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Abstract

This paper introduces the concepts of amount and speed of a discounting procedure. Exponen-

tial discounting sequesters both concepts into a single parameter that needs to be disaggregated

in order to characterize nonconstant rate procedures. The inverse of the present value of a unit

stream of benefits provides a natural measure of the amount a procedure discounts the future.

We propose geometrical and time horizon based measures of how rapidly a discounting procedure

acquires its ultimate present value, and we prove these to be the same. This provides an unam-

biguous measure of the speed of discounting, a measure whose values lie between 0 (slow) and 2

(fast). Exponential discounting has a speed of 1. A commonly proposed approach to aggregating

individual discounting procedures into a social one averages the individual discount functions. We

point to serious shortcoming with this approach and propose an alternative that, for logarithmic

utility, is market based and for which the amount and time horizon of the social procedure are the

averages of the amounts and time horizons of the individual procedures. We further show that

the social procedure will in general be slower than the average of the speeds of the individual pro-

cedures. We then characterize three families of discounting procedures in terms of their discount

functions, their discount rate functions, their amounts, their speeds and their time horizons. A

one parameter hyperbolic discounting procedure, d(t) = (1 + rt)−2, has amount r and speed 0,

and we argue that this zero-speed hyperbolic is well suited for social project evaluation.

JEL codes: D51, D90, H43 and Q51

Keywords: discounting, social discount rate, project evaluation, exchange economies, hyper-

bolic discounting
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The Amount and Speed of Discounting

Discounting at a constant rate has the virtues of familiarity, analytic tractability, time-

consistency of preferences, and a well-understood axiomatic foundation. That said, perceived

shortcomings of discounting at a constant rate have led economists in diverse fields increasingly

to suggest procedures in which the discount rate varies over time. Examples occur in contexts

involving the full range of time horizons.

Giving noticeable weight to the far future with exponential discounting comes at the cost of

entailing virtually no discounting in the short- to medium-term. Hence the literature on economic

evaluation of long time-horizon environmental or health projects increasingly contains proposals

for use of discount rates that decline with time, or slow discounting, in order to give a ‘reasonable’

weight to far-future outcomes (e.g., Cline, 1999; Weitzman, 2001; Newell and Pizer, 2003). Actual

practice for the most part continues to use constant rates.1

A recent strand of work in economics imports findings from experimental psychology into the

understanding of economic behavior (Loewenstein, 1992; Shane, Loewenstein and O’Donoghue,

2002). Psychologists — and the behavioral economists using their findings and methods — focus

much of their interest on behavior over relatively short periods, behavior that often seems consis-

tent with discount functions that decline slowly then rapidly, such as the quasi-hyperbolic (e.g.

Laibson, 1997). This generates interest in fast discounting in a sense that we will make clear.

The time period of interest for financial markets — typically up to thirty years — lies between

that of the behavioral and environmental economists. The rising yield curves that frequently

characterize bond markets imply fast discounting, but the empirically observed variation in yield

curves includes discounting that is slow as well as fast. Financial economics is thus a third strand

of analysis where non-constant rate discounting is relevant and, indeed, is routine.

Our purpose in this paper is to provide a framework for the increasingly diverse literature

using non-constant rate discounting by exploring the implications of distinguishing the speed of

discounting from the total amount by which the future is discounted. Once these concepts are

separated, the existing heterogeneous collection of proposals about how to discount can be simply

1Current guidelines for economic evaluation of health projects (Lipscomb, Weinstein and Torrance, 1996) rec-

ommended a constant rate of 3% per year. Stern (2006), in an influential assessment of the economics of climate

changes, used 1.4% per year.

2



characterized and alternative proposals for aggregation of multiple individual procedures into a

social one can be better evaluated. Important work continues on the nature of the factors (e.g.

time preference, the return to capital, the marginal utility of consumption and the completeness

of financial markets) that influence discounting or the term structure of interest rates. There is a

natural division of labor between these topics and the task of characterizing the basic properties

of discounting procedures. This paper addresses the latter.

Section 1 provides examples of slow and fast discounting and introduces our approach by pro-

viding definitions of the amount, the speed and the time horizon of discounting procedures. It

then proves several basic propositions concerning these measures. Section 2 deals with aggre-

gating multiple individual discounting procedures into a socially representative one. It points to

problems with averaging of discount functions as an aggregation procedure and suggests an alter-

native with the attractive property that the means of the amounts and of the time horizons of the

individual procedures equal the aggregate procedure’s amount and time horizon. Our proposed

aggregation procedure is also shown, under plausible assumptions, to result in discount rates

identical to market-determined ones, which emphasize the preferences of impatient consumers in

early years and patient consumers in later years. Section 3 presents a number of specific discount

functions and characterizes their amounts, speeds and time horizons. It identifies attractive one-

parameter fast and slow discount functions and argues that a particular slow procedure, which

we label the zero-speed hyperbolic (ZSH) function, provides a natural alternative to the exponen-

tial for social discounting with long time horizons. Appendices provide proofs and amplifying

material.

1 Measuring the Amount and Speed of Discounting

Two of the ways of defining a discounting procedure are by a discount function, d(t) — where

d(0) = 1, d(t) ≥ 0, and d(t) is nonincreasing for all t — or by a present value function, pv(t), that

gives the present value of a unit stream of benefits accumulated to time t :

(1) pv(t) =

Z t

0
d(x)dx.

We define the ‘present value of d(t)’ to be pv(∞).

In this section we first provide examples that illustrate how, for a given pv(∞), differing
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discounting procedures accumumulate present value at different rates. We use this to motivate

two conceptually different definitions of speed of discounting,.a geometrical measure and a measure

based on time horizon. We next prove several basic propositions concerning speed: our alternative

definitions of speed are equivalent; our measure of speed lies between 0 and 2; procedures with

declining (increasing) discount rates have speeds less than (greater than) 1; and exponential

discounting has a speed of 1.

1.1 Examples and Definitions

Consider the following four discount functions:2

exponential: d(t) = e−rt, where r = 0.02(2)

hyperbolic: d(t) =
£
1 + (σ2/μ)t

¤−μ2/σ2 ,
where μ = .04 and σ = .029

(3)

quasi-hyperbolic: d(t) = 1 for t = 0 and

d(t) = b(1 + r)−(t−1) for 1 ≤ t <∞ and t an integer,

where b = 0.6 and r = .0121

(4)

fast Weibull: d(t) = e−rt
1/s
,

where r = .000314 and s = 0.5.
(5)

Equation (2) is the discount function with a constant discount rate of 0.02 and, hence, a present

value [= pv(∞)] of .02−1 = 50. Equation (3) represents a parameterization of the hyperbolic

family that Weitzman (2001) used as an aggregation of the exponential discount functions resulting

from a survey of economists, but with one parameter modified slightly to reduce present value

from the 54.8 his parameters imply to 50. Equation (4) is the ‘quasi-hyperbolic’ function used

by Laibson (1997), again with parameters modified to reduce present value from his implied 60.4

to 50. Read (2001) has suggested the formulation in equation (5), which is an exponential with

the value for time transformed — in this case by squaring it — before being exponentiated. [Any

discount function has an associated probability density function (pdf), and for equation (5) the

2Continuous time formulations simplify most derivations and, with only occasional exception, such as in equation

(4), we use continuous time.
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pdf is the Weibull distribution, hence our nomenclature.] We have again chosen parameters so

that pv(∞) = 50 for the Weibull discount function.

Although each of these discount functions has a present value of 50 they differ in how rapidly

they acquire that present value. Figure 1 illustrates how each present value function rises with time

to its asymptote of 50. Note several points: both the hyperbolic and quasi-hyperbolic functions

rise more slowly than the exponential in the sense that, for both of them, pv(t) is strictly less

than it is for the exponential for all t > 0. They can thus, in this sense, be viewed as slower

than the exponential with the same present value. Second, the Weibull is, with the indicated

parameters, faster than the exponential. (The Weibull procedure can be either fast or slow.)

Third, the differences among the procedures translate into major differences in the weight given

the far future: while the Weibull has acquired essentially all of its present value within 150 years,

and the exponential within 250 years, the hyperbolic has over 6% of its total present value still

to be acquired after 500 years. Finally, since the present value functions for the hyperbolic and

the quasi-hyperbolic cross, neither can be considered strictly slower than the other. Crossing of

Lorenz curves provides a close analogy. Just as the Gini coefficient provides one way to complete

the inequality ordering on income distributions generated by Lorenz curves, so, too, will an area

based measure allow completion of the ordering of the speed of discount functions.

The more that one discounts the future, the less a unit stream of benefits will be worth now.

It is thus natural to define the amount of discounting for a procedure, α(D), to be the inverse of

its present value:

(6) α(D) =

∙Z ∞

0
dD(t)dt

¸−1
.

If D is an an exponential procedure with constant discount rate r, then α(D) is, of course, simply

r. This makes sense insofar as we think of higher discount rates as discounting away the future

by a greater amount.

Figure 2 provides a geometrical motivation for the first definition of speed that we introduce.

The greater the area between the pv(∞) of a discounting procedure and its pv(t) function the

slower, intuitively, it appears to be. We have denoted this area for the exponential in Figure 2 as

A, and the following expression gives its value:
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(7) A =

Z ∞

0
[r−1 −

Z t

0
e−rxdx] dt,

where the inner integral is, of course, the expression for pv(t) for an exponential, and r−1 is pv(∞)

for the exponential (illustrated by the horizontal line at 50). Evaluating the integrals in equation

(6) gives:

(8) A = r−2.

Likewise B is the area between the quasi-hyperbolic and the line r−1. The ratio A/B provides a

geometrical measure of the speed of this quasi-hyperbolic relative to that of an exponential with

the same present value.

More precisely, our geometrical measure of the speed of a discounting procedure3, D, is ρ
1
(D)

and the preceding discussion suggests the following:

A(D) = area between pvD(∞) and the exponential with the same(9)

present value as D, i.e. the exponential with r = pvD(∞)−1;

B(D) = area between pvD(∞) and pvD(t);(10)

=

Z ∞

0
[pvD(∞)− pvD(t)] dt, if this integral converges; and

ρ
1
(D) = A(D)/B(D).(11)

Another characteristic of potential interest for a discounting procedure concerns how long a

time the procedure takes to build up present value. We refer to the time required for accumulation

of present value as the time horizon of a procedure and introduce two distinct definitions. The

line segments (a,b) and (a,c) in Figure 2 show how many years it takes the exponential and quasi-

hyperbolic procedures to accumulate half of their present values of 50. The times are, respectively,

35 and 58 years. We define ‘median time to accumulation of present value’ for a procedure to be

the time required for it to accumulate 50% of its present value. We label this τ(D), which is given

3A discounting procedure can be defined in terms of its associated discount function, dD(t), its present value

function, pvD(t), its discount rate function, rD(t), its yield curve or an associated probability density function.

Appendix 1 states the relations among alternative definitions.
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by the following expression:

(12) τ(D) = t∗ such that

R t∗
0 dD(t) dt

pv(D)
= 0.5.

A plausible second definition of the speed of a procedure would relate how long an exponential

(with the same α as the procedure) takes to reach half its present value to how long the procedure

does. (In this example the speed would be 35/58.) A variant of this approach proves more

tractable.

Just as there is a median time to accumulation of present value so, too, can one define a mean

time, which can be thought of as how far from time zero, on average, the present value is being

accumulated from.4 We label the mean time to accumulation as θ(D), given by:

(13) θ(D) =

R∞
0 tdD(t) dt

pv(D)
.

Our second definition of the speed of a discounting procedure relates the time horizon of

the procedure, θ(D), to the time horizon of an exponential procedure that discounts the future

by the same amount as D , i.e. by α(D). The time horizon for an exponential with rate r is

simply r−1, so the time horizon for the exponential that has the same amount of discounting as

D will be α(D)−1. Our time horizon based definition of speed, p2(D), is the ratio of the horizon

for the equivalent exponential to the time horizon for the procedure being considered:

(14) ρ
2
(D) = α(D)−1 / θ(D).

This reflects the intuition that if D has a longer time horizon than the exponential with the same

present value it can be viewed as slower.

Before proceeding further it is important to deal briefly with questions of convergence. Initially

proposed variants of hyperbolic discounting took the form:5

(15) dh(t) = 1/(1 + at).
4A physical analogy may be helpful. Think of d(t) as distributing mass along [0, ∞). A given total mass can

be spread far along the axis or concentrated toward the beginning. θ is the point such that if all the mass could

be concentrated at that point it would exactly balance d(t).
5See, for examples, Harvey’s (1986, 1994) early important work on nonconstant rate discounting and work in

the psychology literature of Herrnstein (1981). Loewenstein and Prelec (1992) discuss and provide an axiomatic

foundation for a ‘generalized hyperbolic’ that places an exponent, k, on the denominator of equation (15). Many

parameterizations are possible [e.g. equation (3)] and, in this paper, we refer to the generalized hyperbolic family

simply as hyperbolic. The hyperbolic will have a finite present value if and only if k > 1.
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Like exponential discounting with a zero discount rate, dh(t) has infinite present value. To put

this slightly differently, an improved outcome in each time period by a finite amount x, however

large, up to time t∗, also arbitrarily large, would be more than counterbalanced in present value

terms, using the discount function dh(t), by a decrement y, however small, to all outcomes after

t∗. It is precisely this property of making outcome changes over any finite time horizon irrelevant

compared to tiny but sustained changes in the extremely distant future — even without infinite

time horizons — that leads to objections to exponential discounting with a rate of 0.

The point of this example is simply to illustrate the importance of paying attention to the

issue of convergence when selecting a discounting procedure for evaluation of long time horizon

investments.6 Even with a finite but long time horizon present values can be quite sensitive to the

discount rate in outer years — hence the importance of explicit consideration of the total amount,

α(D), by which a procedure discounts the future.

Implications for r(t) — the discount rate function — are that it must go to zero very slowly, or

not at all, in order to ensure convergence.7 If

(16) lim
t→∞

r(t) = r∗, r∗ > 0,

then in the limit d(t + 1) ≤ d(t)
1+r∗ , which guarantees convergence. Analogous results hold for

continuous time. All exponential discount functions, then, or ones that are ultimately exponential

— in the sense that equation (16) holds — will yield finite present values. On the other hand, if for

all t greater than some t∗, r(t) = 0 [but d(t) > 0 still] then the present value will be infinite (as

is the case for the discounting procedure proposed in Weitzman, 2001, Table 2).

Having a convergent discounting procedure, however, does not necessarily entail convergence

of the integrals defining our concepts of the speed of discounting [equation (10) and equation (13)].

Equation (13) illustrates the question of convergence more clearly since its integrand, td(t), is

the product of a function going to zero and a function going to ∞. Stronger conditions on d(t)

6The issue of convergence assumes less importance in modelling phenomena over shorter periods as in the

psychological literature or some areas of science and engineering. Sokolnikoff and Redheffer (1958, p. 176) observe,

for example, that “... divergent Fourier series often arise in practice, for example in the theory of Brownian motion,

in problems of filtering and noise, or in analyzing the ground return to a radar system. Even when divergent the

Fourier series represents the main features of f(x) ...”.
7To take an example: if r(t) = r0e

−kt then r will decline from an initial level of ro to 0 too rapidly for the

present value of the procedure to be finite.
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must, obviously, obtain for this integral to converge than for the integral of d(t) to converge.

We define a discounting procedure to be strongly convergent if the integrals both of its related

discount function, d(t), and of td(t) converge. We define a procedure to be weakly convergent

if d(t) converges but td(t) fails to converge. Weakly convergent procedures have a speed of 0

and the potentially desirable property of giving infinite weight to the future — in the sense that

the average time to accumulation of present value is infinite — while still having a finite present

value. Weakly convergent d(t)s can thus provide an alternative to zero rate discounting for

those who — like Ramsey (1928) — hold a preference for giving genuine weight to outcomes in the

extremely distant future. Among the discounting procedures discussed in this paper only one, the

hyperbolic, includes weakly convergent (or zero speed) procedures within the family. In section

3.2 we pay particular attention to the one-parameter procedure that we label the zero-speed

hyperbolic (ZSH).

1.2 Main results concerning the speed of discounting

Concepts introduced in the preceding subsection are not independent of one another, and our

initial proposition identifies and proves the central relation between our two definitions of speed.

Proposition 1: For all D, ρ
1
(D) = ρ

2
(D).

Proof: We have already seen that the area A(D) is α−2, so starting from the definition:

ρ1(D) =
£
α2
R∞
0

¡
α−1 − pvD(t)

¢
dt
¤−1

=
h
α2
R∞
0

³R∞
0 d(x)dx−

R t
0 d(x)dx

´
dt
i−1

=
£
α2
R∞
0

R∞
t d(x)dxdt

¤−1.
Changing the order of integration, this is

£
α2
R∞
0

R x
0 d(x)dtdx

¤−1
= α−1

£
α
R∞
0 d(x)

¡R x
0 dt

¢
dx
¤−1

=

α−1
£
α
R∞
0 xd(x)dx

¤−1
= α−1 [θ(D)]−1 = ρ2(D).

Because of the equivalence of ρ
1
and ρ

2
, from this point on we unambiguously use ρ to denote

speed, and the following corollary follows immediately from Proposition 1 and equation (14):

Corollary: α(D)ρ(D)θ(D) = 1.

We now turn to the range of values possible for the speed of discounting:

Proposition 2: For all D, 0 ≤ ρ(D) ≤ 2.

Proof: Fixing α, the mean time θ is minimized by concentrating as much weight as possible

as early as possible (i.e. onto small values of t in the integrand). Given that d(t) must start at 1

and be weakly decreasing, this is accomplished by setting d(t) = 1 for t ≤ 1/α and d(t) = 0 for

t > 1/α. Such a discounting procedure has a θ = 1/(2α), while the equivalent exponential has
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θ = 1/α. Hence the maximum possible ρ (corresponding to the minimum θ) is 2. Meanwhile, the

maximum θ is infinite (even with a finite present value and thus α > 0), as occurs for any weakly

convergent procedure. This proves that the minimum ρ is 0.

Finally, we wish to relate the speed of a discounting procedure to its discount rate function,

r(t). In particular, intuition suggests that a decreasing discount rate yields a procedure that is

in some sense slow. It is obvious that such a procedure is ’slower’ in the sense of having a longer

time horizon, θ, than the constant-rate procedure that starts at the same discount rate and stays

there, but on the other hand these two will not have the same total present value. Our third

proposition states that, even relative to an exponential with the same amount of discounting, any

decreasing-rate procedure is slow.

Proposition 3: If the discount rate r(t) is weakly decreasing (resp. increasing), then the

corresponding discounting procedure is slow (resp. fast), i.e. ρ ≤ 1 (resp. ρ ≥ 1). Furthermore,

this result is tight in the sense that if r(t) is weakly decreasing everywhere and strictly decreasing

somewhere, then the inequality is strict.

Proof: Let d(t) be the discount function with decreasing rate r(t), and let μ = pv(∞) =R∞
0 d(t)dt. We can think of d as the survivor function for a failure density8, in which case r(t)

decreasing is exactly the definition of a decreasing failure rate (and μ is the mean time to failure).

Then for any strictly increasing function f on [0,∞),
R∞
0 f(t)d(t)dt ≥

R∞
0 f(t)e−t/μdt by Theorem

4.8 (p. 32) of Barlow and Proschan (1965), with equality only if d(t) = e−t/μ identically. So let

f(t) = t:
R∞
0 td(t)dt ≥

R∞
0 te−t/μdt = μ2 =

£R∞
0 d(t)dt

¤2, implying that
ρ =

£R∞
0 d(t)dt

¤2R∞
0 td(t)dt

≤ 1,

as desired. Equality implies that d must be exponential with amount α = 1/μ. Likewise, r(t)

increasing corresponds to an increasing failure rate, and all inequalities are reversed.

We can alternately interpret this conclusion as saying that the exponential is the fastest

8Failure analysis arises in the study of systems reliability. The primitive in these analyses is the probability of

no failures before time t; this is the role played by d(t) in our setting. In reliability studies this is referred to as the

survivor or reliability function, and it is the inverse cdf of the failure density (i.e. the probability of failure at any

given time). The failure rate as a function of time is −d0/d, which is thus exactly our discount rate r(t).
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discounting procedure within the family of those with weakly decreasing discount rates. As we

have seen, the exponential discounting procedure d(t) = e−rt also has a total present value equal

to its mean time horizon: pvd(∞) = θ = 1/r. Proposition 3 allows us to answer the question of

whether or not it is the unique discounting procedure with this property.

Corollary: If d(t) is a discount function with monotone discount rate r(t) and satisfying

pvd(∞) = θ(D), then d is exponential: d(t) = e−t/θ.

Proof: From the definitions, pvd(∞) = θ means
R∞
0 d(t)dt =

R∞
0 td(t)dtR∞
0 d(t)dt

, i.e.
£R∞
0 d(t)dt

¤2
=R∞

0 td(t)dt. But this again corresponds to equality in the proof of Proposition 3, so d must

identically equal the equivalent exponential.

2 Social Discounting

Suppose that we start with a population of individuals each of whom uses some discounting

procedure. The individual procedures may differ both in their parameter values and in their

actual functional forms. We wish to aggregate these procedures to achieve a social discounting

procedure that appropriately reflects the preferences of all members of society. In this section we

first discuss existing approaches to generating a social discounting procedure from individual ones

and propose an alternative procedure that avoids the shortcomings of those in the literature. We

then show our preferred aggregation procedure to generate discount rates that are equilibrium

rates in a reasonably defined intertemporal exchange economy. We next prove results that relate

the amount, speed and time horizon of the social discount function to the amounts, speeds and

time horizons of the individual ones. We conclude by providing specific examples for when all

the individual discounting procedures are exponential.

2.1 Alternatives for generating a social discounting procedure from individual

ones

One obvious aggregation option is to average discount rate functions across individuals

(ADR). For example, if person A uses a standard constant-rate procedure with d(t) = e−rt

(i.e. a rate of r), and person B uses d(t) = e−st, then this method would yield a social discounting

procedure characterized by a constant rate equal to 1
2(r + s). One advantage of ADR is that

even if only one of the individuals uses nonconvergent discounting (e.g. if s = 0), the aggregate
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social procedure will be convergent (a notion of robustness). As Weitzman (2001) has emphasized,

averaging rates has a down side: when society decides how to trade off between two given time

points in the future, it counts everyone’s opinion on that question equally, even those who do not

care much about the future. Thus while a procedure that averages rates is able to successfully

aggregate amounts of discounting (in the sense that the amount of the aggregate procedure is the

average of the amounts of the individual procedures), it does less well on the shape over time that

discounting should take.

Another natural option is simply to average the discount functions of individuals (ADF). In

the example with two exponentially discounting individuals, this would lead to a social discount

function of 12(e
−rt + e−st). This aggregate procedure has a discount rate that starts at 12(r + s)

for t = 0, and then declines over time to the minimum of r and s. To redress the inadequacy of

aggregation by averaging rates, Weitzman (2001) advocates using ADF and interprets this process

as valuing a dollar at time t according to any particular discounting procedure weighted by the

“probability of correctness” of that procedure. In our example, this probability is 0.5 for each of

the two individual procedures in the domain and is 0 for all others.

One immediate concern about the ADF process is that if even one individual’s discounting

procedure is nonconvergent, then the social procedure will also be, no matter how large the society

(assuming it is finite). Indeed, even if no individual in the population has an infinite present value

(nonconvergent) procedure it turns out to be quite possible for the aggregate procedure generated

by ADF to have infinite present value. This shortcoming alone makes ADF unviable as a general

aggregation procedure.

The convergence problem could be avoided by arbitrarily ruling out nonconvergent procedures

in the first place, but it speaks to a second important concern. Basically, under ADF, individuals

are weighted equally (in terms of either discount functions or discount rates) at the beginning of

time, after which those who discount less are increasingly favored. ADF yields social discounting

procedures whose discount rate functions are both declining over time (as patient individuals

are increasingly favored) and that are low overall (since they start at the social average and go

down). At no point in time does ADF aggregation differentially reflect the preferences of impatient

individuals even though, as time goes on, the preferences of patient indivuals become increasingly

consequential. The shape of the ADF social discount function faithfully reflects a weighted

12



average of the individual shapes (weighted by their own sense of relative time preference), but it

skews the amount of discounting toward those who discount less.

We seek an aggregating process that avoids the problems associated with the simple averaging

of either discount rates or functions. That is, we feel an aggregation process should satisfy two

criteria:

(i) the aggregate procedure should discount the future by an amount that is the average

of the individual amounts — as averaging the discount rates does9; and

(ii) the aggregate procedure’s discount rates in the future should place greater weight on

individuals who value the future more highly — as averaging the discount functions does. (This

implies, combined with criterion 1, that near term discount rates will be weighted toward those

of individuals who place greater weight on the present.)10

Both criteria can be met by averaging the normalized discount functions for each individual

(the normalized function is αd(t) and has a total present value of 1). We then divide by the

value at 0 of this average function in order to un-normalize and recover a valid discount function

(with d(0) = 1, as is necessary). We label this the average normalized discount function (ANDF)

aggregation process. The ANDF process results in a shape equal to the average shape, and we

will prove that it has an amount exactly equal to the average amount, α (and a mean time horizon

equal to the average mean time, θ). In our running example, the normalized individual discount

functions are re−rt and se−st, respectively, so the ANDF social procedure is

(17) dANDF (t) =
re−rt + se−st

r + s
.

Here α = (r + s)/2 and θ = (r−1 + s−1)/2. Figure 3 illustrates the d(t) and r(t) resulting from

each of the three ways of aggregating two exponentials, in this case with r = 0.02 and s = 0.20.

For the ANDF process applied to these two exponentials, α = 0.11, θ = 27.5, and ρ = 0.33 (so it

9Note that this criterion refers to aggregation of individual procedures into a social one. It has less relevance for

generating an expected value when there is underlying uncertainty in interest rates, e.g. the situation considered

in Newell and Pizer (2003).
10Gollier and Zeckhauser (2003) develop a market-oriented aggregation procedure for exponentials that results in

high discount rates (relative to the average) in early periods and low discount rates in later periods. ANDF has

this feature and we conjecture that any market-derived aggregation procedure will also.
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Figure 3:
Three Procedures for Aggregating Individual Discount FunctionsThree Procedures for Aggregating Individual Discount Functions
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This figure shows the functions d(t) and r(t) that result from different ways of aggregating two discount 
functions: d1(t) = e-.2t and d2(t) = e-.02t.



is slow). Note in particular in Panel B of Figure 3 that the discount rate function for averaging

the discount functions (ADF) is below the average discount rate for all t > 0 whereas ANDF falls

from above the average to 0.02.

One interpretation of the ANDF is that it gives each individual a total weight of 1 to spread

across the future in a way that reflects his or her preferred time path of consumption. ANDF

averages those shapes and then un-normalizes, which retrieves the average amount of discounting.

This separation of amount and shape ensures that there is no problem with convergence and that

more patient members of society are favored at later times relative to earlier times, but not overall.

Additionally, and importantly, it turns out that in a canonical intertemporal exchange economy,

the market equilibrium discount rates are precisely those generated by ANDF.

2.2 Market discount rates in an intertemporal exchange economy

Consider a deterministic economy with a single non-storable good and multiple consumers

with varying discount functions. Each agent receives an endowment of one unit of the good in

each period.11 There is a market interest rate rt between periods t− 1 and t, so that each agent

can write binding contracts at time 0 regarding how much they wish to borrow or lend in each

period. We will focus on a finite number of agents who take the market rate as given, but this

can be formalized by replacing each agent with a unit-mass of infinitesimal agents with the same

preferences. Agents have logarithmic felicity functions, so that agent i maximizes

TX
t=0

dti ln
¡
1 + bti − (1 + rt)bt−1i

¢
,

where dti is the value of i’s discount function at time t, and bti (which may be negative) is the

amount that i borrows in period t. We force b−1i = bTi = 0, though in general one could also

consider T =∞. The market interest rate function r1, r2, ..., rT is defined as the unique function

that makes markets clear: for all t,
P

i b
t
i = 0.

We can also apply the definition of ANDF in this setting. In particular, each agent has an

11We could add a constant growth rate g to all variables, but it wouldn’t change the underlying interactions.

Note also that we have switched to discrete time in order to simplify the exposition and allow comparison to the

existing literature.
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amount of discounting αi given by
³PT

t=0 d
t
i

´−1
, so the social discount function in period t is the

weighted average across all agents, scaled by the total weights:

dtANDF =

P
i αid

t
iP

i αi
.

Our next proposition shows that in the simplest economy which allows for nonconstant

individual discount rates, the market interest rate is given by the ANDF aggregation procedure.

Proposition 4: In a market as described above, with two agents and three periods (i.e.

T = 2), the market interest rate is identical to the social interest rate according to ANDF

aggregation. Namely, rt =
¡
dt−1ANDF/d

t
ANDF

¢
− 1.

Hence if all agents use exponential discounting, but with heterogeneity in rates, the market

interest rate will change over time. Specifically, it will decrease over time (corresponding to slow

social discounting) starting from a rate corresponding to the least patient member of society and

approaching the rate corresponding to the most patient member of the economy. If agents in

the economy have fast individual discount functions (as is suggested by much of the psychology

literature), it is possible that the market rate will in fact be constant over time.

Proof: We assume that agent 1 is a net lender in both periods (for instance we need that

d11 > d12)
12, and define bt = bt2 = −bt1 to be the amount lent, for t = 0, 1. Thus agent 1 solves the

following optimization problem:

max
b0,b1

­
ln(1− b0) + d11 ln(1− b1 + (1 + r1)b0) + d21 ln(1 + (1 + r2)b1)

®
.

Then the first-order conditions are

1

1− b0
=

d11(1 + r1)

1− b1 + (1 + r1)b0

and
d11

1− b1 + (1 + r1)b0
=

d21(1 + r2)

1 + (1 + r2)b1
.

These can be solved for agent 1’s optimal choice of b0 and b1 in terms of r1 and r2. Agent 2’s

optimization problem yields analogous first-order conditions:

1

1 + b0
=

d12(1 + r1)

1 + b1 − (1 + r1)b0

12The other cases are identical, mutatis mutandis.

15



and
d12

1 + b1 − (1 + r1)b0
=

d22(1 + r2)

1− (1 + r2)b1
.

These can also be solved for b0 and b1 in terms of r1 and r2, but of course the two solutions must

be the same (market clearing). This gives us two equations in two unknowns, and we compute

r1 =
1− d11d

1
2 + (d

2
1 + d22)/2− (d11d22 + d21d

1
2)/2

d11d
1
2 + (d

1
1 + d12)/2 + (d

1
1d
2
2 + d21d

1
2)/2

and

r2 =
d11d

1
2 + (d

1
1 + d12)/2− d21d

2
2 − (d21 + d22)/2

d21d
2
2 + (d

2
1 + d22)/2 + (d

1
1d
2
2 + d21d

1
2)/2

.

Turning now to the ANDF procedure, we see that α1 = (1+d11+d
2
1)
−1 and α2 = (1+d12+d

2
2)
−1.

Thus the average of α1d11 and α2d
1
2 is

¡
d11d

1
2 + (d

1
1 + d12)/2 + (d

1
1d
2
2 + d21d

1
2)/2

¢
(1 + d11 + d21)

−1(1 +

d12 + d22)
−1. To find d1ANDF , we need to normalize this value by dividing by (α1 + α2)/2, in order

to recover a value of 1 at time 0. Hence

d1ANDF =
d11d

1
2 + (d

1
1 + d12)/2 + (d

1
1d
2
2 + d21d

1
2)/2

1 + (d11 + d12)/2 + (d
2
1 + d22)/2

and so

r1ANDF = 1/d
1
ANDF − 1 =

1− d11d
1
2 + (d

2
1 + d22)/2− (d11d22 + d21d

1
2)/2

d11d
1
2 + (d

1
1 + d12)/2 + (d

1
1d
2
2 + d21d

1
2)/2

.

This is of course exactly we found above for the market interest rate. We can similarly average

α1d
2
1 and α2d

2
2, normalize by the same factor as above to get d

2
ANDF , and ultimately compute

r2ANDF = d1ANDF / d2ANDF − 1 =
d11d

1
2 + (d

1
1 + d12)/2− d21d

2
2 − (d21 + d22)/2

d21d
2
2 + (d

2
1 + d22)/2 + (d

1
1d
2
2 + d21d

1
2)/2

.

This is likewise the same as the corresponding market interest rate, which is precisely what we

wished to show.

It is important to note, however, that the preceding proposition depends on the choice of

logarithmic utility and, in particular, does not hold for a more general CRRA utility function.
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While it may be the case that no general aggregation algorithm will always generate the market’s

solutions, the point of the example is to show that ANDF plausibly captures the qualitative

features of market solutions in a way that ADR and ADF cannot.

This section and the preceding one have motivated use of ANDF as a procedure for aggregat-

ing individual discounting procedures. The following section develops specific characteristics of

ANDF aggregation.

2.3 The amount and time horizon of social discounting

Formally, assume that we have a collection of individuals with discounting procedures pa-

rameterized by x ∈ X (possibly multivariate), with frequency distribution across parameters of

f(x), so that in particular
R
X f(x)dx = 1. Then if individual x uses a discount function d(t;x)

with associated amount α(x), we define the ANDF aggregate procedure D by its discount function

as follows:13

(18) dD(t) =

R
X α(x)d(t;x)f(x)dxR

X α(x)f(x)dx
.

Because
R
X α(x)d(0;x)f(x)dx =

R
X α(x)(1)f(x)dx =

R
X α(x)f(x)dx, dD(0) = 1 as required.

The definition in equation (18) leads to a convergent aggregate procedure if there is a nonzero

proportion of the population with convergent procedures.

To each individual discount function d(t;x) there corresponds a discount rate function r(t;x)

satisfying ḋ(t;x) = −r(t;x)d(t;x), where the superscript dot denotes a time derivative. For the

aggregate procedure D, since the d(t;x) in the numerator is the only term involving time,

(19) ḋD(t) =
−
R
X α(x)r(t;x)d(t;x)f(x)dxR

X α(x)f(x)dx
,

and therefore
13We require only that

R
X
α(x)f(x)dx > 0, i.e. that at least some nonzero fraction of the population uses

convergent discounting procedures. If
R
X
α(x)f(x)dx = 0, then there is no need to normalize (essentially all

individuals already have the same α, namely α = 0), so we define dD(t) as simply
R
X
d(t;x)f(x)dx.
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(20) rD(t) =
−ḋD(t)
dD(t)

=

R
X α(x)r(t;x)d(t;x)f(x)dxR

X α(x)d(t;x)f(x)dx
.

We now prove three core results that relate the characteristics of the ANDF aggregation

procedure to the corresponding characteristics of the individual procedures that were aggregated.

Let Y = {x ∈ X|α(x) = 0}, i.e. Y is the set of parameters that correspond to nonconvergent

discounting procedures.

Proposition 5: If
R
Y f(x)dx = 0, then, for the ANDF process defined above, the amount

α(D) and mean time horizon θ(D) of the aggregate procedure D are the average amount α and

the average mean time θ respectively.14

Proof: Since α(x) = 0 for all x ∈ Y , anytime the integrand involves α(x) we can switch

the domain of integration between X and X\Y = X − Y as we wish. We first verify thatR∞
0

R
X α(x)d(t;x)f(x)dxdt =

R∞
0

R
X\Y α(x)d(t;x)f(x)dxdt =

R
X\Y α(x)f(x)

£R∞
0 d(t;x)dt

¤
dx =R

X\Y α(x)f(x) 1
α(x)dx (α(x) > 0 on X\Y so 1

α(x) is well-behaved) =
R
X\Y f(x)dx =

R
X f(x)dx−R

Y f(x)dx = 1 − 0 = 1, which makes sense since this was an average normalized function. Now

note that the denominator of the aggregate function dD is constant in t, and thus, using the

calculation we just made, the aggregate amount is

α(D) =

∙Z ∞

0
dD(t)dt

¸−1
=

∙
1R

X α(x)f(x)dx

¸−1
=

Z
X
α(x)f(x)dx,

which is precisely the formula for the average amount α of discounting across the population, as

desired.
14Thus the bar above a particular characteristic denotes expectation with respect to the density f . Exactly

because of the proposition, this will not prove to be confusing terminology.
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For the mean time horizon, we compute θ for the aggregate procedure as

θ(D) = α(D)

Z ∞

0
tdD(t)dt

= α(D)

Z ∞

0
t

∙R
X α(x)d(t;x)f(x)dx

α(D)

¸
dt

=

Z ∞

0

Z
X
tα(x)d(t;x)f(x)dxdt

=

Z
X

∙
α(x)

Z ∞

0
td(t;x)dt

¸
f(x)dx

=

Z
X
θ(x)f(x)dx

= θ.

In general, if
R
Y f(x)dx > 0, α(D) will simply be the average over all strictly positive α

in the population: formally, α(D) =
R
X\Y α(x)f(x)dx (with an analogous outcome for θ). The

intuitive interpretation is that any individual who chooses α = 0 (i.e. a nonconvergent procedure),

effectively suggesting an infinite present value, ends up spreading his/her normalized weight so

thinly over time that it has no effect at all on the aggregate15. We turn next to the speed of the

aggregate procedure.

Proposition 6: If the amount α(x) and the mean time θ(x) are negatively covariant within a

population X, then the speed resulting from the ANDF process is lower than the average speed,

i.e. ρ(D) ≤ ρ, with equality only if all individuals have the same amount of discounting α and all

individuals have the same speed ρ.

Proof: By Propositions 1 and 5, ρ(D) = θ(DE)/θ(D) =
¡
αθ
¢−1
, while ρ =

R
X ρ(x)f(x)dx =R

X (α(x)θ(x))
−1 f(x)dx = (αθ)−1, where the bar continues to denote expectation with respect

to f , and DE refers to the exponential that discounts by the same amount as D. But since

(·)−1 (i.e. taking inverses) is a convex function on R, Jensen’s inequality implies that the inverse

of the average is weakly less than the average of the inverses, i.e.
¡
αθ
¢−1 ≤ (αθ)−1. Now

cov(α, θ) = αθ − αθ by definition, and this is negative by assumption. Hence αθ ≤ αθ, so

ρ(D) =
¡
αθ
¢−1 ≤ ¡αθ¢−1 ≤ (αθ)−1 = ρ. Furthermore, since (·)−1 is in fact strictly convex, the

15 It is possible to construct an aggregate discounting procedure whose amount is always equal to the average

amount, inclusive of x such that α(x) = 0. In this case the shape of the aggregate function is identical to the

aggregate as defined, so the larger present value means that pv(t) does not converge to pv(∞), and thus of course

θ(D) =∞ and ρ(D) = 0. Details are available upon request.
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inequality is strict unless both cov(α, θ) = 0 and (αθ)−1 is constant across the population. But

these cannot hold simultaneously unless α and θ are themselves constant, which is equivalent to

α and ρ being constant.

In general, we do expect α and θ to have negative covariance, since placing less total present

value on the future often implies that that present value is reached more quickly. This tendency

is confirmed by looking at the expressions in Table 1, but it need not hold for every possible

choice of distributions f over the underlying parameters. Thus we expect an aggregate procedure

to be slower overall than its components, but it is possible for it to be faster under certain

circumstances.16 In the special case of constant relative speed, however, we can rule out this

possibility.

Corollary: If ρ(x) is constant across x, then ρ(D) ≤ ρ, with equality only if α(x) is also

constant.

Proof: From the corollary to Proposition 1, ρ = (αθ)−1, so ρ(x) constant implies α(x)θ(x) =

C for all x. Then we can compute cov(α, θ) = cov(α,C/α) = α(C/α)− α(C/α) = C − αCα−1 =

C
³
1− αα−1

´
. But Jensen’s inequality once again implies that (α)−1 ≤ α−1, or 1 ≤ αα−1. Hence

cov(α, θ) ≤ 0 and Proposition 6 applies. The inequality is clearly strict unless α is constant across

the population.

We turn now to the relationship between the aggregate rate rD(t) and the individual discount

rates r(t;x). In particular, one variable of interest is the limiting discount rate r∗(x) = lim
t→∞

r(t;x),

if it exists, which gives the asymptotic discount rate for individual x. For any potential social

limiting rate r ≥ 0, let A(r) = {x ∈ X s.t. α(x) > 0, r∗(x) exists, and r∗(x) ≤ r}; this is the set of

individuals who use convergent procedures and whose limit is no larger than r. Finally, we define

r∗min = inf
D
r
¯̄̄R
A(r) f(x)dx > 0

E
. This is the lowest rate r such that at least some nonzero fraction

of the population has a limiting rate no higher than r. Dybvig, Ingersoll and Ross (1996) and

Weitzman (1998) showed that if the social discount function is constructed by simple averaging

of a finite number of individual discount functions, then r∗min is exactly the asymptotic discount

16Hara and Kuzmics (2002) prove a conceptually similar result in the context of risk aversion. Specifically, they

show that the representative consumer exhibits strictly decreasing relative risk aversion, ranging from that of the

most risk averse individual to that of the least risk averse as the aggregate consumption level increases.
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rate for the aggregate.17 Our next proposition states that the same is true, without assuming a

finite number of individuals, for the ANDF process, i.e. that in the limit the social discount rate

is in some sense the smallest of any across the population:

Proposition 7: The asymptotic social discount rate for the ANDF aggregation process is

given by: lim
t→∞

rD(t) = r∗min.

Proof: See Appendix C.

2.4 Aggregation of exponential procedures

The aggregation processes defined above can be carried out no matter what the underlying

discounting procedures are. If, however, we hope for simple closed-form outcomes, we will need to

make some specific assumptions. For the remainder of this section, we assume that each individual

i uses a constant-rate procedure given by d(t) = e−rit. This not only simplifies the analysis, but

also allows us to compute empirical results from the data collected by Weitzman (2001), who

surveyed 2160 economists and asked for an exponential discount rate from each.

We first observe that when aggregating exponentials, all of which have ρ(x) = 1, the corollary

to Proposition 6 applies, so the speed of the ANDF aggregate is strictly less than 1 unless all

individuals use the same constant discount rate, i.e. are identical.

We begin by considering discrete aggregation of exponentials, i.e. the case when there is a

finite population. Let the number of individuals be n, with respective constant rates r1, ..., rn

(possibly with multiplicity, of course). We assume ri > 0 for all i (or equivalently that there are

n individuals with ri > 0 and the rest can be ignored; see comment after Proposition 5). In this

case the ANDF aggregate procedure results in

(21) α =
1

n

nX
i=1

ri,

(22) θ =
1

n

nX
i=1

r−1i , and

17Analogous results concerning mortality have been in the literature for some time. Just as the lowest discount

rate becomes dominant in later years so, too, in a population that is an aggregate of distinct subpopulations, the

cohort mortality rate in later years will approach that of the subpopulation with the lowest mortality rate. See

Vaupel, Manton and Stallard (1979) for an early treatment of this subject.
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(23) ρ(D) =
n2

(
Pn

i=1 ri)
¡Pn

i=1 r
−1
i

¢ .

These results follow directly from Proposition 5, given that individual i’s amount αi is ri and

i’s mean time horizon θi is r−1i . Then, using Proposition 1, ρ(D) can be computed as (αθ)−1 =£
1
n2
(
Pn

i=1 ri)
¡Pn

i=1 r
−1
i

¢¤−1
, as stated.

We next study continuous populations by considering a specific but very general density on

the underlying distribution of discount rates, the gamma distribution, for x > 0:

(24) f(x) =
ab

Γ(b)
e−axxb−1,

with a, b > 0. This has mean μ = b/a and variance σ2 = b/a2. Such a distribution fits the

Weitzman data well (although, unless b = 1, it has the disadvantage of putting no weight at

0, whereas almost 2.5% of the respondents chose discount rates at or below 0). Weitzman,

aggregating by averaging of the d(t)s, showed that the gamma distribution18 on parameters leads

to:

(25) dγ(t) =

∙
1

1 + t/a

¸b
.

Although Weitzman labels this function ’gamma discounting’ the procedure is generally known

as hyperbolic, and we use the standard terminology.

The ANDF aggregation process, with the same gamma distribution for individual discount

rates, leads to a social discount function (see Appendix C for proof) given by

(26) dD(t) =

∙
1

1 + t/a

¸1+b
.

So it is also hyperbolic, but with an exponent that is greater by 1 than for dγ(t), which resolves

18Axtell (2003) obtains the same result as a special case of his much more general findings on ADF aggregation of

exponential procedures. He obtains his results very simply with the observation that aggregation of exponentials

involves taking the Laplace transform of the aggregating distribution. He also underscores the importance of “po-

tential problems" with convergence in showing that averaging of exponential discount functions whose parameters

are exponentially distributed always leads to a nonconvergent aggregate procedure.
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the convergence issue. We can compute α = b/a and ρ(D) = 1 − 1/b. In terms of the mean μ

and variance σ2 of the density f , we get

(27) α = μ and ρ(D) = 1− σ2

μ2

whereas the ADF aggregate — given in the parameterization of equation (3) — has

(28) αγ = μ− σ2

μ
and ργ = 1−

σ2

μ2 − σ2
.

These values imply, among other things, that even after ruling out zero discount rates, the aggre-

gate function dγ(t) fails to converge when σ ≥ μ, as it almost is in Weitzman’s sample (where σ is

roughly 3% and μ is roughly 4%). If the ANDF aggregation process (which is always convergent)

is used when σ ≥ μ, then the aggregate discounting procedure D is convergent but only weakly

so.

3 Specific Discounting Procedures

This section discusses a number of discounting procedures, some generalized from the lit-

erature and some new. In Appendix B we state and prove basic properties of these and other

procedures. Subsection 3.1 summarizes the properties of these procedures. Subsection 3.2 then

examines in more detail a specific procedure, the zero-speed hyperbolic (ZSH), which we argue to

be particularly well-suited for discounting in social decision-making.

3.1 The amount and speed of selected discounting procedures

This section states the properties of a number of familiar discounting procedures as well

as characterizing and stating the properties of several that are novel. Three relatively general

procedures require 2 parameters and are characterized in Table 1. The 1st column of Table 1

provides a parameterization of the hyperbolic discount function (HYP) that allows amount and

speed to be expressed directly in terms of its parameters r and s: α(HY P ) = r and ρ(HY P ) = s.

The first row in the table gives the discount function, and the second row gives the discount rate

function. Mean time to acquisition of present value for the hyperbolic is (rs)−1. Note that the

hyperbolic procedure is always slow and that its speed can take on the value 0.
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Table 1: Properties of Hyperbolic, Gamma and Weibull Discounting Procedures

–––––––––––––––––––––––––––––––––––––––––

Property Hyperbolic Gamma Weibull

–––––––––––––––––––––––––––––––––––––––––

1. discount function, d(t)
[1 + r(1− s)t]−(1+

1
1−s )

(r > 0; s < 1)

Γ(s+1,(s+1)rt)
Γ(s+1)

(r > 0; s > −1)

exp(−rt1/s)

(r, s > 0)

2. discount rate, r(t) r 2−s
1+r(1−s)t

[(s+1)r]s+1tse−(s+1)rt

Γ(s+1,(s+1)rt)
r
s t
(1−s)/s

r(0) r(2− s)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∞ if s < 0

r if s = 0

0 if s > 0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if s < 1

r if s = 1

∞ if s > 1

r(∞)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if s < 1

r if s = 1

∞ if s > 1

r(s+ 1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∞ if s < 1

r if s = 1

0 if s > 1

3. amount, α r r rs/Γ(s+ 1)

4. speed, ρ s 2− 2
s+2 Γ(s)Γ(s+ 1)/Γ(2s)

(ρ < 1) (0 < ρ < 2) (0 < ρ < 2)

5. median time, τ r−1(21−s − 1)/(1− s) no closed form no closed form

6. mean time, θ (rs)−1 s+2
2(s+1)r r−sΓ(2s)/Γ(s)

––––––––––––––––––––––––––––––––––––––––
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Each probability density function, f(t), defined on [0, ∞) forms the basis for a discounting

function through the formula:

(29) d(t) =

Z ∞

t
f(x)dx,

as discussed in Appendix A. One such pdf, the gamma, forms the basis for procedures that result

in a strictly positive asymptotic value of r. Starting with a gamma, the result is for d(t) is

(30) d(t) =
Γ(s+ 1, (s+ 1)rt)

Γ(s+ 1)
with s > −1 and r > 0,

a somewhat complex formulation involving the incomplete gamma function, Γ(·, ·). See deriva-

tions in Appendix B, section 3. The virtues of this procedure are that it allows both fast and

slow speeds and that amount and speed are simply given: α = r and ρ = 2− 2
s+2 . For the slow

or declining discount rate gamma the limiting value of r(t) is r(s+ 1).

Finally, we wish to include procedures that can be either fast or slow but that can have a

limiting discount rate of 0 as time goes to infinity. A procedure that falls into this class was

introduced by Read (2001):

(31) d(t) = e−rt
1/s
.

This discount function’s associated pdf is Weibull and we denote this as Weibull discounting. Here

the parameter s either expands or contracts time relative to constant rate exponential discount-

ing.19 Characteristics of the Weibull discounting procedure appear in Table 1; for derivations

see Appendix B, section 2. If s = 2 (which corresponds to contracted time), then α = r2/2,

ρ = 1/3 < 1, and θ = 6/r2; this is an example of slow discounting (and more generally ρ < 1

exactly when s > 1). We label this the ‘slow Weibull’ discounting procedure. Having s = 1/2 en-

tails squaring t in the formula for d(t) effectively expanding time. We label this the ‘fast Weibull’.

For the fast Weibull, which appeared as an example in equation 5, α =
p
4r/π, ρ = π/2, and

θ = 1/
√
rπ.

19One can, in principle, transform time with a broad range of functions g(t) to get d(t) = e−rg(t). For example,

Roelofsma (1996) discusses Weber’s Law from psychology, for which g(t) = ln t. In this case, interestingly, the

resulting discounting procedure can be shown to be a member of the hyperbolic family.
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Not surprisingly the procedures listed in Table 1 reduce to exponentials under certain para-

meter values, namely the Weibull for s = 1 and the gamma for s = 0. Although we do not allow

s = 1 explicitly in the hyperbolic procedure, if we take the limit as s approaches 1 (from below)

we get an exponential with discount rate r, as expected. This can be shown directly, but it also

follows from the discount rate function for the hyperbolic.

We reiterate that s > 0 is not required for the hyperbolic procedure. In fact, s ≤ 0 is perfectly

legitimate; this corresponds to weak convergence in our terminology. Technically, the speed as

a ratio of areas will be identically 0 for any weakly convergent procedure, but it is useful to

allow s < 0 in the definition of a hyperbolic without referring to this as a speed. That said, the

case where s = 0 is of particular interest in that it anchors one end of a spectrum of hyperbolic

procedures that is anchored at the other by the exponential (ρ = 1) . And, as with the exponential,

the zero-speed hyperbolic is a single parameter procedure: d(t) = (1 + rt)−2.

The preceding paragraphs have pointed to a number of special cases of the general discounting

procedures characterized in Table 1. Each case results from fixing the speed of a general procedure

so that the remaining single parameter in the procedure is the amount of discounting or a simple

function of that amount. Table 2 presents and characterizes 5 single parameter procedures with

speeds (row 4) ranging from ρ = 0 (zero-speed hyperbolic or ZSH) to ρ = π/2 (fast Weibull).

In between are the slow Weibull (ρ = 1/3), the exponential (ρ = 1), and the gamma with

s = 1 (ρ = 4/3). Among them these procedures present a menu of simple and analytically

tractable procedures that span almost the full range of speeds. The fast procedures represent

single parameter alternatives to the 3-parameter quasi-hyperbolics (Appendix B, Sections 6.4 and

6.5) for use in psychology and behavioral and neuroeconomics.20 The slow procedures provide

approaches to discounting for long time horizon social investments, and the next subsection further

discusses the ZSH in that context.
20The basic observation in this literature is that individuals appear to discount very little over a ‘present’ period

that extends a short but usually unspecified time into the future. After that the discount function drops sharply

and then resumes a slow decline. The fast Weibull with speed π/2 provides a natural single parameter alternative to

the 3-parameter hyperbolic. (Note that even the discrete time quasi-hyperbolic has 3 parameters — the parameters

b and r in equation 4 plus the specification of the units in which time is measured.)
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Table 2: Properties of Five Single Parameter Discounting Procedures

–––––––––––––––––––––––––––––––––––––––––

Zero-speed Slow Fast

Property hyperbolic Weibull Exponential Gamma Weibull

(s = 0) (s = 2) (s = 1) (s = 1
2)

––––––––––––––––––––––––––––––––––––––––—

1. discount function, d(t) (1 + rt)−2 exp(−rt1/2) e−rt e−2rt(1 + 2rt) exp(−rt2)

2. discount rate, r(t) 2r
1+rt

r
2
√
t r 4r2t

1+2rt 2rt

r(0) 2r ∞ r 0 0

r(∞) 0 0 r 2r ∞

3. amount, α r r2/2 r r
p
4r/π

4. speed, ρ 0 1/3 1 4/3 π/2

5. median time, τ r−1 − (ln 2)/r 2rτ = ln(2 + 2rτ) −

6. mean time, θ ∞ 6/r2 r−1 3/4r 1/
√
rπ

––––––––––––––––––––––––––––––––––––––––
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3.2 Zero-speed hyperbolic (ZSH) discounting for social choice

The preceding subsection discussed the three very general discounting procedures presented

in Table 1 and provided 1-parameter special cases spanning a range of speeds in Table 2. This

offers a broad menu for choice of a social discounting procedure. In selecting from this menu we

would look for several things:

(i) Because the ANDF aggregation procedure yields a social procedure that is slower than the

average of the speeds of the individual procedures (Proposition 6) it would in general be desirable

for a social procedure to be slow (ρ < 1). While it is possible that the individual procedures

being aggregated would be fast it is more likely that they would be exponential and in any case

aggregation will result in a slowing.21

(ii) It would be desirable for the social discounting procedure to be a single parameter function

and for that parameter to be simply related to the amount of discounting.

Table 2 presents two candidates that meet these criteria — the zero-speed hyperbolic (ZSH)

with ρ = 0 and the slow Weibull with ρ = 1/3. The ZSH is a slightly simpler expression than

the slow Weibull and its single parameter r is equal to the amount of discounting whereas with

the slow Weibull the amount of discounting is r2/2. For these reasons we propose the ZSH as a

simple yet flexible procedure for social discounting.

We designate the discount and discount rate functions for the ZSH by dz(t) and rz(t), and if

the amount of discounting is r and the speed 0 we have:

(32) dz(t) = (1 + rt)−2 and

(33) rz(t) = 2r/(1 + rt).

Thus rz(t) declines from a value of 2r at 0 to a value of 0 at ∞, and equals r when t = r−1,

i.e. at the time by which half of the present value of the ZSH has been accumulated. (Half the

present value of an equivalent exponential will have been accumulated earlier by a factor of 0.69.)

Although the median time for accumulation of present value for the ZSH is r−1, the mean time

is infinite so the procedure puts substantial weight on the far future.

21For those who might prefer ADF it too will generate a slower aggregate procedure that the average of the

individual procedures.
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Newell and Pizer (2002) used historical volatility of discount rates in bond markets to generate

an expected value for a potential social discounting function and Oxera (2002), in a study for the

Office of the Deputy Prime Minister of the U.K., simplified their results into a proposed procedure

for long horizon project analysis in the U.K. The proposed procedure starts with a discount rate

of 3.5% per year which then declines in increments to 1% per year after 300 years. Figure 4

compares the discount and discount rate functions of the proposed U.K. procedure, which has an

amount α = 0.0318, to dz(t) and rz(t) and to the exponential with the same amount. While

there are broad similarities, rz(t) starts higher (at slightly above 6%) and declines to zero rather

than to 1%, which has the effect of placing substantially greater weight on the far future.

Table 3 shows the amount of present value remaining to be accumulated at various times for

the proposed U.K. procedure and for ZSH and exponential procedures with amount 0.0318. After

100 years the exponential has 4.2% of its present value still to be accumulated and the proposed

U.K. procedure has 7.5%. The ZSH, however, has 23.9% remaining, and even after 400 years

still has as much present value to accumulate as the proposed U.K. procedure had at 100 years.

The ZSH, with its ultimately 0 value of rz(t), places more weight on the far future than does a

procedure with stepwise declining exponential rates that discounts by the same amount. The

recently published Stern report on climate change (Stern, 2006) provides another example. It

gives weight to the far future by (effectively) choosing a low discount rate of 1.4% per year. But

even that low rate leaves only 6.1% of present value to be accumulated after 200 years whereas

the ZSH with r = 0.014 has 26.3% still to be accumulated. The ZSH has 8% to accumulate after

800 years whereas, for the exponential, there is virtually nothing left by that time. In addition,

short term interest rates of 2.8% with the ZSH are, while low, still more reasonable than 1.4%.

A switch to ZSH discounting, with an r of about 0.03, gives far more weight to the far future

than does exponential discounting at any reasonable rate. It does this while preserving realistic

discount rates over short horizons and with a tractable functional form. The ZSH results from

ANDF aggregation of individual exponential discount functions whose parameters follow a gamma

distribution with its standard deviation equal to its mean (equation 27). [In Weitzman’s (2001)

data the standard deviation was 3% around a mean of 4%, and the gamma fit fairly well except

at 0%.] It would be worthwhile to conduct sensitivity analyses of long horizon policy assessments

such as those of the Stern report to the use of ZSH discounting.
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Figure 4: 
Comparison of Discounting Procedures with α = 0.0318 –  

Exponential, Green Book and Zero-Speed Hyperbolic 
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Figure 4: 
Comparison of Discounting Procedures –  

Exponential, Green Book and ZSH (α = 0.0318) 
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Table 3: Present Value Remaining as a Function of Time for

Selected Exponential and Zero-Speed Hyperbolic (ZSH) Procedures

–––––––––––––––––––––––––––––––––––––––––

Percent of present value remaining

–––––––––––––––––––––––––––––––––

α = 0.014 (Stern Report) α = 0.0318

–––––––––––– ––––––––––––––––––—

After year Exp ZSH Exp ZSH Proposed UK

procedure

––––––––––––––––––––––––––––––––––––––––—

0 100 100 100 100 100

25 70.4 74.1 45.2 55.7 47.1

50 49.7 58.8 20.4 38.6 24.3

100 24.7 41.7 4.2 23.9 7.5

200 6.1 26.3 0.2 13.6 1.4

400 0.4 15.2 0 7.3 0.2

800 0 8.2 0 3.8 0
–––––––––––––––––––––––––––––––––––––––––

1. The amount of discounting is designated α. For exponential discounting

d(t) = e−αt ; for ZSH discounting d(t) = (1 + αt)−2.

2. The Stern Report on climate change (Stern, 2006) effectively used a discount

rate of 1.4% per year.

3. A procedure developed for the Office of the Deputy Prime Minister in the U.K.

for the U.K. ‘Green Book’ (Oxera, 2002) prescribes a discounting with rates fixed over

time intervals, beginning at 3.5% per year and declining to 1% per year after 300

years. For this procedure it turns out that α = 0.0318.

––––––––––––––––––––––––––––––––––––––––
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3.3 Conclusions

This paper proceeds from the observation that economists in a range of specialized fields

use non-exponential discounting functions. Within the exponential framework, alternative dis-

counting procedures align along the single dimension of discount rate. This simplicity, along with

the intuitive appeal of the axiomatic formulation of constant rate discounting and the analytic

tractability of the procedure, have ensured its dominance until recently.22 This paper develops a

framework for nonconstant rate discounting that arrays procedures along the two dimensions of

amount and speed, thereby facilitating systematic comparison of procedures and enhancing their

tractability.

A question that is antecedent to discounting in the context of assessing long-term investments,

addressed by Arrow (1999), concerns the extent to which decisions made today will have their

influence attenuated (or eliminated) by compensatory decisions of subsequent generations. This

issue is very real, and arises also in the design of other sequential decision procedures, such as

foreign aid programs and transfers across levels of government. It has not been our purpose in

this paper to address that issue but, more simply, to improve the tools available in circumstances

where discounting is being used. Similarly, although we acknowledge the existence and practical

relevance of time-inconsistency issues with regard to variable rate discounting — initially addressed

by Robert H. Strotz (1956) — our focus has been on a different facet of the problem.

Key results of the paper include:

(i) precise formulations for concepts of ‘amount’, ‘speed’, and ‘time horizon’ of discounting

procedures;

(ii) proofs of key relations among the concepts of amount, speed, and time horizon;

(iii) identification of inadequacies in existing approaches to aggregating individual discounting

22The axiomatic foundation for constant rate discounting goes back to Koopmans (1960) who introduced a

‘stationarity’ axiom concerning preferences over time streams of outcomes and established plausible conditions

that require discounting to be exponential. A number of authors have explored weaker axiom systems that allow

representation of intertemporal preferences by a discounting procedure that is not necessarily constant rate — see

Jamison (1969), Fishburn and Rubinstein (1982), Bleichrodt and Gafni (1996) and Bleichrodt and Johannesson

(2001). The simple existence of an axiomatic foundation, therefore, is no argument in favor of constant- over

variable-rate discounting; the question is one of assessing the descriptive, normative, and tractability consequences

of adding the strong stationarity axiom.
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procedures into a socially representative one and formulation of an alternative process — averaging

of normalized discount functions or ANDF — that overcomes these inadequacies;

(iv) proof that under reasonable assumptions the ANDF aggregate procedure will be slower

than the average of the speeds of the individual procedures;

(v) descriptions of a range of existing and new discounting procedures and provision of closed

form characterizations relating amount, speed, and time horizon to their underlying parameters;

and

(vi) use of a particular variant of hyperbolic discounting, which we label the zero-speed

hyperbolic or ZSH, would provide an analytically tractable way of giving substantial weight to

the far future in policy analyses while preserving reasonable discount rates in the short term.

Frederick, Loewenstein and O’Donoghue (2002), Chapman (2003) and Groom et al. (2005)

provide valuable compilations of the recent literature on time preference and discounting. Poulos

and Whittington (2000) extend the literature on discounting of lifes saved to several developing

country contexts. Transforming the empirical literature into discounting procedures for policy

application will require two additional steps. First, to the extent practical, data underlying the

reported literature will need to be characterized in terms of estimates of the amount and speed

of individual discounting. Second, the ANDF aggregation algorithm can be used (through our

Proposition 6) to generate candidate social discounting procedures. We feel that the approach to

discounting that we propose both undermines many of the practical objections to expanded use

of nonconstant rate procedures and provides a needed framework for integrating and comparing

results in the existing literature.
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4 Appendix A - Relations between the discount function and

other defining functions

A discounting procedure can be defined in multiple ways, each of which leads to a discount

function, d(t), that assigns to each future time t a coefficient by which the net outcome at that

time can be converted to its present value or the time 0 ‘equivalent’ of the time t outcome.

Table 4 lists five functions that can, in addition to d(t) itself, be used to define a discounting

procedure and relates each of these to d(t). Four of the potential defining functions — the discount

rate, discount factor, yield curve, and present value — are familiar, although they often appear in

different contexts. We add a fifth defining function in addition to these four, which we label the

‘associated probability density function’ (or pdf).

Table 4 brings together in one place the relation between each of the defining functions and

d(t). For reference the relation to d(t) is given for both discrete and continuous time formulations.

Row 1, for example, shows the relation of d(t) to the discount rate function r(t) by giving d(t)

as a function of r(t) and vice versa. Row 2 shows the relation of discount factors — the standard

representation of discounting in game theory, for instance — to d(t).

Row 3 relates the yield curve from the finance literature to d(t). The relation here is a useful

one for interpreting results in the health-related literature on assessment of discount rates since

they are frequently reported (implicitly) as yield curves.23 Row 4 relates d(t) to the cumulative

present value function. Finally, Row 5 results from the observation that the inverse cumulative24

of any pdf defined on [0,∞) will, in fact, be a discount function with a present value equal to the

expectation of a random variable with that pdf . Thus if f is a pdf on [0,∞), then

(34) df (t)=1 −
Z t

0
f(x)dx =

Z ∞

t
f(x)dx

will be a discount function.
23See Malkiel (1998) or Cochrane (2001, Chapter 19) for discussions of yield curves and the term structure of

interest rates. Cropper, Aydede and Portney (1994), in an important early paper on discounting of lives saved,

report a 16.8% discount rate over 5 years declining to 3.4% over 100 years, a ‘yield curve’ formulation. Cairns and

van der Pol (1997) provide further strong evidence for slow discounting in the context of saving lives.
24The inverse cumulative of a pdf is 1 minus the cumulative.
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Table 4: Relations Between the Discount Function and Other Defining Functions

–––––––––––––––––––––––––––––––––––––––—

Definitional function Discrete time Continuous time

1. discount rate, r(t) d(t) =
tY

i=1

[1 + r(i)]−1 d(t) = e−
R t
0 r(x)dx

r(t) = d(t−1)
d(t) − 1 r(t) = −d0(t)

d(t)

2. discount factor, δ(t) d(t) =
tY

i=1

δ(i) d(t) = e
R t
0 ln δ(x)dx

δ(t) = d(t)
d(t−1) δ(t) = ed

0(t)/d(t)

3. yield curve, y(t) d(t) = [1 + y(t)]−t d(t) = e−y(t)t

y(t) = [d(t)]−1/t − 1 y(t) = − ln d(t)t

4. present value, pv(t) d(t) = pv(t)− pv(t− 1) d(t) = pv0(t)

pv(t) =
tX

i=0

d(i) pv(t) =
R t
0 d(x)dx

5. associated pdf , f(t) d(t) =
∞X
i=t

f(i) d(t) =
R∞
t f(x)dx

f(t) = d(t)− d(t+ 1) f(t) = −d0(t)

Note: Our conventions here are the usual ones, namely that the empty product is

equal to 1 and the unit stream begins to accrue immediately at time 0. In discrete

time, r(t) refers to the discount rate between time t− 1 and time t, and similarly for

δ(t). Also in discrete time, pv(t) is the present value accumulated up through and

inclusive of time t.
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5 Appendix B - Derivation of properties of specific discounting

procedures

Table 1 provided formulas for discount rates, amounts, relative speeds, median time horizons

and mean time horizons for the hyperbolic, Weibull and Gamma discounting procedures. Results

not proved in the text are proved in Sections 6.1, 6.2 and 6.3 below. In addition Sections 6.4

and 6.5 present derivations for the characteristics of quasi-hyperbolic discounting procedures,

generalized to continuous time in two separate ways.

5.1 Hyperbolic

If d(t) = [1 + r(1− s)t]−
1

1−s−1 then

r(t) = −(− 1

1− s
− 1)r(1− s)

[1 + r(1− s)t]−
1

1−s−2

[1 + r(1− s)t]−
1

1−s−1
=

r(2− s)

1 + r(1− s)t

and

Z ∞

0
d(t)dt =

1

r(1− s)

1

−1/(1− s)
[1 + r(1− s)t]−

1
1−s

¯̄̄̄∞
0

=
1

r

and so α = r as claimed. For the speed, we begin by observing that

Z ∞

0
td(t)dt =

Z ∞

0

t

[1 + r(1− s)t]1+
1

1−s
dt =

1

r2(1− s)2

Z ∞

0

x

[1 + x]1+
1

1−s
dx,

with the change of variable x = r(1− s)t. The beta function B(y, z) can be written

B(y, z) =

Z ∞

0

xy−1

[1 + x]y+z
dx,

so inserting y = 2 and z = 1
1−s − 1 =

s
1−s yields

Z ∞

0
td(t)dt =

1

r2(1− s)2
B(2,

s

1− s
).
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But the beta function can be expressed in terms of the gamma function (Gradshteyn and Ryzhik

1980, section 8.38) as

B(y, z) =
Γ(y)Γ(z)

Γ(y + z)
,

which itself has the property that Γ(y+1) = yΓ(y). Plugging in (and recalling that Γ(n) = (n−1)!

for integer n), we find that

B(2,
s

1− s
) =

Γ(2)Γ( s
1−s)

Γ( s
1−s + 2)

=
1 · Γ( s

1−s)

( s
1−s + 1)Γ(

s
1−s + 1)

=
Γ( s

1−s)

( 1
1−s)(

s
1−s)Γ(

s
r−s)

=
(1− s)2

s
.

Finally,

ρ =

∙
α2
Z ∞

0
td(t)dt

¸−1
=

∙
r2

1

r2(1− s)2
(1− s)2

s

¸−1
= s

as desired. And of course θ is then (rs)−1. For the median time, we set pv(τ) = pv(∞)/2:

1− [1 + r(1− s)τ ]−
1

1−s

r
=

1

2r
=⇒

1 + r(1− s)τ = 21−s =⇒

τ =
21−s − 1
r(1− s)

.

Note that, as expected, lim
s→1

τ = r−1 ln 2 (use L’Hôpital’s rule), which is the value for the standard

exponential.

5.2 Weibull

For d(t) = exp(−rt1/s), we can immediately observe that r(t) = (r/s)t1/s−1. To calcu-

late amount and speed, we will use the following formula (Gradshteyn and Ryzhik 1980, section

3.4781):
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Z ∞

0
xy−1 exp(−rxz)dx = 1

z
r−y/zΓ(y/z)

with z = 1/s. First substituting y = 1, we find

Z ∞

0
d(t)dt =

1

1/s
r−sΓ(s) =

sΓ(s)

rs
=
Γ(s+ 1)

rs

using the same identity Γ(y + 1) = yΓ(y) as before. The inverse of this is then α, as claimed. To

calculate the speed, we instead substitute y = 2, implying that

Z ∞

0
td(t)dt =

1

1/s
r−2sΓ(2s) =

sΓ(2s)

r2s

so that

ρ =

∙
α2
Z ∞

0
td(t)dt

¸−1
=

s2[Γ(s)]2

r2s
r2s

sΓ(2s)
= s

[Γ(s)]2

Γ(2s)
=
Γ(s)Γ(s+ 1)

Γ(2s)
,

also as claimed. The mean time follows immediately:

θ = α

Z ∞

0
td(t)dt =

Γ(2s)

rsΓ(s)
.

Unfortunately, there is no closed form integral for d(t) and thus no closed form expression for the

median time horizon.

We can further investigate several properties of the Weibull discounting procedure. The bino-

mial coefficient
¡n
m

¢
is by definition

µ
n

m

¶
=

n!

m!(n−m)!
=

Γ(n+ 1)

Γ(m+ 1)Γ(n−m+ 1)
,

and the formulation in terms of gamma functions can be used to define a continuous binomial
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coefficient for non-integer n,m. In that case, the relative speed is the inverse of

Γ(2s)

Γ(s)Γ(s+ 1)
=

Γ((2s− 1) + 1)
Γ((2s− 1)− s+ 1)Γ(s+ 1)

=

µ
2s− 1

s

¶
,

which is strictly increasing in s for s > 0 (since it is an extension of the binomial coefficient).

Thus the speed is strictly decreasing in s, and of course it equals
¡
2−1
1

¢
= 1 when s = 1. This

validates our claim that the transformed time discounting procedure is slow (i.e. ρ < 1) exactly

when s > 1; and it is fast (ρ > 1) when s < 1. It also provides a simple way to calculate ρ when

s is an integer. The claim is also a direct consequence of Proposition 3, once we note that the

derivative of the discount rate has the same sign as 1− s:

r0(t) = (1− s)
r

s2
t(1/s)−2.

So when s > 1, the discount rate is declining over time (slow discounting), and vice-versa.

Finally, we examine the limit cases for extreme values of s. As s → ∞, d(t) starts to look

almost constant at a value of e−r, so the procedure is less and less convergent (though of course for

any finite s there is no actual problem). This means that α → 0. Since Γ(y) grows “factorially”

in y, we find that ρ goes to 0 as well (and θ grows without bound), which does not automatically

follow from the result for α. That is, the limit discounting procedure is slow even relative to

the equivalent exponential (which has, of course, a zero discount rate in the limit). In the other

extreme, as s→ 0, d(t) starts to appear constant at 1 until t = 1, where it precipitously drops to

0. This suggests that α should be near 1, and indeed

lim
s→0

α = lim
s→0

rs

Γ(s+ 1)
=

r0

Γ(1)
= 1

since both numerator and denominator are continuous at s = 0. For the speed, we make use of

the doubling formula for the gamma function:

Γ(2y) =
22y−1√

π
Γ(y)Γ(y +

1

2
),

from which we obtain

ρ =
Γ(s)Γ(s+ 1)

Γ(2s)
=

√
π

22s−1
Γ(s+ 1)

Γ(s+ 1/2)
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and thus (using the known value Γ(1/2) =
√
π)

lim
s→0

ρ = lim
s→0

√
π

22s−1
Γ(s+ 1)

Γ(s+ 1/2)
=

√
π

20−1
1√
π
= 2,

again by continuity at s = 0 of all functions involved. This is the “fastest” that we can get with

this type of discounting procedure. Therefore, θ approaches 1/2, and it is clear in this case that

τ approaches 1/2 as well.

5.3 Gamma

We start with a gamma formulation xse−(s+1)rx, so s = 0 is the basic exponential case. Para-

meter restrictions are s > −1 and r > 0. We need to first turn this into a legitimate pdf function:R∞
0 xse−(s+1)rxdx = Γ(s+1)

[(s+1)r]s+1
, so we normalize to get

f(x) =
[(s+ 1)r]s+1

Γ(s+ 1)
xse−(s+1)rx

as our starting point. We turn this pdf into a discount function as in the paper:

d(t) =

Z ∞

t
f(x)dx =

[(s+ 1)r]s+1

Γ(s+ 1)

Z ∞

t
xse−(s+1)rxdx =

[(s+ 1)r]s+1

Γ(s+ 1)

Γ(s+ 1, (s+ 1)rt)

[(s+ 1)r]s+1

(where Γ(x, z) =
R∞
z e−yyx−1dy is by definition the incomplete gamma function), ending up with

d(t) =
Γ(s+ 1, (s+ 1)rt)

Γ(s+ 1)
.

The discount rate function is thus

r(t) =
−d0(t)
d(t)

=
[(s+ 1)r]s+1 tse−(s+1)rt

Γ(s+ 1, (s+ 1)rt)
.

So r(0) = 0 for s > 0, r(0) = r for s = 0, and r(0) =∞ for s < 0. To find r(∞), use L’Hôpital’s
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Rule:

lim
t→∞

r(t) = lim
t→∞

[(s+ 1)r]s+1 ts−1e−(s+1)rt [s− (s+ 1)rt]
− [(s+ 1)r]s+1 tse−(s+1)rt

= lim
t→∞

h
(s+ 1)r − s

t

i
= (s+ 1)r

for any s.

We may now calculate the amount α and relative speed ρ.

Z ∞

0
d(t)dt =

Z ∞

0

Ã
[(s+ 1)r]s+1

Γ(s+ 1)

Z ∞

t
xse−(s+1)rxdx

!
dt

=
[(s+ 1)r]s+1

Γ(s+ 1)

Z ∞

0

Z ∞

t
xse−(s+1)rxdxdt

=
[(s+ 1)r]s+1

Γ(s+ 1)

Z ∞

0

Z x

0
xse−(s+1)rxdtdx

=
[(s+ 1)r]s+1

Γ(s+ 1)

Z ∞

0
xse−(s+1)rx

Z x

0
dtdx

=
[(s+ 1)r]s+1

Γ(s+ 1)

Z ∞

0
xs+1e−(s+1)rxdx

=
[(s+ 1)r]s+1

Γ(s+ 1)

Γ(s+ 2)

[(s+ 1)r]s+2
=
1

r

so α = r quite simply. For the mean time and relative speed:Z ∞

0
tds(t)dt =

Z ∞

0
t

Ã
[(s+ 1)r]s+1

Γ(s+ 1)

Z ∞

t
xse−(s+1)rxdx

!
dt

=
[(s+ 1)r]s+1

Γ(s+ 1)

Z ∞

0

Z ∞

t
txse−(s+1)rxdxdt

=
[(s+ 1)r]s+1

Γ(s+ 1)

Z ∞

0

Z x

0
txse−(s+1)rxdtdx

=
[(s+ 1)r]s+1

Γ(s+ 1)

Z ∞

0
xse−(s+1)rx

Z x

0
tdtdx

=
[(s+ 1)r]s+1

Γ(s+ 1)

Z ∞

0
(
1

2
)xs+2e−(s+1)rxdx

=
[(s+ 1)r]s+1

Γ(s+ 1)

Γ(s+ 3)

2 [(s+ 1)r]s+3
=

(s+ 2)

2(s+ 1)r2
.

But θ is α times this integral, and therefore θ = s+2
2(s+1)r . Finally, ρ = (αθ)

−1 so
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ρ =

µ
s+ 2

2(s+ 1)

¶−1
= 2− 2

s+ 2
.

Thus the relative speed depends only on s (not r) and is increasing in s toward a limit of 2 (the

maximum possible relative speed of any discounting procedure) as s increases to infinity, with a

lower limit of 0 as s goes to −1. Unfortunately, there is no closed form for the median time τ ,

since one cannot analytically integrate the incomplete gamma function in d(t).

5.4 Split function quasi-hyperbolic

Another class of functions derives from continuous time versions of the discrete time quasi-

hyperbolic discount function introduced as equation (4). This function can be generalized in

a variety of ways. First, and most obviously, the point of discontinuity can be made to be at

any time, not just 1 (which was in any case already a parameter because of need for the choice

of time scale). Second, an option that we do not pursue is to introduce discontinuities at

multiple time points. Third, the generalization to continuous time can be undertaken either by

introducing a discontinuity in r(t) — and, hence, in the derivative of d(t) — or by introducing a

discontinuity in d(t) itself. We label these the ‘split rate quasi-hyperbolic’ and the ‘split function

quasi-hyperbolic’. The latter allows r(t) to remain constant [except for a spike to infinity at the

time of the discontinuity in d(t)] and has been utilized by Harris and Laibson (2000) and, in quite

a different way, by Cline (1999). The most natural generalization of the discrete-time quasi-

hyperbolic is the split function version, and this subsection includes a definition of this version

and shows its properties. In the next subsection, 6.5, we explore properties of the split rate

quasi-hyperbolic procedures. Figure 5 illustrates the split function and split rate quasi-hyperbolic

procedures.

We first consider the procedure that splits the discount function rather than the discount rate:

d(t) =

⎧⎨⎩ e−rt if t ≤ t∗

λe−rt if t > t∗

where r > 0 and λ < 1. The discount rate for this procedure is constant at r except at t = t∗,

where it is infinite. If we again denote e−rt
∗
by β, we see that
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Figure 5:

r (t) r (t)

Panel A -- Split Rate Quasi-hyperbolic Panel B -- Split Function Quasi-hyperbolic

Alternative Generalizations to Continuous Time of the Quasi-hyperbolic Discounting 
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A quasi-hyperbolic is defined in discrete time, with values of the discount function given by (1, βδ, 
βδ2, βδ3,…), where δ is a discount factor and β is a constant.  This figure shows two alternative 
continuous time formulations that generalize a quasi-hyperbolic with β = 0.78 and δ = 0.95.  
In Panel A  r(t) is discontinuous at t = 1, dropping from 0.25 to 0.05, leading to a change in the slope of 
d(t) at 1 where d(t) = 0.78.  In Panel B  r(t) = 0.05 for all t except t = 1 where it is infinite.  If r(t) is an 
appropriately formulated Dirac delta function, then d(t) can be made to drop from 0.95 to 0.78 at 
t = 1.  Choice of the unit of measurement for time determines the time of discontinuity which is assumed, 
without loss of generality, to occur at t = 1 in these examples.
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Z ∞

0
d(t)dt =

Z t∗

0
e−rtdt+ λ

Z ∞

t∗
e−rtdt = (1− β)

1

r
+ λ

1

r
β =

1− (1− λ)β

r
,

and the amount of discounting is the inverse of this:

α =
r

1− (1− λ)β
.

For the speed, Z ∞

0
td(t)dt =

Z t∗

0
te−rtdt+ λ

Z ∞

t∗
te−rtdt

=
1

r
((1− β)

1

r
− t∗β) + λ

1

r
(t∗β +

1

r
β)

=
1

r2
[1− (1− λ)β(1 + rt∗)]

and so

ρ =
[1− (1− λ)β]2

1− (1− λ)β(1 + rt∗)
.

From here, θ follows as always. To find bounds on ρ for this procedure, we first consider the

extreme case λ = 0: here ρ = f(β) = (1−β)2/(1−β+β lnβ) (same as in the last subsection). So

once more the maximum value for ρ is 2. Note that if λ > 0, then ρ is maximized at an interior

choice of β, but the argmax goes to 1 (and the maximum value goes to 2) as λ goes to 0. On the

other hand, fixing λ and letting β go to 1, ρ is approximately λ — so we can make it as small as

we want (greater than 0). Thus the order of limits makes a big difference! Finally, we point out

that for any fixed λ, ρ goes to 1 as β goes to 0.

For the median time, we again distinguish two cases: either τ is smaller than t∗ (and τ occurs

before the λ jump) or it is larger than t∗ (where the expression for pv(t) is different due to the λ

factor). The boundary case will be if τ = t∗, which occurs exactly when pv(t∗) = pv(∞)/2, i.e. if

1/r − β/r = [1− (1− λ)β] /2r. This is true when β = 1/(1 + λ), i.e. for t∗ = r−1 ln(1 + λ). If t∗

is larger than this (so that τ is in the initial range), pv(τ) = 1/r− e−rτ/r and we need to set this
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equal to pv(∞)/2 = [1− (1− λ)β] /2r. Solving,

1− e−rτ =
1− (1− λ)β

2
=⇒

e−rτ =
1 + (1− λ)β

2
=⇒

τ = r−1 ln
2

1 + (1− λ)β
.

If t∗ is smaller than the cutoff value (so that τ > t∗), then pv(τ) =
R t∗
0 e−rtdt+β

R τ
t∗ λe

−r(t−t∗)dt =

(1− β)/r + λ (β − e−rτ ) /r and we solve

1− β

r
+

λ (β − e−rτ )

r
=

1− (1− λ)β

2r
=⇒

λ
¡
β − e−rτ

¢
=

1

2
[λβ − (1− β)] =⇒

e−rτ =
λβ + (1− β)

2λ
=⇒

τ = r−1 ln
2λ

1− (1− λ)β
.

5.5 Split rate quasi-hyperbolic

If d(t) = e−rt for t ≤ t∗ and d(t) = βe−s(t−t
∗) for t > t∗ (where β = e−rt

∗
), then the discount

rate is immediate (it is in fact the defining characteristic for this procedure), though it is undefined

at t = t∗ where d is not differentiable25. For the amount,

Z ∞

0
d(t)dt =

Z t∗

0
e−rtdt+ β

Z ∞

t∗
e−s(t−t

∗)dt = (1− β)
1

r
+ β

1

s
,

from which it is clear that the inverse is indeed a [weighted] harmonic mean:

α =
rs

βr + (1− β)s
.

For the speed, we calculate

25 If s > r, say, we can think of r(t) as having a Dirac delta function spike at t∗.
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Z ∞

0
td(t)dt =

Z t∗

0
te−rtdt+ β

Z ∞

t∗
te−s(t−t

∗)dt

=

∙
−1
r
te−rt − 1

r2
e−rt

¸¯̄̄̄t∗
0

+ β

Z ∞

0
(t+ t∗)e−stdt

=
1

r
(−t∗β − β

r
+ 0 +

1

r
) + β

Z ∞

0
te−stdt+ βt∗

Z ∞

0
e−stdt

=
1

r
((1− β)

1

r
− t∗β) + β

1

s2
+ βt∗

1

s

=
1

rs

h
(1− β)

s

r
− t∗βs+ β

r

s
+ βt∗r

i

so that the relative speed is the inverse of

α2
Z ∞

0
td(t)dt =

βr2 + (1− β)s2 + βt∗rs(r − s)

[βr + (1− β)s]2
,

as claimed. The formula for θ also follows from this computation. It is easy to calculate that

ρ ≷ 1 as s ≷ r. To find bounds for ρ, we first consider s >> r: in this case, ρ is approximately

f(β) ≡ (1−β)2/(1−β+β lnβ). The function f is monotonically increasing in β, with lim
β→0

f(β) = 1

and lim
β→1

f(β) = 2 (use L’Hôpital’s rule twice), so ρ can get arbitrarily close to 2. On the other

side, for r >> s, ρ is approximately β/(1 + st∗), which is obviously minimal for β near 0 (i.e. rt∗

very large), and hence ρ near 0.

For the median time, we need to distinguish two cases: either τ is smaller than t∗ (in which case

τ occurs while the discount rate is still r and we can use the appropriate expression for pv(t)) or it is

larger than t∗ (where the rate is s and the expression for pv(t) is different). The boundary case will

be if τ = t∗, which occurs exactly when pv(t∗) = pv(∞)/2, i.e. if 1/r−β/r = [βr + (1− β)s] /2rs.

This is true if βr = (1 − β)s (which is intuitively reasonable), i.e. for β = e−rt
∗
= s

r+s . Thus

the cutoff value for t∗ is r−1 ln r+s
s . If t

∗ is larger than this (so that τ is in the initial range),

pv(τ) = 1/r − e−rτ/r and we need to set this equal to pv(∞)/2 = [βr + (1− β)s] /2rs. Solving,

44



1− e−rτ =
1

2

βr + (1− β)s

s
=⇒

e−rτ =
s− β(r − s)

2s
=⇒

τ = r−1 ln
2s

s− β(r − s)
.

If t∗ is smaller than the cutoff value (so that τ > t∗), then pv(τ) =
R t∗
0 e−rtdt+β

R τ
t∗ e

−s(t−t∗)dt =

(1− β)/r + β
¡
1− e−s(τ−t

∗)
¢
/s and we solve

1− β

r
+

β
¡
1− e−s(τ−t

∗)
¢

s
=

1

2

βr + (1− β)s

rs
=⇒

βre−s(τ−t
∗) =

1

2
[βr + (1− β)s] =⇒

e−s(τ−t
∗) =

βr + (1− β)s

2βr
=⇒

τ = t∗ + s−1 ln
2βr

βr + (1− β)s
.

6 Appendix C - Other Proofs

6.1 Proof of Proposition 7

Proposition 7 relates the limiting value of the ANDF social discount rate function to the

minimum of the limiting values of the individual discount rate functions. Recall that

rD(t) =

R
X α(x)r(t;x)d(t;x)f(x)dxR

X α(x)d(t;x)f(x)dx
,

which we can rewrite as a weighted average

rD(t) =

Z
X
β(t;x)r(t;x)dx

with time-dependent weights β(t;x) given by
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β(t;x) =
α(x)d(t;x)f(x)R

X α(x)d(t;x)f(x)dx
.

Obviously,
R
X β(t;x)dx = 1 for any t.

For any ε > 0, let us partition X into A1, A2(ε), and A3(ε) as follows: A1 = {x ∈ X s.t.

r∗(x) < r∗min}; A2(ε) = {x ∈ X s.t. r∗min ≤ r∗(x) ≤ r∗min + ε}; and A3(ε) = {x ∈ X s.t. r∗min +

ε < r∗(x)}. Then we can write lim
t→∞

rD(t) = lim
t→∞

R
X βrdx = lim

t→∞

R
A1

βrdx + lim
t→∞

R
A2(ε)

βrdx +

lim
t→∞

R
A3(ε)

βrdx.

For any x with α(x) = 0, β(t;x) = 0 identically. So ignoring any such x and noting thatR
A(r∗min)

f(x)dx = 0 by definition of r∗min, we see that
R
A1

β(t;x)dx = 0 as well (for all t), since α(x)

and d(t;x) are finite (and α, d, f are all weakly positive). But then lim
t→∞

R
A1

β(t;x)r(t;x)dx = 0,

so these values of x have no effect on lim
t→∞

rD(t). This establishes that limt→∞
rD(t) ≥ r∗min; it remains

to show that lim
t→∞

rD(t) ≤ r∗min.

Also by definition of r∗min,
R
A(r∗min+ε)

f(x)dx > 0 for all ε > 0. But, as we just saw,
R
A1

f(x)dx =

0. Hence, for any ε, we can pick x2 ∈ A2(ε) with α(x2) > 0 and f(x2) > 0; now take any

x3 ∈ A3(ε). Then

β(t;x3)

β(t;x2)
=

α(x3)d(t;x3)f(x3)

α(x2)d(t;x2)f(x2)

Rewriting d(t;x) as exp
³
−
R t
0 r(τ ;x)dτ

´
, we get

β(t;x3)

β(t;x2)
=

α(x3)f(x3)

α(x2)f(x2)

exp
³
−
R t
0 r(τ ;x3)dτ

´
exp

³
−
R t
0 r(τ ;x2)dτ

´ =M exp

µ
−
Z t

0
[r(τ ;x3)− r(τ ;x2)] dτ

¶
,

where M = α(x3)f(x3)
α(x2)f(x2)

is constant in t (and is finite by the choice of x2). Therefore

lim
t→∞

β(t;x3)

β(t;x2)
=M lim

t→∞
exp

µ
−
Z t

0
[r(τ ;x3)− r(τ ;x2)] dτ

¶
.

But of course x2 ∈ A2(ε) and x3 ∈ A3(ε) imply that lim
t→∞

r(t;x3) > r∗min + ε ≥ lim
t→∞

r(t;x2), from

which it is clear that lim
t→∞

R t
0 [r(τ ;x3)− r(τ ;x2)] dτ =∞ and thus
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lim
t→∞

β(t;x3)

β(t;x2)
= 0.

This implies that, for any x3 ∈ A3(ε), we must have lim
t→∞

β(t;x3) = 0. This in turn

yields lim
t→∞

R
A3(ε)

β(t;x)dx = 0 (so that lim
t→∞

R
A2(ε)

β(t;x)dx = 1), but it also implies the stronger

conclusion that lim
t→∞

R
A3(ε)

β(t;x)r(t;x)dx = 0. Therefore only x ∈ A2(ε) influence lim
t→∞

rD(t), and

in particular lim
t→∞

rD(t) ≤ r∗min + ε for any ε > 0. But that means exactly that lim
t→∞

rD(t) ≤ r∗min,

as needed.

6.2 Aggregation of exponentials with specific parameter distributions

We first start with an underlying gamma distribution for the parameter of individual expo-

nential discount functions:

f(x) =
ab

Γ(b)
e−axxb−1,

where x ∈ (0,∞) denotes the discount rate parameter in a standard exponential, and a, b > 0.

Thus α(x) = x, d(t;x) = e−xt, and f(x) is as above. Then

Z ∞

0
α(x)d(t;x)f(x)dx =

ab

Γ(b)

Z ∞

0
xbe−(a+t)xdx =

ab

Γ(b)

Γ(b+ 1)

(a+ t)b+1
=

b

a

∙
a

a+ t

¸b+1
.

But

α =

Z ∞

0
α(x)f(x)dx =

ab

Γ(b)

Z ∞

0
xbe−axdx =

ab

Γ(b)

Γ(b+ 1)

ab+1
=

b

a
,

so dD(t) = [1 + t/a]−(1+b) as claimed. The speed follows from Theorem 3 with r = b/a and

s = 1− 1/b.

Next, in order to allow for a positive weight at 0, we consider the following as the underlying

distribution on the parameter:

f(x) =
a2

a+ b
e−ax(1 + bx).

We have α(x) = x and d(t;x) = e−xt as before, so
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Z ∞

0
α(x)d(t;x)f(x)dx =

a2

a+ b

Z ∞

0
xe−(a+t)x(1 + bx)dx

=
a2

a+ b

∙
1

(a+ t)2
+

2b

(a+ t)3

¸
=

a2

a+ b

∙
a+ 2b+ t

(a+ t)3

¸
and

α =

Z ∞

0
α(x)f(x)dx =

a2

a+ b

Z ∞

0
xe−ax(1 + bx)dx =

a2

a+ b

∙
1

a2
+
2b

a3

¸
=

a+ 2b

a(a+ b)
.

Thus

dD(t) =
a3

a+ 2b

∙
a+ 2b+ t

(a+ t)3

¸
=

µ
1 +

t

a+ 2b

¶ ∙
a

a+ t

¸3
=

∙
a

a+ 2b
(1 + t/a) +

µ
1− a

a+ 2b

¶¸ ∙
1

1 + t/a

¸3
=

a

a+ 2b

∙
1

1 + t/a

¸2
+

2b

a+ 2b

∙
1

1 + t/a

¸3
,

as claimed. Finally, the first of these weighted hyperbolics is [just barely] weakly convergent, with

r = 1/a and s = 0, so the overall procedure will have θ =∞ and ρ = 0.
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