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Abstract

Tests of asset price bubbles typically focus on the stationarity properties of

the dividend yield. Evidence of nonstationarity in the dividend yield is viewed

as proof of bubbles, while stationarity is interpreted as absence of bubbles.

For economies with arbitrary pricing kernels but stationary risk-free rates, I

show that there exist periodically collapsing bubbles of the type introduced by

Evans (1991) that are strictly stationary. Such bubbles give rise to stationary

dividend yields.
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1 Introduction

A bubble is defined as the price of an asset in excess of its fundamental value, which

is the discounted present value of dividends. Bubbles are martingales in discounted
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terms, and therefore grow on average at the rate of interest rates.

Testing for bubbles requires assumptions on the stochastic discount factor (SDF

henceforth), which is unobservable. Gurkaynak (2008) provides a survey of the lit-

erature on bubble tests. The early tests assumed a constant SDF, which contradicts

a large amount of evidence on returns predictability and time-varying risk premia

(Campbell, Lo, and MacKinlay 1997, Chapter 2).

The more recent tests of bubbles avoid the potential SDF misspecification prob-

lem and focus on the stationarity properties of the dividend yield. This methodol-

ogy is predicated on the stationarity of the (unobservable) SDF and of the dividend

growth (which seems to be the case in the data), which implies stationary dividend

yields if bubbles are absent (Craine 1993). Nonstationarity of the dividend yield,

or equivalently, prices that are more explosive (less stationary) than dividends, is

interpreted as evidence of bubbles, while stationarity of the dividend yield is seen as

proof of the absence of bubbles.

I show that this inference is not valid. Stationarity of the dividend yield does

not rule out stationary bubbles. For an arbitrary SDF that gives rise to stationary

risk-free rates, I construct a class of strictly stationary bubbles that periodically col-

lapse, as in Evans (1991). A strictly stationary process (random sequence) has a

distribution that is invariant under shifts (time-translation). Such a strictly station-

ary bubble results in a strictly stationary and covariance stationary1 dividend yield

(even if the bubble itself is not covariance stationary).

Evans (1991) shows, through Monte Carlo simulations, that the presence of peri-

odically collapsing bubbles in economies with constant SDF is virtually undetected

1A random sequence (xt)
∞
t=0 is covariance stationary if cov(xt, xt+s) = cov(xn, xn+s), for all

n, t, s. Any strictly stationary process (xt) is also covariance stationary if the first and second
moments of xt (for all t) are finite.
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by standard unit root and cointegration tests. The results of my paper give a the-

oretical justification for this finding, by showing that such periodically collapsing

bubbles, in addition to being conditionally stationary,2 are in fact strictly stationary.

Moreover, such strictly stationary bubbles can be constructed even in economies with

arbitrary SDF, as long as the risk-free rates are stationary. Concretely, I prove the

existence of a stationary distribution for these bubbles, via a fixed point argument.

Moreover, in the particular case of a constant SDF (the case analyzed by Evans

(1991)), this stationary distribution can be constructed in explicit form.

The results of this paper cast doubt on stationarity-based empirical tests of bub-

bles. Not surprisingly, there are a bewildering number of contradictory findings.

Craine (1993) analyzes the existence of a unit root in the annual and quarterly log

dividend yield process for the NYSE, and for the annual S&P composite index. He

cannot reject the null hypothesis of a unit root and concludes that bubbles. In

contrast, Diba and Grossman (1988), respectively Koustas and Serletis (2005), find

that prices and dividends for the annual S&P composite index are integrated of or-

der one, respectively fractionally integrated, and interpret this as proof of absence

of bubbles. The same fractional integration is found by Cunado, Gil-Alana, and

de Gracia (2005) in the NASDAQ index at daily and weekly frequencies, but not at

monthly frequencies.

There are Markov regime switching tests designed specifically to detect the peri-

odically collapsing bubbles of Evans (1991), reviewed in Gurkaynak (2008, Sections

3.3 and 3.4). They are sensitive to the way of modeling the switching probabilities,

and can lead to contradictory findings even when applied to the same S&P500 data

set. Additionally, since these tests assume that the bubble can switch between two

2That is, the conditional distributions of the process are invariant to time shifts.
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states, but fundamentals do not change, they cannot distinguish between regime

switching fundamentals rather than collapsing bubbles. Moreover, the type of col-

lapsing bubbles they try to detect are likely to form a tiny subset in the class of all

stationary bubbles.

2 Stationary bubbles

Time periods are indexed by the set N := {0, 1, . . .}. The uncertainty is described

by a probability space (Ω,F , P ) and by the filtration (Ft)
∞
t=0, which is an increasing

sequence of σ-algebras on the set of states of the world Ω. Each σ-algebra Ft is

interpreted as the information available at date t. The conditional expectation given

the period t information Ft (with respect to the probability P ) is denoted by Et(·),

with E0(·) being written as E(·). For A ∈ F , 1A is the indicator function of the set

A, defined as 1A(x) = 1 if x ∈ A and 1A(x) = 0 if x /∈ A.

Consider an asset that pays dividends given by the random sequence (“process”

henceforth) (dt)
∞
t=0 (for each t ≥ 0, dt is Ft-measurable) and trades at (ex-dividend)

prices (pt)
∞
t=0. By the “fundamental theorem of asset pricing”, which follows from

the absence of arbitrage opportunities in general environments, there exists a strictly

positive pricing kernel (at) that martingale-prices all the assets:

atpt = Etat+1(pt+1 + dt+1),∀t ≥ 0. (2.1)

The SDF (mt+1)t≥0 is defined by mt+1 := at+1/at.
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By iteration in (2.1),

p0 =
1

a0
E
∞∑
t=1

atdt︸ ︷︷ ︸
f0

+
1

a0
lim
t→∞

Eatpt︸ ︷︷ ︸
b0

. (2.2)

The term f0 represents the fundamental value of the asset computed as the present

value of dividends discounted by (at). The term bt represents a bubble at period 0,

under the pricing kernel (at). Therefore prices (pt) are free of bubbles under the

pricing kernel (at) if

lim
t→∞

Eatpt = 0. (2.3)

I construct a class of strictly stationary periodically collapsing bubbles of the

type introduced by Evans (1991), but associated to an arbitrary SDF. It is only

assumed that the SDF (mt+1) gives rise to strictly stationary risk-free rates (Rt),

where Rt := (Etmt+1)
−1. Let R and FR be the support and cumulative distribution

function of Rt. A bubble is a nonnegative process (εt) such that εt = Etmt+1εt+1,

for all t. I assume that R = [1 + r, 1 + r̄] ⊂ (1,∞). This assumption is not essential,

as explained in footnote 4.

Let (vt+1)t≥0 be a sequence of iid random variables with a cumulative distribution

function F v, support [b0, b1] ⊂ (0,∞) and mean δ. Let (ηt+1)t≥0 be iid, with ηt+1

taking the value 1 with probability π ∈ (0, 1) and 0 with probability 1 − π. The

sequences (vt+1)t≥0 and (ηt+1)t≥0 are independent of each other and of the SDF

(mt+1) (depend only on extrinsic uncertainty).3

3In fact, all that is required is that at each period t, ηt+1 and vt+1 are uncorrelated with mt+1

conditional on the information available at t.
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Define the process (εt) by

εt+1 = vt+1(1− ηt+1) + ηt+1f(Rtεt),∀t ≥ 0, (2.4)

where ε0 ∈ [b0,∞) is arbitrary and f : R+ → R+ is strictly increasing and given by

f(x) := π−1 (x− (1− π)δ) . (2.5)

The process (εt) collapses to the interval [b0, b1] ⊂ (0,∞) with probability 1 − π,

while with probability π it keeps growing. Parameters δ, r, π and b0 are chosen such

that (1 + r)b0 ≥ πb0 + (1 − π)δ, which guarantees that f(Rtεt) ≥ b0 and therefore

the process (εt) is positive.4 Moreover, (εt) is a bubble for the SDF (mt), since

Et(mt+1εt+1) = Et(mt+1)Et(εt+1) =
1

Rt

((1− π)δ + πf(Rtεt)) = εt.

The distribution of εt+1 conditional on the information available at t is

F ε
εt+1|εt,Rt

:= (1− π)F v + πHf(Rtεt),

where Hf(Rtεt)(x) := 1f(Rtεt)≥x is the Heaviside step function at f(Rtεt). Thus the

(vector) process (εt, Rt) is conditionally stationary (the conditional distributions are

4 The assumption that 1+r > 1 is used here, to guarantee positivity of (εt). It can be dispensed
with by assuming, as in Evans (1991), that the bubble has a chance to collapse only after exceeding
some threshold α > 0, and simply grows at the risk free rate while smaller than α:

εt+1 = Rt · 1εt ≤ α+ (vt+1(1− ηt+1) + ηt+1f(Rtεt)) · 1εt > α, ∀t ≥ 0.

Choosing α > (1 − π)δ/(1 + r) guarantees that f(Rtεt) > 0 whenever εt > α and therefore the
process (εt) is positive. The existence of the invariant distribution of (εt) via a fixed point argument
follows in an identical way. What is lost, in terms of tractability, is the analytical expression for
the invariant distribution when the risk free rates are constant.
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invariant to time shifts). In what follows, I show that ε can be made in fact strictly

stationary. Strict stationarity implies conditional stationarity, but the converse is

not true.

Denote by F ε
t the (unconditional) cumulative distribution function of εt, for t ≥ 0.

Notice that

F ε
t+1(x) = E(1εt+1≤x) = E

(
E(1εt+1≤x|εt, Rt)

)
=

= E
(
(1− π)F v(x) + π1f(Rtεt)≤x

)
.

Thus

F ε
t+1(x) = (1− π)F v(x) + π

∫
R
F ε
t (f−1(x)/r)dFR(r). (2.6)

Equation (2.6) defines an operator T on the metric space of distributions on the

real line endowed with the Kolmogorov (uniform) metric, with F ε
t+1 = TF ε

t . For

two cumulative distribution functions G1, G2, the Kolmogorov uniform distance is

dK(G1, G2) = supx∈R |G1(x) − G2(x)|. Notice that dK(TG1, TG2) ≤ π · dK(G1, G2),

thus T is a contraction. Therefore T has a fixed point F ε, which represents the

invariant distribution of (εt). It follows that (εt) is strictly stationary if the initial ε0

is drawn from the distribution F ε.

When the risk-free rates are constant (Rt = R for all t), there is an analytic

expression for the stationary distribution F ε. Let f̂(x) := f(Rx), with f given by

(2.5). By (2.6), F ε
t+1 = (1− π)F v + πF ε

t ◦ f̂−1. Iterating in this formula,

F ε
n =

n−1∑
t=0

(1− π)πtF v ◦ f̂−t + πnF ε
0 ◦ f̂−n,∀n ≥ 1.
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Hence if ε0 is drawn from the “stationary” distribution

F ε
0 = F ε :=

∞∑
t=0

(1− π)πtF v ◦ f̂−t,

then {εt}∞t=0 is strictly stationary.

The stationary bubbles constructed here lead to stationary dividend yields if

injected in asset prices. Clearly if (pt, dt, εt) is strictly stationary, then (dt/(pt +

εt)) is strictly stationary, since a measurable transformation preserves stationarity

(Kallenberg 2002, Lemma 10.1). Moreover, if (dt/pt) is covariance stationary (has

finite first and second order moments), then (dt/(pt+εt)) is also covariance stationary,

since dt/(pt + εt) ≤ dt/pt.

Due to dividend growth, (dt) and (pt) are not stationary in general. However, the

dividend growth seems stationary in the data. If (dt+1/dt,mt+1) is stationary, then

(dt/pt) is stationary (Craine 1993), and also (m′t+1) defined by m′t+1 := mt+1dt+1/dt

is stationary. Using the construction in this paper, there exists a strictly stationary

process (ε′t) such that ε′t = Etm
′
t+1ε

′
t+1, for all t. Then clearly (εt) given by εt := ε′tdt

is a bubble associated to (mt) in that εt = Etmt+1εt+1. Furthermore, dt/(pt + εt) =

1/(pt/dt + ε′t). Therefore the bubble process (εt) injected in the asset prices (pt)

preserves the strict stationarity of the dividend yield.

3 Conclusion

Concluding that bubbles are absent based on the stationarity of the dividend yield

(confirmed through some testing procedure) is not warranted, even if the premise

of a stationary SDF is accepted. In fact, there exist strictly stationary bubbles in
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economies with arbitrary SDF, as long as the risk-free rates are stationary. Such

bubbles collapse periodically as in Evans (1991), but do not rely on his assumption

of a constant SDF. Bidian (2011) shows how to introduce bubbles in asset prices by

a tightening of agents’ debt limits, in economies with arbitrary market structures.

A strictly stationary bubble preserves the stationary of the dividend yield. This

provides a theoretical justification of why Evans’s (1991) Monte Carlo simulations in-

dicate that periodically collapsing bubbles are virtually undetectable by stationarity-

based tests. It also gives an insight into why such tests often lead to conflicting

findings.
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