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1 Introduction
The question of how to quantify or measure the risk of a financial institution has attracted consid-
erable attention over the recent years and has triggered many contributions in various literatures.
Among the most influential are a number of papers from the mathematical finance literature that
promote an axiomatic approach to risk measurement. The risk measure, defined as a mapping from
a set of random variables to the real numbers, is dubbed coherent (Artzner et al., 1999) only if it
satisfies certain criteria.1 But do these criteria yield risk measures suitable for every application?

In this paper, we argue that the properties of a risk measure should flow from the economic
context of the problem. We demonstrate that the most widely accepted axioms, while potentially
appropriate guidelines for risk measures in some applications, are not universally adequate. In
particular, they fail when used for risk pricing and performance measurement, which are among
the most important applications of risk measures in financial institutions.2 More precisely, financial
institutions use the gradients of risk measures to allocate the firms capital to the various risks within
its portfolio—a process which effectively determines the marginal cost of risk and thus provides
key inputs for pricing and performance measurement.

We reverse the sequence of this approach. Instead of taking gradients of an arbitrary risk
measure to identify the marginal cost of risk, we start with an economic model of a financial
institution with risk-averse counterparties in an incomplete market with frictional capital costs.
We show that profit maximization in this environment yields an endogenous expression for the
marginal cost that can be used for capital allocation. We then derive the risk measure that gives the
correct capital allocations and find that it generally does not adhere to the mathematical axioms.
In particular, we show that conventional risk measures satisfying these axioms generally yield
inefficient allocations.

We start our analysis with a simplified one-period model in an environment without securities
markets but subsequently generalize the results to the case where both the firm and its consumers
have access to securities markets and to multiple periods. In the general case, we identify three
sources of “discipline” that feed into the marginal cost of risk faced by the firm (and, consequently,
the resulting capital allocation). The first stems from a regulatory solvency constraint, which is a
familiar feature of the existing literature: Risks are costly in that they force the firm to hold more
capital due to regulation. The second derives from the firm’s counterparties: When the firm adds
a risk, all of its counterparties are affected and are thus willing to pay less for the firm’s contracts.
The final source of discipline stems from the continuation value of the firm: Risks taken on in the
current period may lead to bankruptcy of the firm and thus may destroy future profit flows.

The optimal capital allocation rule is a weighted average of an “external” allocation rule im-
plied by the regulatory constraint (if it binds), an “internal counterparty” allocation rule driven by
the institution’s uninsured counterparties, and a “continuation” rule that derives from the firm’s

1Other authors also designate these axioms to be necessary for a risk measure to be reasonable (Cuoco, He, and
Isaenko, 2008) or sensible (Acerbi and Tasche, 2002), or promulgate different axioms for a risk measure to be natural
(Kou, Peng, and Heyde, 2012).

2For instance, a McKinsey&Company (2011) survey among a “diverse group of 11 leading banks” revealed that
the “vast majority of respondents use economic-capital (EC) models”, mostly for “tracking performance of individual
business units or portfolios”, although “more sophisticated applications” such as pricing or risk-based strategic deci-
sion making also appear in the sample. Similarly, according to the Society of Actuaries (2008), more than 80% of all
insurance companies calculated EC or considered the implementation of an EC framework in 2006, where “allocation
of capital” and “measure of risk-adjusted performance” were listed as the two primary drivers.
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value as a going concern. In the extreme case of no regulation and (close to) perfect competi-
tion (so that the firm is earning zero economic rents), the allocation rule simply boils down to the
“internal counterparty” rule. Another extreme case is a single period model with fully insured
counterparties, where the economically optimal allocation follows from the risk measure imposed
by regulation. Intermediate cases, however, could feature marginal cost being driven mainly by
the “internal counterparty” and/or the “continuation” allocation rule (if the regulatory constraint
puts firm capitalization close to the level it would have chosen in the absence of regulation) or
the “external” constraint (if regulation forces the firm to hold far more capital than is privately
optimal).

We then investigate the connection between these economically derived capital allocations and
risk measures. Specifically, we “reverse-engineer” risk measures whose gradients yield the eco-
nomically correct capital allocations. Each of the three components of the optimal allocation rule
discussed above is connected to a risk measure: The “external” allocation rule is of course con-
nected to a riskmeasure by definition, as it arises from a riskmeasure imposed by the regulator. The
more interesting finding is that the “internal counterparty” allocation rule can be implemented by a
novel risk measure—the exponential of a weighted average of the logarithm of portfolio outcomes
in states of default, with the weights being determined by the relative values placed on recoveries
in the various states of default by the firm’s counterparties. Finally, in a multi-period setting, the
allocation stemming from the “continuation” value of the firm can be recovered by applying the
gradient method to Value-at-Risk (VaR)—which thus arises endogenously in our model. With the
possible exception of the “external” measure, these measures are neither coherent nor convex—
properties considered by many as imperative.

We derive closed-form expressions for the novel “internal counterparty” allocation rule in two
example setups: (1) homogeneous counterparties facing exponentially distributed losses and (2)
heterogeneous counterparties facing Bernoulli distributed losses. We compare the resulting allo-
cations to those obtained from Expected Shortfall (ES)—the coherent risk measure currently in
favor among many academics and regulators.3 We show that ES-based allocations generally fail
to weight default outcomes properly. Specifically, in cases where counterparties are strongly risk-
averse or where potential losses are large relative to counterparty wealth, ES-based allocations
tend to underweight bad outcomes; in cases where counterparties are only weakly risk-averse or
where potential losses are relatively small, ES-based allocations tend to overweight bad outcomes.
These differences flow from a fundamental difference in the basis for allocation under the “inter-
nal counterparty” rule and under ES. The starting point for evaluation of a risk’s impact under ES
concerns its share of the institution’s losses in default states, whereas the starting point under the
“internal counterparty” rule is the risk’s share of recoveries—as a risk’s impact on recoveries in
default states is ultimately what counterparties care about.

Various extensions are possible. For instance, the company in our setting has perfect informa-
tion about its counterparties, and we do not explicitly model the possibility of raising additional
capital from capital markets in the multi-period context. We discuss these extensions in more de-
tail in the final section of the paper. However, these extensions do not affect the key point of the
paper: The true marginal cost of risk and the associated allocation of capital should flow from the

3Various papers make a case for ES over VaR (see e.g. Hull (2007)), and both regulation and practice appear to be
moving in this direction. For instance, the International Actuarial Association (2004) recommends using ES in a risk
based regulatory framework, and ES was embedded in the Swiss Solvency Test and appears to be viewed favorably by
US insurance regulators (cf. NAIC (2009)).
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economic context of the problem. Different model setups will yield different risk measures, but a
risk measure chosen for its technical properties such as coherence, rather than for the specific eco-
nomic circumstances, will generally fail to yield correct pricing and efficient allocation of capital
from the perspective of its user.

Relationship to the Literature and Organization of the Paper

Formal analysis of the problem of capital allocation based on the gradient of a risk measure ap-
peared in the banking and insurance literatures around the turn of the millennium and was sub-
sequently generalized (see Schmock and Straumann (1999), Myers and Read (2001), Denault
(2001), Tasche (2004), Kalkbrener (2005) or Powers (2007), among others). Broadly speaking,
these papers start with a differentiable risk measure and end up allocating capital by computing the
marginal capital increase required to maintain the risk measure at a threshold value as a particular
risk exposure within the portfolio is expanded, an approach referred to as “gradient” allocation or
“Euler” allocation.

The technique thus neatly defines the marginal cost of risk if the risk measure is—in one way
or another—embedded in the institution’s optimization problem (Zanjani, 2002; Stoughton and
Zechner, 2007). Unfortunately, excepting highly specialized circumstances,4 economic theory thus
far offers no guidance on the choice of the measure. Perhaps as a consequence, the debate on risk
measure selection has largely centered on mathematical properties of the measures (see e.g. Artzner
et al. (1999), Föllmer and Schied (2002), or Frittelli and Gianin (2002)). Yet the choice obviously
has profound economic consequences, as it ultimately determines how the institution perceives
risk.

Other papers derive the marginal cost of risk and capital allocations from the fundamentals of
the institution’s profit maximization problemwithout the imposition of a risk measure. The ensuing
results are transparent if complete and frictionless markets are assumed (Phillips, Cummins, and
Allen, 1998; Ibragimov, Jaffee, and Walden, 2010; Erel, Myers, and Read, 2013), although this
setting begs the question of why intermediaries would hold capital in the first place.5 Others
have studied incomplete market settings. In particular, Froot and Stein (1998) and Froot (2007)
introduce the frictions suggested by Froot, Scharfstein, and Stein (1993) to motivate capital holding
and risk management. Their models generate a marginal cost of risk determined by an institution’s
portfolio and effective risk aversion (as implied by a concave payoff function and a convex external
financing cost). Institution-specific risk pricing and capital allocation is also found by Zanjani
(2010) (although in the context of a social planning problem) where risk management is motivated
by counterparty risk aversion.

Our paper builds on the incomplete market approaches. Our theoretical foundation features
costly bankruptcy,6 counterparty risk aversion, and regulatory constraints as motivators of risk

4If institutional preferences are defined by a particular risk-averse utility function of outcomes, a particular risk
measure may be implied (see e.g. Föllmer and Schied (2010)). Alternatively, Adrian and Shin (2008) justify using
Value-at-Risk in a model with limited commitment and a specialized risk structure.

5Rampini and Viswanathan (2012) provide a rationale for financial intermediary capital in a complete market envi-
ronment. In their model, it is opportune for intermediaries to hold capital because of different collateral requirements
for households and intermediaries arising e.g. from limited enforcement as in Rampini and Viswanathan (2010)—i.e.
intermediaries are “collateralization specialists.” In contrast, within our incomplete market setting, holding capital is a
risk management device that averts default in adverse states of the world.

6Bankruptcy costs originate from shareholders not having access to future profits in default states as in Smith and
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management and determinants of marginal cost. We recover some familiar results in certain cases,7
but the general form of capital allocation is multifaceted. The complexity serves as evidence
of the force of Froot and Stein’s criticism that allocating capital via arbitrary risk measures is
problematic because it is “not derived from first principles to address the objective of shareholder
value maximization.” Froot and Stein, however, did not attempt to reconcile risk measure-based
approaches with those based on “first principles.” This leaves a gap between financial theory and
practice that we close here by extracting capital allocations from marginal cost calculations and
then deriving risk measures consistent with the extracted allocations. This connection between the
marginal cost obtained from the fundamentals of the institution’s problem and that obtained from
approaches based on risk measures has, to our knowledge, never been explored.

The paper is organized as follows: Section 2 presents the firm’s profit maximization problem in
various settings, and we describe how the marginal cost of risk and the allocation of capital within
the firm arise as by-products; Section 3 describes the relationship of the resulting allocation rule to
risk measures; Section 4 presents our example applications; and finally Section 5 concludes.

2 Profit Maximization and Capital Allocation
We consider the optimization problem of a representative financial institution. We frame our model
in terms of an insurance company, and our language reflects this in that we refer to the financial
contracts as “insurance coverage” and the counterparties of the institution as “consumers.” The
setup obviously fits other institutions providing similar contracts, such as reinsurance companies
and private pension plan sponsors—and can be applied with little modification to institutions sell-
ing insurance-like contracts (such as credit default swaps) where the main risks emanate from risk
in obligations to counterparties. The model can also be adapted to fit other institutions where
capital allocation is relevant (such as commercial banks) but where the key risks emanate from the
asset side of the balance sheet, by including an additional set of choice variables for investments.
The key assumption of the model, however, is that the stakeholders are exposed to the failure of
the institution—and their preferences for solvency drive the motivation for risk management.

To illustrate the main ideas, we will start by considering a greatly simplified one-period model
in an environment without securities markets. Subsequently, we generalize the results to the case
where both the firm and its consumers have access to securities markets and to multiple periods.

2.1 One-period Model without Securities Markets
Formally, we consider an insurance company that has N consumers, with consumer i facing a
loss Li modeled as a continuous, non-negative, square-integrable random variable on the complete
probability space (Ω,F ,P) with (joint) density fL1,L2,...,LN : RN

+ → R+. The firm determines
the optimal level of assets a for the company, as well as levels of insurance coverage for the

Stulz (1985) and Smith, Smithson, andWilford (1990). As noted by Froot, Scharfstein, and Stein (1993), this produces
similar “mechanics” to those obtained when considering a convex cost of external finance as in Froot and Stein (1998).

7For instance, in the limiting case of a complete market, our “internal counterparty” allocation rule reduces to the
allocation derived in Ibragimov, Jaffee, and Walden (2010), whereas it coincides with the allocation from Zanjani
(2010) for the specialized risk structure considered there. In addition, VaR-based allocation (see e.g. Garman (1997)
or Kalkbrener (2005)) is recovered in multiperiod settings with fully protected counterparties and no regulation.
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consumers, with the coverage indemnification level for consumer i denoted as a function of the
loss experienced and a parameter qi ∈ Φ, where Φ is a compact choice set. For tractability, we
focus on a proportional arrangement, i.e. a linear contract, where the insurer agrees to reimburse qi
per dollar of loss:

Ii = Ii(Li, qi) = qi × Li. (1)

However, generalizations are possible.8
If a consumer experiences a loss, she claims to the extent of the promised indemnification. If

total claims are less than company assets, all are paid in full. If not, all claimants are paid at the
same rate per dollar of coverage. The total claims submitted are:

I = I(L1, L2, . . . , LN , q1, q2, . . . , qN) =
N∑

j=1

Ij(Lj , qj),

and we define the consumer’s recovery as:

Ri = min
{
Ii(Li, qi),

a

I
Ii(Li, qi)

}
. (2)

Accordingly, {I ≥ a} = {ω ∈ Ω |I(ω) ≥ a} denote the states in which the company defaults
whereas {I < a} are the solvent states. The expected value of recoveries for the i-th consumer is
whence given by:

ei = E [Ri] = E
[
Ri 1{I<a}

]
︸ ︷︷ ︸

=eZi

+E
[
Ri 1{I≥a}

]
︸ ︷︷ ︸

=eDi

.

There is a frictional cost—including taxes, agency, and monitoring costs—associated with
holding assets in the company. In the spirit of Froot and Stein (1998), we represent the cost
as a tax on assets:

τ × a, (3)

although it is also possible to represent frictional costs as a tax on equity capital, as in:

τ ×
(
a− E

[
N∑

i=1

min
{
Ii(Li, qi),

a

I
Ii(Li, qi)

}])
(4)

and this does not change the ensuing allocation result. Without this frictional cost, the problem
of default would be trivially solved as there would be no point in burdening the consumers with
default risk (i.e. a = ∞ would be optimal).

We denote the premium charged to consumer i as pi, and consumer utility may be expressed
as:

vi(a,wi − pi, q1, ..., qN) = E [Ui (wi − pi − Li +Ri)] , (5)

where wi denotes consumer i’s wealth, and we write v ′i(·) = ∂
∂wi

vi(·).
The firm then solves:

max
a,{qi},{pi}

∑
pi −

∑
ei − τa, (6)

8For instance, a fixed policy limit as in Ii = min{Li, qi} in conjunction with binary loss distributions also fits our
framework, although the lack of differentiability would formally require a separate treatment.
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subject to participation constraints for each consumer:

vi(a,wi − pi, q1, ..., qN) ≥ γi ∀i (7)

and subject to a differentiable solvency constraint imposed by the regulator:

s(q1, ..., qN) ≤ a, (8)

where s is imagined to arise from an externally supplied risk measure with a set threshold dictating
the requisite capitalization for the firm. As is customary for risk measures (see e.g. the well-known
coherence axioms by Artzner et al. (1999)), we assume that s is positively homogeneous of degree
one.

The participation constraints contain the parameters γi which can be used to incorporate dif-
ferent degrees of competition. For example, γi set to reflect uninsured consumer utilities would
correspond to a case of pure monopoly, where the monopolist could practice first-degree price dis-
crimination and extract all consumer surplus associated with insurance. At the other end of the
spectrum, the γi could be set so high as to simulate (close to) perfect competition.

We show in Appendix A that a profit-maximizing firm can implement the optimum by offering
each consumer a smooth and monotonic premium schedule, where consumer i is free to choose any
level of qi desired. We denote the variable premium as p∗i (qi) and consider its construction under
the assumption that each consumer is a “price taker” and ignores the impact of her own purchase at
the margin on the level of recoveries in states of default. This assumption is discussed in Zanjani
(2010), who followed the transportation economics literature on congestion pricing (Keeler and
Small, 1977) by using the assumption when calculating the optimal pricing function. With this
assumption in place, the marginal price change at the optimal level of qi must satisfy:

[
∂vi
∂qi

+ E
[
1{I≥a} U

′
i

a

I2
Ii
∂Ii
∂qi

]]
− ∂vi
∂w

∂p∗i
∂qi

= 0 (9)

with U ′
i = U ′

i (wi − pi − Li +Ri). The term in brackets represents how the consumer perceives
the marginal benefit of additional coverage, which, due to the aforementioned assumption, differs
from the true impact of coverage on the utility function by E

[
1{I≥a} U ′

i
a
I2 Ii

∂Ii
∂qi

]
.

Appendix B.1 shows that (9) may be rewritten as:

∂p∗i
∂qi

=
∂eZi
∂qi

+
∂s

∂qi

[

P(I ≥ a) + τ −
∑

k

∂vk
∂a

v′k

]

+ φ̃i × a×
[
∑

k

∂vk
∂a

v′k

]

, (10)

where

φ̃i =
E
[
1{I≥a}

∑
k

U ′
k

v′k

1
I2 Ik

∂Ii
∂qi

]

E
[
1{I≥a}

∑
k

U ′
k

v′k

Ik
I

] . (11)

The last two terms of (10) imply an allocation of the marginal unit of capital to consumer that
“adds up.” More specifically, it can be easily verified that:

a×
∑

φ̃i qi = a, (12)
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whereas the regulatory constraint “adds up” by the homogeneity assumption:
∑ ∂s

∂qi
qi = a. (13)

Thus, the optimal marginal pricing condition (10) can be extended to fully allocate all of the firm’s
costs, including the cost of capital:

∑ ∂p∗i
∂qi

qi =
∑ ∂eZi

∂qi
qi + [P(I ≥ a) a+ τa] =

∑
eZi + [P(I ≥ a) a+ τa] .

Note that the cost of capital as captured in the bracketed term breaks down as:

[P(I ≥ a) a+ τa] =
∑

i

∂s

∂qi
qi ×

[

P(I ≥ a) + τ −
∑

k

∂vk
∂a

v′k

]

+
∑

i

φ̃i qi × a×
[
∑

k

∂vk
∂a

v′k

]

.

So an individual consumer’s capital allocation has two components. The first derives from an
“internal” marginal cost—driven by the cross-effects of consumers on each other:

φ̃i qi × a×
[
∑

k

∂vk
∂a

v′k

]
;

and the second originates from an “external” marginal cost imposed by regulators:

∂s

∂qi
qi ×

[
P(I ≥ a) + τ −

∑

k

∂vk
∂a

v′k

]
.

It is useful at this point to consider several different institutional scenarios.

Full Coverage by Deposit Insurance and Binding Regulation

If consumers are fully covered by deposit insurance/guaranty funds—whether implicit or explicit—
they are indifferent to the capitalization of their financial institution. Mathematically, this means
that:

∑

k

∂vk
∂a

v′k
= 0,

so that (10) becomes:
∂p∗i
∂qi

=
∂eZi
∂qi

+
∂s

∂qi
[P(I ≥ a) + τ ] . (14)

Thus, the marginal cost of risk, and the attendant allocation of capital, is completely determined
by the gradient of the binding regulatory constraint. This is the world of Denault (2001), Tasche
(2004) and others involved in the development of the gradient allocation principle. In this world,
the marginal cost of risk is indeed completely determined by an arbitrarily chosen risk measure.9

9If deposit insurance were explicit and premiums were charged to financial institutions, then the form of the deposit
premium functionmight also need to be considered in the firm’s calculus, particularly if it contained risk penalties (e.g.,
Cummins (1988)).
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No Deposit Insurance and Non-Binding Regulation

At the opposite extreme is the case of an unregulated market with no deposit insurance. Here,
Constraint (8) is immaterial, so (cf. Eq. (49) in Appendix B.1):

∑

k

∂vk
∂a

v′k
= [P(I ≥ a) + τ ] ,

meaning that (10) becomes:

∂p∗i
∂qi

=
∂eZi
∂qi

+ φ̃i × a× [P(I ≥ a) + τ ] . (15)

Thus, the marginal cost of risk and the attendant allocation of capital is driven completely by
“internal” considerations. Specifically, (11) indicates that the allocation is driven by the time-zero
value that consumers place on their anticipated recoveries in the various states of default.

General Case: Uninsured Consumers and Binding Regulation

In general, we may imagine the case where both of the considerations isolated above—an “exter-
nal” regulatory constraint, and “internal” concerns driven by counterparty preferences—are influ-
encing the marginal cost of risk. Then, (10) remains in its original form:

∂p∗i
∂qi

=
∂eZi
∂qi

+
∂s

∂qi

[
P(I ≥ a) + τ −

∑

k

∂vk
∂a

v′k

]
+ φ̃i × a×

[
∑

k

∂vk
∂a

v′k

]
, (16)

but we are now able to see more clearly the two influences on capital allocation. When the
regulatory constraint binds, we know that:

P(I ≥ a) + τ >
∑

k

∂vk
∂a

v′k
,

with the interpretation that regulation is forcing the institution to hold assets beyond the level
that would be privately efficient from the perspective of serving its counterparties. The extent of
this distortion is the key to whether internal counterparty concerns or external regulatory concerns
guide capital allocation. If regulation comes close to replicating the private market outcome:

P(I ≥ a) + τ ≈
∑

k

∂vk
∂a

v′k
,

then the second term in (16) will be unimportant relative to the third term, and internal counterparty
concerns will dominate. On the other hand, if regulation pushes institutional capitalization well
beyond the level that would prevail in the private market:

P(I ≥ a) + τ +
∑

k

∂vk
∂a

v′k
,

then the second term in (16) overshadows the third, and external regulatory concerns dominate.
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2.2 Allocation in a Securities Market Equilibrium
To this point, we have ignored hedging opportunities associated with securities markets. Such
opportunities could be important for the insurer in the course of managing the risks in its liability
portfolio, and for consumers in managing the risks associated with insurer default and any residual
loss risk that is not insured. Specifically, we now allow both insurers and consumers to invest
in (risky) capital market assets with the goals of maximizing insurer value and consumer utility,
respectively.

To keep the setup simple, we limit our considerations to a one-period market with a finite
number of securities (M), each security with potentially distinct payoffs in X states, and assume
that the risk-free rate is zero. More formally, let Ω(S) = {ω(S)

1 , . . . , ω(S)
X } be the set of these states

with associated sigma-algebra F (S) given by its power set, and let p(S)j = P
(
{ω(S)

j }
)
denote the

associated (physical) probabilities. Let thenD be theM×X matrix withDij describing the payoff
of the ith security in state ω(S)

j , where we assume:

span(D) = RX .

This condition allows us to define unique state prices, consistent with the absence of arbitrage
within the securities market, denoted by πj , j = 1, . . . , X. Thus, any arbitrary menu of securities-
market-sub-state-contingent consumption can be purchased at time zero. However, it would be
misleading to characterize markets as complete, sinceΩ(S) does not provide a complete description
of the “states of the world.” Instead, we characterize the full probability space as

(
Ω̄, F̄ ,P

)
, with:

Ω̄ = Ω(S) × Ω =
{
ω̄ = (ω(S), ω)

∣∣ω(S) ∈ Ω(S), ω ∈ Ω
}
,

F̄ = F (S) ∨ F , and
P
(
Ā
)

=
∑

j∈ΥA

p(S)j × P
(
Aj

∣∣∣{ω(S)
j }
)

for Ā =
⋃

j∈ΥA
{ω(S)

j } ×Aj ∈ F̄ with Aj ∈ F , j = 1, 2, . . . , |ΥA|.
Our problem now, however, is that the market is no longer complete so that we need a notion of

what insurance liabilities are “worth” to the insurer when they cannot be hedged completely. We
make the assumption that the insurance market is “small” relative to the securities market and, for
purposes of valuing insurance liabilities, employ the so-called minimal martingale measure: 10

Q
(
Ā
)
=
∑

j∈ΥA

πj × P
(
Aj

∣∣∣{ω(S)
j }
)
, Ā ⊆ Ω̄,

i.e. Q is defined by the Radon-Nikodym derivative ∂Q
∂P ((ω

(S)
j , ω)) = πj

p(S)
j

.

10As indicated by Björk and Slinko (2006), the minimal martingale measure “provides us with a canonical bench-
mark for pricing.” It emerges as the optimal martingale measure given various criteria proposed in the mathematical
finance literature if the market for insurance risk is “small” relative to financial markets, i.e. if these risks do not affect
the payoff of financial securities (see e.g. Goll and Rüschendorf (2001) or Henderson et al. (2005)), and it also appears
in other settings throughout the finance literature. For instance, the minimal martingale measure coincides with the
“hedge-neutral measure” in Basak and Chabakauri (2006), and it arises as the limit of Cochrane and Saá-Requejo
(2000) price bounds for Itô price processes as shown by Černý (2003). We refer to Föllmer and Schweizer (2010) for
a formal definition.
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Consumer utility now depends on the individual’s chosen security market allocation:

vi = EP [Ui (Wi − pi − Li +Ri)] with v′i = EP [U ′
i (Wi − pi − Li +Ri)] ,

where Wi is F (S)-measurable with wij = Wi(ω
(S)
j ) and

∑
j πj wij = wi, whereas Li is F̄ -

measurable. The recovery Ri now depends both on insurance loss activity as well as portfolio
decisions made within the insurance company. To elaborate on this, the budget constraint of the
insurance company may be expressed as:

a =
∑

j

πj Kj a ⇒ 1 =
∑

j

πj Kj ,

whereKj a reflects consumption purchased in the securities market stateω (S)
j or—more precisely—

in the states of the world Ω̄j =
{
ω̄ = (ω(S), ω)

∣∣ω(S) = ω(S)
j

}
. We write K to denote the corre-

sponding F (S)-measurable random variable. Consumer i’s recovery can then be expressed as:

Ri = min

{
Ii,

K a

I
Ii

}
,

and the fair valuation of claims is thus:

ei = EQ [Ri] = EQ [Ri 1{I<K a}
]

︸ ︷︷ ︸
=eZi

+EQ [Ri 1{I≥K a}
]

︸ ︷︷ ︸
=eDi

.

As before, we can now derive the capital allocation according to the company’s marginal cost
by working through its optimization problem (see Appendix B.2 for details). We obtain an alloca-
tion result similar to that of the previous section. The cost of capital:

[
EQ [K a1{I≥K a}

]
+ τ a

]
,

which now reflects state prices and the company’s asset allocation, can be decomposed according
to the marginal costs for each of the individual exposures as:

[
EQ [K a1{I≥K a}

]
+ τ a

]
=
∑

i

∂s

∂qi
qi

[

EQ [K 1{I≥K a}
]
+ τ −

∑

k

∂vk
∂a

v′k

]

+
∑

i

φ̃i qi a×
[
∑

k

∂vk
∂a

v′k

]

,

(17)
where:

φ̃i =
EQ
[
1{I≥K a}

∑
k

U ′
k

EP[U ′
k|ω(S)]

K
I2 Ik

∂Ii
∂qi

]

EQ
[
1{I≥K a}

∑
k

U ′
k

EP[U ′
k|ω(S)]

K Ik
I

] =

∑
j πj Kj EP

[
1{I≥Kj a}

∑
k

U ′
k

EP[U ′
k|ω

(S)
j ]

Ik
I

∂Ii
∂qi
I

∣∣∣∣ω
(S)
j

]

∑
j πj Kj EP

[
1{I≥Kj a}

∑
k

U ′
k

EP[U ′
k|ω

(S)
j ]

Ik
I

∣∣∣∣ω
(S)
j

] .

(18)
Thus, we essentially have the same result as before, although the “internal” allocation rule now
only applies in every “branch” of the security market where the incompleteness becomes material.
In particular, after adjusting for state prices by conditioning on each “branch,” capital allocation
weights are still determined by consumer marginal utility.
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In the limiting case of a complete market (i.e. the case when Li and Ri are F (S)-measurable so
that we can write lij = Li(ω

(S)
j ) and rij = Ri(ω

(S)
j ), lij , rij ∈ R) we obtain:

φ̃i =
EQ
[
1{I≥K a}

∑
k

K
I2 Ik

∂Ii
∂qi

]

EQ
[
K 1{I≥K a}

] =

EQ
[
K

∂Ii
∂qi
I

∣∣∣∣ I ≥ K a

]

EQ [K| I ≥ K a]
, (19)

so that:
qi × φ̃i × EQ [K a1{I≥K a}

]
= EQ

[
K a

I
Ii 1{I≥K a}

]

is the fair price of the recovery. This result—where capital is allocated to consumers in proportion
to their share of the total market value of recoveries—is the same allocation result as in Ibragimov,
Jaffee, and Walden (2010). It is important to note, however, that in the complete market case,
purchasing protection from an insurance company with costly capital is inefficient since consumers
can hedge insurance risk themselves.11

2.3 A Multi-Period Version of the Model
In this section, we consider a generalization of the (one-period) setup to multiple periods. Let
Lt
i denote the loss incurred by consumer i, i ∈ {1, 2, . . . , N}, in period t, t ∈ {1, 2, . . .}. We
assume that Lt

i, t > 0—for fixed i—are independent and identically distributed, and we define the
relevant filtration F = (Ft)t≥0 via Ft = σ(Ls

i , i ∈ {1, 2, . . . , N}, s ≤ t). The firm determines
the optimal level of assets, at, in the beginning of each period (i.e. (at) is F-predictable) for a
period cost of τ × at. Similarly to before, the company chooses F-predictable amounts q it in
I ti = I(Lt

i, q
t
i) = qti × Lt

i and prices pti at the beginning of the period, and we denote the total
claims by I t =

∑N
j=1 I

t
j .

Now the company defaults if I t > at, so that the recovery paid to each consumer is Rt
i =

min{I ti , at
It I

t
i} and the company shuts down in case of default, i.e. shareholders do not have access

to future profit flows.12 The consumer’s utility in period t is given by:

vti(at,wt
i − pti, q

t
1, . . . , q

t
N) = Et−1

[
Ui(wt

i − pti − Lt
i +Rt

i)
]
,

where for simplicity we assume that wealth is homogeneous across periods, i.e. wt
i ≡ wi.13

The company solves:

max
{at},{qti},{pti}

V0 =
∞∑

t=1

E
[
1{I1≤a1,...,It−1≤at−1} ×

(
∑

i

pti −
∑

i

Et−1

[
Rt

i

]
− τ at

)]
(20)

11Ibragimov, Jaffee, and Walden (2010) deal with this by assuming “the insurees do not have direct access to the
market for risk” whereas the insurer faces a “friction-free complete market for risk.”

12Alternatively, it is possible to allow the distressed company to raise additional funds in the case of default at a
higher (or even increasing) cost akin to Froot, Scharfstein, and Stein (1993) and Froot and Stein (1998). Here, we
limit our considerations to this simple case and leave the further exploration of alternative settings for future research.

13Formally, the consumers will form utilities over consumption in multiple periods. In particular, future (random)
losses will also be material. Thus, here U should rather be interpreted as a value function (of end-of-period wealth)
than as a utility function (of end-of-period consumption).
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with constraints:

vti(at, w
t
i − pti, q

t
1, . . . , q

t
N) ≥ γi ∀i, ∀t, (21)

s(qt1, . . . , q
t
N) ≤ at ∀t. (22)

Under the assumptions above, it is clear that there exists an optimal stationary policy:

(at, {qti}, {pti}) ≡ (a∗, {q∗i }, {p∗i })

that solves the Bellman equation:

V = max
a,{qi},{pi}

∑

i

pi −
∑

i

E[Rt
i]︸ ︷︷ ︸

ei

−τ a+ P[I t ≤ a]× V (23)

under conditions (21) and (22). Hence, we have a similar program as in the basic setup from Sec-
tion 2.1, where the primary difference is the last term in (23) involving the value of the company.

Proceeding analogously to before (see Appendix B.3 for details), we obtain the following
marginal pricing condition:

∂p∗i
∂qi

= E
[
∂Ii(Lt

i,qi)
∂qi

1{It≤a}

]
+ [V fI(a)] θ̃i +

[
P (I t > a) + τ −

∑
k

∂vk
∂a
v′k

− V fI(a)

]
∂s
∂qi

+

[∑
k

∂vk
∂a
v′k

]
× a× φ̃i,

(24)
where

θ̃i = E
[
∂Ii(Lt

i, qi)

∂qi

∣∣∣∣ I
t = a

]
and φ̃i =

E
[(

1{It>a}
∑

k
U ′
k

v′k

Itk
It

) ∂Iti
∂qi
It

]

E
[
1{It>a

∑
k

U ′
k

v′k

Itk
It

] .

Thus, akin to the previous sections, again (24) implies an allocation of capital that “adds up” to the
cost of capital:

[
P(It ≥ a) a+ τ a

]
=
∑

i

θ̃i qi × [V fI(a)] +
∑

i

∂s

∂qi
qi ×

[
P(It ≥ a) + τ −

∑

k

∂vk
∂a

v′k
− V fI(a)

]

+
∑

i

φ̃ qi a×
[
∑

k

∂vk
∂a

v′k

]
.

In addition to the “external” ( ∂s
∂qi
) and “internal counterparty” (φ̃i) allocation rules from before,

the allocation now features a third term—θ̃i—that is associated with the firm’s value as a going
concern. In order to obtain insights on the provenance of the corresponding weights, it again is
helpful to consider a few specific situations.
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The Limiting Case of Perfect Competition

In the limiting case of perfect (Bertrand) competition, the firm value V approaches zero, and, thus,
so does the weight associated with the “going concern” allocation θ̃i. Hence, the limiting allocation
is

∂p∗i
∂qi

=
∂eZi
∂qi

+
∂s

∂qi
×
[
P
(
I t ≥ a

)
+ τ −

∑

k

∂vk
∂a

v′k

]
+ φ̃i × a×

[
∑

k

∂vk
∂a

v′k

]
, (25)

i.e. we obtain the same allocation as in the single-period model (10). As before, we could now
further break down this setting by distinguishing insured and uninsured consumers and binding and
non-binding regulation to obtain allocations that are fully determined by “external” and “internal
counterparty” considerations, respectively. In particular, in this case the remaining two weights in
(25) adhere to the same interpretation as in the single period setting.

Imperfect Competition, Full Coverage by Deposit Insurance, and Non-Binding Regulation

In this case, again consumers are indifferent to the capitalization of the firm and there is no external
solvency constraint, so that the level—and the allocation—of firm capital is solely determined by
the firm’s value as a going concern:

∂p∗i
∂qi

= E
[
∂Ii(Lt

i, qi)

∂qi
1{It≤a}

]
+ V fI(a)E

[
∂Ii(Lt

i, qi)

∂qi

∣∣∣∣ I
t = a

]

= E
[
∂Ii(Lt

i, qi)

∂qi
1{It≤a}

]
+
[
P
(
I t > a

)
+ τ
]
× E

[
∂Ii(Lt

i, qi)

∂qi

∣∣∣∣ I
t = a

]
, (26)

where the latter equality follows from the first order condition for a in the absence of constraints
(see Eq. (54) in Appendix B.3).

General Case: Imperfect Competition, Uninsured Consumers, and Binding Regulation

Here we obtain (24), and we can now identify the three influences on capital allocation. Two are
exactly the same as before—with their relative importance determined by how close the regulatory
requirement is to the capitalization level chosen by the consumers in an unregulated market. The
relative importance of the “new” term θ̃i that derives from the firm’s value as a going concern
depends on how different the capitalization would be if regulatory and consumer concerns were
immaterial. In particular, if consumer and shareholder considerations in a private (unregulated)
market would yield a similar capitalization as imposed by regulation:

P(I t ≥ a) + τ ≈
∑

k

∂vk
∂a

v′k
+ V fI(a),

then internal counterparty and continuation value concerns will dominate whereas regulatory con-
cerns will be the key driver otherwise.

Inspecting the form of the regulatory and the shareholder-driven allocation, they are reminis-
cent of conventional allocation methods based on the gradients of risk measures. The next section
elaborates on these relationships in more detail.
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3 Capital Allocation and Risk Measures
The popularity of risk measures for the purpose of calculating the marginal cost of risk and allo-
cating capital can be attributed in part to their ease of application. However, there has been little
scientific analysis of the question of how to choose said risk measures. Conventional thinking
points to various mathematical properties (e.g., coherence or convexity), yet it is not clear whether
choices made on such a basis yield economically desirable outcomes (see Gründl and Schmeiser
(2007)).

This section aligns the results from our economic model with those obtained from risk mea-
sures. We first formally introduce the gradient allocation principle. We then derive the risk mea-
sures which—if the gradient method were applied to them—would yield our allocation results.

3.1 The Gradient Allocation Principle
The gradient method follows from the maximization of profits subject to a risk measure constraint.
To illustrate, assume a company’s profit function Π depends on the indemnification parameters qi,
1 ≤ i ≤ N, and on capital a. Then maximizing profits subject a risk measure constraint:

{
maxa,{qi}Π(q1, . . . , qN , a)
ρ (q1, q2, . . . , qN ) χρ ≤ a

(27)

immediately yields:
∂Π

∂qi
=

(
−∂Π
∂a

)
χρ
∂ρ

∂qi
(28)

at the optimum. Here ρ is a differentiable risk measure evaluated at the aggregate claims
∑N

j=1 Ij
and χρ is an exchange rate that converts risk to capital (which is set to one if risk is measured in
monetary units—i.e. in the case of a monetary risk measure). Hence, for the optimal portfolio, the
risk-adjusted marginal return on marginal capital

∂Π/∂qi
χρ × ∂ρ/∂qi

for each exposure is the same and equals the cost of a marginal unit of capital − ∂Π
∂a .

This motivates the interpretation of the marginal capital weighted by the corresponding vol-
ume χρ

∂ρ
∂qi

qi as the amount of capital allocated to exposure i (see e.g. Tasche (2004) or the section
“Economic Justification of the Euler Principle” in McNeil, Frey, and Embrechts (2005)). In par-
ticular, for homogeneous risks and a homogeneous risk measure, the allocations to the respective
risks “add up” to the entire capital:

N∑

j=1

χρ
∂ρ

∂qj
qj = a. (29)

We refer to Denault (2001), Kalkbrener (2005), and Myers and Read (2001) for alternative
derivations of the gradient allocation principle (29) based on cooperative game theory, formal
axioms, or a contingent claim approach, respectively. Regardless of its provenance, its strength
is the feasibility of implementation, as it is only necessary to calculate the partial derivatives of a
given risk measure with respect to each exposure evaluated at the current portfolio.



THE MARGINAL COST OF RISK, RISK MEASURES, AND CAPITAL ALLOCATION 16

3.2 Economic Allocation Based on Risk Measures
In Section 2, we derive the marginal cost of risk and corresponding capital allocations in the context
of an economic model of the firm within different settings. We now proceed to align these eco-
nomic allocation results with risk measures. As before, it is useful to consider specific institutional
circumstances, where only certain parts of our general allocation rule prevail.

Full Coverage by Deposit Insurance and Binding Regulation in the One-Period Model14

As already indicated in Section 2.1, in this case the only relevant constraint on risk-taking derives
from the external risk measure s, and therefore the marginal cost of risk—and the attendant capital
allocation—is indeed completely determined by its gradient.

This can also be derived in the formal setting of the gradient allocation principle introduced in
3.1. In the context of our model, the supporting optimization problem (27) takes the form:

{
maxa,{qi}Π

∗ (q1, . . . , qN , a) =
∑

k p
∗
k(qk)−

∑
k ek(q1, . . . , qN , a)− τ a,

s(q1, . . . , qN) ≤ a,
(30)

and the solution (28) takes the form:
[
∂p∗i
∂qi

−
∑

k

∂ek
∂qi

︸ ︷︷ ︸
=

∂eZi
∂qi

]
=

[
τ +
∑

k

∂ek
∂a

︸ ︷︷ ︸
=P(I≥a)

]
∂s

∂qi
,

i.e. exactly (14), the relationship derived in Section 2. As before, capital is fully allocated due to
the assumed properties on s :

N∑

j=1

∂s

∂qj
qj = a. (31)

However, it is important to note that the optimization problem (30) is not equivalent to the firm’s
formal maximization problem (6)-(8), particularly since the derivation of the optimal premium
functions embedded in (30) requires a solution of the original problem. Rather, the optimization
problem in the context of the gradient principle (27)/(30) is a simpler auxiliary problem that yields
the same marginal cost at the optimum—and thus can be used for capital allocation.

Full Coverage by Deposit Insurance and Non-Binding Regulation

In this case, risk-taking is only hindered by shareholder concerns about profit flows in future peri-
ods. Consider the auxiliary optimization problem (27) with our profit function Π∗ and a Value-at-
Risk constraint with confidence level α∗ = P(I ≤ a). Again, it turns out that the solution to this
auxiliary problem (28) lines up precisely with the pricing condition from our economic model (cf.

14Or full deposit insurance, binding regulation, and (close to) perfect competition in the multi-period context.



THE MARGINAL COST OF RISK, RISK MEASURES, AND CAPITAL ALLOCATION 17

Eq. (26)):15

∂p∗i
∂qi

− ∂e
Z
i

∂qi
=
[
τ + P

(
I t > a

)]
× E

[
∂Ii(Lt

i, qi)

∂qi

∣∣∣∣ I
t = a

]

⇔ ∂Π∗

∂qi
=

[
τ +
∑

k

∂ek
∂a

]

︸ ︷︷ ︸
=− ∂Π∗

∂a

× ∂

∂qi
VaRα∗(I).

Hence, in this case, the marginal cost of risk and resulting capital allocations can also be calcu-
lated based on a risk measure, VaR, which thus arises endogenously within our framework. Again,
it is worth noting that (27) is not equivalent to the original maximization problem (6)-(8) but it is
a simplified optimization problem that requires the (fixed) inputs p∗ and α∗. However, based on
optimal choices of these inputs, again this simplification yields an easy-to-implement prescription
to calculating the marginal cost of risk and for allocating capital: Just take the derivative of VaR at
the current portfolio position in the direction of the exposure.

Finally, we note that although a VaR-based allocation only emerges in these specific circum-
stances, it is more than a curiosity since 1) deposit insurance is prevalent in most developed banking
and (primary) insurance markets and 2) regulatory capital requirements—though common in inter-
mediary markets—frequently do not bind, i.e. solvency ratios frequently exceed the required level
(see e.g. Hanif et al. (2010)).

Uninsured Consumers and Non-Binding Regulation in the One-Period Model16

In this case, capitalization becomes material to consumers—which mathematically corresponds to
the φ̃i’s emerging in the marginal cost allocations, where:

φ̃i =

E
[
1{I≥a}

∑
k

U ′
k

v′k

Ik
I

∂Ii
∂qi
I

]

E
[
1{I≥a}

∑
k

U ′
k

v′k

Ik
I

] .

To align the allocation with the gradient method, we introduce the probability measure P∗ on
(Ω,F) via its Radon-Nikodym derivative:

∂P∗

∂P =

∑
k

U ′
k

v′k

Ik
I 1{I≥a}

E
[∑

k
U ′
k

v′k

Ik
I 1{I≥a}

] , (32)

where I , U , etc. are evaluated at the optimum. Note that P∗ is absolutely continuous with respect
to the original probability measure—i.e. only events that have positive probability under P have
positive probability under P∗—but the measures are not equivalent since under P∗ all the prob-
ability mass is concentrated in default states. On the set of strictly (P∗-almost surely) positive

15See e.g. Gourieroux, Laurent, and Scaillet (2000) for a formal derivation of the gradient of Value-at-Risk.
16Or uninsured consumers, non-binding regulation, and (close to) perfect competition in the multi-period context.
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square-integrable random variables L2
+(Ω,F ,P∗), that is on the set of square-integrable random

variables that are positive in default states, we define the risk measure:

ρ̃(X) = exp
{
EP∗

[log{X}]
}
. (33)

Moreover, define
χ∗ρ =

a

ρ̃
(∑N

j=1 Ij(Lj , qj)
) ,

as the “exchange rate” between units of risk and capital, again evaluated at the optimum. Then the
marginal cost of risk and attendant capital allocations in this case can also be calculated based on
a risk measure—namely ρ̃.

More precisely, consider the gradient allocation problem (27) with our profit function Π∗ and
the risk measure constraint based on ρ̃ and χ∗

ρ. Then the solution (28) reads:
[
∂p∗i
∂qi

− ∂e
Z
i

∂qi

]
=
[
τ + P(I ≥ a)

]
χ∗ρ
∂ρ̃(I)

∂qi

=
[
τ + P(I ≥ a)

]
a EP∗

[
∂Ii/∂qi

I

]

︸ ︷︷ ︸
=φ̃i

, (34)

i.e. exactly Equation (15), the relationship derived in Section 2.17 Akin to p∗ and α∗ in the pre-
vious cases, P∗ and χ∗

ρ are (fixed) input parameters in the simple auxiliary problem delivering the
correct marginal cost. In particular, by inserting χ∗

ρ, we find that the attendant capital allocation to
consumer i indeed takes the familiar form of a so-called proportional allocation (see e.g. Schmock
and Straumann (1999) or Dhaene et al. (2009)) based on the homogeneous risk measure ρ̃:

a×
qi

∂ρ̃(I)
∂qi

ρ̃(I)
= a×

qi
∂ρ̃(I)
∂qi∑N

j=1 qj
∂ρ̃(I)
∂qi

.

Before we continue with the consideration of more general institutional circumstances, we note
that ρ̃ does not satisfy the mathematical properties that are typically imposed when selecting risk
measures such as coherence (Artzner et al., 1999) or convexity (Föllmer and Schied, 2002). While
ρ̃ obviously is monotonic (ρ̃(X) ≤ ρ̃(Y ) for X ≤ Y a.s.), positively homogeneous (ρ̃(aX) =
a ρ̃(X), a > 0), and satisfies the constancy condition ρ̃(c) = c for c > 0, it is neither translation-
invariant nor sub-additive (see e.g. Frittelli and Gianin (2002) for a discussion of properties of risk
measures). While these latter properties are viewed by many as desirable, the important point is
that they do not follow from the economic context of the problem.

General Case: Imperfect Competition, Uninsured Consumers, and Binding Regulation

General institutional circumstances lead to a risk measure that combines the three foregoing risk
measures. Specifically, with (24) we have the following expression for the marginal cost for con-

17In a setting with securities markets (see Eq. (18)), the risk measure still takes the same form (33) but state prices
and allocations to security market states enter the measure transform (32).
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sumer i at the optimum:
[
∂p∗i
∂qi

− ∂e
Z
i

∂qi

]
=

[
V fI(a)

]
∂VaRα∗

∂qi
+

[∑

k

∂vk
∂a

v′k

]
χ̃∗ρ
∂ρ̃

∂qi

+

[
P(I ≥ a) + τ −

∑

k

∂vk
∂a

v′k
− V fI(a)

]
∂s

∂qi
(35)

=

[
P(I ≥ a) + τ

]
× ∂

∂qi

(
(1− ζ∗1 − ζ∗2) s+ ζ∗1 χ̃∗ρ ρ̃+ ζ∗2 VaRα∗

)

where:

ζ∗1 =

∑
k

∂vk
∂a
v′k

P(I ≥ a) + τ
and ζ∗2 =

V fI(a)

P(I ≥ a) + τ
,

so that we have the following expression for the resulting capital allocation:

N∑

j=1

∂

∂qj

(
(1− ζ∗1 − ζ∗2 ) s(I) + ζ∗1 χ̃∗ρ ρ̃(I) + ζ∗2 VaRα∗(I)

)
× qj = a.

Hence, the gradient principle still applies and we can envision the supporting problem (27) with a
risk measure constraint based on the weighted average of the external risk measure s, the internal
risk measure ρ̃, and VaR. Just as the risk measure parameters α∗, P∗, and χ∗

ρ, the exogenousweights
ζ∗1 and ζ∗2 follow from the formal maximization problem (6)-(8), and they depend on regulators’,
consumers’, and shareholders’ preferences for capitalization of the company at the margin.

Alternatively, it is also possible to think of the auxiliary problem (27) subject to three different
risk measure constraints: one based on s, one based on χ∗

ρ ρ̃, and one based on VaRα∗ . The solution
then satisfies:

∂Π∗

∂qi
=

[
− ∂Π

∗

∂a
− (β1 + β2)

]
∂s

∂qi
+
[
β1
]
χ∗ρ
∂ρ̃

∂qi
+
[
β2
] ∂VaRα∗

∂qi

⇔ ∂p∗i
∂qi

− ∂e
Z
i

∂qi
=

[
P(I ≥ a) + τ − (β1 + β2)

]
∂s

∂qi
+
[
β1
]
χ∗ρ
∂ρ̃

∂qi
+
[
β2
] ∂VaRα∗

∂qi
,

where β1 and β2 are the Lagrange multipliers from the constraints associated with χ∗
ρ ρ̃ and VaRα∗ ,

respectively. Comparing the solution to (35), it is clear that we have:

β1 =
∑

k

∂vk
∂a

v′k
and β2 = V fI(a).

Therefore, when considering multiple constraints, we still obtain the correct marginal cost and
now the weights on the drivers of firm capitalization—corresponding to regulatory, shareholder,
and counterparty concerns—also follow from the auxiliary problem.

The foregoing shows that it is indeed possible to derive correct marginal costs and resulting
capital allocations based on risk measures. Casting the “right” inputs, such as the confidence
level α∗ or the weighting function P∗, is of course complex (and formally requires a solution of the
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“full” optimization problem of the firm). On the other hand, determining inputs such as confidence
levels and spectral weighting functions for risk measures (see Acerbi (2002)) is already a problem
for practitioners. Economic analysis of the profit maximization problem yields 1) the correct
form of the risk measure for allocating capital consistent with optimal pricing and performance
measurement; and 2) the input parameters in terms of fundamental economic quantities that can be
estimated. In our particular setting, the correct form is a weighted average of three risk measures,
at least two of which (VaR and ρ̃) generally do not adhere to the axioms of coherence or convexity.

4 Comparison of Capital Allocation Methods
This section compares approaches for calculating the marginal cost of risk and allocating cap-
ital. Since there are many papers that consider VaR-based allocations and their relationship to
other methods (see, among many others, Garman (1997) or Kalkbrener (2005)), we focus on the
counterparty-driven internal allocation corresponding to the new risk measure ρ̃. We analyze how
this allocation effectively differs from the allocation based on ES—perhaps the most widely en-
dorsed measure within the academic and practitioner communities—in the context of two single-
period examples. In particular, we are interested in how the economic weight assigned to various
outcomes and various risks under ρ̃ differs from what would be obtained from applying the gradient
technique to ES.

4.1 The Case of Homogeneous Exponential Losses
Assume that there are N identical, independent consumers with wealth level w in a regime with
no regulation that face independent, Exponentially distributed losses Li ∼ Exp(ν), 1 ≤ i ≤ N .
Assume further that all consumers exhibit a constant absolute risk aversion α < ν, and that their
participation constraint is given by the autarky level:

γ = γi = E [U(w− Li)] = −e−αw ν

ν − α.

Then, the firm’s optimization problem in the one period model (6)/(7) may be represented as:





maxa,q,p

{
N × p−N × q ×

[
1
νΓN−1,ν

(
a
q

)
− νN−1

(N−1)!e
−ν a

q

(
a
q

)N−1 (
1
ν + 1

N
a
q

)]

−a× Γ̄N,ν

(
a
q

)
− τ × a

}

subject to
γ ≤ e−α(w−p)

{
ν

ν−(1−q)α

[
ΓN−1,ν

(
a
q

)
− e

− a
q (ν−(1−q)α)

νN−1

((1−q)α)N−1 ΓN−1,(1−q)α

(
a
q

)]

+
∑∞

k=0

(
α
ν

)k (N−1)!
(N−1+k)!e

−ν a
∑N−1

j=0
(a ν)j

j!
(N−j+k−1)!
(N−j−1)! Γ̄N−j+k,ν

(
a
(

1−q
q

))}
,

(36)
where Γ̄m,b(x) = 1 − Γm,b(x) and Γm,b(·) denotes the cumulative distribution function of the
Gamma distribution with parametersm and b (see Appendix C.1 for the derivation of (36)).

Note that the premiums pi ≡ p and the coverage amounts qi ≡ q are equal for all consumers
since they are identical. Likewise, any reasonable allocation rule trivially yields identical alloca-
tions for each consumer, and particularly:

q φ̃i = N−1, i = 1, 2, . . . , N,
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for the counterparty-driven allocation—rendering a comparison to other allocation methods moot.
However, we may analyze how different allocations arrive at this congenerous result, i.e. we can
distinguish different allocation methods by comparing the weight they put on different loss states.

For instance, for the allocation based on ES with confidence level α∗ = P(q L ≥ a) according
to the gradient principle, it is well known that (see e.g. McNeil, Frey, and Embrechts (2005)):

1

N
=

qi
∂ESα∗(I)

∂qi

ESα∗(I)
=

qE [Li| q L ≥ a]

E [I| I ≥ a]
=

E [E[Li|L]| q L ≥ a]

E [L| q L ≥ a]
=

1

N
E [const× L| q L ≥ a] ,

where L =
∑

j Lj , i.e. Expected Shortfall can be associated with a linear weighting function of
the default states.

For the counterparty-driven allocation, on the other hand, we obtain:

1

N
Eq. (11)
=

E
[[
1{qL≥a}

∑N
j=1U

′
(
w− p− Lj + aLj

L

)
Lj

L

]
Li
L

]

E
[
1{qL≥a}

∑N
j=1 U

′
(
w− p− Lj + aLj

L

)
Lj

L

]

= EP∗
[
Li

L

]
=

1

N
E
[
E
[
∂P∗

∂P

∣∣∣∣L
]

︸ ︷︷ ︸
ψ∗(L)

]
, (37)

i.e. the weighting function is implied by the measure transform and can be expressed as:

ψ∗(l) = 1{ql≥a} ĉN,ν,α,a,q

∞∑

k=0

(k + 1) (α(l − a))k

(N + k)!
, (38)

where c̃N,ν,α,a,q is a constant ensuring that E [ψ∗(L)] = 1.18
In particular, for the risk measure ρ̃ evaluated at the aggregate loss I , we have:

ρ̃(I) = ρ̃(q L) = exp {E [ψ∗(L) log{qL}]} = exp
{
E
[
ψ̂∗(L) log{qL}

∣∣∣ qL ≥ a
]}

, (39)

with ψ̂∗(l) = P(qL ≥ a) × ψ∗(l). Thus, ρ̃ in this sense is in fact a tail risk measure, and hence
is related to ES. The weights ψ̂∗(·) perform a role similar to the risk spectrum within the so-
called spectral risk measures introduced in Acerbi (2002). However, while there the risk spectrum
purports to encode the “subjective risk aversion of an investor” to justify overweighting bad out-
comes, in our setting the weights represent an adjustment to objective probabilities based on the
value placed by claimants on recoveries in various states of default. Thus, the pivotal character-
istics for our weights lie in the primitives of the firm’s profit maximization problem (namely, the
preferences of counterparties)—which ultimately determine the overall choice of capitalization as
well as the values consumers place on state contingent recoveries—rather than in a subjectively
specified preference function for the firm.

In the absence of weights, the concavity of the logarithmic function will, in the course of the
application of the gradient allocation method, tend to penalize bad outcomes less heavily than ES.

18The derivation of (38), a closed-form solution for ĉN,ν,α,a,q, and a representation of ψ̂∗(·) not involving an infinite
sum for implementation purposes are provided in Appendix C.2.
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In fact, it is evident from (37) that for ψ̂∗(·) ≡ 1, the counterparty-driven allocation will effectively
weight all aggregate loss outcomes in excess of the firm’s capital equally, regardless of size. The
reason for this is that ψ̂∗(·) ≡ 1 implies that the firm’s counterparties are risk-neutral (α = 0 in
(38)) and, thus, the value placed on the recoveries in all states of default, regardless of how extreme
the default, is simply the firm’s assets. At the margin, the counterparties evaluate changes in risk
simply from the perspective of how the expected value of recoveries from the firm are affected,
and recoveries in mild states of default are weighted no differently from severe ones. This is also
the reason why ρ̃ is not sub-additive or translation-invariant: Adding a constant amount to the
aggregate loss in high loss states is less precarious in terms of its effect on recoveries than in low
loss states because of limited liability.

Under risk aversion, on the other hand, ψ̂∗(·) 2= 1, and counterparties will weight recoveries
in severe states of default more heavily than in mild ones. In fact, in the current setting, ψ̂∗(·) is
increasing and strictly convex, and for all risk aversion levels α > 0 there exists a loss level l0 such
that the weighting function for the counterparty-driven allocation will exceed that of ES.19 How-
ever, for smaller—and more probable—loss realizations, different shapes are possible rendering
either ES-based allocation or the counterparty-driven allocation to be “more conservative.”

Exponential Losses: Parametrizations

Nr. N ν τ α w a p q

1 5 2.0 0.050 0.25 3.0 1.4663 0.2598 0.5713
2 5 2.0 0.050 1.25 3.0 4.0036 0.7401 0.9494

Table 1: Parametrizations of the Exponential Losses model.

To analyze this relationship, in Table 1 we present two parametrizations of the setup and the
corresponding optimal parameters a, p, and q as solutions of the program (36) with different risk
aversion levels. The properties are as expected: a, p, and q all are increasing in risk aversion.
Figure 1 plots the corresponding weighting function ψ̂∗ against the linear weighting function as-
sociated with Expected Shortfall. We find two qualitatively different shapes:20 For the high risk
aversion level, ψ̂∗ crosses the linear weighting function once from below; thus, in this case, rela-
tively lower loss states are weighted more heavily for the allocation based on Expected Shortfall,
whereas the weighting is higher for the counterparty driven allocation in high loss states. Thus, the
counterparty-driven allocation can be deemed more conservative than ES-based allocation in this
case. For the low risk aversion level, on the other hand, ψ̂∗ crosses the linear weighting function
twice; in this case, the weighting function within the new risk measure ρ̃ puts more mass on low
and extremely high loss states, while the weights are smaller for intermediate to high loss states.
Thus, it can be deemed less conservative than ES in this case.

19It is worth noting that ψ̂∗(·) is not necessarily convex for alternative preference specifications; indeed, it is possible
to construct examples where the shape is strictly concave or even linear.

20Analyses with respect to other parameters such as company sizeN or the expected loss 1/ν show similar results.
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Figure 1: Weighting function ψ̂∗ for varying risk aversion parameter α.

Therefore, when relying on the one-size-fits-all solution of Expected Shortfall for the purpose
of internal capital allocation, the loss-specific weights may be too conservative or not conservative
enough, depending on the situation. In contrast, the risk measure ρ̃ from (39) provides a more
nuanced answer that can be tailored to the specific circumstances.

4.2 The Case of Heterogenous Bernoulli Losses
To analyze the impact of the different weighting of loss states on the allocation of capital, we now
consider a setup with heterogeneous consumers. Assume there are m groups of consumers, where
each group i contains Ni identical consumers with wealth level wi and utility function Ui(·) that
face independent, Bernoulli distributed losses li occurring with a probability πi, i = 1, . . . , m.21
The participation constraints again are given by their autarky levels:

γi = E [Ui(wi − Li)] = πi Ui(wi − li) + (1− πi)Ui(wi).

The optimization problem in the one period model without a regulatory constraint (6)/(7) can
then be conveniently set up by observing that the number of losses in the different groups follow

21While a discrete loss distribution does not formally fit our setup from Section 2, as indicated in Footnote 8,
generalizations are possible at the expense of conciseness in the presentation. We accept this slight inconsistency due
to the tractability of the Bernoulli setup.
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independent Binomial(Ni, πi) distributions.
For the counterparty-based allocation, we obtain for each consumer in group i:

qi φ̃i = c̃
N1∑
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. . .
Ni∑
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. . .
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(
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)
. . .
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)
. . .
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)
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1 . . . πki

i . . . πkm
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
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=const×∂P∗
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, (40)

where c̃ is a constant such that
∑

iNi qi φ̃i = 1. Thus, while the analytical form of the weights
ψ∗(I) = E

[
∂P∗

∂P

∣∣ I
]
is less transparent in this case, again we notice that they immediately depend

on the marginal utilities of recoveries in various states of default. For the allocation based on
Expected Shortfall with confidence level α∗, on the other hand, we obtain for each consumer in
group i:

qi
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1{k1q1l1+...+kmqmlm≥a} qi li, (41)

i.e. it is of a similar form as (40) but now 1) does not contain the adjustment based on the marginal
utilities ∂P∗

∂P , and 2) the state-specific loss for a consumer in group i, (qi li), is not scaled by the
aggregate loss—which, in the counterparty-driven allocation, is a consequence of the proportional
partitioning of the recoveries in states of default.

To assess the consequences of these adjustments, we consider the case of two different types
of consumers with differing loss exposure and risk aversion levels. Specifically, we assume con-
sumers in the first group have wealth level w1 = 7, CARA preferences with an absolute risk
aversion level α1 = 1.75, and face a loss of size l1 = 2 occurring with a probability of π1 = 10%.
Consumers in the second group also have wealth w2 = 7, CARA preferences, and face a loss with
an occurrence probability of π2 = 10%, but we vary their risk aversion level α2 and the size of the
loss l2. Figure 2 shows the optimal capital level, a, and the optimal coverage amount for consumers
in group 2, q2, as a function of α2 and l2 for group sizes N1 = N2 = 25 and capital cost τ = 5%.

Unsurprisingly, Panel 2(a) shows that the optimal capital level is increasing in the loss level—
which of course is due to an increase in the expected loss. Moreover, we find that capital is also
increasing in the risk aversion level, which is due to a combination of two effects. On the one
hand, more risk-averse consumers are—ceteris paribus—more worried about nonperformance of
their insurance contract and thus prefer a higher level of capital. On the other hand, as is evident
from Panel 2(b), higher risk aversion levels prompt the consumers in group 2 to increase their
coverage level q2, which in turn increases expected losses.22

22For the participation amount of consumers in group 1, q 1, we observe the opposite relationship, i.e. it is decreasing
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Figure 2: Optimal capitalization a and optimal coverage level q2 for group 2 loss levels l2 between
between 2 and 6.5 and group 2 risk aversion levels α2 between 0.25 and 2.95.

To demonstrate the influence of these effects on capital allocation, Figure 3 plots the difference
in the proportion of capital allocated to group 2 between the counterparty-based allocation rule and
the ES allocation rule as a function of l2 and α2. From the figure, the functional relationship appears
to be non-smooth, which is due to genuine discontinuities emerging from the discreteness of the
resulting aggregate loss distribution. To better illustrate the relationship, we therefore include a
5× 5-polynomial fit as well as contour lines based on the smoothed surface.

To interpret the results, it is important to note that the figure displays differences in allocations—
the absolute allocation levels vary much more across the different loss and risk aversion levels for
both allocation methods. For instance, for a risk aversion level of α2 = 1.75 and a loss level
l2 = 6.5, the proportion of capital allocated to consumers in group 2 based on ES is about 86.6%
and about 87.5% for the counterparty-based allocation principle, whereas for a risk aversion level
α2 = 1.75 and loss l2 = 2, both allocations clearly yield 50% since the two consumer groups are
identical in this case. In particular, the difference between the two allocations is zero in the latter
case as is also evident from the corresponding contour line.

The difference is negative (about -1%) for relatively low loss and risk aversion levels and
positive (about 2%) for relatively large loss and risk aversion levels—resulting in an overall range
of about 3% across all combinations. Hence, as in the previous example, we find that ES based
allocations are too conservative—i.e. they put too much weight on the group with the high risk
consumers in group 2—if those consumers are not very risk averse relative to group 1 consumers
and the difference in loss sizes is relatively small. On the other hand, if group 2 consumers are
relatively risk averse and face relatively large losses, ES-based allocations are not conservative
enough—i.e. the counterparty-based principle allocates more to the high risk group than ES.

in group 2 loss and risk aversion levels. The reason here is that—ceteris paribus—recoveries are larger and insurance
is more expensive when the capital level is higher.
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Figure 3: Difference in allocation of capital to group 2 between the counterparty-based allocation
rule and the ES allocation rule for group 2 loss levels l2 between between 2 and 6.5 and group 2
risk aversion levels α2 between 0.25 and 2.95.

5 Conclusion
The gradient allocation principle prescribes an allocation of capital to risks in the company’s port-
folio according to their marginal costs as defined via a given risk measure. However, risk measure
selection is a thorny issue that can be resolved only through careful consideration of institutional
context—a problem implicitly recognized in the early literature on capital allocation (Myers and
Read (2001), Tasche (2004)—both of whom ultimately fall back on regulation as motivating the
choice of risk measure) but since overlooked in favor of a focus on mathematical properties of
allocation rules and risk measures.

Instead of starting with a risk measure, this paper starts with primitive assumptions and calcu-
lates the marginal cost of risk from the perspective of a profit-maximizing firm with risk averse
counterparties in an incomplete market setting with frictional capital costs. We then take the
additional step of identifying the risk measure whose gradient yields allocations consistent with
marginal cost.

The resulting composite measure is a weighted average of three risk measures corresponding
to the interests of the different parties concerned with the capitalization of the firm: the regulator,
shareholders, and counterparties. The first risk measure relating to regulation is specified exoge-
nously as a part of the company’s optimization problem, while the risk measures corresponding
to shareholder and counterparty concerns arise endogenously in our setting. Shareholder concerns
yield VaR whereas counterparty concerns yield a novel risk measure, which can be expressed as
the exponential of the expected value of the logarithm of the portfolio outcomes under an alterna-



THE MARGINAL COST OF RISK, RISK MEASURES, AND CAPITAL ALLOCATION 27

tive probability measure which reflects weights for counterparty preferences in default states. The
composite risk measure will not generally obey the principles of convexity or coherence. Never-
theless, it is the only one that yields the appropriate allocation of capital for the profit-maximizing
firm in our setting.

To obtain these theoretically economically correct allocations, one needs considerable infor-
mation to choose the appropriate weights of the measures, the confidence level in VaR, or the
probability transform encapsulated in the novel risk measure. That said, conventional risk mea-
sures also rely on selections for parameter values—such as the confidence level in VaR or ES, or
the weighting function in spectral risk measures—so from the standpoint of practice the proposed
measure starts from an economically sound foundation and offers no greater level of complication
than is already present. Moreover, as is evident from our numerical applications, the parameters
are structural, i.e. they correspond fundamental quantities, so they may be calibrated according to
the application in view.

We compare the allocations obtained in a single period setting without regulation to those ob-
tained from the gradient of ES—the coherent risk measure currently favored by many academics
and regulators. We show that ES may underweight or overweight severe states of default, depend-
ing on the nature of customer risk aversion. This raises the interesting possibility that a transition
away from a system of regulation relying on risk measure-based solvency assessment to one re-
lying on market (counterparty) discipline will not necessarily mitigate the oft-lamented failure of
financial institutions to penalize “tail” risk.

Numerous extensions are possible. Our setting is but one possible specification of the profit
maximization problem. Others could include informational frictions with regards to consumer
endowments and preferences, explicit consideration of managerial incentives in a decentralized
organization of the multi-line business, a more detailed modeling of the firm’s capital raising and
capital structure decision, or any number of other complications. All of these these would of course
lead to different risk measures, underscoring the point that risk measures chosen for their technical
properties generally fail to yield correct pricing and efficient allocation of capital.

One can also contemplate changes of perspective: The calculations in this paper are done from
the perspective of a profit-maximizing firm, but one could also consider the calculus of a regulator
or social planner. In specific cases, the calculus will be similar. For example, a regulator without
responsibility for unpaid losses (i.e., if no deposit insurance scheme exists) but in a context where
counterparties are uninformed will view risk similarly to the profit-maximizing firm. However, a
regulator responsible for unpaid losses would presumably have to consider their value in selecting
a risk measure as well as other issues—such as bankruptcy costs not internalized by private firms
and the production cost technology associated with deposit insurance—that would determine the
optimal level of capitalization for financial institutions as well as the social cost of risk. One such
exercise is performed by Acharya et al. (2010) who study a particular environment which leads to
a new risk measure, dubbed systemic expected shortfall.

In general, the particular specifications of the economic environment will lead to different
risk measures. Going forward, the challenge for companies and regulators will be to choose risk
measures consistent with their economic objectives and constraints. These issues are intriguing
ones for future research.
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Appendix

A Implementation of the Firm’s Optimization Problem via a
Premium Schedule

In the text we consider the solution of maximizing (6) subject to (7) and (8). We claim further
that—if the consumer acts as a “price taker” with respect to the recovery rates offered by the
company within the various states of default—that the company can implement the optimum by
offering a smooth and monotonically increasing premium schedule that allows each consumer
to freely choose the level of coverage desired for the premium indicated by the schedule. It is
subsequently shown (in Appendix B.1) that the marginal price increase associated with coverage
must satisfy (10) when evaluated at the optimum. It remains to be shown that this premium
schedule exists and can be used to implement the optimum.

A complication arises in modeling the consumer as a price-taker with free choice of coverage
level. To introduce the consumer’s ignorance of his own influence on recoveries, we define price
schedule described above as p∗i (·) and modify the original utility function to

ṽi (wi − p∗i (qi), qi; ã, q̃1, . . . , q̃N) = E
[
Ui

(
wi − p∗i (qi)− Li + R̃i

)]
, (42)

where:

R̃i = R̃i (qi; ã, q̃1, . . . , q̃N ) = min

{

Ii(Li, qi),
ã

∑N
j=1 Ij (Lj , q̃j)

Ii(Li, qi)

}

.

The idea here is to fix recovery rates by fixing the quantities ã and {q̃i}, leaving the consumer with
the free choice of qi—but with the caveat that this choice does not influence recovery rates.23

The firm’s objective function is identical to the previous one, except that 1) the firm now spec-
ifies a price function rather than a single price point, and 2) the firm fixes the recovery rates for
purposes of consumer incentive compatibility by choosing ã and {q̃i} instead of the “true” levels
of a and {qi}:

max
ã,{p∗i (·)},{q̃i}

{∑
p∗i (q̃i)−

∑
ei − τ ã

}
(43)

The firm still faces the previous constraints (7) and (8),

vi (ã,wi − p∗i (q̃i), q̃1, . . . , q̃N) ≥ γi,

s (q̃1, . . . , q̃N) ≤ a,

23Alternatively, we could also specify

ˆ̂vi (wi − p∗i (qi), qi; ã, q̃1, . . . , q̃N ) = ṽi

(
wi − p∗i (qi), qi;

qi
q̃i

(ã, q̃1, . . . , q̃N )

)
,

where the consumer is cognizant of her own coverage but “scales” the company according to her own coverage level
and this would not change the presentation in the main text. Again, the important point is that the consumer expects
the same recovery per dollar of coverage in default states independent of her choice of q i.
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and in addition the new constraint:

q̃i ∈ argmax
qi

ṽi(wi − p∗i (qi), qi ; ã, q̃1, ..., q̃N), ∀i. (44)

Equation (44) is an incentive compatibility constraint requiring the choice of coverage level to be
consistent with the consumer optimizing, given her perception of own utility (which ignores her
own impact on recovery rates) and the selected pricing function.

It is evident that the firm’s profits under this maximization can be no better than those achieved
under the original program (maximizing (6) subject to (7) and (8)), since we have simply added
another constraint and choosing the premium schedule at different points than q̃i is immaterial to
the company’s profits. It is therefore clear that, given optimal choices â, {q̂i}, and {p̂i} to the
original program, the firm would maximize profits under the new setup if it could choose those
same asset and coverage levels and find a pricing function p∗i (·) that both satisfies p∗i (q̂i) = p̂i and
induces consumers to choose the original solution:

q̂i ∈ argmax
qi

ṽi(wi − p∗i (qi), qi ; â, q̂1, ..., q̂N), ∀i.

The following lemma shows that this function exists.

Lemma A.1. Suppose â, {q̂i}, and {p̂i} are the optimal choices maximizing (6) subject to (7)
and (8). Then, for each i, there exists a smooth, monotonically increasing function p∗

i (·) satisfying:

1. p∗i (q̂i) = p̂i.

2. q̂i ∈ argmaxqi ṽi(wi − p∗i (qi), qi ; â, q̂1, ..., q̂N).

Proof. Start by noting that it is evident that the constraints (7) all bind. Note further that the
function of x:

g(x) = ṽi(wi − x, 0 ; â, q̂1, ..., q̂N)

is monotonically decreasing and, hence, invertible, so that we may uniquely define:

p∗i (0) = g−1(γi), (45)

which obviously satisfies:
ṽi(wi − p∗i (0), 0 ; â, q̂1, ..., q̂N) = γi.

Furthermore, let p∗i (·) be a solution to the differential equation (initial value problem):24

∂p∗i (x)

∂x
=

∂
∂x ṽi(wi − p∗i (x), x ; â, q̂1, ..., q̂N)
∂
∂w ṽi(wi − p∗i (x), x ; â, q̂1, ..., q̂N)

, p∗i (0) = g−1(γi), (46)

on the compact choice set for qi. Due to Peano’s Theorem, we are guaranteed existence of such
a function and that it is smooth. Moreover, since ∂ṽi

∂w ,
∂ṽi
∂qi

> 0, we know that the function is
monotonically increasing.

24Here, ∂ṽi
∂w and

∂ṽi
∂qi

denote the derivatives with respect to the first and the second argument of ṽ i, respectively.
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Moving on, by construction we know that:

ṽi(wi − p∗i (qi), qi ; â, q̂1, ..., q̂N )

= γi +

∫ qi

0

[
∂

∂qi
ṽi(wi − p∗i (x), x ; â, q̂1, ..., q̂N )− ∂

∂w
ṽi(wi − p∗i (x), x ; â, q̂1, ..., q̂N )× ∂p∗i (x)

∂x

]
dx

= γi + 0, qi > 0. (47)

In particular,
ṽi(wi − p∗i (q̂i), q̂i ; â, q̂1, ..., q̂N ) = γi,

which, since it is evident that the constraints (7) all bind in the original optimization, can be true if
and only if:

p∗i (q̂i) = p̂i,

proving the first part of the lemma. Moreover, (47) directly implies that:

q̂i ∈ argmax
qi

ṽi(wi − p∗i (qi), qi ; â, q̂1, ..., q̂N).

proving the second part.

B Identities in Section 2

B.1 Derivation of Equation (10)
Let λk be the Lagrange multiplier associated with the participation constraint (7) for consumer k,
and let ξ the multiplier associated with (8). Then, the first order conditions for an interior solution
of Problem 6 are:25

[qi] −
∑

k

∂ek
∂qi

+
∑

k

λk
∂vk
∂qi

− ∂s

∂qi
ξ = 0, (48)

[a] −
∑

k

∂ek
∂a

− τ +
∑

k

λk
∂vk
∂a

+ ξ = 0, (49)

[pi] 1− λi
∂vi
∂w

= 0. (50)

Using (48) and (50), we see that (9) may be rewritten as:

∂p∗i
∂qi

(50)
=

1

v′i
q

[
∂vi
∂qi

+ E
[
1{I≥a} U

′
i

a

I2
Ii
∂Ii
∂qi

]]

(48)
=

∑

k

∂ek
∂qi

+
∂s

∂qi
ξ −
∑

k )=i

∂vk
∂qi

v′k
+

E
[
1{I≥a} U ′

i
a
I2 Ii

∂Ii
∂qi

]

v′i

25Despite the apparent kinks, the objective function and the constraints are differentiable for continuous distributions
as can be easily verified by an application of the Leibniz rule.
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or, simplifying and using (49):

∂p∗i
∂qi

=
∂eZi
∂qi

+
∂s

∂qi

[
∑

k

∂ek
∂a

+ τ −
∑

k

∂vk
∂a

v′k

]
+ E

[
1{I≥a}

∑

k

U ′
k

v′k

a

I2
Ik
∂Ii
∂qi

]
.

Moving on:

∂p∗i
∂qi

=
∂eZi
∂qi

+
∂s

∂qi

[
P(I ≥ a) + τ −

∑

k

∂vk
∂a

v′k

]
+

E
[
1{I≥a}

∑
k

U ′
k

v′k

1
I2 Ik

∂Ii
∂qi

]

∑
k

∂vk
∂a
v′k

×
∑

k

∂vk
∂a

v′k
× a

and, therefore, (10).

B.2 Derivation of Equation (18)
In the setting of Section 2.2, the firm’s problem becomes:

max
a,{qi},{pi},{Kj},{wij}

∑
pi −

∑
ei − τ a,

subject to:

vi ≥ γi,

s(q1, . . . , qN) ≤ a,
∑

j

πj Kj = 1,

∑

j

πj wij = wi.

In addition to a new set of optimality conditions connected with {Kj} and {wij}, we have the
same set of first order conditions:

[qi] −
∑

k

∂ek
∂qi

+
∑

k

λk
∂vk
∂qi

− ∂s

∂qi
ξ = 0,

[a] −
∑

k

∂ek
∂a

− τ +
∑

k

λk
∂vk
∂a

+ ξ = 0,

[pi] 1− λi
∂vi
∂w

= 0.

The first order condition for {wij} is:

[wij ] λi
∂vi
∂wij

− ηi πj = 0 (51)

⇔ λi p
(S)
j EP

[
U ′
i(Wi − pi − Li +Ri)|ω(S)

j

]
− ηi πj = 0,
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where {ηi} are the Lagrange multipliers for the individual wealth constraints. Since

0 =
∑

j

(
λi p

(S)
j EP

[
U ′
i(Wi − pi − Li +Ri)|ω(S)

j

]
− ηi πj

)

= λi
∂vi
∂w

− ηi,

with [pi] we obtain ηi ≡ 1. Thus, we also have:

πj

p(S)j

=
EP
[
U ′
i(Wi − pi − Li +Ri)|ω(S)

j

]

∂vi
∂w

. (52)

As before, we seek a pricing function satisfying:
[
∂vi
∂qi

+ EP
[
1{I≥K a} U

′
i

K a

I2
Ii
∂Ii
∂qi

]]
− ∂vi
∂w

∂p∗i
∂qi

= 0.

Proceeding analogously to Appendix B.1, we arrive at the marginal pricing condition associated
with a decentralized implementation:

∂p∗i
∂qi

=
∑

k

∂ek
∂qi

+
∂s

∂qi
ξ −
∑

k )=i

∂vk
∂qi

v′k
+

EP
[
1{I≥K a} U ′

i
K a
I2 Ii

∂Ii
∂qi

]

v′i
.

Simplifying, we obtain:

∂p∗i
∂qi

=
∂eZi
∂qi

+
∂s

∂qi

[
∑

k

∂ek
∂a

+ τ −
∑

k

∂vk
∂a

v′k

]
+ EP

[
1{I≥K a}

∑

k

U ′
k

v′k

K a

I2
Ik

∂Ii
∂qi

]

=
∂eZi
∂qi

+
∂s

∂qi

[
EQ [K 1{I≥K a}

]
+ τ −

∑

k

∂vk
∂a

v′k

]
+

EP
[
1{I≥K a}

∑
k

U ′
k

v′k

K
I2 Ik

∂Ii
∂qi

]

∑
k

∂vk
∂a
v′k

∑

k

∂vk
∂a

v′k
a

=
∂eZi
∂qi

+
∂s

∂qi

[

EQ [K 1{I≥K a}
]
+ τ −

∑

k

∂vk
∂a

v′k

]

+ φ̃i × a×
[
∑

k

∂vk
∂a

v′k

]

,

i.e. (17), where:

φ̃i =
EP
[
1{I≥K a}

∑
k

U ′
k

v′k

K
I2 Ik

∂Ii
∂qi

]

EP
[
1{I≥K a}

∑
k

U ′
k

v′k
K Ik

I

] (52)
=

EQ
[
1{I≥K a}

∑
k

U ′
k

EP[U ′
k|ω(S)]

K
I2 Ik

∂Ii
∂qi

]

EQ
[
1{I≥K a}

∑
k

U ′
k

EP[U ′
k|ω(S)]

K Ik
I

] ,

i.e. (18). In the limiting case of a complete market, clearly U ′
i(wij − pi − lij + rij) is F (S)-

measurable, so that we immediately obtain (19).
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B.3 Derivation of Equation (24)
The first order conditions of program (23) are:26

[qi] −
∑

k

∂ek
∂qi

− V E
[
∂Ii(Li, qi)

∂qi

1{I=a}

dt

]
+
∑

k

λk
∂vk
∂qi

− ξ ∂s
∂qi

= 0, (53)

[a] −
∑

k

∂ek
∂a

− τ +
∑

k

λk
∂vk
∂a

+ ξ + V fI(a) = 0, (54)

[pi] 1− λi
∂vi
∂w

= 0, (55)

where—as before—λi and ξ denote the Lagrange multipliers for the first set of conditions and the
second condition, respectively, and fI denotes the cumulative density function of I .

Again, we assume each consumer is a “price taker” and ignores the impact of her own purchase
at the margin on the level of recoveries in states of default, so that the marginal price change at the
optimal level of qi must satisfy:

∂vi
∂w

∂p∗i
∂qi

=
∂vi
∂qi

+ E
[
1{I>a}

a

(I)2
Ii
∂Ii
∂qi

U ′
i

]
.

Therefore:

∂p∗i
∂qi

=
1
∂vi
∂w

[
∂vi
∂qi

+ E
[
1{I>a}

a

(I)2
Ii
∂Ii
∂qi

U ′
i

]]

=
∑

k

∂ek
∂qi

+ ξ
∂s

∂qi
+ V E

[
∂Ii(Li, qi)

∂qi

1{I=a}

dt

]
−
∑

k )=i

∂vk
∂qi

v′k
+

E
[
1{I>a}

a
(I)2 Ii

∂Ii
∂qi

U ′
i

]

v′i

=
∂eZk
∂qi

+

[
P(I ≥ a) + τ −

∑

k

∂vk
∂a

v′k
− V fI(a)

]
∂s

∂qi
+ V fI(a)E

[
∂Ii
∂qi

∣∣∣∣ I = a

]

+E
[
1{I>a}

∑

k

U ′
k

v′k

a

(I)2
Ik
∂Ii
∂qi

]

and since:
∑

k

∂vk
∂a

v′k
= E

[
1{I>a}

∑

k

U ′
k

v′k

Ik
I

]
,

we obtain (24).
26For simplicity, we omit the “t” super- and subscripts in case no ambiguity arises.
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C Identities in Section 4

C.1 Derivation of Equation (36)
For consumer N , LN ∼ Exp(ν) and the loss incurred by “the other” consumers is L−N =∑N−1

i=1 Li ∼ Gamma(N − 1, ν). Then

e = eN = E
[
q LN 1{q(L−N+LN )<a}

]
︸ ︷︷ ︸

part i.

+ aE
[

q LN

q (L−N + LN )
1{q(L−N+LN )≥a}

]

︸ ︷︷ ︸
part ii.

.

For part ii., note that LN
L−N+LN

is Beta(1, N−1) distributed independent ofL−N+LN ∼ Gamma(N, ν).
Hence, part ii. can be written as

aP
(
L−N + LN ≥ a

q

)
E
[

LN

L−N + LN

]
= a Γ̄N,ν

(
a

q

)
N−1.

For part i., we have

q E
[
LN 1{q(L−N+LN )<a}

]

= q

∫ ∞

0

∫ ∞

0
1{i+l<a/q} l ν e

−ν l νN−1

(N − 2)!
iN−2 e−ν i dl di

= q
νN

(N − 2)!

∫ a/q

0

∫ a/q−i

0
le−ν l dl iN−2 e−ν i di

= q
νN

(N − 2)!

∫ a/q

0

[
1

ν2
− 1

ν

(
a

q
+

1

ν

)
e−ν a/q eν i + i

1

ν
e−ν a/q eν i

]
iN−2 e−ν i di

= q
νN−2

(N − 2)!

∫ a/q

0
iN−2 e−ν i di− q

νN−1

(N − 2)!
e−ν a/q

[(
a

q
+

1

ν

)∫ a/q

0
iN−2 di−

∫ a/q

0
iN−1 di

]

=
q

ν
ΓN−1,ν(a/q)− q

νN−1

(N − 1)!
e−ν a/q

(
a

q

)N−1 [1
ν
+

1

N

a

q

]
.

Therefore, since all consumers are identical, the objective function (6) takes the form displayed in
(36). For condition (7), on the other hand, we have

V = VN = E [U (w− p− LN +RN )]

= E
[
U (w− p− (1− q)LN ) 1{q(L−N+LN )<a}

]
︸ ︷︷ ︸

part i.

+E
[
U

(
w− p− LN + a

LN

L−N + LN

)
1{q(L−N+LN )≥a}

]

︸ ︷︷ ︸
part ii.



THE MARGINAL COST OF RISK, RISK MEASURES, AND CAPITAL ALLOCATION 35

For part i, we obtain

E
[
U (w − p− (1− q)LN ) 1{q(L−N+LN )<a}

]

= −
∫ ∞

0

∫ ∞

0
1{i+l<a/q}e

−α(w−p−(1−q)l) ν e−ν l νN−1

(N − 2)!
iN−2 e−ν i dl di

= −e−α(w−p)
∫ a/q

0

1

ν − α(1 − q)

[
1− e−a/q(ν−(1−q)α)−i(1−q)ν+iν

] νN−1

(N − 2)!
iN−2 e−ν i di

= e−α(w−p)

[
1

ν − α(1− q)
ΓN−1,ν(a/q)−

e−
a
q (ν−(1−q)α)νN−1

((1− q)α)N−1
ΓN−1,(1−q)α

(
a

q

)]
.

For part ii., note that

E
[
U

(
w− p− ((L−N + LN )− a)

LN

L−N + LN

)
1{q(L−N+LN )≥a}

]

=

∫ 1

0

∫ ∞

0
e−α(w−p−(l−a)y)1{l≥a/q}

νN

(N − 1)!
lN−1 e−ν l (N − 1) (1 − y)N−2 dl dy

= −e−α(w−p)
∫ ∞

a/q

νN

(N − 1)!
e−ν l lN−1

∫ 1

0
e(α(l−a))y(N − 1) (1 − y)N−2 dy

︸ ︷︷ ︸
mgfBeta(1,N−1)(α(l−a))

dl

= −e−α(w−p)
∫ ∞

a/q

νN

(N − 1)!
e−ν l lN−1

∞∑

k=0

(α(l − a))k

(N − 1 + k)!
dl

= −e−α(w−p)
∞∑

k=0

N−1∑

j=0

(
N − 1

j

)
aj e−ν a αk

(N − 1 + k)!

(N + k − j − 1)!

ν−j+k

×
∫ ∞

a/q

νN+k−j

(N + k − j − 1)!
e−ν (l−a) (l − a)N+k−j−1 dl

= −e−α(w−p)
∞∑

k=0

N−1∑

j=0

(N − 1)!

(N − 1 + k)!

(aν)j

j!
e−ν a

(α
ν

)k (N + k − j − 1)!

(N − 1− j)!
Γ̄N−j+k,ν

(
a

(
1− q

q

))
.

C.2 Derivation of Equation (38)
Similar to the previous part, for consumer N with L =

∑N
i=1 Li:

E
[

N∑

j=1

U ′
(
w− p− Lj + a

Lj

L

)
Lj

L

LN

L

∣∣∣∣∣L

]

=
N−1∑

j=1

E
[
U ′
(
w− p− (L− a)

Lj

L

)
Lj

L

LN

L

∣∣∣∣L
]

︸ ︷︷ ︸
part i.

+E
[
U ′
(
w− p− (L− a)

LN

L

)(
LN

L

)2
∣∣∣∣∣L
]

︸ ︷︷ ︸
part ii.

.

Note that Lj

L , LN
L ∼ Beta(1, N − 1) and for the joint distribution

fLj
L ,

LN
L

(x, y) = (1− x− y)N−3 (N − 2) (N − 1) 1{x,y≥0,x+y≤1}, j 2= N.
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Whence, for part i.,

E
[
U ′
(
w− p− (L− a)

LN−1

L

)
LN−1

L

LN

L

∣∣∣∣L
]

= α e−α(w−p)

∫ 1

0

∫ 1−x

0

eα(L−a)x x y (N − 1) (N − 2) (1− x− y)N−3 dy dx

= α e−α(w−p)

∫ 1

0

eα(L−a)xx

∫ 1−x

0

y (N − 1) (N − 2) (1− x− y)N−3 dy
︸ ︷︷ ︸

=(1−x)N−1

dx

= α e−α(w−p) β(2, N)

∫ 1

0

eα(L−a)x 1

β(2, N)
x (1− x)N−1 dx

︸ ︷︷ ︸
=mgfBeta(2,N)(α(L−a))

= α e−α(w−p) 1

N(N + 1)
(N + 1)!

∞∑

k=0

(k + 1) (α(L− a))k

(N + k + 1)!
,

whereas for part ii.,

E
[

U ′
(
w− p− (L− a)

LN

L

)(
LN

L

)2
∣∣∣∣∣L

]

= αe−α(w−p) E
[

exp

{
α(L− a)

LN

L

}(
LN

L

)2
∣∣∣∣∣L

]

︸ ︷︷ ︸
= ∂2

∂t2
mgfBeta(1,N−1)(t)

∣∣∣
t=α(L−a)

= α e−α(w−p)(N − 1)!
∞∑

k=0

(k + 1) (k + 2) (α(L− a))k

(N + k + 1)!
,

so that

E
[

N∑

j=1

u′
(
w − p− Lj + a

Lj

L

)
Lj

L

LN

L

∣∣∣∣∣L
]

= α e−α(w−p)(N − 1)!
∞∑

k=0

(N − 1) (k + 1) (α(L− a))k + (k + 1) (k + 2) (α(L− a))k

(N + k + 1)!

= α e−α(w−p)(N − 1)!
∞∑

k=0

(k + 1) (N + 1 + k) (α(L− a))k

(N + k + 1)!

= α e−α(w−p)(N − 1)!
∞∑

k=0

(k + 1) (α(L− a))k

(N + k)!
.
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For the denominator,

E



1{q L≥a}

N∑

j=1

U ′
(
w− p− Lj − a

Lj

L

)
Lj

L





= E
[

1{q L≥a} N αe−α(w−p) (N − 1)!
∞∑

k=0

(k + 1) (α(L− a))k

(N + k)!

]

= N !α e−α(w−p)
∞∑

k=0

k + 1

(N + k)!
αk
∫ ∞

a/q

νN

(N − 1)!
(l − a)k lN−1 e−ν l dl

= N !α e−α(w−p)
∞∑

k=0

(α
ν

)k k + 1

(N + k)!
e−ν a

N−1∑

j=0

(
N − 1

j

)
(aν)j

(N + k − j − 1)!

(N − 1)!

×
∫ ∞

a/q

νN+k−j

(N + k − j − 1)!
e−ν(l−a) (l − a)N+k−j−1 dl

= N !α e−α(w−p)
∞∑

k=0

(α
ν

)k k + 1

(N + k)!
e−ν a

N−1∑

j=0

(aν)j

j!

(N + k − j − 1)!

(N − j − 1)!
Γ̄N+k−j,ν

(
a

(
1− q

q

))
.

Hence,

q φ̃i =
1

N
E




1{q L≥a}

∑∞
k=0

(k+1) (α(L−a))k

(N+k)!
∑∞

k=0

(
α
ν

)k k+1
(N+k)! e

−ν a
∑N−1

j=0
(aν)j

j!
(N+k−j−1)!
(N−j−1)! Γ̄N+k−j,ν

(
a
(
1−q
q

))

︸ ︷︷ ︸
=ψ̂∗(L)




.

For implementation purposes, the numerator can be expressed as
∞∑

k=0

(k + 1) tk

(N + k)!

∣∣∣∣∣
t=α(L−a)

=
∂

∂t

[ ∞∑

k=0

tk+1

(N + k)!

]∣∣∣∣∣
t=α(L−a)

=
∂

∂t

[
t−(N−1)

∞∑

k=N

tk

k!

]∣∣∣∣∣
t=α(L−a)

=
∂

∂t

[

t−(N−1)

(

et −
N−1∑

k=0

tk

k!

)]∣∣∣∣∣
t=α(L−a)

= −(N − 1)t−N

(
et −

N−1∑

k=0

tk

k!

)
+ t−(N−1)

(
et −

N−1∑

k=0

k tk−1

k!

)∣∣∣∣∣
t=α(L−a)

=

(
et −

N−2∑

k=0

tk

k!

)
×
(
t−N+1 − t−N (N − 1)

)
+

(N − 1)

(N − 1)!
t−1

∣∣∣∣∣
t=α(L−a)

.
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Finally,

ψ∗(I) = ψ∗(qL) = E
[
∂P̃
P

∣∣∣∣∣L
]

= const E
[

N∑

j=1

α exp

{
−α
(
w− p− Lj + a

Lj

L

)}
Lj

L

∣∣∣∣∣L

]

= const N E
[
eα(L−a)Lj/L

Lj

L

∣∣∣∣L
]

= const ∂

∂x
mgfBeta(1,N−1)(x)

∣∣∣∣
x=α(L−a)

= ψ̂∗(L),

since E [ψ∗(I)] = 1.
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Föllmer, H., and Schweizer, M. (2010). “Minimal Martingale Measure.” In Encyclopedia of
Quantitative Finance, Cont, R. (Ed.), Wiley, 1200-1204.

Frittelli, M., Gianin, E.R. (2002). “Putting Order in Risk Measures.” Journal of Banking and
Finance 26, 1473-1486.

Froot, K.A. (2007). “Risk Management, Capital Budgeting, and Capital Structure Policy for In-
surers and Reinsurers.” Journal of Risk and Insurance 74, 273-299.

Froot, K.A., Scharfstein, D.S., and Stein, J.C. (1993). “Risk Management: Coordinating Corporate
Investment and Financing Policies.” Journal of Finance 48, 1629-1658.

Froot, K.A., and Stein, J. (1998). “Risk Management, Capital Budgeting, and Capital Structure
Policy for Financial Institutions: An Integrated Approach.” Journal of Financial Economics 47,
55-82.

Garman, M. (1997). “Taking VaR to Pieces: Presenting a method to express a portfolio’s VaR as
the sum of its parts.” Risk 10, 70-71.
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