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1 Introduction

Rapid increases in asset prices, followed by collapses, are often seen as evidence of

bubbles. A bubble measures the portion of an asset price in excess of its fundamental

value, calculated as the expected discounted present value of its dividends.

Santos and Woodford (1997) showed that in standard stochastic dynamic general

equilibrium models with symmetric information and agents subject to borrowing

constraints,1 bubbles can be ruled out on assets in positive supply when the interest

rates are high, making the present value of aggregate consumption finite.2 The

finite present value of aggregate endowment (the high interest rates assumption) is

tantamount in their environment to the existence of a sufficiently productive asset

(or, more generally, of a portfolio with positive holdings of the assets) with dividend

(payoff) in excess of a fixed fraction of the aggregate endowment.

The outline of their argument is that bubbles grow on average at the rate of

interest rates. With high interest rates, the bubble must become very large relative

to aggregate endowment, even if this happens with small probability. But this is

incompatible with the presence of optimizing, forward looking agents, who do not

allow their financial wealth to become too large relative to the present value of their

future consumption.

I show that this reasoning ruling out bubbles is very robust. It can be extended

to environments with general portfolio constraints, asymmetric information and het-

erogeneous beliefs. This seems surprising, since allowing for more severe portfolio

restrictions than the borrowing constrains considered by Santos and Woodford (1997)

might improve the chances for bubbles, as it could be harder to short the overval-

ued assets. Similarly, one expects that the presence of heterogeneous beliefs leads

to speculation, and hence to overvalued assets and bubbles. Finally, asymmetrically

informed agents might trade in overvalued assets as more informed agents expect to

1Borrowing constraints impose lower (negative) bounds on an agent’s end of period financial
wealth.

2The results of Santos and Woodford (1997) were anticipated by Scheinkman (1977) and Kocher-
lakota (1992), and later refined by Huang and Werner (2000) for deterministic economies. Montruc-
chio and Privileggi (2001) also show that under mild assumptions on agent’s preferences, bubbles
cannot exist in a representative agent economy.
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sell them before the crash to less informed agents (the “greater fool” theory).

Santos and Woodford (1997, Theorem 3.1) prove that there exists a stochastic

discount factor (SDF henceforth) compatible with the absence of arbitrage opportu-

nities such that the discounted present value of an asset’s dividends (using this SDF)

equals its price. Moreover, if the agents are sufficiently impatient,3 in the sense that

they are always willing to trade a fixed fraction of all future consumption in exchange

for the current aggregate endowment, then the price of an asset in positive supply is

always equal to its fundamental value, for every SDF compatible with the absence

of arbitrage (Santos and Woodford 1997, Theorem 3.3).

Portfolio constraints are needed for the existence of bubbles, otherwise agents

would short the overpriced assets. Therefore bubbles can only be defined by taking

into account the underlying trading restrictions. With general portfolio constraints,

two main difficulties arise. First, arbitrage opportunities can exist in equilibrium

(see Example 4.4.1 with short sale constraints in Leroy and Werner 2001). Second,

there might not exist an SDF that makes the price of the assets equal to the sum

of expected discounted value of next period dividend and resale price. In other

words, with more general portfolio constraints (rather than borrowing constraints),

the fundamental theorem of asset pricing may not hold (this is the case, for example,

for short sale constraints).

Despite these difficulties, I show that an arbitrage-based theory of bubbles still

exists, and it reduces to the approach of Santos and Woodford (1997) for the case

of borrowing constraints. Indeed, unrestricted arbitrage opportunities, that is arbi-

trage opportunities that can be added to any feasible trading strategy and scaled up

arbitrarily cannot exist. Equivalently, there cannot be arbitrage opportunities in the

recession cones of agents’ constraints. A Farkas-Stiemke lemma for cones establishes

the existence of agent specific SDFs that can be used in discounting dividends. Due

to heterogeneity in agents’ constraints and information, the notion of high interest

rates is now agent specific. Interest rates are high from the point of view of an agent

3The impatience assumption was introduced by Magill and Quinzii (1994) and Levine and Zame
(1996) and used to prove the existence of equilibrium in economies with infinite horizon and incom-
plete markets.
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if the present value of aggregate endowment is finite under all of his SDFs. Paral-

leling Santos and Woodford (1997), high interest rates for an agent amount to the

existence of a portfolio in the recession cone of his constraints with payoff in excess

of the aggregate endowment. This follows from the duality result in Huang (2002).

Given an arbitrary SDF derived from the absence of unrestricted arbitrages for a

given agent, the price of an asset can be decomposed into three nonnegative compo-

nents. The first term is the discounted present value of the asset’s dividends. When

the SDF is given by the intertemporal marginal rates of substitution of the agent, it

represents what the agent would be willing to pay if he was forced to maintain his

holdings of one unit of the asset forever.

The second term in the decomposition represents the resale option afforded to

the agent by being long one unit of the asset. The term was coined by Scheinkman

and Xiong (2003) and captures the excess over what the agent is willing to pay if he

cannot trade the asset in the future. Pascoa, Petrassi, and Torres-Martinez (2011)

and Araujo, Páscoa, and Torres-Mart́ınez (2011) refer to it as the shadow price of

agent’s constraints, as it measures deviations from the fundamental theorem of asset

pricing. It represents the value of all future services in relaxing (binding) financial

constraints. Cochrane (2002) further interprets the resale option as the convenience

yield generated by being long one unit of the asset, as holding inventories helps to

better smooth demand in the presence of shorting restrictions.

Finally, the third component is given by the asymptotic expected discounted

value of the asset, and will be referred to as a bubble (under the chosen SDF),

whenever it is nonzero. In discounted terms, the bubble is a martingale. This is

the usual definition of a rational bubble found in the literature, and coincides with

the definition of Santos and Woodford (1997), since with borrowing constraints the

resale option is always zero.

The first non-existence of bubbles result (Theorem 3.1) shows that there are no

bubbles in assets in positive supply from the point of view of uninformed (having

only public information) agents if they perceive interest rates as high. Theorem

3.1 of Santos and Woodford (1997) obtains as a particular case if agents have sym-

metric information and homogeneous beliefs, and face borrowing constraints. Two
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corollaries follow for particular portfolio constraints, without requiring the presence

of uninformed agents, but at the cost of additional assumptions. If agents face no

short sales restrictions and if there is an agent with high interest rates that is un-

constrained in a given asset infinitely often, then there exists a SDF associated to

that agent under which the asset is bubble-free. Alternatively, if agents face debt or

borrowing constraints and markets are complete from the point of view of a (hypo-

thetical) uninformed agent having high interest rates, then there are no bubbles in

assets in positive supply under any agent specific SDF.

By imposing the same form of impatience on agents as Santos and Woodford

(1997), the previous non-existence results can be substantially strengthened. The

presence of uninformed agents is not needed. Moreover, bubbles are absent under

any SDF associated to an agent with high interest rates (Theorem 3.4). This result

extends Theorem 3.3 in Santos and Woodford (1997) to economies with differences

in beliefs and general portfolio constraints.

The absence of bubbles under asymmetric information was anticipated by Tirole

(1982), in a model with risk neutral agents and only one asset. However, as pointed

out by Kocherlakota (1992), he overlooked the crucial need for portfolio restrictions.

Without them, agents can run Ponzi schemes and no equilibrium (and of course, no

bubbles) can exist. Yu (1998) allowed for asymmetric information in the framework

of Santos and Woodford (1997) with agents subject to borrowing constraints and

showed that their Theorem 3.3, on the non-existence of bubbles when agents are

impatient, is still true. By contrast, the non-existence of bubbles results of this paper

applies to economies with a variety of portfolio constraints (including borrowing,

debt, short sale or margin constraints) and heterogeneous beliefs, in addition to

asymmetric information. Moreover, some of the results in-here do not make use of

the impatience assumption.

In apparent contradiction to my message, Harrison and Kreps (1978) and a large

body of subsequent literature reviewed in Xiong (2013) (see, for example Morris 1996,

Scheinkman and Xiong 2003) argue that “speculative” bubbles exist in economies

with short sale constraints and heterogeneous beliefs. In the language of this paper,

speculative bubbles refer to resale options (convenience yields). Thus an asset has a
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speculative bubble if, for each agent, his resale option (convenience yield) calculated

using his own intertemporal marginal rates of substitution (IMRS henceforth) as

SDF is positive.

There is nothing special about heterogeneous beliefs or short sale constraints in

generating “speculative bubbles”. For example, in limited enforcement economies

with homogeneous beliefs and (endogenous) debt constraints (Alvarez and Jermann

2000), at each period of time the (unique) stochastic discount factor is given by the

highest IMRS of all agents (or equivalently, the IMRS of the unconstrained agents).

The price of an asset is equal to the present value of dividends when discounted

using this “natural” (market) stochastic discount factor, therefore there are no resale

options and (rational) bubbles under this SDF. However the price of the asset strictly

exceeds its present value of dividends discounted using the IMRS of any given agent,

and therefore “speculative bubbles” exist. In fact most of the models with (binding)

financial frictions encountered in the literature display “speculative bubbles”. This

suggests that indeed, resale option or convenience yield is a better term (rather than

“bubble”). This paper reserves the term bubble for “rational” (asymptotic) bubbles,

which are discounted martingales, and can occur only in economies with infinitely

many trading dates.

Under the arbitrage-based valuation theory developed here, in both types of

economies mentioned before (heterogeneous beliefs and short sale constraints, or

limited enforcement economies with homogeneous beliefs and debt limits), the set of

valid SDFs contains also the “mixture” of agents’ IMRS. In particular, at each pe-

riod, the IMRS of an unconstrained agent who chooses to hold the asset can be used

for discounting next period’s dividend. Therefore there are arbitrage-free SDFs that

martingale-price the assets in positive supply. Under such SDFs there are no resale

options, and hence there are no speculative bubbles (Proposition 3.5). Moreover,

there are also no rational bubbles under such SDFs, by Theorem 3.4, if interest rates

are high (from the point of view of any agent). Thus with symmetric information,

the price of an asset in positive supply cannot be unambiguously higher than the

discounted present value of its dividends, even with heterogeneous beliefs and short

sale constraints.
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However, with asymmetric information and short sale constraints, resale options

can be positive under any arbitrage-free SDF (including mixtures of agents’ IMRS).

Such examples with positive resale options are constructed in Allen, Morris, and

Postlewaite (1993). The reason is that the “unconstrained” agent holding positive

amounts of the asset pools the information of several agents. With asymmetric

information, only fully informed agents can, in general, rationalize the price of the

asset as being equal to the present value of its dividends.

The results of this paper indicate that asymmetric information, heterogeneous

beliefs or short sale constraints do not cause rational bubbles. The need for low

interest rates in order to sustain bubbles remains. Recent work suggests that low

interest rates might be more prevalent than thought before. On the theoretical front,

we now know that environments with limited enforcement lead naturally to low

interest rates and robust bubbles (Hellwig and Lorenzoni 2009, Bidian 2011, Bidian

2014). On the empirical front, Geerolf (2013), by using a new data set, overturned the

finding of Abel, Mankiw, Summers, and Zeckhauser (1989) that capital in developed

economies is sufficiently productive. The return on capital in excess of investment

as a fraction of GDP is not in general positive and bounded away from zero, and

therefore bubbles cannot be ruled out.

2 Arbitrage-based definition of bubbles

2.1 Setup

The economy has an infinite horizon and is stochastic. The time periods are indexed

by the set N := {0, 1, . . .}. There is a single consumption good and a finite number

I of consumers that have asymmetric information and heterogeneous beliefs. Agent

i’s information is described by a filtration (F it )∞t=0, which is an increasing sequence

of σ-algebras on the set of states of the world Ω. Each σ-algebra F it is interpreted

as agent’s i information at period t and is finite. Thus for ω ∈ Ω and t ∈ N, the set

of states that i believes are possible at t if the true state is ω is F it (ω) := ∩{A ∈
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F it | ω ∈ A}.4 The beliefs of i are given by a probability P i on (Ω, σ(∪∞t=0F it )), with

P i(F it (ω)) > 0, for all t and ω. The heterogeneity in beliefs can be caused by different

priors or by distortions in updating during the learning process.

The join (pool) filtration F = (Ft)∞t=0 is defined as the aggregate information of all

agents: Ft := σ(∪i∈IF it ), for all t. Let F∞ := σ(∪∞t=0Ft), and let P be a probability

on F∞ such that P (F it (ω)) > 0 for all i, t, ω.5 The meet filtration (Fmt ) captures the

public information, or the common knowledge of all agents: Fmt := ∩iF it , for all t.

Let G = (Gt)∞t=0 be a filtration on (Ω,F∞). A sequence x = (xt)t∈N of random

variables (F∞-measurable real-valued functions) is a stochastic process adapted to

(Gt)∞t=0 if for each t ∈ N, xt is Gt-measurable. X(G) is the set of all stochastic

processes adapted to G, and X+(G) (respectively X++(G)) contains the processes

x ∈ X(G) such that xt ≥ 0 P -almost surely (respectively xt > 0 P -almost surely)

for all t ∈ N. All statements, equalities, and inequalities involving random variables

are assumed to hold only P -almost surely, and this qualifier is omitted.

Agent i has endowments ei ∈ X+(F i), and his continuation utility at t provided by

a consumption stream c ∈ X+(F i) is U i
t (c) := EP i

Fi
t

∑
s≥t ū

i
s(cs) where ūis : R+ → R

is continuous, increasing and concave for all s ∈ N and EP i

Fi
t
(·) is the conditional

expectation with respect to probability P i and σ-algebra F it . Let βit > 0 be the

Radon-Nikodym derivative of P i with respect to P , when restricted to F it , and set

uit := βitū
i
t. It follows that U i

t (c) = EFi
t

∑
s≥t u

i
t(ct) where EFi

t
(·) is to expectation

with respect to P , conditional on F it . Without loss of generality, throughout the

paper the expectations with respect to agents’ beliefs are converted to expectations

with respect to P , via the use of Radon-Nikodym derivatives as above.

There is a finite number J of infinitely lived, disposable securities, traded at every

date. The dividends of asset j ∈ {1, 2, . . . , J} are described by the common knowl-

edge process dj ∈ X+(Fm). The ex-dividend price per share of firm j is a process

pj ∈ X+(Fm). Thus it is assumed that agents already extracted all the available

information from prices and dividends, refining their information accordingly. Start-

4Using the usual “event tree” terminology, F i
t (ω) is the date t node containing state (“leaf”) ω.

5For example, each P i can be defined on F∞ from the start and P can be taken to be the average
belief.

8



ing with “post-extraction” prices and dividends is without loss of generality, and

simplifies the notation. Denote by d = (d1, . . . , dJ) ∈ XJ
+(Fm) the dividend vector

process, and by p = (p1, . . . , pJ) ∈ XJ
+(Fm) the price vector process.

Consumer i has an initial endowment θi−1 = (θi,1−1, . . . , θ
i,J
−1)′ of securities (F i0-

measurable random J-dimensional random vector) and his trading strategy is repre-

sented by a vector process θi = (θi,1, . . . , θi,J)′ ∈ XJ(F i). Securities are in nonnega-

tive supply, thus θ̄ :=
∑I

i=1 θ
i
−1 ∈ RJ

+. Let e :=
∑

i e
i be the aggregate endowment

and ẽ := e+dθ̄ be the aggregate goods supply. The aggregate endowment is assumed

to be common knowledge, that is e ∈ X+(Fm). Consumer i’s portfolios at t are re-

stricted to a set Θt(p;F i) of Ft-measurable and J-dimensional random vectors. These

portfolio constraints are meant to prevent Ponzi schemes. It follows that agent’s

trading strategies are restricted to the set Θ(p;F i) :=
∏∞

t=0 Θt(p;F i) ⊂ XJ(F i). I

assume that 0 ∈ Θ(p;F i), thus agents can always choose not to trade.

The budget constraint of agent i facing prices p is

Bi(p) =
{

(ci, θi) ∈ X+(F i)×Θ(p;F i) | cit + ptθ
i
t ≤ eit + (pt + dt)θ

i
t−1,∀t ≥ 0

}
.

(2.1)

The definition of a rational expectations equilibrium is standard and coincides with

the one used by Allen, Morris, and Postlewaite (1993) in their particular framework.

Definition 2.1. A vector
(
p, (ci)Ii=1, (θ

i)Ii=1

)
of prices and agents’ consumption and

trading strategies is an equilibrium if:

i. The consumption and trading strategies of each agent i are feasible and optimal:

(ci, θi) ∈ Bi(p), and U i
0(c

i) ≥ U i
0(ĉ

i), for all (ĉi, θ̂i) ∈ Bi (p).

ii. Markets for goods and securities clear,

I∑
i=1

cit =
I∑
i=1

eit + dt · θ̄,
I∑
i=1

θit = θ̄, ∀t ∈ N. (2.2)
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2.2 State price densities

A process θ ∈ XJ(F i) is an arbitrage opportunity for agent i at prices p if

(pt + dt)θt−1 − ptθt ≥ 0,∀t ≥ 0,

with at least one of the inequalities being strict with positive probability, where

θ−1 := 0 ∈ RJ .

Consider an equilibrium
(
p, (ci)Ii=1, (θ

i)Ii=1

)
. With portfolio constraints, the strict

monotonicity of an agent i’s preferences does not guarantee the absence of feasible

(belonging to Θ(p;F i)) arbitrage opportunities (see, for example, Leroy and Werner

2001). However, it guarantees the absence of unrestricted arbitrage opportunities in

R(Θ(p;F i)), the recession cone6 of Θ(p;F i):

R(Θ(p;F i)) :=
{
θ ∈ XJ(F i) |Θ(p;F i) + λθ ⊂ Θ(p;F i),∀λ > 0

}
.

Indeed, if θ ∈ R(Θ(p;F i)) is an arbitrage opportunity, agent i would alter his trading

strategy to θi + θ, which is feasible and provides strictly higher utility.7

Throughout the paper, it is assumed that the constraints do no prevent agents

from adding positive holdings of shares to their portfolios, and that the recession

cones are polyhedral:8

Assumption 2.1. For each ω ∈ Ω and t ∈ N, the set {θt(ω) | θ ∈ R(Θ(p;F i))} (⊂
RJ) is a polyhedral cone containing RJ

+.

6The recession cone of a subset D of a vector space X is the set R(D) := {d ∈ X | D + λd ⊂
D,∀λ > 0}.

7If agent’s i utilities ui
t go to infinity as consumption goes to infinity, it follows that unlim-

ited arbitrage opportunities must be absent. An unlimited arbitrage opportunity is an arbitrage
opportunity that belongs to the cone of unlimited portfolios in Θ(p;F i):

R̄(Θ(p;F i)) :=
{
θ ∈ Θ(p;F i) | λθ ⊂ Θ(p;F i),∀λ > 0

}
.

All the results of this paper hold if recession cones R(Θ(p;F i)) are substituted by R̄(Θ(p;F i)) (if
the additional utility unboundedness assumption is made). For the canonical cases of borrowing,
debt and short sales constraints, R(Θ(p;F i)) = R̄(Θ(p;F i)), as it will be seen next.

8A polyhedral cone is the intersection of a finite number of half-spaces of a Euclidean space that
is stable under addition and multiplication by nonnegative real numbers.
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Absence of unrestricted arbitrages implies, in particular, that for each t ∈ N,

arbitrage opportunities in R(Θ(p;F i)) which are equal to zero at all periods except

t (henceforth referred to as one-period arbitrage opportunities) must be absent. A

Stiemke lemma for cones (Appendix A) shows that the absence of one-period arbi-

trage opportunities in R(Θ(p;F i)) is equivalent to the existence of an a ∈ X++(F i)
such that (

pt − EF i
t

at+1

at
(pt+1 + dt+1)

)
θt ≥ 0,∀t ∈ N,∀θ ∈ R(Θ(p;F i)). (2.3)

Let A(p;F i) be the set of all processes a ∈ X++(F i) satisfying equation (2.3), with

a0 := 1 by normalization. An element of A(p;F i) is called a state price density given

the information structure F i.
The discounted present value of a nonnegative process x ∈ X+(F) under a

state price density a ∈ A(p;F i) given the information structure F i is the process

f(a, x;F i) ∈ X+(F i) defined by

ft(a, x;F i) :=
1

at
EF i

t

∑
s>t

asxs, ∀t ∈ N. (2.4)

Denote by πt(x;F i) the supremum across all state price densities in A(p;F i) of

the discounted present value of x at t:

πt(x;F i) := sup
a∈A(p;F i)

ft(a, x;F i). (2.5)

Notice that for computing πt(x;F i), it is enough to take the supremum in (2.5) over

the maximal elements of the set A(p;F i), defined as

Ā(p;F i) := {a ∈ A(p;F i) | 6 ∃a′ ∈ A(p;F i) \ {a} such that a ≤ a′}. (2.6)

Huang (2002, Theorem 3.2) shows that if x ∈ X(F i), then πt(x;F i) represents also

the minimum replication cost at period t of the dividend stream (xs)s>t for agent i,
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when he is restricted to holding trading strategies in R(Θ(p;F i)):

πt(x;F i) = inf{ptθt | θ ∈ R(Θ(p;F i)), (ps + ds)θs−1 − psθs ≥ xs,∀s > t}. (2.7)

I illustrate the concepts introduced in this section for the most common portfolio

constraints encountered in the literature (see, for example, He and Modest 1995):

borrowing constraints, solvency (debt) constraints and short sale constraints.

2.2.1 Borrowing constraints

Agent i is subject to borrowing limits wi ∈ X(F i) if9

Θ(p;F i) =
{
θ ∈ XJ(F i) | ptθt ≥ wit,∀t ≥ 0

}
. (2.8)

I assume that −wi ∈ X+(F i) (wi ≤ 0), thus agents are not subjected to forced

saving. Notice that

R(Θ(p;F i)) = {θ ∈ XJ(F i) | ptθt ≥ 0,∀t ≥ 0}, (2.9)

therefore for each ω ∈ Ω and t ∈ N,

{
θt(ω) | θ ∈ R(Θ(p;F i))

}
= {z ∈ RJ | pt(ω)z ≥ 0},

which is a polyhedral cone in RJ containing RJ
+. Motzkin’s (1951) transposition

theorem and (2.3) and (2.9) imply that

A(p;F i) =
{
a ∈ X̄++(F i) | a0 = 1 and there is a φ ∈ X+(F i) such that

pt − EF i
t

at+1

at
(pt+1 + dt+1) = φtpt,∀t ≥ 0

}
. (2.10)

9Borrowing constraints are referred to as wealth constraints by Santos and Woodford (1997).
I avoid this terminology, as both borrowing and solvency (debt) constraints (studied in the next
section) impose bounds on end of period, respectively beginning of period wealth, and therefore
can be regarded as wealth constraints.
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Notice that agent i’s marginal utilities belongs to A(p;F i) since the first order con-

ditions for agent i at t are (He and Modest 1995)

pt − EF i
t

ui′t+1(c
i
t+1)

ui′t (cit)
(pt+1 + dt+1) = φtpt,

where φt ≥ 0 is a Kuhn-Tucker multiplier.

The set of maximal state price densities Ā(p;F i) is therefore equal to A=(p;F i),
the set of processes that martingale-price all assets:

A=(p;F i) :=

{
a ∈ X++(F i) | a0 = 1, pt = EFi

t

at+1

at
(pt+1 + dt+1),∀t ≥ 0

}
. (2.11)

2.2.2 Solvency (debt) constraints

Solvency constraints (He and Modest 1995, Alvarez and Jermann 2000) are also

referred to as debt constraints (Hellwig and Lorenzoni 2009). I will use the two

terms interchangeably. Agent i is subject to solvency (debt) limits wi ∈ X(F i) if

Θ(p;F i) =
{
θ ∈ XJ(F i) | (pt+1 + dt+1)θt ≥ wit+1,∀t ≥ 0

}
. (2.12)

Debt limits are assumed to be nonpositive, that is wi ≤ 0. Notice that

R(Θ(p;F i)) = {θ ∈ XJ(F i) | (pt+1 + dt+1)θt ≥ 0,∀t ≥ 0}, (2.13)

therefore for each ω ∈ Ω and t ∈ N, {θt(ω) | θ ∈ R(Θ(p;F i))} contains RJ
+ and is a

polyhedral cone, as it is an intersection of a finite number of half-spaces.10 It follows

that for all t ≥ 0 and θ ∈ XJ ,(
pt − EF i

t

at+1

at
(pt+1 + dt+1)

)
θt ≥ 0 if (pt+1 + dt+1)θt ≥ 0. (2.14)

10This number equals the number of tree branches originating from Ft(ω), or the number of
atoms of Ft+1 that are included in Ft(ω).
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Motzkin’s (1951) transposition theorem and (2.14) imply that

A(p;F i) =
{
a ∈ X̄++(F i) | a0 = 1 and there exists φ ∈ X+(F i) such that

pt = EFi
t
((at+1/at + φt+1) (pt+1 + dt+1))

}
.

Clearly Ā(p;F i) is equal to the set of martingale-pricing densities A=(p;F i) in (2.11).

Again agent i’s marginal utilities belongs to A(p;F i) since the first order condi-

tions at t are (He and Modest 1995):

pt = EF i
t
(ui′t+1(c

i
t+1)/u

i′
t (cit) + φt+1)(pt+1 + dt+1),

where φt+1 ≥ 0 is a (F it+1-measurable) Kuhn-Tucker multiplier.

2.2.3 Short sale constraints

For each agent i, let wi ∈ XJ(F i) with wi ≤ 0. Agent i is subject to short sale limits

wi if

Θ(p;F i) =
{
θ ∈ XJ(F i) | θt ≥ wit,∀t ≥ 0

}
. (2.15)

In this case,

R(Θ(p;F i)) = XJ
+(F i), (2.16)

and therefore for each ω ∈ Ω and t ∈ N, {θt(ω) | θ ∈ R(Θ(p;F i))} is indeed a poly-

hedral cone, equal to RJ
+. By (2.3) and (2.16),

A(p;F i) =

{
a ∈ X++(F i) | a0 = 1, pt ≥ EFi

t

at+1

at
(pt+1 + dt+1),∀t ≥ 0

}
. (2.17)

Agent i’s marginal utilities are a valid state price density, since the first order con-

ditions are (He and Modest 1995)

pt − Et
ui′t+1(c

i
t+1)

ui′t (cit)
(pt+1 + dt+1) ≥ 0,∀t ≥ 0. (2.18)
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2.3 Price decomposition

The state price densities constructed using the absence of unrestricted arbitrage

opportunities are used here to define bubbles. Fix an a ∈ Ā(p;F i). Assumption 2.1

and (2.3) ensure that

pt − EF i
t

at+1

at
(pt+1 + dt+1) ≥ 0, ∀t ≥ 0. (2.19)

Define the (vector) process m(a, p;F i) ∈ XJ
+(F i) as

mt(a, p;F i) := pt − EFi
t

at+1

at
(pt+1 + dt+1) (≥ 0),∀t ≥ 0. (2.20)

It follows that

pt =
1

at
EFi

t

T∑
s=t+1

asds +
1

at
EF i

t

T−1∑
s=t

asms(a, p;F i) +
1

at
EF i

t
aTpT , (2.21)

and therefore

pt =
1

at
EFi

t

∑
s>t

asds +
1

at
EF i

t

∑
s≥t

asms(a, p;F i) + lim
T→∞

1

at
EFi

t
aTpT . (2.22)

Let

bt(a, p;F i) := lim
T→∞

1

at
EFi

t
aTpT . (2.23)

As a consequence of (2.22), the process b = (b1, . . . , bJ) is well-defined, non-negative,

and a · b(a, p;F i) is a martingale.

Therefore the price of each asset j ∈ {1, . . . , J} at t can be decomposed into three

nonnegative terms:

pjt =
1

at
EF i

t

∑
s>t

asd
j
s︸ ︷︷ ︸

dpv of dividends

+
1

at
EFi

t

∑
s≥t

asm
j
s(a, p;F i)︸ ︷︷ ︸

resale option (convenience yield)

+ lim
T→∞

1

at
EF i

t
aTp

j
T︸ ︷︷ ︸

bubble bjt (a,p;F i)

. (2.24)

The first term is ft(a, d
j;F i), which shows that the price of the asset is at least as
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high as the discounted present value of its dividends, using as discount rates any

state price density associated to the agent.

The last term bjt(a, p;F i) is referred to as a bubble in asset j under the state price

density a, whenever it is different from zero. Since a · bj(a, p;F i) is a martingale,

if bjt(a, p;F i) > 0 then it must be the case that bj0(a, p;F i) > 0. Following the

terminology of Santos and Woodford (1997), we say that asset j unambiguously

(ambiguously) has a bubble at t if bjt(a, p;F i) > 0 for all (some) a ∈ A(p;F i) and for

all (some) agents i. Thus the price of an asset having an unambiguous (ambiguous)

bubble component exceeds the valuations of the asset dividend for all (some) agents

and for all (some) agent specific state price densities.

The middle term 1
at
EF i

t

∑
s≥t asms(a, p

j;F i) in the decomposition (2.24) repre-

sents the resale option of agent i from being long a unit of asset j. The term

was coined by Scheinkman and Xiong (2003). If the state price density equals the

marginal utility of the agent i, that is if at/a0 = ui′t (cit)/u
i′
0 (ci0),

11 then the discounted

present value of dividends 1
at
EFi

t

∑
s>t asd

j
s represents what an agent is willing to pay

if he was forced to maintain the holdings of the asset forever. Thus the resale option

is the portion of the asset price that can be attributed to agent’s ability to sell the

asset in the future to unconstrained agents having a higher valuation of the asset.

Pascoa, Petrassi, and Torres-Martinez (2011) and Araujo, Páscoa, and Torres-

Mart́ınez (2011) also emphasize that the resale option is more appropriately inter-

preted as the relaxation of the financial constraints, rather than a “bubble”. It

represents the present value of future services in relaxing financial constraints, or

equivalently, the present value of shadow prices of the constraints. Finally, the resale

option can be interpreted as the convenience yield generated by being long one unit

of the asset j over its lifetime. With shorting restrictions, the holding of inventories

gives the owner of the asset the possibility to better smooth demand shocks by selling

the asset, especially when it commands a high price, and gives rise to a convenience

yield (Cochrane 2002).

11The division by ui′
0 (ci0) insures that the normalization a0 = 1 holds. As seen in Section 2.2,

each agent’s marginal utilities are a valid state price density for borrowing, debt and short sale
constraints.
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Under (martingale-pricing) state price densities in A=(p;F i) (see (2.11)), the re-

sale option is zero. Therefore our definition of bubbles given for general portfolio

constraints and differential information reduces to the definition employed by San-

tos and Woodford (1997) for economies with borrowing constraints and symmetric

information (P i = P , F i = F for all i).

3 Non-existence of bubbles

This section gives sufficient conditions under which bubbles on assets in positive

supply cannot be present in environments with high interest rates. Formally, interest

(discount) rates are high from the point of view of an agent i if π0(e;F i) <∞, that

is, if the discounted present value of the aggregate endowment is finite under all

agent’s i state price densities. Equivalently, agent i has a trading strategy in the

recession cone of his constraints whose payoffs dominate (from above) the aggregate

endowment. Interest rates are said to be high if they are high from the point of view

of each agent.

The first result (Theorem 3.1) shows that if interest rates are high from the point

of view of an uninformed agent (having only public information), then there exists

a state price density associated to that agent under which there is no bubble for all

assets in positive supply.

Theorem 3.1. Consider an equilibrium
(
p, (ci)Ii=1, (θ

i)Ii=1

)
. Assume that there ex-

ists an uninformed agent k ∈ {1, . . . , I}, (that is, with Fk = Fm) with portfo-

lio constraints satisfying R(Θ(p;Fk)) ⊂ R(Θ(p;F i)) for all i ∈ {1, . . . , I}. If

π0(e;Fk) < ∞, there exists ak ∈ Ā(p;Fk) such that bj0(a
k, p;Fk) = 0 for all se-

curities j in positive supply.

Proof. Since d ∈ XJ(Fk) and e ∈ X+(Fk) it follows that ẽ ∈ X+(Fk). As buy and

hold portfolios of each asset are feasible, (2.7) implies that πt(d
j;Fk) < pjt <∞, for

all t ∈ N and j ∈ J . Therefore πt(ẽ;Fk) <∞. For each ε > 0 and t ∈ N, (2.5) shows
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that there exists T (ε, t) ∈ N and ak(ε, t) ∈ Ā(p;Fk) such that for all T ≥ T (ε, t),

1

akt (ε, t)
EFk

t

T∑
s=t+1

aks(ε, t)ẽs ≥ πt(ẽ;Fk)− ε ≥

≥ 1

akt (ε, t)
EFk

t

(
T∑

s=t+1

aks(ε, t)ẽs + akT (ε, t)πT (ẽ;Fk)

)
− ε.

It follows that

1

akt (ε, t)
EFk

t
akT (ε, t)πT (ẽ;Fk) ≤ ε,∀T ≥ T (ε, t). (3.1)

Fix an ε0 > 0. Using (3.1), we construct inductively a sequence (Tn) and an ak ∈
Ā(p;Fk) with ak0 = 1, T0 = 0 and such that

EFk
Tn
akTn+1

πTn+1(ẽ;Fk) ≤ ε0/2
n,∀n ≥ 0. (3.2)

Notice that ci ≤ ei + (ci − ei)+, where (ci − ei)+ := max{ci − ei, 0}. As

R(Θ(p;Fk)) ⊂ R(Θ(p;F i)), it follows by (2.7) that

πs((c
i − ei)+;F i) < πs(ẽ;F i) < πs(ẽ;Fk) <∞,∀s. (3.3)

The optimality of (ci, θi) implies that for each agent i,

psθ
i
s ≤ πs((c

i − ei)+;F i),∀s ≥ 0. (3.4)

Indeed, assume by contradiction that psθ
i
s > πs((c

i−ei)+;F i). Therefore there exists

a θ ∈ R(Θ(p;F i)) super-replicating ((cin − ein)+)n≥s+1 and such that

psθ
i
s > psθs ≥ πs((c

i − ei)+;F i).

Since R(Θ(p;F i)) ⊂ Θ(p;F i), agent i can switch at s to strategy θ instead of θi,

which is feasible and leads to a higher consumption for the agent in all future periods
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and strictly higher at period s, contradicting the optimality of ci.

Using (3.3),

psθ̄ =
∑
i

psθ
i
s ≤

∑
i

πis((c
i − ei)+;F i) ≤

∑
i

πs(ẽ;F i) ≤ Iπs(ẽ;Fk),∀s ≥ 0. (3.5)

By (3.2) and (3.5),

EFk
0
akTn

pTn θ̄ ≤ I · EFk
0
akTn
· πTn(ẽ;Fk) ≤ I · ε0/2

n−1,∀n ≥ 1.

The conclusion follows, as

b0(a
k, p;Fk) · θ̄ = lim

n→∞
EFk

0
akTn

pTn θ̄ = 0.

The theorem shows that assets in positive supply have no (unambiguous) bub-

bles from the point of view of all uninformed agents with high interest rates. The

assumption R(Θ(p;Fk)) ⊂ R(Θ(p;F i)) for all i ∈ {1, . . . , I} made on the portfolio

constraints is mild and is satisfied whenever agents with coarser information have

access to fewer unrestricted portfolios. It holds, in particular, for borrowing, debt

and short sale constraints.

Theorem 3.1 in Santos and Woodford (1997) obtains as a particular case of the

theorem above, by assuming symmetric information and homogeneous beliefs (F i =

F , P i = P , for all i) and portfolio restrictions in the form of borrowing constraints.

When agents are subject to no short sales constraints, that is when they face

short sale limits wi = 0 (see Section 2.2.3), the existence of an uninformed agent can

be replaced by the assumption that there exists an agent with high interest rates

who is (uniformly) unconstrained infinitely often. Agent i is unconstrained infinitely

often in asset j if there exists ε > 0 such that the event {θi,jt ≥ ε} occurs infinitely

often, that is P
(
∩∞s=0 ∪t≥s {θ

i,j
t ≥ ε}

)
= 1.

Proposition 3.2. Assume that no short sales are allowed and let j be an asset

in positive supply. If agent i has high interest rates (π0(e;F i) < ∞) and if he
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is unconstrained in j infinitely often, then there exists ai ∈ Ā(p;F i) such that

bj0(a
i, p;F i) = 0.

Proof. Let ε > 0 such that {θi,jt ≥ ε} occurs infinitely often, and let ε0 ∈ (0, ε)

arbitrary. By repeating the arguments in the proof of Theorem 3.1, there exists an

increasing sequence (Tn)∞n=1 such that for all n ≥ 0,

EFi
Tn
aiTn+1

πTn+1(ẽ;F i) ≤ ε0/2
n and θi,jTn

> ε.

Using (3.4),

pjTn
· ε ≤ pjTn

θi,jTn
≤ pTnθ

i
Tn
≤ πTn((ci − ei)+;F i) ≤ πTn(ẽ;F i), ∀n ≥ 1.

Therefore

EF i
0
aiTn

pjTn
≤ ε0

ε
· 1

2n−1
,∀n ≥ 1,

and the conclusion follows by letting n→∞.

For a deterministic economy, Proposition 3.2 shows that bubbles in a positive

supply asset j can exist only if lim inft→∞ θ
i,j
t = 0, for all agents i, which is Proposition

3 in Kocherlakota (1992).

For debt and borrowing constraints, R(Θ(p;F i)) depends only on the filtration

F i and not on the actual bounds wi faced by the agent i. Therefore R(Θ(p;Fm)) can

be defined by extension, replacing F i by Fm in (2.9) or (2.13). Hence Ā(p;Fm) =

A=(p;Fm) and π0(e;Fm) are also well-defined. Even without assuming the existence

of uninformed agents, Theorem 3.1 implies that if interest rates are high with respect

to public information (that is, if π0(e;Fm) <∞), there exists a “common-knowledge”

state price density am ∈ A(p;Fm) such that there are no bubbles on assets in positive

supply under am. Each agent specific state price density ai ∈ A(p;F i) leads to a

common knowledge state price density if “averaged” over the public information.

If markets are complete with respect to the public information Fm, then there is

a unique common-knowledge state price density. This implies, in turn, that there

cannot be bubbles under any agent specific state price density, and therefore even
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ambiguous bubbles are absent. This reasoning is captured in Proposition 3.3 below.

Formally, markets are complete with respect to the public information Fm if for any

t ≥ 0 and any Fmt+1-measurable random variable xt+1, there exists an Fmt -measurable

J-dimensional random vector θt such that (pt+1 + dt+1)θt = xt+1. The definition

captures the idea that, ignoring portfolio constraints, an agent with information Fm

is able to achieve any desired payoff in all next period contingencies that he thinks

can arise, by trading in the available assets.

Proposition 3.3. Assume that all agents are subject to either debt or borrowing

constraints and that markets are complete and interest rates are high with respect

to the public information. Then bj0(a
i, p;F i) = 0 for each i ∈ {1, . . . , I}, each ai ∈

Ā(p;F i) and each security j in positive supply.

Proof. Market completeness implies that A(p;Fm) = A=(p;Fm) = {ām} (singleton).

With an identical proof as in Theorem 3.1, bjt(ā
m, p;Fm) = 0 for all securities j in

positive supply and all dates t.

Let ai ∈ Ā(p;F i) (= A=(p;F i)) and construct am ∈ X̄(Fm) as amt := EFm
t
ait. By

the pull-out and chain rule properties of conditional expectation (Kallenberg 2002,

Theorem 5.1),

amt pt = EFm
t
aitpt = EFm

t
EFi

t
ait+1(pt+1 + dt+1) =

= EFm
t

(pt+1 + dt+1)EFm
t+1
ait+1 = EFm

t
amt+1(pt+1 + dt+1),

thus am ∈ A=(p;Fm) and am = ām. For any security j in positive supply,

EFm
t

(
ait · b

j
t(a

i, p;F i)
)

= EFm
t

lim
T→∞

EF i
t
aiTp

j
T = lim

T→∞
EFm

t
EFi

t
aiTp

j
T =

= lim
T→∞

EFm
t
pjTEFm

T
aiT = amt b

j
t(a

m, p;Fm) = āmt b
j
t(ā

m, p;Fm) = 0, (3.6)

where the first equality is the definition of the bubble, the second holds by the

Lebesgue dominated convergence theorem, since EF i
t
aiTp

j
T ≤ aitpt (by (2.24)), and

the rest follow from the pull-out and chain rule properties of conditional expectation.

Therefore bjt(a
i, p;F i) = 0 for any date t, agent i, state price density ai ∈ Ā(p, d;F i)
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and asset j in positive supply.

Proposition 3.3 gives conditions under which the price of all assets in positive

supply equal the discounted present value of their dividends (as resale options are

zero) under all state price densities, for all agents.

All the non-existence of bubbles results presented so far are somewhat restrictive.

Theorem 3.1 ensures that there are no bubbles from the point of view of uninformed

agents with high interest rates. This limits severely the scope of the theorem, if there

are no (or few relative to the size of the economy) uninformed agents. Proposition

3.2 applies only to the case of no short sale constraints. Both results rule out only

unambiguous bubbles. Thus an agent might perceive that there is a bubble under a

state price density but not under another. Moreover, some agents think that there

are bubbles while others don’t. Examples of ambiguous bubbles can be constructed

even under symmetric information (Santos and Woodford 1997). Proposition 3.3

rules out also ambiguous bubbles, but it requires complete markets with respect to

the public information.

By strengthening the assumptions on agents’ preferences and imposing a form of

impatience, ambiguous bubbles can also be excluded. The non-existence of bubbles

applies to economies with general portfolio constraints and the presence of unin-

formed agents or market completeness with respect to public information is not

needed. It will be shown that the bubble component in a positive supply asset is

zero under any state price density of an agent with high interest rates (Theorem 3.4).

The following impatience assumption requires that at any date and state, an agent

prefers adding a given multiple of the aggregate supply of goods in the economy

to his current consumption at the cost of reducing all his future consumption by

a small fraction. It is satisfied by any continuous, stationary, recursive utility that

discounts the future (Santos and Woodford 1997), and holds trivially in finite horizon

economies. It was used also in the literature dealing with the existence of equilibrium

in infinite horizon economies (Levine and Zame 1996, Magill and Quinzii 1994).

Assumption 3.1. For each agent i, there exists κi > 0 and ηi ∈ (0, 1) such that for

any date t and any consumption process c ≤ ẽ, U i
t (ct+κ

iẽt, η
ict+1, η

ict+2, . . .) > U i
t (c).
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We also assume that the portfolio constraints do not prevent agents from scaling

back slightly their portfolios if they choose to do so.

Assumption 3.2. For each agent i, there exists λi ∈ (0, 1) such that for any θi ∈
Θ(p;F i), any 1 > λ ≥ λi and any date t, λθis ∈ Θs(p;F i) for all s ≥ t.

Borrowing, debt and short sale constraints satisfy Assumption 3.2, as wi ≤ 0.

Theorem 3.4. Consider an equilibrium
(
p, (ci)Ii=1, (θ

i)Ii=1

)
. Suppose that Assump-

tions 3.1 and 3.2 hold. If πt(e;Fn) < ∞ for some n ∈ {1, . . . , I}, then for any

a ∈ A(p;Fn), bjt(a, d;Fn) = 0 for all securities j in positive supply.

Proof. For each agent i, let γi := max{ηi, λi}. Assumptions 3.1 and 3.2 imply that

(1− γi)psθis ≤ κiẽs,∀s ∈ N. (3.7)

Indeed, suppose by contradiction that there exists s ∈ N such that (1 − γi)psθis >
κiẽs with positive probability. Construct the alternative consumption and trading

strategies

ĉi := (ci0, . . . , c
i
s−1, c

i
s + (1− γi)psθis, γicis+1, γ

icis+2, . . .),

θ̂i := (θi0, . . . , θ
i
s−1, γ

iθis, γ
iθis+1, . . .).

Notice that θ̂i ∈ Θ(p;F i), by Assumption 3.2. Moreover, (ĉi, θ̂i) ∈ Bi(p), and

U i
s(ĉ

i) > U i
s(c

i) on the set {(1 − γi)psθ
i
s > κiẽs}. Therefore agent i can sell at s

in states {(1 − γi)psθis > κiẽs} a fraction 1 − γi of his portfolio θis and increase his

consumption at s by more than kiẽs while consuming, respectively holding, a fraction

γi of the initial consumption, respectively portfolios, for all periods greater than t.

This would strictly increase his utility, contradicting the optimality of (ci, θi) for

agent i. It follows that

(1− γ)psθ̄ = (1− γ)ps
∑
i

θis ≤
∑
i

κiẽs ≤ Iκẽs,∀s ≥ 0, (3.8)
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where γ := maxi γ
i and κ := maxi κ

i. Hence for any a ∈ A(p;Fn),

1

at
EFn

t
aspsθ̄ ≤

Iκ

1− γ
1

at
EFn

t
asẽs,∀s ≥ t. (3.9)

Since πt(e;Fn) <∞,
1

at
EFn

t

∑
s>t

asẽs ≤ πt(ẽ;Fn) <∞, (3.10)

and thus lims→∞EFn
t
aspsθ̄ ≤ Iκ

1−γ lims→∞EFn
t
asẽs = 0. The conclusion follows.

This result extends Theorem 3.3 of Santos and Woodford (1997) to asymmetric

information economies and general portfolio constraints. It was obtained also by Yu

(1998) for the particular case of borrowing constraints and homogeneous beliefs.

The absence of bubbles on an asset under a martingale-pricing state price density

(for example, for borrowing or debt constraints) is tantamount to having the price

of the asset equal to its fundamental value under that state price density. State

price densities that jointly martingale-price the assets might not exist for short sale

constraints, and the price of an asset might not, in principle, equal the discounted

present value of its dividends, due to the presence of a resale option (convenience

yield).

A large body of literature, initiated by Harrison and Kreps (1978) and reviewed

in the introduction, analyzes the resale options (called “speculative bubbles”) in

economies with short sales constraints and heterogeneous beliefs (but symmetric

information), where the only allowable state price densities are those equal to the

marginal utilities of the agents.

For economies with short sale constraints and heterogeneous beliefs, the intertem-

poral marginal rate of substitutions of the unconstrained agents acquiring the asset

(being long) at each period of time lead to valid state price densities. Under such

discount factors, the resale option disappears. Combining this observation with The-

orem 3.4 on non-existence of bubbles, Proposition 3.5 shows that the price of an asset

in positive supply cannot be unambiguously higher than the discounted present value

of its dividends, even with heterogeneous beliefs and short sale constraints (but no
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asymmetric information).

Proposition 3.5. Consider an equilibrium
(
p, (ci)Ii=1, (θ

i)Ii=1

)
in which agents are

subject to short sale constraints. Assume that asset j is in positive supply. If

{πt(e;F) < ∞} and Assumptions 3.1 and 3.2 hold, then there exists a ∈ A(p;F)

such that pjt = f(a, dj;F).

Proof. Agent i’s first order conditions are given by (2.18) and the complementary

slackness condition(
pt − EFt

ui′t+1(c
i
t+1)

ui′t (cit)
(pt+1 + dt+1)

)
(θit − wit) = 0,∀t ≥ 0.

Define the process ı with values in {1, . . . , I} representing the “unconstrained” agent

holding positive amounts of asset j at each date and state:

ıt(ω) := min{i | i ∈ {1, . . . , I}, θi,jt (ω) > wi,jt (ω)}, ∀t ∈ N,∀ω ∈ Ω.

The information of the unconstrained agent ı is F ı ⊂ F given by F ıt (ω) := F ıt(ω)
t (ω),

for all t, ω. By construction, the resale option on asset j is zero when the intertempo-

ral marginal rates of substitution of the unconstrained agent ı are used in discounting,

in other words when discounting is done with a ∈ X++(F) constructed as a0 := 1

and

at+1 := a0 ·
t∏

n=0

uın′n+1(c
ın
n+1)

uın′n (cınn )
, ∀t ≥ 0.

Moreover, by Theorem 3.4 applied to F rather than Fn, there are no bubbles in j

under state price density a, and therefore the price of the asset j equals the discounted

present value of its dividends.

In the previous Proposition, R(Θ(p;F)), A(p;F) and πt(e;F) are defined by

extension using (2.16), (2.17) and (2.5) (or (2.7)) with F i substituted by F . With

symmetric information (F i = F = Fm), all agents have an identical set of state price

densities (A(p;F i) = A(p;F)) and therefore Proposition 3.5 guarantees that for each
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asset in positive supply, there exists a state price density common to all agents under

which the resale option component and the bubble component are zero.

With asymmetric information (F i 6= Fm), resale options can be positive under

any state price density a ∈ A(p;F i), for all agents i. Such examples with positive

resale options are constructed in Allen, Morris, and Postlewaite (1993). The reason

is that the unconstrained agent ı (see the construction in the proof of Proposition

3.5) pools the information of several agents. Formally, the filtration F ı of the uncon-

strained agent ı does not coincide with the filtration of some agent i, thus F ı 6= F i,
for all i ∈ {1, . . . , I}. With asymmetric information, Proposition 3.5 only shows that

all fully informed agents (if they exist) can rationalize the price of the asset as being

equal to the present value of its dividends, if they have high interest rates.

4 Conclusion

I show that the non-existence of bubbles in economies with high interest rates (Santos

and Woodford 1997) extends also to economies with general portfolio constraints

(rather than just borrowing constraints) and with differential information (heteroge-

neous beliefs and asymmetric information).

With short sale constraints and heterogeneous beliefs, but no asymmetric infor-

mation, (unambiguous) resale options cannot exist. With asymmetric information,

resale options are possible. The scope of asymmetric information in generating re-

sale options is intrinsically limited by the revelation of information through prices

in rational expectations equilibria. For full revelation not to obtain generically, the

number of prices has to be smaller than the number of sources of uncertainty (Allen

and Jordan 1998).

To my knowledge, there are no known generic full revelation results for the actual

infinite horizon model employed here. Moreover, as explained in Allen, Morris, and

Postlewaite (1993), some of the states in the probability space are meant to cap-

ture the uncertainty about what other agents know, rather than uncertainty about

fundamentals. Perturbations of the parameters that do not affect fundamentals in

those “private” states will not lead (generically) to distinct prices and therefore full
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revelation does not obtain with a careful interpretation of the space of allowed per-

turbations.

Additionally, the results apply also to economies with nominal (rather than real)

assets. Such economies are known to generate partially revealing equilibria, even

without a rich structure of uncertainty (see, for example Rahi 1995).

A Farkas-Stiemke lemma for cones

In this section, all vectors are assumed to be column vectors, unless specified other-

wise. Thus x ∈ Rn is regarded as a n× 1 matrix, and x′ denotes the transpose of x,

and it is a 1× n matrix. Let R ⊂ RJ be a cone. Denote by R∗ the polar cone of R:

R∗ := {z ∈ RJ | z′θ ≥ 0,∀θ ∈ R}.

Let A be an S × J real matrix, and let p ∈ RJ .

Condition A.1 (adapted Slater condition). Suppose that there exists θ̂ ∈ R such

that Aθ̂ ∈ RS
++.

The following is a particular case of the main theorem in Sposito and David

(1972):12

Lemma A.1 (Farkas lemma for cones). Suppose that Condition A.1 holds and that

R is a closed convex cone. There does not exist θ ∈ R such that

p′θ < 0 and Aθ ≥ 0

if and only if there exists λ ∈ RS
+ such that p− A′λ ∈ R∗.

I prove next a strict version of Farkas’ lemma for cones:

12The first of the two cones in the statement of their theorem is set to RS
+.
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Proposition A.2 (Stiemke lemma for cones). Suppose that Condition A.1 holds and

that R is a closed convex cone. There does not exist θ ∈ R such that

p′θ ≤ 0 and Aθ ≥ 0, with at least one strict inequality

if and only if there exists λ ∈ RS
++ such that p− A′λ ∈ R∗.

Proof. Sufficiency is immediate. To prove the necessity part, denote the rows of

A by a1, . . . , aS, and let a0 := −p′. Let Ā be the (S + 1) × J matrix having as

rows a0, a1, . . . , aS. Therefore there is no θ ∈ R such that Āθ ≥ 0 and Āθ 6= 0.

Applying Lemma A.1 S + 1 times, it follows that for each s ∈ {0, 1, . . . , S}, there

exists λs ∈ RS+1
+ with λss = 1 such that Ā′λs ∈ R∗. Therefore Ā′

∑S
s=0 λ

s ∈ R∗, and

the conclusion follows, since
∑S

s=0 λ
s ∈ RS+1

++ .
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