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Abstract

Limited enforcement of debt contracts and mild penalties for default can

lead to low equilibrium interest rates, to ensure debt repayment. Low interest

rates, in turn, create conditions for bubbles. I show that bubbles can arise as a

substitute to private liquidity when the punishment for default is a permanent

or a temporary interdiction to trade, and complement in this way the exist-

ing results for an interdiction to borrow as penalty for default (Hellwig and

Lorenzoni 2009). The size of bubbles is jointly determined by agents’ endoge-

nous debt limits and interest rates, and is not comonotonic with the amount of

risk sharing that takes place in different equilibria. Agents’ endogenous debt

limits are not necessarily more relaxed for agents with higher income.
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1 Introduction

A rational bubble is defined as the price of an asset in excess of the present value of

its dividends. Santos and Woodford (1997) show that bubbles on assets in positive
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supply cannot exist if the interest rates are high, that is, if the present value of

aggregate endowment is finite.1 Indeed, bubbles grow on average at the same rate as

the interest rates and therefore they are positive martingales when discounted by the

pricing kernel. With high interest rates, a bubble would become very large relative

to the aggregate endowment, with positive probability. This is incompatible with

the presence of optimizing, forward looking agents, who do not allow their financial

wealth to be too large relative to the present value of their future consumption.

This paper argues that low interest rates arise naturally to induce repayment in

economies with limited enforcement of debt contracts, and this can lead to bubbles.

Agents have the option to default on debt and incur a punishment, leading to a

(reduced) continuation utility that can be date and state dependent. As in Alvarez

and Jermann (2000), markets select endogenously the largest debt limits for the

agents so that repayment is always individually rational given future bounds on

debt.

When the punishment for default is an interdiction to borrow (IB), Hellwig and

Lorenzoni (2009) show that any non-autarchic equilibrium must have low interest

rates, and agents’ endogenous discounted (by the pricing kernel) debt limits are

martingales. Any such equilibrium with private debt is equivalent to an equilibrium

where no borrowing and lending between agents (private debt) is allowed, but in

which agents can acquire government debt. The public debt is “unbacked” and simply

rolled over. In a deterministic economy, this unbacked public debt is equivalent to a

fixed supply of fiat money, and therefore can be viewed as a bubble.

They establish the existence of non-autarchic equilibria in a Markov economy

with two agents with endowments switching with constant probability between a

high value and a low value, but with constant aggregate endowment. There is a

stationary equilibrium and a continuum of nonstationary equilibria converging to

autarchy. All equilibria have low interest rates and can sustain bubbles. The size of

(initial) bubbles comoves with (is in fact equal to) the (initial) amount of risk-sharing

(transfers) between agents.

In the same environment, I document the existence of bubbles for the other most

common penalties for default encountered in the literature: a permanent interdiction

to trade (IT) after default (Kehoe and Levine 1993, 2001, or Alvarez and Jermann

1For deterministic economies, the results of Santos and Woodford (1997) were anticipated by
Kocherlakota (1992) and later refined by Huang and Werner (2000).

2



2000, 2001), a temporary interdiction to trade for a finite (ITF) (and determinis-

tic) number of periods (Azariadis and Kaas 2008), or an interdiction to trade for a

random (ITR) number of periods (Azariadis and Kaas 2013). Under penalty (IT),

a defaulting agent is permanently excluded from the markets and consumes his en-

dowment. With penalty (ITF), after default an agent consume his endowment for

a predetermined number of periods, after which full trading privileges are restored.

Finally, under penalty (ITR), an agent in default permanently regains full access to

the markets with some fixed probability per period.

Penalty (IT) is more severe than (IB),(ITF) and (ITR), and is, in a sense, the

harshest penalty that can still sustain low interest rates. Indeed, if creditors can

confiscate an arbitrarily small fraction of the current and future income of a defaulting

agent (in addition to banning him from the markets), Bloise, Reichlin, and Tirelli

(2013, Appendix B) show that high interest rates must arise in equilibrium. The

reason is that each agent’s debt limits, in absolute value, are bounded from below

by the present value of the fraction of agent’s endowment that is garnished upon

default.

Finding equilibria with low interest rates does not guarantee the existence of bub-

bles. For example, under all the punishments for default and parameters considered

in this paper, autarchy is an equilibrium with low interest rates, but agents’ debt lim-

its are zero and no bubbles can be sustained. The necessary and sufficient condition

for the sustainability of bubbles is the existence of martingale components in agents’

discounted debt limits, which is a joint property of the endogenously determined

interest rates and debt bounds. Bubbles equal to the total martingale components

in agents’ debt limits are possible.

I show, therefore, that agents’ discounted debt limits have martingale compo-

nents. These components can be converted into bubbles (valued fiat money) using

Kocherlakota’s (2008) bubble equivalence theorem - any bubble-free equilibrium is

equivalent to a bubbly equilibrium in which agents’ debt limits are tightened by the

bubble times their initial endowment of the asset. In contrast to Hellwig and Loren-

zoni (2009)), under the penalties (IT), (ITF), (ITR) considered here (and in general,

for any penalties other than (IB)), private debt cannot be substituted entirely by

unbacked public debt (bubbles), as the discounted agents’ debt limits are not mar-
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tingales.2 Therefore bubbles (unbacked public debt) must coexist with private debt.

I consider first the penalty (IT). In addition to a stationary equilibrium with

high interest rates, there is a continuum of nonstationary equilibria with low interest

rates that can sustain bubbles. The multiplicity of equilibria was recognized also

by Bloise, Reichlin, and Tirelli (2013) and Antinolfi, Azariadis, and Bullard (2007).

However, they have not calculated the endogenous debt limits and show the existence

of martingale components in them.

For stationary equilibria associated to penalty (IT), Alvarez and Jermann (2001)

and Ábrahám and Cárceles-Poveda (2010) found that agents with higher income

have more relaxed debt limits. In other words, the level of debt that makes agents

indifferent between defaulting or not is higher for higher income agents. However, this

finding is not robust and does not apply to the nonstationary equilibria. There are

two opposite forces at work. A higher level of income makes default more attractive,

and therefore the value of the outside option is larger. However, higher income

agents might value more the access to markets and the possibility to save given

binding debt constraints in the future. In the nonstationary equilibria the first effect

can dominate, and high-income agents can have tighter debt limits at some dates.3

Moreover, in contrast to the penalty (IB) (see Hellwig and Lorenzoni 2009), the size

of sustainable bubbles is not comonotonic with the amount of risk-sharing (transfers

between agents) arising in the different equilibria.4

For the (ITF) penalty, I consider first the deterministic case and show the exis-

tence of a non-autarchic stationary equilibrium that can sustain bubbles, if interdic-

tion to trade is sufficiently short-lived.5 This equilibrium allows for less risk sharing

and smaller bubbles than in the stationary equilibrium under penalty (IB). Penalty

(ITF) can also lead to debt limits that are tighter for high income agents tghan for

low income agents at all dates (Section 5).

2In fact, discounted debt limits are submartingales for penalty (IT) (Bidian and Bejan 2012)
and can be supermartingales for (ITF), as seen in Section 5.

3In these equilibria the actual allocation of debt limits between agents is indeterminate, and is
achieved by varying agents’ initial wealth (or their starting wealth after a transition phase initiated
from fixed levels of wealth). As seen in Proposition 2.1, martingale components added to discounted
debt limits leave agents’ budget constraints unchanged if the initial wealth of the agent is increased
by the initial value of the martingale.

4It will be shown that the size of the sustainable bubble is not equal anymore to the current
amount of transfers, but rather to the expected discounted value of asymptotic transfers.

5Moreover, these equilibria are robust to the introduction of small bankruptcy costs, in the sense
of Azariadis and Kaas (2013).
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I show then the (generic) existence of stationary stochastic equilibria for penalty

(ITR), when the probabilities of reentering the market and of a state reversal are high.

These equilibria have low interest rates and can sustain bubbles. The stochastic case

for penalty (ITF) with a one-period interdiction to trade after default is a particular

case of the penalty (ITR) when agents reenter the markets with probability one upon

default.

The results of this paper suggests that low interest rates and rational bubbles

are the norm (rather the exception) in economies with limited enforcement and mild

penalties for default. This is in sharp contrast with the view that rational bubbles are

fragile/special. For example, Montrucchio and Privileggi (2001) show, under weak

assumptions on agent’s preferences, that bubbles cannot exist in a representative

agent economy. As mentioned earlier, even with heterogeneous agents, Santos and

Woodford (1997) prove that bubbles are only possible if interest rates are low.

Low interest rates are seen as unplausible, as they are ruled out by the presence of

an asset with dividends higher that some fraction of the aggregate endowment. Abel,

Mankiw, Summers, and Zeckhauser (1989), testing the dynamic efficiency of US and

six other developed economies, found that cash flows generated by the capital sector

exceed uniformly the level of investment. This finding was interpreted as evidence of

high interest rates. Geerolf (2013), however, using an updated data set and a different

measurement of land rents, overturns the conclusion of Abel, Mankiw, Summers, and

Zeckhauser (1989) and finds evidence of dynamic inefficiency and low interest rates.

A discussion of the challenges faced by the empirical literature on low interest

rates and rational bubbles in international debt is provided in Hellwig and Lorenzoni

(2009). Bidian (2011) also discusses the inherent difficulties and pitfalls in testing for

rational bubbles in stock prices. The contradictory findings of the empirical literature

on bubbles underscores the importance of a better (theoretical) understanding of the

conditions and frictions that can give rise to bubbles. The paper is part of this

mission.
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2 Model

2.1 Setup

Time periods are indexed by N := {0, 1, . . .}. The uncertainty is described by a time

homogeneous Markov process (st)t∈N with states {1, 2}, and with a probability of

reversal equal to π ∈ (0, 1]. Thus for any t ∈ N, st ∈ {1, 2} and st+1 6= st with

probability π. Let X be the set of stochastic processes adapted to the information

generated by (st)t∈N. Thus x = (xt)t∈N ∈ X if for each t, xt : {1, 2}N → R, and

xt(s0, s1, . . .) depends only on s0, s1, . . . , st. Denote by X+ (X++) the set of non-

negative (strictly positive) processes in X. The conditional expectation given the

information available at t is denoted by Et(·).
There are two agents I := {1, 2} with identical utilities on consumption processes

c ∈ X given by E0

∑
t≥0 β

tu(ct), where u is strictly increasing, strictly concave and

continuously differentiable, and β ∈ (0, 1). At each date t, agent i receives an income

yit := yH if st = i and yit := yL otherwise, with yH > yL. The agent with income

yH at t is referred to as the high-type at t, and the agent with income yL at t is the

low-type at t.

At each date t agents can trade in a complete set of one period Arrow securities.

The price at t of the Arrow security paying one unit of consumption at t + 1 if the

state changes (that is, st+1 6= st), respectively does not change (st+1 = st), is πqct ,

respectively (1 − π)qnct . The pricing kernel p ∈ X++ is defined by p0 := 1 and pt+1

pt

equals qct if st+1 6= st and qnct otherwise. There is also an infinitely-lived asset trading

at prices b ∈ X+, paying zero dividends and assumed in unit supply. This asset is

referred to as (fiat) money. Each agent i ∈ I has an initial nonnegative endowment

of money θi−1 ≥ 0, and additional wealth (in the form of Arrow securities) ai0. He

faces debt constraints requiring his beginning of period financial wealth to exceed

some negative bounds φi ∈ −X, meant to prevent Ponzi schemes. Consider an agent

i that starts period t with holdings at of Arrow securities and θt−1 of money, thus

with a financial wealth νt := at + btθt−1. Facing constraints φ and prices p, b, he

maximizes his continuation utility U i
t (c) subject to budget constraints,

max
(c,a,θ)∈Bit(νt,φi,p,b)

U i
t (c) := Et

∑
s≥t

βs−tu(cs),
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where Bi
t(νt, φ

i, p, b) is his budget constraint following t, defined as

Bi
t(νt,φ

i, p, b) := {(cs, as+1, θs)s≥t |as + bsθs−1 ≥ φis,

cs + Es
ps+1

ps
as+1 + psθs ≤ yis + as + bsθs−1,∀s ≥ t}. (2.1)

The optimal continuation utility (indirect utility) of the agent is given by

V i
t (νt, φ

i, p, b) := max
(c,a,θ)∈Bit(νt,φi,p,b)

U i
t (c). (2.2)

When there is no ambiguity about the future debt limits and prices faced by agent

i, I will denote V i
t (νt, φ

i, p, b) simply by V i
t (νt). The notation V H

t (νt), respectively

V L
t (νt) refers to the indirect utility of the high-type agent, respectively low-type

agent starting period t with wealth νt.

2.2 Equilibrium with endogenous debt limits

Consumer i can elect to default on his debt at any period t and receive a “penalty”

continuation utility V i,d
t (p, b, φi) that can depend on exogenous variables such as

endowments, but also on prices p, b, and even future debt limits φit+1, φ
i
t+2, . . .. When

no confusion can arise, I use simply V i,d
t to denote agent’s i continuation utility if he

defaults at t.

The debt limits φi are determined endogenously to reflect the maximal amount

of debt agents can hold without defaulting. Debt limits φi are self-enforcing for

agent i at prices p, b given penalties V i,d if Bi
t(φ

i
t, φ

i, p, b) 6= ∅ for all t ∈ N and the

agent prefers not to default, V i
t (φit, φ

i, p, b) ≥ V i,d
t ,∀t ∈ N. The debt limits φi are

not-too-tight (Alvarez and Jermann 2000) for agent i (at prices p, b) given penalties

V i,d if and only if

V i
t (φit, φ

i, p, b) = V i,d
t ,∀t ∈ N. (NTT)

Thus not-too-tight debt limits are self-enforcing bounds that do not restrict credit

unnecessarily.

Alvarez and Jermann (2000), building on the work of Kehoe and Levine (1993),

assume that the agents are subject to a permanent interdiction to trade following

default, that is

V i,d
t := U i

t (y
i), ∀t ∈ N. (IT)
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Hellwig and Lorenzoni (2009), following Bulow and Rogoff (1989), assume that agents

face an interdiction to borrow upon default. Hence agents can renege on their debt

and be required to hold nonnegative wealth thereafter, resulting in a continuation

utility that depends on prices,

V i,d
t := V i

t (0, 0, p, b),∀t ∈ N, (IB)

where the second argument in V i
t (0, 0, p, b) denotes the zero debt limits (the zero

process). Alternatively, agents can be subject to an interdiction to trade for a finite

number of periods M ≥ 1, and their holdings of money cannot be confiscated at

default time:

V i,d
t := Et

(
M−1∑
s=0

βsu(yit+s) + βMV i
t+M(bt+Mθ

i
t−1, φ

i, p, b)

)
,∀t ∈ N. (ITF)

Azariadis and Kaas (2013) analyzed a variant of (ITF), and assumed that agents

face an interdiction to trade for a random number of periods. When a consumer

defaults, he cannot trade securities in the default period. His holdings of money

cannot be confiscated. In any subsequent period, the consumer regains full access to

the markets with probability µ ∈ [0, 1]. In this case,

V i,d
t := Et

∑
s≥0

(1− µ)sβs
(
u(yit+s) + µβEtVt+s(bt+sθ

i
t−1, φ, p, b)

)
. (ITR)

A vector
(
p, b, (ci)i∈I , (a

i)i∈I , (θ
i)i∈I , (φ

i)i∈I , (V
i,d)i∈I

)
consisting of prices p, b, con-

sumption (ci), asset holdings (ai), (θi), debt constraints (φi) and penalties for default

(V i,d) is an equilibrium with initial money holdings (θi−1)i∈I and initial holdings of

wealth in the form of Arrow securities (ai0)i∈I if

i. Consumption and portfolios of each agent i are feasible and optimal: (ci, ai, θi) ∈
Bi

0(a
i
0 + b0θ

i
−1, φ

i, p, b) and U(ci) = V i
0 (ai0 + b0θ

i
−1, φ

i, p, b).

ii. Markets clear:
∑

i∈I c
i
t =

∑
i∈I y

i
t,
∑

i∈I θ
i
t−1 = 1,

∑
i∈I a

i
t = 0, ∀t ≥ 0.

iii. For each i ∈ I, φi is not-too-tight given V i,d: V i
t (φit, φ

i, p, b) = V i,d
t , ∀t ≥ 0.
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2.3 Rational bubbles

Money is a redundant security and plays no role in this economy. As money pays

no dividends, valued money will be referred to as a bubble. The absence of arbitrage

opportunities in an equilibrium implies that

ptbt = Etpt+1bt+1,∀t ≥ 0. (2.3)

The value of money (bt) has to grow on average at the rate of interest rates, or

equivalently, the discounted value of money is a martingale. This is the intrinsic

property of a rational bubble: discounted bubbles are martingales. As a consequence,

there exists a t such that bt 6= 0 at some t if and only the initial value of money is

nonzero, b0 6= 0.

Due to the redundancy of money, any equilibrium is equivalent with an equilib-

rium in which agents keep their holdings of money fixed to the initial level and trade

only in the Arrow securities. In other words, if (p, b, (ci), (ai), (θi), (φi), (V i,d)) is an

equilibrium, then (p, b, (ci), (āi), (θ̄i), (φi), (V i,d)) is an equilibrium with no trading in

money, that is with θ̄it−1 = θi−1, and in which āit+1 = ait+1 + bt+1(θ
i
t−θi−1) for all t ≥ 0

and all i ∈ I. We focus throughout only on equilibria with no trading in money.

For the rest of the paper, the penalty for default is assumed to be (IT), (IB),(ITF)

or (ITR). With these penalties, it is also sufficient to focus only on equilibria with

unvalued money. Any equilibrium having a bubble (valued money) is equivalent with

a bubble-free equilibrium in which an agent’s debt limits are relaxed by the size of the

bubble times his (initial) holdings of money. Conversely, given an equilibrium with

unvalued money in which the endogenous discounted debt limits have martingale

components (are lower than a negative martingale) is equivalent with a bubbly equi-

librium in which the martingale components in debt limits are converted into valued

money, creating a bubble. These claims follow by extending Kocherlakota’s (2008)

bubble equivalence theorem to the more general penalties for default considered here

(that can depend on the endogenous debt limits).

Proposition 2.1. (a) Let (p, b, (ci), (ai), (θi), (φi), (V i,d)) be an equilibrium (with

valued money). Then (p, 0, (ci), (ai), (θi), (φ̄i), (V i,d)) is an equilibrium, where

φ̄it = φit − btθi−1, for all t ≥ 0 and i ∈ I.

(b) Let (p, 0, (ci), (āi), (θ̄i), (φ̄i), (V i,d)) be an equilibrium (with unvalued money).
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For each i ∈ I, let εi ∈ X+ such that p · εi is a martingale and φi ≤ −εi. Then

(p, b, (ci), (ai), (θi), (φi), (V i,d)) is an equilibrium with b =
∑I

i=1 ε
i and

φi = φ̄i + εi, ai = āi + εi, θi = 0, for i 6= 1,

φ1 = φ̄1 + ε1, a1 = ā1 + ε1 −
∑
i∈I

εi, θ1 = 1.

Proof. (a) Since p(φ̄i − φi) = −pbθi−1 is a martingale,

(c, a, θ) ∈ Bi
t(νt, φ

i, p, b)⇔ (c, a+ φ̄i − φi, θ) ∈ Bi
t(νt + φ̄it − φit, φ̄i, p, 0), (2.4)

and therefore

V i
t (νt, φ

i, p, b) = V i
t (νt + φ̄it − φit, φ̄i, p, 0). (2.5)

Market clearing conditions hold. All that is left is to show that the tighter debt

limits φ̄i are not-too-tight, that is V i
t (φ̄it, φ̄

i, p, 0) = V i,d(p, 0, φ̄i). Setting νt := φt

in (2.5), V i
t (φ̄it, φ̄, p, 0) = V i

t (φt, φ, p, b). Since φi are not-too-tight, V i
t (φt, φ, p, b) =

V i,d(p, b, φi). Therefore φ̄i are not-too-tight if and only if

V i,d(p, 0, φ̄i) = V i,d(p, b, φi). (2.6)

For penalties (IT) and (IB), (2.6) holds as agent’s i continuation utilities after default

do not depend on the debt limits φi, φ̄i, and depend on b only through the pricing

kernel p, by the absence of arbitrage opportunities (2.3). For punishments (ITF),

V i,d
t (p, b, φi) = Et

(
M−1∑
s=0

βsu(yit+s) + βMV i
t+M(bt+Mθ

i
t−1, φ, p, b)

)

= Et

(
M−1∑
s=0

βsu(yit+s) + βMV i
t+M(0, φ̄, p, 0)

)
= V i,d

t (p, 0, φ̄i), (2.7)

where the first and last equality follow from the definition of penalties (ITF), while

the middle equality holds by (2.5). An identical reasoning shows that (2.6) holds for

penalty (ITR).

(b) Market clearing conditions hold. Agents’ optimality conditions are satisfied,

by (2.4). The not-too-tight property can be verified as above (see (2.5)-(2.7)).
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2.4 Constrained equilibria

Proposition 2.1 shows that the existence of bubbles (valued money) (bubbles) is

tantamount to the existence of martingale components in agents’ (discounted) debt

limits arising in an equilibrium without money. We focus henceforth on equilibria

(p, (ci), (ai), (φi), (V i,d)) with unvalued money (b = 0) and analyze the existence of

such martingale components. The first order conditions for agent i ∈ I (at allocations

with positive consumption) are

pt+1

pt
≥
βu′(cit+1)

u′(cit)
, with “=” if ait+1 > φit+1. (2.8)

I assume that there is enough heterogeneity in agents’ income or that the discount

rate β and the probability π of reversals are high enough so that

β̃
u′(yL)

u′(yH)
> 1, where β̃ :=

βπ

1− β + βπ
. (2.9)

I analyze the equilibria where the debt limit is binding in the high-endowment

state for each agent. Thus high-type agents always start the period with wealth

equal to their debt limit, and are indifferent between defaulting or not. I will refer

to such equilibria as constrained. Moreover, at any date n, the Arrow security prices

and agents’ consumption, asset holdings and debt limits are the same in all histories

(s0, s1, . . . , sn) having the same number of state reversals

τn :=
n∑
k=1

|sk − sk−1|. (2.10)

Denote by xt ∈ [0, yH) the transfer from the high-type agent to the low-type agent at

histories with t reversals. In other words, consumption of the high-type (respectively

low-type) at some date n is yH −xτn (respectively yL +xτn). Similarly, let (1−π)qnct

and πqct be the Arrow security prices in histories with t reversals. The first order
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conditions (2.8) for the two types of agents amount to (with

qnct = β,
βu′(yL + xt+1)

u′(yH − xt)
= qct , (2.11)

βu′(yH − xt+1)

u′(yL + xt)
≤ qct ,∀t ≥ 0. (2.12)

Using (2.11), inequality (2.12) can be written as

u′(yL + xt)

u′(yH − xt)
≥ u′(yL + (yH − yL − xt+1))

u′(yH − (yH − yL − xt+1))
,

which holds if and only if

xt + xt+1 ≤ yH − yL. (2.13)

Therefore transfers (xt) and Arrow security prices (qct , q
nc
t ) are compatible with

agents’ first order conditions if and only if (2.11) and (2.13) are satisfied. Denote

by at the beginning of period wealth of the low-type agent in all histories with t

reversals. In a constrained equilibrium, agents’ budget constraints are

xt − πqctat+1 + (1− π)qnct at = at. (2.14)

The debt limit φHt of a high-type agent in histories with t reversals is

φHt = −at. (2.15)

Constrained equilibria are thus entirely determined by the sequences of transfers and

beginning of period asset holdings and debt limits of low-types ((xt), (at), (φ
L
t )).

Consider a constrained equilibrium ((xt), (at), (φ
L
t )). What happens if the asset

holdings of the initial low-type are different from a0 and equal to some a0? In this

case there is a transition phase that lasts until the first state reversal, and then the

economy enters the paths described by the given constrained equilibrium. During the

transition, transfers and asset holdings are constant, and equal to x0 and a0. Let be

the transfers and asset holdings of low-types during the transition. The price of the

Arrow security contingent on a reversal next period ending the transition is πq0, while

the price of the Arrow security contingent on no reversal is (1 − π)β. Then x0, a0

followed by transfers and asset holdings (xt), (at) (after the transition ends) form
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an equilibrium if agents’ participation constraints in the initial period are satisfied

(initial utilities along the equilibrium path exceed the penalty continuation utilities )

and if agents’ budgets and the (necessary and sufficient) first order conditions hold,

x0 = πq0a0 − (1− π)βa0 + a0, q0 = β
u′(yL + x0)

u′(yH − x0)
, x0 + x0 ≤ yH − yL. (2.16)

Assume, for concreteness, that both agents start with zero wealth, thus a0 = 0.

Under all penalties considered here, the optimal continuation utilities of an agent

with zero initial wealth exceed the penalty continuation utilities (following default),

as the optimal paths following default are budget feasible for a non-defaulting agent

starting with zero wealth. By the equalities in (2.16), x0 is determined uniquely by

x0u′(yH − x0) = βπa0u
′(yL + x0), (2.17)

as the left hand side in (2.17) is strictly increasing. Thus x0, a0 followed by (xt), (at)

after the transition constitute an equilibrium if and only if x0 + x0 ≤ yH − yL, or

equivalently, by (2.17), if and only if

a0 ≤ (βπ)−1(yH − yL − x0). (2.18)

When the penalty for default is the interdiction to borrow (IB), Hellwig and

Lorenzoni (2009) show that there exists a unique (from the point of view of agents’

consumption) constrained stationary equilibrium, characterized by transfers xt = x∗

for all t such that equilibrium interest rates are zero, πqct + (1 − π)qnct = 1, or

alternatively,

u′(yH − x∗) = β̃u′(yL + x∗), (2.19)

with β̃ defined in (2.9). For any initial transfer 0 < x0 < x∗, there are nonstationary

equilibria (xt) converging monotonically to autarchy, xt ↘ 0. In the stationary

and nonstationary equilibria, agents’ discounted debt limits are martingales and

xt = −
∑

i∈I φ
i
t. All these equilibria can sustain bubbles of initial size x0 (Proposition

2.1). If there is no uncertainty and the state alternates deterministically between the

states 1, 2 (that is, if π = 1), then discounted debt limits are constant. Therefore debt

limits are φ1
t = −λxt, φ2

t = −(1− λ)xt, for all t, where λ ∈ [0, 1] is arbitrary (tighter

debt limits for agent 1 are compensated by higher initial wealth and viceversa).
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In the analysis of the other penalties for default ((IT), (ITF), (ITR)), I analyze

first the deterministic case π = 1. The general stochastic case (π < 1) builds on the

deterministic case. Notice that for π = 1, β̃ = β. The bond prices (qct ) are denoted

simply by (qt). Given transfers (xt), bond prices (qt) are determined by (2.11), while

the pricing kernel is

p0 = 1, pt+1 = q0q1 . . . qt,∀t ≥ 0. (2.20)

Asset holdings are obtained by iterating in (2.14),

(−1)t+1at+1 =
a0 −

∑t
s=0(−1)spsxs
pt+1

. (2.21)

3 Permanent interdiction to trade

Alvarez and Jermann (2001) analyzed only the stationary constrained equilibria asso-

ciated to this penalty. Antinolfi, Azariadis, and Bullard (2007) and Bloise, Reichlin,

and Tirelli (2013, Section 2) focused on the deterministic case and pointed out that,

in addition to the stationary constrained equilibrium, there are an infinite number

of nonstationary ones converging to autarchy. However, they have not computed

the not-too-tight debt limits supporting these allocations and analyzed the asymp-

totic behavior of discounted debt limits, which is crucial for understanding whether

bubbles can be sustained in equilibrium.

3.1 The deterministic case

Consider a constrained equilibrium ((xt), (at), (φ
L
t )). As high-types are indifferent

between defaulting or not,

0 = f(xt, xt+1) := u(yH) + βu(yL)− u(yH − xt)− βu(yL + xt+1). (3.1)

Knowing the transfers xt at t, (3.1) gives the transfers xt+1 (at t + 1) as a function

of xt, xt+1 = xnext(xt). Let x̄, x̄′ ∈ (0, yH − yL) satisfying f(x̄, x̄) = 0 and f(x̄′, yH −
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yL − x̄′) = 0, that is

u(yH − x̄) + βu(yL + x̄) = u(yH) + βu(yL), (3.2)

(1 + β)u(yH − x̄′) = u(yH) + βu(yL). (3.3)

Proposition 3.1 establishes the existence and uniqueness of x̄, x̄′ and shows that either

x̄ ≥ x̄′ ≥ yH−yL
2

or x̄ < x̄′ < yH−yL
2

. By construction, x̄ = xnext(x̄), thus x̄ represents

the (non-zero) stationary solution of the difference equation (3.1). On the other

hand, x̄′ + xnext(x̄′) = yH − yL, hence at transfer levels higher than x̄′, low-types

become unconstrained and (2.13) is violated.

Proposition 3.1. Choose x0 such that 0 ≤ min {x̄, x̄′}. There exists a unique

sequence (xt)t≥0 satisfying f(xt, xt+1) = 0 for all t ≥ 0, and (xt)t≥0 is strictly

decreasing to 0 if x0 /∈ {0, x̄} and constant if x0 ∈ {0, x̄}. Moreover, (xt) are

the transfers in a constrained equilibrium with asset holdings (2.21), where ini-

tial asset holdings a0 can be arbitrarily chosen in [L, L̄], with L := limt→∞ L2t−1,

L̄ := limt→∞ L2t = L + limt→∞ ptxt and Lt :=
∑t

s=0(−1)spsxs. Agents’ discounted

debt bounds (ptφ
1
t ), (ptφ

2
t ) are increasing sequences, and φLt = −xt − φHt = pt+1

pt
φHt+1,

for all t ≥ 0.

The proof is given in Appendix A. Since agents’ discounted debt limits are increas-

ing sequences, and the total credit in the economy equals the equilibrium transfers,

xt = −
∑

i∈I φ
i
t, it follows that a bubble of maximal initial size

− lim
t→∞

pt(φ
e
t + φot ) = lim

t→∞
ptxt (3.4)

can be sustained in equilibrium (Proposition (2.1)).

Proposition 3.1 shows that x̄ defined in (2.19) represents the transfers in a sta-

tionary constrained equilibrium if x̄ ≤ (yH − yL)/2, or equivalently, if6

(1 + β)u((yH + yL)/2) ≤ u(yH) + βu(yL). (3.5)

Bond prices are constant in this stationary equilibrium and equal to q(x̄) := βu′(yL+

x̄)/u′(yH − x̄) < 1 as x̄ > x∗ (with x∗ given in (2.19)), as shown at the beginning

6The inequality (3.5) can be understood as requiring that the first best symmetric allocation
in which each agent consumes half of the aggregate endowment does not satisfy the participation
constraints of the high type agents.
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of the proof of Proposition 3.1. Therefore lim ptx̄ = lim qt(x̄)x̄ = 0. No bubbles are

possible, since (3.4) does not hold, or alternatively, because interest rates are high.

Debt limits are

φH = − x̄

1 + q(x̄)
, φL = − q(x̄)x̄

1 + q(x̄)
. (3.6)

If (3.5) is violated, there exists an unconstrained stationary equilibrium with

perfect risk-sharing between agents, that is with transfers (yH−yL)/2. Again interest

rates are high as bond prices are qt = β, and no bubbles are possibles. Debt limits

are7

φH =
1

1− β

(
yH − x̄′ − yH + βyL

1 + β

)
, φL = βφHt .

If, on the other hand, x̄ ≥ (yH − yL)/2, that is if (3.5) is violated, then the

constant sequence of transfers equal to (yH − yL)/2 (in which consumers get half

of the aggregate endowment) leads to equilibrium bond prices equal to q = β < 1

(high-interest rates), and debt limits given by (3.6), with x̄ replaced by (yH − yL)/2

and q(x̄) replaced by β.

However, in all the nonstationary equilibria constructed in Proposition 3.1, the

actual allocation of debt limits between agents is indeterminate. Indeed, it will be

shown next that lim ptxt > 0 and therefore L < L̄. The indeterminacy in debt limits

is achieved by varying agents’ initial wealth. As seen in Proposition 2.1, martingales

added to discounted debt limits leave agents’ budget constraints unchanged if the

initial wealth of the agent is increased by the initial value of the martingale.

Proposition 3.2. Assume that agents have hyperbolic absolute risk aversion (HARA)

utility functions. Any nonstationary constrained equilibrium associated to transfers

(xt) with 0 < x0 < min {x̄, x̄′} and f(xt, xt+1) = 0 for all t ≥ 0 (as described in

Proposition 3.1 ) satisfies limt→∞ ptxt > 0, and therefore can sustain bubble injec-

tions, by (3.4).

Proof. Concavity of u implies that

u′(yH)xt < u(yH)− u(yH − xt) = β
(
u(yL + xt+1)− u(yL)

)
< βu′(yL)xt+1.

7Low-types starting with wealth φL < 0 will borrow the maximum amount, hence u(yL + φL −
βφH) + βV H(−a) = V L,d = u(yL) + βV H(−a), which implies φL = βφH . A high-type starting
with wealth φH and facing bond prices β will consume a constant amount c at all dates, which

implies u(c)
1−β = u(yH)+βu(yL)

1−β2 .
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Therefore xt+1/xt > u′(yH)/(βu′(yL), and by (2.11),

pt+1xt+1 = p0x0

t∏
s=0

xs+1/xs
ps/ps+1

≥ x0

t∏
s=0

u′(yH)/u′(yH − xs)
u′(yL)/u′(yL + xs+1)

.

Agents have HARA utilities u(c) := (α + γc)1−
1
γ /(γ − 1) defined on {c | − α < γc}

(Leroy and Werner 2001, p.96), with α, γ ≥ 0 and α + γ > 0 (so that any positive

consumption belongs to the allowed domain). As usual, for γ = 1, u(c) := ln(α + c)

and for γ = 0, u(c) := −e−αc.
For γ > 0 (that is, for power or log utilities),

u′(yH)/u′(yH − xs)
u′(yL)/u′(yL + xs+1)

=

( (
α + γ(yH − xs)

)
/
(
α + γyH

)
(α + γ(yL + xs+1)) / (α + γyL)

)γ

=

(
1− γxs/(α + γyH)

1 + γxs+1/(α + γyL)

)γ
.

As xt ↘ 0, there exists t0 ∈ N such that xt ≤ ln 2 for all t ≥ t0. Using the inequalities

exp(x) ≥ 1 + x ∀x ∈ R, exp(−x) < 1− x/2 ∀x ∈ (0, ln 2],

it follows that for all t ≥ t0,

pt+1xt+1

pt0xt0
≥

t∏
s=t0

exp

(
− 2γxs
α + γyH

− γxs+1

α + γyL

)
(3.7)

≥
t∏

s=t0

exp

(
− 3γxs
α + γyL

)
≥ exp

(
− 3γ

α + γyL

∞∑
s=t0

xs

)
.

For γ = 0 (that is, for exponential utility),

pt+1xt+1

p0x0
=

t∏
s=0

exp(−α(xs + xs+1)) ≥
t∏

s=0

exp(−2αxs) ≥ exp(−2α
∞∑
s=0

xs). (3.8)

Since xt ↘ 0, (A.3) implies that there exists 0 < l < 1 such that xt+1

xt
< l for all t

large enough, which implies the convergence of the series
∑
xt. Therefore (ptxt) is

bounded away from zero and lim ptxt > 0, by (3.7) and (3.8).

Proposition 3.2 shows that for a large class of utility functions the discounted

total debt limits do not vanish in the nonstationary equilibria of Proposition 3.1,
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and therefore bubbles can be sustained in equilibrium.8

The existing literature suggests that the endogeneous debt limits arising under

the penalty (IT) (studied in this section) are more relaxed for high-income agents.

Ábrahám and Cárceles-Poveda (2010) show this to be case for Markov equilibria,

when each agent’s income is iid over time. Alvarez and Jermann (2001) confirm this

finding for the stationary equilibria in the setup of this paper. It is true that even in

the nonstationary equilibria of Proposition 3.1, debt limits for high-types cannot be

tighter then the debt limits of low-types at all periods. Otherwise, if φHt ≥ φLt for

all t,
pt+1

pt
φHt+1 ≥ φHt ≥ φLt =

pt+1

pt
φHt+1,

and it follows that (ptφ
H
t ), (ptφ

L
t ) are constant, and φLt = φHt for all t. Nevertheless,

Proposition 3.2 (with HARA utilities) implies that L < L̄ since lim ptxt > 0. There-

fore there is an indeterminacy of agents’ debt limits, obtained by varying the initial

wealth of the agents.9. Among these debt limits, there are some for which φHt > φLt

at some dates t. This remains true even when the initial wealth of the agents is fixed

to zero (and there is a one period transition to the constrained equilibrium paths

described in Proposition 3.1). The numerical example of Section 5 illustrates these

issues.

For penalty (IB), Hellwig and Lorenzoni (2009) showed that in all non-autarchic

constrained equilibria (stationary and nonstationary), the maximal initial size of

a bubble equals the initial amount of trading (transfers) between agents. Thus

one could conjecture that for a given penalty for default, if multiple equilibria are

possible, the size of the bubbles they can sustain can be ranked by the amount of risk-

sharing (trading) they allow. This is false for penalty (IT). Indeed, given equilibrium

transfers (xt)t≥0 with xt ↘ 0 with associated bond prices (qt)t≥0, the initial size of

the bubble is given by lim ptxt = lim q0q1 . . . qt−1xt. Therefore the forward “shifted”

equilibrium sequence of transfers (x′t)t≥0 given by x′t = xt+1 (that is, starting from

x′0 := x1) leads to a bubble of initial size lim q1q2 . . . qt−1xt = 1
q0

lim ptxt. If the initial

level of transfer is x0 is slightly larger than x∗ (given by (2.19)), then q0 < 1 (since at

8The HARA utility assumption in Proposition 3.2 simplifies the proof, and it can likely be
relaxed.

9As seen in Proposition 2.1, martingales added to discounted debt limits leave agents’ budget
constraints unchanged if the initial wealth of the agent is increased by the initial value of the
martingale.
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constant transfers x∗, bond prices are 1), and transfers (x′t) lead to a bubble greater

than the one possible under transfers (xt) (even though x′0 = x1 < x0). On the other

hand, if initial transfers x0 are lower than x∗, then q0 > 1 and the “shifted” sequence

of transfers (x′t) leads to a smaller bubble than (xt).

Allowing for a one-period transition from a fixed level of initial wealth preserves

this conclusion. Thus the size of bubbles in the first period (when the economy

reaches the constrained equilibrium path) is not necessarily comonotonic with the

amount of transfers in the same period. The numerical example of Section 5 makes

this discussion concrete.

3.2 The stochastic case

The stochastic case (π < 1) can be reduced to the deterministic case analyzed before.

Agents’ continuation utilities after default are determined from

V H,d = u(yH) + βπV L,d + β(1− π)V H,d,

V L,d = u(yL) + βπV H,d + β(1− π)V L,d,

which leads to

V H,d =
u(yH) + β̃u(yL)

(1− β + βπ)(1− β̃2)
, (3.9)

where β̃ was defined in (2.9). Similarly, agents’ continuation utilities in a constrained

equilibrium ((xt), (at), (φ
L
t )) are

V H(−at) = u(yH − xt) + βπV L(at+1) + β(1− π)V H(−at),

V L(at) = u(yL + xt) + βπV H(−at+1) + β(1− π)V L(at),

and therefore

V H(−at) =
u(yH − xt) + β̃u(yL + xt+1)

(1− β + βπ)(1− β̃2)
. (3.10)

As high-types are indifferent between defaulting or not, V H(−at) = V H,d, hence

u(yH − xt) + β̃u(yL + xt+1) = u(yH) + β̃u(yL). (3.11)
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As a consequence, the equilibrium transfers are determined exactly as in the deter-

ministic case, with β̃ replacing β in (3.1). Notice that the evolution of asset holdings

(2.14) can be written as xt − q̃tãt+1 = ãt, where

q̃t =
πqct

1− β + βπ
= β̃

u′(yL + xt+1)

u′(yH − xt)
, ãt = (1− β + βπ)at. (3.12)

It follows that
(
(xt), (at), (φ

L
t )
)

is a constrained equilibrium for the stochastic econ-

omy with agents’ discount rate β if and only if
(

(xt), (ãt), (φ̃
L
t )
)

is an equilibrium for

the deterministic economy with agents’ discount rate β̃ given by (2.9), asset holdings

(ãt) satisfying (3.12), and debt limits

φ̃Lt = (1− β + βπ)φLt , ∀t ≥ 0. (3.13)

Let
(

(xt), (ãt), (φ̃
L
t )
)

be a nonstationary equilibrium for the deterministic econ-

omy with agents’ discount rate β̃ (given by (2.9) ). By Proposition 3.1 and 3.2, there

are bubbles (b̃t) (satisfying b̃t = q̃tb̃t+1) and such that 0 ≤ b̃t ≤ −(φ̃Ht + φ̃Lt ). The

maximal such bubble is given by b̃0 = limt→∞ q̃0q̃1 . . . q̃t−1xt. By (3.12),

b̃t = πqct b̃t+1 + (1− π)βb̃t. (3.14)

Therefore (b̃t) is a discounted martingale process for the equivalent stochastic econ-

omy with agents’ discount factors β, in the sense that b̃t is the value of the process

in histories with t reversals. Scaling by constants preserves the martingale property,

and therefore (bt) given by bt := (1 − β + βπ)−1b̃t can be sustained as a bubble for

the stochastic economy, since it satisfies bt ≤ −(φHt +φLt ). Hence any (deterministic)

nonstationary equilibrium in Proposition 3.1 leads to an equivalent nonstationary

stochastic equilibrium that can sustain bubbles.

4 Temporary interdiction to trade

I consider first the deterministic case when the penalty for default is the interdiction

to trade for a finite number of periods (ITF). If the penalty for default is sufficiently

mild (M small), there exists a stationary equilibrium with low interest rates that can

sustain a bubble. Stochastic economies with one-period exclusion from the markets
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after default (that is, with penalty (ITF) with M = 1) are a particular case of (ITR),

with µ = 1 (agents reenter the markets with probability 1 in the period following

default). For the stochastic case, therefore, I tackle directly the penalty (ITR),

and show that for sufficiently large µ and π, there exists a stationary (stochastic)

equilibrium with low interest rates that can sustain bubbles.

4.1 Interdiction to trade for a finite number of periods

This section analyzes the penalty (ITF) for the deterministic case (π = 1). For

concreteness, M is assumed to be odd, thus M = 2m+ 1, for some m ≥ 0. The case

when M is even can be analyzed in an identical way.

I give conditions on the parameters under which there exists a stationary equi-

librium ((x̂), (â), (φ̂L)) with low interest rates that can sustain bubbles. In such an

equilibrium, bond prices are q̂ = q(x̂), where q(·) is defined as

q(x) := βu′(yL + x)/u′(yH − x). (4.1)

Agents’ budget constraints imply q̂â+ â = x̂. The continuation utility of a high-type

along the equilibrium path is V H(−â) = (u(yH − x̂) + βu(yL + x̂))/(1− β2). Along

the stationary equilibrium path, a low-type is constrained even though he starts the

period with positive wealth â, and therefore he will be also constrained starting with

zero wealth after he defaults. It follows that

V H,d = u(yH)+βu(yL)+β2u(yH)+. . .+β2mu(yH)+β2m+1u(yL+q̂â)+β2m+2V H(−â).

Since high-types are indifferent between defaulting or not, V H(−â) = V H,d, therefore

the transfer x̂ satisfies g(x̂;m) = 0, where

g(x;m) := −u(yH − x)− βu(yL + x) + u(yH) + βu(yL)+

+
β2m − β2m+2

1− β2m+2

(
u(yH) + βu

(
yL +

q(x)x

1 + q(x)

)
− u(yH)− βu(yL)

)
. (4.2)

Notice that g(0;m) = 0, which, incidentally, shows that autarchy is an equilibrium.

Moreover, for any x > 0, u(yH)+βu(yL) < u(yH)+βu
(
yL + q(x)x

1+q(x)

)
, hence g(x;m) <

g(x; 0) and an increase in m (the length of exclusion) shifts the function g(x;m)
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downward (at all points x > 0). Notice that

g′(0;m) =
u′(yH)

1 + q(0)

(
1− 1− β2m

1− β2m+2
q2(0)

)
,

where q(0) = βu′(yL)/u′(yH) > 1, by (2.9). I assume that g′(0;m) > 0, which is

equivalent to requiring that the duration of exclusion is sufficiently short:

β2m > 1− 1− β2

q2(0)− β2
. (4.3)

For a one-period interdiction to trade upon default (M = 2m+ 1 = 1), (4.3) holds.

I also impose the condition that g(x∗; 0) < 0 (x∗ is given by (2.19)), which

amounts to

u(yH) + βu(yL + x∗/2) < u(yH − x∗) + βu(yL + x∗). (4.4)

For (2.19) to hold, u needs to be sufficiently concave and yL sufficiently small com-

pared to yH .10 Conditions (4.3) and (4.4) guarantee the existence of an x̂ ∈ (0, x∗)

such that g(x̂;m) = 0. This x̂ represents the level of transfers in a stationary equi-

librium with with low interest rates, as q̂ > 1, since x̂ < x∗. This discussion is

summarized as follows.

Proposition 4.1. Assume that (4.3) and (4.4) hold. There exists a stationary

equilibrium with transfers x̂ ∈ (0, x∗) such that g(x̂;m) = 0, asset holdings −â :=

−x̂/(1 + q̂) and some debt limits φ̂L < 0 for the low-type.

Incidentally, notice that the equilibrium in Proposition 4.1 is “robust” to the in-

troduction of small bankruptcy costs, in the language of Azariadis and Kaas (2013).11

10If, for example, u(x) = x1−γ

1−γ and yL = 0, it can be checked that for γ = 2, g(x∗; 0) = −β/yH <

0, while for γ = 3, g(x∗; 0) = −(3 + β1/3 + 5β2/3)/(
√

2yH)2 < 0.
11Assume that a defaulting agent looses also a small ε > 0 out of his endowment in the de-

fault period in addition to the interdiction to trade for M periods. Let gε(x;m) := g(x,m) −
1−β2

1−β2m+2 (u(yH) − u(yH − ε)) capturing the downward shift in g due to the additional bankruptcy

cost for default. Notice that ∂gε(x;m)
∂yH

6= 0. Therefore by the transversality theorem and the implicit

function theorem, for a generic set of parameters β, yH , yL, for all small ε there exists a zero of gε,
denoted by x̂(ε), which is close to x̂ and represents an equilibrium level of transfers for the economy
with bankruptcy costs. As ε→ 0, x̂(ε)→ x̂.
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The debt limit φ̂L of low-types is calculated in Proposition A.1 and shown to

belong to (−q̂â, 0). Therefore φ̂L > q̂φ̂H , since φ̂H = −â. If (bt) is a martingale

component of the debt limits of the initial low-type, it must be the case that bt = q̂tb0

and b0 ≤ −φ̂L, b1 ≤ −φ̂H , b2 ≤ −φ̂L etc. As q̂ > 1, these inequalities are equivalent

to b0 ≤ min{−φ̂L,−φ̂H/q̂}. A similar reasoning for the initial high-type shows the

maximal initial martingale component is min{−φ̂H ,−φ̂L/q̂} = −φ̂L/q̂. Proposition

2.1 guarantees that bubbles of initial size

min{−φ̂L,−φ̂H/q̂}+ min{−φ̂H ,−φ̂L/q̂} ≤ −φ̂L − φ̂H < −q̂φ̂H − φ̂H = x̂

can be sustained in equilibrium. As x̂ < x∗ < min{x̄, (yH − yL)/2}, the equilibrium

in Proposition 4.1 associated to punishment (ITF) sustains both less risk sharing and

smaller initial bubbles than the stationary equilibria under penalties (IB) or (IT).

4.2 Interdiction to trade for a random number of periods

Consider a stationary equilibrium (x, a(x), φL(x)) for the general stochastic economy

(π ≤ 1) with penalty (ITR), and let qc(x) = βu′(yL + x)/u′(yH − x) and qnc(x) = β

be the prices of the Arrow securities. The continuation utilities after default satisfy

V H,d = u(yH) + βµ
(
πV L(0) + (1− π)V H(0)

)
+ β(1− µ)

(
πV L,d + (1− π)V H,d

)
,

V L,d = u(yL) + βµ
(
πV H(0) + (1− π)V L(0)

)
+ β(1− µ)

(
πV H,d + (1− π)V L,d

)
.

To calculate V L(0), notice that a low-type starting with 0 borrows the maximal

amount allowed if the state switches (as he was also borrowing the maximal amount

along the equilibrium path, starting with wealth a(x) > 0). If the state does not

switches, he borrows zero (maintains his wealth and consumption). Clearly these

choices satisfy the necessary and sufficient Euler conditions for the low-type, hence

V L(0) = u(yL + πqc(x)a(x)) + β
(
πV H(−a(x)) + (1− π)V L(0)

)
. (4.5)

To solve for V H(0), I analyze next the optimal choices of a high-type agent

starting with wealth 0 (≥ −a(x)) at some period t. He consumes yH − x0(x) at t,

saves a1(x) (≥ a(x)) contingent on a reversal occurring (that is, if st+1 6= st), and
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saves 0 if there is no state change (st+1 = st):

V H(0) = u(yH − x0(x)) + βπV L(a1(x)) + β(1− π)V H(0).

I look at equilibria where the low-type starting with wealth a1(x) consumes some

yL + x1(x) and has binding debt limits in the high endowment state next period:

V L(a1(x)) = u(yL + x1(x)) + βπV H(−a(x)) + β(1− π)V L(a1(x)).

Transfers x0(x), x1(x) can be expressed in terms of a1(x) using agent’s budgets at t

and t+ 1:

x0(x) = πqc(x)a1(x), x1(x) = a1(x) + πqc(x)a(x)− (1− π)βa1(x). (4.6)

Wealth a1(x), in turn (and therefore x0(x), x1(x)), is determined as the unique solu-

tion of agent’s Euler equation at t conditional on a state change from t to t+ 1,

β
u′(yL + x1(x))

u′(yH − x0(x))
= qc(x). (4.7)

The Euler equations at t and t+ 1 conditional on the state not changing next period

are satisfied (by construction). The described choices are therefore optimal for the

high-type with zero wealth at t if the Euler equation at t + 1 conditional on state

change from t+ 1 to t+ 2 is satisfied,

β
u′(yH − x)

u′(yL + x1(x))
≤ qc(x). (4.8)

Condition (4.8) will be shown to hold below. It follows that V L(0), V H(0) can be

expressed in terms of V H(−a(x)):

V L(0) =
u(yL + x0(x)) + βπV H(−a(x))

1− β + βπ
,

V H(0) =
(1− β + βπ)u(yH − x0(x)) + βπu(yL + x1(x)) + (βπ)2V H(−a(x))

(1− β + βπ)2
.
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The continuation utility after default for high-types is

V H,d =
1

2

u(yH) + u(yL) + βµ(V L(0) + V H(0))

1− β(1− µ)︸ ︷︷ ︸
V H,d+V L,d

+ (4.9)

+
1

2

u(yH)− u(yL) + βµ(1− 2π)(V H(0)− V L(0))

1− β(1− µ)(1− 2π)︸ ︷︷ ︸
V H,d−V L,d

.

Finally, the continuation utility of high-types is given by (see (3.10))

V H(−a(x)) =
u(yH − x) + β̃u(yL + x)

(1− β + βπ)(1− β̃2)
. (4.10)

Since high-types are indifferent between defaulting or not, V H,d in (4.9) must equal

V H(−a(x)) in (4.10). Therefore x is indeed an equilibrium level of transfers if

0 = h(x, π, µ) := V H,d − V H(−a(x)). (4.11)

The case π = 1, µ = 1 amounts to a deterministic economy with one period

exclusion from the markets after default ( (ITF) with M = 2m + 1 = 1). Therefore

h(x, 1, 1) = g(x; 0) with g given by (4.2).

Under the assumption (4.4) (as (4.3) is automatically satisfied for m = 0), the

deterministic economy with penalty (ITF) with M = 2m+1 = 1 admits a stationary

equilibrium with transfers x̂ satisfying h(x̂, 1, 1) = g(x̂; 0) = 0 (Proposition 4.1).

Notice that for any x > 0, ∂g(x;0)
∂β
6= 0, ∂g(x;0)

∂yL
6= 0 and ∂g(x;0)

∂yH
6= 0. By the transversality

theorem, ∂g(x̂;1)
∂x

6= 0, for a generic set of parameters β,yL or yH . By the implicit

function theorem, for µ, π sufficiently close to 1, there exists x(π, µ) close to x̂ such

that h(x(π, µ), π, µ) = 0. It follows that x0(x(π, µ)),x1(x(π, µ)) are also close to x̂

and therefore the condition (4.8) required for the described allocations to be indeed

an equilibrium is satisfied, as q̂ = qc(x̂) > 1 and

β
u′(yH − x(π, µ))

u′(yL + x1(x(π, µ))
≈ β

u′(yH − x̂)

u′(yL + x̂)
=
β2

q̂
< q̂ ≈ qc(x(π, µ)).

For π, µ sufficiently close to 1, πqc(x(π, µ)) + (1− π)β > 1 and therefore risk-free

rates are low. This implies discounted debt limits have martingale components, since,
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in particular, a deterministic bubble of initial size min{|φL|, |φH |} can be sustained

in equilibrium.

5 Numerical example

As a numerical illustration, let yL = 1, yH = 2, β = 0.99, u(x) = x1−γ

1−γ with γ = 3,

and π = 1 (deterministic economy). For penalty (IB), the stationary equilibrium

transfer level is x∗ ≈ 0.4975. As described in Section 2.4, for any initial transfer

0 < x0 < x∗, there are nonstationary equilibria (xt) converging monotonically to

autarchy, xt ↘ 0. Agents’ discounted debt limits are constant (martingales) and

these equilibria can sustain bubbles of initial size equal to the initial transfer x0

(Hellwig and Lorenzoni 2009).

For penalty (IT), notice that (3.5) does not hold. Therefore the stationary equi-

librium displays perfect risk sharing and transfers from high to low-types are 1
2
. In

the stationary equilibrium, interest rates are high (bond prices are qc = β = 0.99)

and bubbles cannot exist. Debt limits are

φL = − 0.5β

1 + β
> φH = − 0.5

1 + β
.

In the nonstationary equilibrium with initial transfers x0 = 0.5, limt→∞ ptxt ≈
0.243967. Initial holdings a0 are arbitrary in [L, L̄] = [0.2258, 0.4697]. Debt lim-

its vary over time, depend on the initial holdings and do not have to be more relaxed

for high-types at all periods. For example, if a0 is close to L, say a0 = 0.24, then

φH0 = −a0 = −0.24 > −0.5 + 0.24 = −x0 − φH0 = φL0 .

The (period zero) size of the bubble is not comonotonic with the initial amount of

risk sharing (initial transfers) across the different nonstationary equilibria. Indeed,

for x0 = x∗ = 0.4975, a0 ∈ [0.2236, 0.4675] and limt→∞ ptxt ≈ 0.243972, hence a

bigger bubble is possible than the one associated to the equilibrium with (higher)

initial transfers 0.5.12 On the other hand, for small initial transfers x0 < x∗, the

initial size of the bubble is small, as lim ptxt < x0. For example, for x0 = 0.2,

a0 ∈ [0.0373, 0.1952] and lim ptxt = 0.157901. Notice that even if agents’ initial

wealth is fixed and equal to 0, the three nonstationary equilibria associated to x0 ∈
12Similarly, for x0 = x̄′ = 0.7332 (see (3.3)), lim ptxt = 0.190467, leading to a lower bubble than

in the equilibria associated with initial transfers x∗ or 0.5.
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{0.5, 0.4975, 0.2} can be reached after a one period transition, as (2.18) holds, and

the (non-comonotonic) relation between the size of the bubbles and the amount of

risk sharing (in the period when the transition ends) is preserved.

For the (ITF) with M = 2m + 1 = 1 (thus (4.3) is satisfied), or equivalently for

(ITR) with µ = 1, the chosen parameters satisfy (4.4). The equilibrium transfers,

bond prices and asset holdings are x̂ ≈ 0.4271, q̂ ≈ 1.3255 and â ≈ 0.1837. The debt

limits of the low-type are obtained using Proposition A.1, φL ≈ −0.1972. The debt

limits of the high type are φH = −â ≈ −0.1837. Notice that the debt limits of the

high-types are in fact tighter than the debt-limits of low-types. As φL > q̂φH and

φH > q̂φL, agents’ discounted debt limits are decreasing. Therefore the maximum

initial size of a bubble that can be sustained in equilibrium is −φL−φH = 0.3808. In

contrast to penalties (IB) and (IT), there are multiple stationary equilibria. It can

verified that transfers (yH −yL)/2 lead to an (unconstrained) stationary equilibrium

with perfect risk-sharing between agents. Indeed, g(y
H−yL
2

; 0) < 0 (with g defined in

(4.2)), which is the necessary and sufficient condition for perfect risk-sharing (first

best allocation) to be an equilibrium (Azariadis and Kaas 2008, Proposition 1).

Interest rates are high in this equilibrium as bond prices are qt = β < 1, and no

bubbles are possibles.

A comparison of the stationary equilibria for different penalties for default re-

veals that the amount of risk sharing and the size of sustainable bubbles are not

comonotonic. Indeed, the amount of risk sharing in these stationary equilibria is

largest for (IT) and smallest for (ITF), as

yH − yL

2
= 0.5 > x∗ = 0.4975 > x̂ = 0.4271.

On the other hand, the size of bubbles in the described (non-autarchic) stationary

equilibria under penalties (IT), (IB), (ITF) are 0, x∗ = 0.4975 and 0.3808. This

comparison is robust to allowing for one period transition from fixed, zero initial

wealth for the agents. Indeed, it is immediate to check that (2.18) holds for the

three stationary equilibria considered here.
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6 Conclusion

This paper argues that low interest rates and bubbles are prevalent in economies

with limited enforcement of debt contracts. With mild penalties for default such as

a permanent or temporary interdiction to trade, interest rates adjust endogenously

to a low level to prevent default, and bubbles can be sustained in equilibrium. This

complements the earlier results of Hellwig and Lorenzoni (2009) obtained for an

interdiction to borrow as penalty for default.

Bubbles here serve as a substitute for private liquidity. They are associated to

(dynamic) inefficiencies only insofar as the enforcement limitations induce inefficient

levels of interest rates and risk sharing in the absence of bubbles. Farhi and Tirole

(2012) showed that financial frictions can sever the connection between (dynamic)

inefficiency and low interest rates, allowing for (some) bubbly equilibria to be effi-

cient. They make this point in an economy with limited pledgeability, where debt is

fully collateralized, rather than being sustained by reputation.

For penalties (IB),(ITF),(ITR), the continuation utilities after default depend

on endogenous equilibrium variables such as prices and debt limits, and therefore

a definition of constrained inefficiency is not obvious. Adopting the definitions of

efficiency given in Bloise and Reichlin (2011), Appendix B gives a detailed discussion

of the efficiency of the various equilibria constructed here. All but the stationary

equilibrium associated to penalty (IB) are inefficient.

A Omitted proofs

Proof of Proposition 3.1

Proof. Function f̄(x) := f(x, x) is (strictly) convex, hence f̄ ′ is strictly increasing.

Moreover, f̄(0) = 0, f̄(yH − yL) > 0, f̄ ′((yH − yL)/2) > 0 and f̄ ′(0) < 0 (by (2.9)).

The function f̄ decreases strictly up to x∗ given by f̄ ′(x∗) = 0 (and hence by (2.19))

and then increases strictly. It follows that there exists a (unique) x̄ ∈ (x∗, yH − yL),

such that f̄(x̄) = f(x̄, x̄) = 0, which is equivalent to (3.2).

For xt ∈ (0, x̄), f(xt, 0) > 0, f(xt, xt) = f̄(xt) < 0 and f(xt, ·) is strictly

decreasing. It follows that the equation f(xt, xt+1) = 0 has a unique solution

xt+1 := xnext(xt), which moreover satisfies 0 < xt+1 < xt. Therefore the sequence

28



(xt) satisfying f(xt, xt+1) = 0 for all t is strictly decreasing if 0 < x0 < x̄. Moreover,

the continuity of f implies that f(limxt, limxt) = f̄(limxt) = 0, and thus lim xt = 0.

If xt ∈ {0, x̄}, then f(xt, xt+1) = 0 if and only if xt+1 = xt. Hence for x0 ∈ {0, x̄},
xt = x0 for all t.

Let f̃(x) := u(yH)+βu(yL)−(1+β)u(yH−x), which is increasing on [0, yH−yL].

Notice that f̃(x) > (<)f̄(x) for x < (>)y
H−yL
2

. It follows that yH−yL
2

> x̄′ > x̄ or
yH−yL

2
≤ x̄′ ≤ x̄, with x̄′ defined in (3.3). As a consequence, the first order conditions

(2.13) of the low-type agents hold for any x0 ≤ min{x̄, x̄′}.
A low-type agent with starting wealth φLt at t instead of at will again be borrowing

constrained. The not-too-tight condition for φLt and agent’s budget constraint at t

imply that

φLt = −pt+1

pt
at+1 =

pt+1

pt
φHt+1. (A.1)

By (2.14) and (2.15),

φHt + φLt = −at −
pt+1

pt
at+1 = −xt. (A.2)

Next we determine the restrictions needed on the initial wealth of the agents such

that the debt bounds are nonpositive, or equivalently, the asset holdings (at) given

by (2.21) are nonnegative. This is clearly the case when xt = 0 for all t (the autarchic

equilibrium), since asset holdings and debt bounds are zero. For non-autarchic equi-

libria, that is for nonzero sequences (xt), by (3.1) and the strict concavity of u,

u′(yH − xt)xt > u(yH)− u(yH − xt) = β
(
u(yL + xt+1)− u(yL)

)
> βu′(yL + xt+1)xt+1.

Therefore by (2.11),
pt
pt+1

=
u′(yH − xt)

βu′(yL + xt+1)
>
xt+1

xt
. (A.3)

It follows that the sequence (ptxt) is strictly decreasing. By (A.2),

ptxt = −ptφHt − ptφLt > pt+1xt+1 = −pt+1φ
H
t+1 − pt+1φ

L
t+1,

and using (A.1),

ptφ
H
t < pt+1φ

L
t+1. (A.4)

By (A.1) and (A.4), for i ∈ I, the sequences (ptφ
i
t) are nondecreasing. As a conse-
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quence, the necessary and sufficient condition for φi ≤ 0 is limt→∞ ptφ
i
t ≤ 0. Since

(ptxt) is decreasing, the limits L and L̄ exist and L̄ = L+ limt→∞ ptxt. By (2.21),

lim
t→∞

ptφ
1
t = − lim

t→∞
p2t+1a2t+1 = a0 − L̄, lim

t→∞
ptφ

2
t = − lim

t→∞
p2ta2t = −a0 + L.

Therefore φ1, φ2 ≤ 0 if and only if L ≤ a0 ≤ L̄.

Finally, agents’ transversality conditions are satisfied. Indeed, for i ∈ I,

lim
t→∞

βtu′(cit)(a
i
t − φit) ≤ lim

t→∞
βtu′(cit)

(∑
i

ait −
∑
i

φit

)
= lim

t→∞
βtu′(cit)xt = 0. (A.5)

Proposition A.1. Consider the equilibrium described in Proposition 4.1. Let cH , cL

be (uniquely) determined by

β
u′(cL)

u′(cH)
= q̂, cH + q̂cL = yH − x̂+ q̂(yL + x̂) + â. (A.6)

If

β
u′(yH − x̂)

u′(cL)
≤ q̂, (A.7)

then φL satisfies

u(yL + φL + q̂â) = u(yL) + β(1− β2m)
u(yH) + βu(yL))

1− β2
+ (A.8)

+β2m+1u(cH) + β2m+2u(cL)− β(1− β2m+2)
u(yH − x̂) + βu(yL + x̂)

1− β2
.

Proof. A low-type agent starting with wealth φL < â at some date t instead of â (but

facing the same future debt limits alternating between φH and φL and bond prices

q̂) will find optimal to borrow the maximum amount allowed −â = φH . Therefore

V L,d = u(yL + φL + q̂â) + βV H(−â) > u(yL + φL + q̂a) + βV H(−a),∀a < â, (A.9)

where

V L,d = u(yL) + βu(yH) + . . .+ β2mu(yL) + β2m+1V H(0) (A.10)
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is the continuation utility after default of a low-type. If φL ≥ 0, setting a = 0 in

(A.9) leads to V L,d > u(yL) + βV H(0) ≥ V L,d, which is a contradiction. Hence

φL < 0. Rewrite (A.9) as

0 = ζ(φL) := u(yL + φL + q̂â) + βV H(−â)− V L,d. (A.11)

Notice that V H(−â) = (u(yH − x̂) + βu(yL + x̂))/(1 − β2) while V H(0) (and hence

V L,d) is nonincreasing in φL, as tightening future debt limits cannot increase agent’s

optimal continuation utility. Therefore ζ is strictly increasing. Moreover, since

V H(−â) = V H,d = u(yH) + βu(yL) + . . .+ β2mu(yH) + β2m+1V L(0),

we get

ζ(φL) = u(yL + φL + q̂â) + β2m+1u(yH) + β2m+2V L(0)− u(yL)− β2m+1V H(0).

Therefore ζ(−q̂â) = β2m+1(u(yH) + βV L(0) − V H(0)) < 0, and we conclude that

φL ∈ (−q̂â, 0).

Under (A.7), a high-type starting with zero wealth (rather than −â) will borrow

the maximum amount allowed. In the initial period t (with high endowment) he

consumes some cH > yH − x̂, and at t + 1 he consumes some cL > yL + x̂, and

afterwards (date t+ 2 onwards) he reverts to consumption levels driven by transfers

x̂. Consumption levels cH , cL are determined from the first order conditions at t

and from the intertemporal budget from t to t + 2, thus they are given by (A.6).

The proposed consumption path is indeed optimal for the agent since the first order

condition for date t+ 2 (when low-type) holds, by (A.7). It follows that,

V H(0) = u(cH) + βu(cL) + β2(u(yH − x̂) + βu(yL + x̂))/(1− β2). (A.12)

Using (A.10) and (A.12), equation (A.11) which determines φL is equivalent to (A.8).
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B Efficiency

B.1 Permanent interdiction to trade

I discuss first the efficiency of the equilibria in Proposition 3.1 for penalty (IT). An

allocation c = (c1, c2) ∈ XI
+ is feasible if c1t + c2t = y1t + y2t (= yH + yL) for all t,

and individually rational if U i
t (c

i) ≥ U i
t (y

i), for all t ∈ N and i ∈ I. An allocation

c̄ Pareto dominates allocation c if U i(c̄1) ≥ U i(c1) for i ∈ I, with at least one strict

inequality. A feasible and individually rational allocation c is constrained inefficient

if it is Pareto dominated by another feasible and individually rational allocation c̄

(Alvarez and Jermann 2000). An allocation c is ex-post inefficient if it is Pareto

dominated by an allocation c̄ satisfying U i
t (c̄

i) ≥ U i
t (c

i) and
∑

i c̄
i
t ≤

∑
i c
i
t, for all

t ∈ N and i ∈ {e, o}. Conversely, an allocation is constrained efficient (respectively

ex-post efficient), if it is not constrained inefficient (respectively ex-post inefficient).

Notice that a feasible and individually rational allocation which is ex-post inefficient

is always constrained inefficient.

Each nonstationary equilibrium of Proposition 3.1 associated to a sequence of

transfers xt → 0 has the property that (by (2.9))

pt+1

pt
→ βu′(yL)

u′(yH)
> 1,

and therefore it satisfies the “modified Cass criterion”, which is a sufficient condition

for ex-post inefficiency (Bloise and Reichlin 2011, Lemma 2). Therefore all the non-

stationary equilibria constructed in Proposition 3.1 are also constrained inefficient.

By contrast, the stationary equilibrium is always constrained efficient. Indeed, if

(3.5) is violated, the stationary equilibrium associated to transfers (yH − yL)/2 is

actually Pareto optimal. If, instead, (3.5) holds, then in the stationary equilibrium

associated to transfers x̄ (see discussion after equation (3.5)),

pt+1

pt
=
βu′(yL + x̄)

u′(yH − x̄)
< 1.

Therefore the stationary equilibrium violates the “weak modified Cass criterion”,

which is a necessary condition for constrained inefficiency (Bloise and Reichlin 2011,

Lemma 3).
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Based on this discussion, it is tempting to equate equilibrium low interest rates

with inefficiency of the equilibrium. However the equivalence between efficiency of

an equilibrium and the presence of high interest rates is not true in general and is

a consequence of the stationarity of agents’ endowments, as pointed out by Bloise

and Reichlin (2011, Appendix B). They construct an efficient stationary equilib-

rium with low interest rates, in a framework similar to ours, but with nonstationary

endowments.

B.2 Interdiction to borrow. Temporary interdiction to trade

I analyze here the efficiency of the equilibria associated to penalty (IB) (constructed

in Hellwig and Lorenzoni (2009) and described in detail in Section 2.4) and of the

equilibrium in Proposition 4.1 for penalty (ITF). The penalties for default now

depend on endogenous equilibrium variables such as prices and debt limits, and

therefore a definition of constrained inefficiency is not obvious. Following Bloise

and Reichlin (2011), an allocation c = (c1, c2) ∈ XI
+ is said to be individually ra-

tional given reservation utilities ν = (ν1, ν2) ∈ X2 if U i
t (c

i) ≥ νit , for all t ∈ N
and i ∈ I. A feasible allocation c is constrained inefficient given some reservation

utilities ν ∈ X if it is Pareto dominated by an allocation c̄ which is feasible and in-

dividually rational given the reservation utilities ν. The nonstationary equilibria for

penalty (IB) described in Section 2.4 and the stationary equilibrium of Proposition

4.1 for penalty (ITF) are ex-post inefficient, by the modified Cass criterion, as bond

prices pt+1/pt > 1 for large enough t. The stationary equilibrium for penalty (IB),

associated to constant transfers x∗ and zero risk-free interest rates (constant pricing

kernel), is not constrained inefficient given reservation utilities (V i,d)i∈I . This follows

using an identical argument to the one used by Bloise and Reichlin (2011, Appendix

B, Claims 5 and 7).
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