bubbles can be absent. To show this, I construct an economy where the equilibrium

dividend yield follows a random walk without trend and with zero or positive drift.

Using theoretical insights to rule out or to identify bubbles can be more fruitful

rather than persisting in using testing procedures that are only tangential to bubbles.

For example, the uniform divergence of the dividend yield series criterion shows that

bubbles cannot exist in an environment where firms have to pay at least a fixed

fraction (no matter how small) of their stock price as dividends. On the other hand,

now we know that in environments with limited enforcement of contracts, bubbles

are ubiquitous (Hellwig and Lorenzoni 2009, Bidian 2011, Bidian 2014b).
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