
Electronic copy available at: http://ssrn.com/abstract=1785995

Incentives and Endogenous Risk Taking:

A Structural View on Hedge Fund Alphas

ANDREA BURASCHI, ROBERT KOSOWSKI and WORRAWAT SRITRAKUL�

ABSTRACT

This paper studies the link between optimal portfolio choice when the manager is subject to non-

linear performance incentives and ex-ante performance attribution measures. We study and com-

pare structural versus reduced form measures of alpha and Sharpe ratios and document the existence

of a signi�cant bias in traditional reduced-form measures. The empirical estimation of the structural

model allows us to use previously unexploited information about conditional second moments to

draw inference about genuine risk-adjusted performance. Intuitively, the structural approach allows

us to distinguish the e¤ect of endogenous risk taking and skill from past fund performance, thus

providing superior forecasts of hedge fund performance. We extend the work of Koijen (2010) on

mutual funds by explicitly modelling hedge fund speci�c contractual features such as (i) incentive

options, (ii) equity investor�s redemption options and (iii) primer broker contracts that together

create option-like payo¤s and a¤ect a hedge fund�s risk taking. The optimal investment strategy

derived from the model reveals that portfolio leverage depends on the distance to high-water mark.

The call option creates an incentive to increase leverage while the put option reduces this incen-

tive when distance to high-water mark is above a certain threshold. Out-of-sample, we show that

portfolios formed using structural measures outperform portfolios based on reduced-form measures.
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This paper studies the implications that non-linear managerial incentives and funding

contracts have on traditional reduced-form tests of performance attribution for hedge funds. We

solve the structural optimal portfolio choice problem of a hedge fund investor who is subject to (i)

performance fee-based incentives, (ii) funding options by the prime broker, and (iii) equity investor�s

redemption options, which together create a non-linear payo¤ structure that a¤ects endogenous

hedge funds�risk taking. The resulting optimal portfolio choice is state-dependent due to the time-

varying endogenous incentives perceived by the manager, depending on the distance of the assets

under management from the high-water mark. This implies that optimal leverage and reduced-form

alphas �uctuate over time. This is important since it implies that traditional performance regressions

with constant coe¢ cients are potentially mispeci�ed. The call option-like performance fee incentive

motivates the manager to use more leverage, while put option-like features (together with the concern

about the future value of the incentive options) induce the manager to reduce leverage, when her fund

underperforms below a given threshold. We use the results of the model to estimate, using a large

panel dataset of hedge fund returns, the di¤erence between reduced-form alpha and model-implied

true managerial skill, which corrects for endogenous risk taking. The empirical method allows us

to use previously unexploited information about endogenous risk preference to draw inference about

genuine risk-adjusted performance.

Although we use hedge funds in our empirical application, our results have a much broader

economic motivation. Separating the e¤ect of risk taking and skill, based on observed investment

performance, is a fundamental problem that not only a¤ects investors in alternative investment funds,

but also investors in (and regulators of) levered �nancial institutions such as investment banks which

employ incentive contracts. A Financial Times article in 2009 quotes a Bank of England o¢ cial as

saying that �The superior performance of the �nancial services sector in the years leading up to the

credit crisis was almost entirely due to luck rather than skill �and banks increasingly gambled on

luck in an e¤ort to keep up with their peers. [...]Good luck and good management need to be better

distinguished�.1 This quote illustrates not only the risk management challenges that policy makers

face but also the performance attribution problem that investors face. Using traditional tools it is

di¢ cult to distinguish performance that is due to true investment skill from that attributable to

excessive risk taking.

An extensive literature has investigated the return characteristics of hedge funds. The seminal

1�Bank pro�ts were due to �luck, not skill�, By Norma Cohen (July 1, 2009)
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papers of Fung and Hsieh (1997 and 2004) and Agarwal and Naik (2004) highlights the importance of

taking into account the ability of hedge fund to invest in derivatives and suggest empirical methods

to correct performance attribution measures by option strategies. These extensions are economically

and statistically important. A recurrent result, however, is that even after these corrections, reduced-

form (after-fees) alphas in hedge funds are large and positive (Fung and Hsieh, for instance, report a

monthly alpha of 0.78% for the TASS dataset). This evidence contrasts with the negative (after-fees)

reduced-form alphas obtained for other delegated managers such as mutual funds. The result could

be due to a mispeci�cation of the time-varying investment opportunity set. Patton and Ramadorai

(2011) allow for dynamic risk exposure using threshold conditioning information based on market-

wide economic conditions. They �nd that their dynamic approach succeeds in reproducing realized

hedge fund returns with substantial increased accuracy. However, they �nd that even after controlling

for time-varying macroeconomic beta the reduced-form alphas are similar in size to Fung and Hsieh

(2004).

In this paper, we argue that reduced-form alphas can be a¤ected by an endogeneity bias: fund

performance is the outcome of a portfolio management decision in which the incentive contracts of

the manager makes optimal leverage endogenous. Since hedge funds have substantial discretion in

selecting their leverage, this bias is potentially signi�cant. In a simple Merton-type economy, in which

the incentives of the manager are aligned to those of the investor, the optimal portfolio choice is time-

invariant. In this context traditional reduced-form alphas are both unbiased and e¢ cient. When the

manager faces non-linear incentives, however, the con�icts of interest between the manager, the prime

broker and the investor induce the manager to dynamically adjust the fund�s leverage depending on

the distance of the asset values from the fund�s high-water mark. The resulting estimator for alpha

is biased. Reduced-form estimates of alpha make it di¢ cult, therefore, to disentangle whether a

manager�s performance stems from his genuine skill or if it has just been the result of the interaction

of luck and excessive endogenous risk taking. The �rst advantage of our structural approach is to

explicitly take into account this endogeneity and address this potential bias. The second advantage

is in terms of the e¢ ciency of the estimator for skill measure. Our structural approach allows us

to use information in time-varying second moments, thus improving the statistical e¢ ciency of the

estimator of genuine skill. This is potentially important since reduced-form alphas are based on

relatively short samples of data and thus likely to be imprecisely estimated. We build on and extend

the pioneering work of Koijen (2010), who applies a structural approach to estimate skill and risk

preferences of mutual funds. Koijen (2010) suggests a novel approach to recover cross-sectional
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information of mutual fund manager�s managerial ability and risk preferences by using the Euler

condition of a mutual fund manager. He shows that the restrictions derived from structural portfolio

management models can be used to recover both attributes from the data. However, the application

of Koijen�s approach to hedge funds is not straightforward since incentive contracts that govern hedge

funds are signi�cantly more complex than those of mutual funds.

While both mutual funds and hedge funds are delegated managers, they di¤er in terms of most

other institutional dimensions: legal framework, capital structure, investment mandate and business

model. First, hedge funds�limited partnership structure allows for both asset segregation and liquid-

ity lock-ups imposed on investors, which facilitate prime brokerage contracts.2 The private nature of

their legal structure grants them the contractual �exibility in setting long-term lock-ups to investors,

whose legal rights are those of a (limited) partner, as opposed to a client. Second, investment advi-

sors that manage hedge funds typically receive an asset management fee and a performance fee. The

performance fee is typically subject to a high-water mark, which means that the manager receives

a compensation only on increases in the net asset value (NAV) of the fund in excess of the highest

net asset value it has previously achieved. The high-water mark provisions can be viewed as a call

option issued by the investors to the fund manager (Goetzmann, Ingersoll, and Ross (2003)). How-

ever, the funding role played by the prime-broker also makes the capital structure of hedge funds

potentially fragile: As the 2007-2008 experience shows, when counterparty risk becomes acute during

systemic events, prime brokers tend to increase hedge funds�collateral requirements and mandate

haircuts in response to higher perceived counterparty risk, thus inducing forced deleveraging of risky

positions. Dai and Sundaresan (2010) note that a hedge fund�s contractual relationships with its

equity investors and prime broker can be considered as short option positions. Therefore, these two

option-like features a¤ect the hedge fund�s balance sheet, both from the perspective of its assets and

its liabilities. Any structural model of hedge fund behavior must account for these features as they

a¤ect the objective function of the fund manager.

The �rst contribution of this paper is to account for contractual features such as (i) incentive

options, (ii) equity investor�s redemption options and (iii) prime broker contracts, which jointly

creates option-like payo¤s and to show how this a¤ect endogenous risk taking and generates a bias

in the reduced-form alpha. The solution to the optimal investment problem is a dynamic investment

2The prime broker plays an essential role in the capital structure of a hedge fund. By contrast, most mutual funds,
as Almazan et al. (2004) document, are restricted (by government regulations or investor contracts) with respect
to using leverage, holding private assets, trading OTC contracts or derivatives, and short-selling; see also Koski and
Ponti¤ (1999), Deli and Varma (2002) and Agarwal, Boyson, and Naik (2009).
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strategy in which optimal leverage is endogenous and depends on the distance of the NAV from

the high-water mark. The second contribution is to study the implications of the model to a large

sample of hedge funds and investigate the di¤erence between structural and reduced-form estimates

of alpha. We impose the structural restrictions implied by economic theory to estimate the deep

parameters of the model. These restrictions allow us to separately identify true skill by controlling for

endogenous risk appetite. We document the di¤erences between reduced-form regression estimates

of performance and the estimates based on the structural true skill and investigate the features

that contribute to the bias. We �nd strong direct evidence that leverage is endogenous and state

dependent. The functional form is not monotone in performance, but it is bell-shaped and centered

just below the high-water-mark. This is consistent with the model and with the fact that hedge funds

are both long a call options and short a put option. This creates a bound for the optimal endogenous

leverage: the agency contract with the prime broker and the redemption option of the investors

are e¤ective in limiting leverage when a fund�s value drops below the high-water mark. Finally,

we conduct a simple out-of-sample test and compare the performance of portfolios of hedge funds

constructed by ranking funds on the basis of di¤erent ex-ante performance measures, in particular:

(a) traditional reduced-form alpha, and (b) structural estimate of true skill that is insensitive to

endogenous risk taking. We �nd that true skill estimates lead to superior out-of-sample performance

and thus dominate reduced-form ones. This is interesting since it shows the practical importance of

controlling for managerial incentives and endogenous risk taking and provides a useful methodology

that can be used by funds of hedge funds.

1 Literature review

Our work is related to three streams of the literature. First, we build on the work of Carpenter (2000)

who examines the dynamic investment problem of a risk averse manager compensated with a call

option on the assets he controls. She shows that under the manager�s optimal policy, as the asset

value goes to zero, volatility goes to in�nity. However, the option compensation does not strictly lead

to greater risk seeking: sometimes, the manager�s optimal volatility is lower with the option than it

would be if she were trading her own account, that is without the option. While the importance of

convex incentives for the optimal risk-taking behavior of a hedge fund manager has been long noted,

its implications are not trivial. Initially, one might think that the option-like character of hedge

funds�performance fee contracts could induce the manager to assume extremely risky positions in

the hope of huge payo¤s, especially as the manager does not share directly any loss of the fund�s
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assets. However, this does not necessarily hold in the case of performance fee incentives with high-

water mark features. Ross (2004) presents necessary and su¢ cient conditions for a general class of

compensation structures and preferences to make a manager more or less risk averse. Panageas and

Wester�eld (2009) extend the work of Carpenter (2000) to account for high-water mark restrictions

and show that while risk-taking may be increasing in the convexity of incentives in the context of a

static two period model, in an intertemporal model this may no longer be the case. Since any loss

of fund assets reduces the value of the anticipated sequence of future call options, higher risk taking

today increases the risk of losing future options. This is due to the fact that the current high-water

mark remains as the e¤ective strike price: all later call options must have strike prices higher than the

current high-water mark. The authors show that even risk-neutral managers do not take unbounded

risk, despite convex payo¤s, when the contract horizon is in(de)�nite, thus reversing some of the

results obtained in static two period models. Hodder and Jackwerth (2007) investigate the incentive

e¤ects of a typical hedge-fund contract as a function of the incentive horizon. They �nd that the risk

shifting behavior of the manager can be highly non-linear and they observe that small changes in

the compensation structure can have important implications for risk-taking. Continuous instead of

discrete resetting of the high-water mark, for example, can have a dramatic impact on optimal risk-

taking by the manager. They also show that the possibility that the fund can be shut down in case

of poor performance has signi�cant implications for the manager�s risk shifting behavior. Another

important contribution in this literature is by Guasoni and Obloj (2011) who study the case of a

manager with constant relative risk aversion who maximizes the utility from fees over a long horizon.

Basak, Pavlova, and Shapiro (2007) study the implications of a non-linear relationship between

mutual fund �ows and performance on the manager�s risk taking behavior. Even though the mutual

fund fee structure is linear in assets under management, the incentive to attract more funds creates

convexities in the manager�s objective function which leads to risk-shifting. In this paper, we build

on these earlier papers and further develop the analysis of optimal risk taking by considering not only

the payo¤ convexity related to the performance fee structure, but also the capital structure fragility

induced by the possibility of investors withdrawing capital and prime-brokers forcing deleveraging.

In general, this additional ingredient does not allow for closed-form solutions. However, by restricting

the incentive contract to a two-period problem we can obtain an expression which is in closed-form

up to the solution of a di¤erential equation. This allows us to implement a maximum likelihood

estimation of the model, which we use to study empirically the di¤erence between reduced-form and

structural alphas. An important di¤erence with the previous literature is that the optimal portfolio
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choice is not constant, but it is state dependent and it is a function of the distance to high-water

mark. The interaction of capital structure fragility and high-water mark restrictions gives rise to

important non-linearities in the endogenous risk-taking behavior.

A second stream of the literature, studies the role of incentive arrangement and discretion in

hedge fund performance. Agarwal, Daniel, and Naik (2009) conclude that the level of managerial

incentives a¤ects hedge fund returns. In particular, funds with better managerial incentives (such as

higher option deltas, greater managerial ownership and the presence of high-water mark provision)

delivers better performance. Aragon and Nanda (2012) empirically analyze risk shifting by poorly

performing hedge funds and test predictions on the extent to which risk choices are related to

the fund�s incentive contract, risk of fund closure and dissemination of performance information.

Both papers compute measures of risk-adjusted performance using reduced-form regressions. In our

paper, we investigate how convex incentives a¤ect endogenous risk taking behavior in the context

of a structural model. We document how the bias varies across di¤erent fund strategies. Then,

we document the value of explicitly accounting for these agency e¤ects by studying the ex-post

performance of funds selected based on their high reduced-form alpha versus structural alpha. We �nd

that selecting funds based on structural measures of skill leads to superior out-of-sample performance.

Third, several studies shed light on the fragility of the capital structure of levered �nancial

institutions, such as hedge funds (Dai and Sundaresan (2010), Liu and Mello (2011) and Brunnermeier

and Pedersen (2009)). We build on their insights and incorporate some of these features into our

structural model.

These results are useful to hedge fund investors and regulators. It can provide investors with a

framework to better assess hedge fund performance and the endogenous e¤ects of their underlying

contractual relationship. It can assist regulators in accounting for the e¤ects of agency contracts in

an attempt to limit a manager�s excessive risk taking behavior while providing them the �exibility

to deploy their managerial abilities.

The paper is structured as follows. In Section 2 we develop a structural model of the hedge fund

manager�s objective function. Section 3 presents the estimation methodology. Section 4 describes

the data that we use in this study. Section 5 and 6 presents empirical results for the application of

the structural model to hedge fund returns. Section 7 concludes.
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2 Structural Model and Manager�s Investment Problem

In this section we describe our structural model by �rst de�ning the investment opportunity set of

a hedge fund manager. Then we provide the optimal investment solution of the manager�s portfolio

problem. According to the optimal portfolio solution we derive restrictions on traditional �̂OLS

, �̂OLS , �̂";OLS which are estimated from reduced-form regression. Finally we study the model

implications for reduced form performance and compare them to �true�managerial ability.

2.1 Trading technology

We assume that the hedge fund manager can trade in a money market account with a constant

interest rate r:

dS0t = S
0
t rdt: (1)

She can also invest in a strategy-speci�c benchmark asset which follows

dSBt = S
B
t (r + �B�B)dt+ S

B
t �BdZ

B
t : (2)

The �rst two assets are commonly available to all managers within the same investment style. How-

ever, individual fund managers di¤er in terms of their pure alpha generating asset, which is assumed

to be fund speci�c.3 We interpret the asset as an unleveraged return generating process which is

orthogonal to the strategy-wide exposure, SBt : The pure alpha investment technology can be sum-

marized by a process SAt which follows

dSAt = S
A
t (r + �

�)dt+ SAt �AdZ
A
t , with E(dZAt dZ

B
t ) = 0: (3)

This asset is fund speci�c. The larger ��, the better the true alpha generating skill. Since one can

write �� � �A�A, therefore �A can also be interpreted as the Sharpe ratio of the alpha generating

asset.

3To keep notation to a minimum, in this section we avoid specifying that (a) the return processes as a style�j
dependent, with dSj;Bt = Sj;Bt (r + �jB�

j
B)dt +S

j;B
t �jBdZ

j;B
t for j = 1; ::J and (b) the alpha-technology is fund�i

speci�c within style j, with dSij;At = Sij;At (r + �ijB)dt +S
ij;A
t �ijBdZ

ij;A
t for i = 1; ::I. These consideration will become

relevant in the empirical section.
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2.2 Manager�s Investment Problem

The hedge fund manager decides the proportion of her fund�s wealth, �t, to invest in the investment

opportunity set. Thus, the fund asset value evolves as:

dXt = Xt(r + �
0
t�)dt+Xt�

0
t�dZt (4)

where � � (�A�A; �B�B)0; �A � (�A; 0)0; �B � (0; �B)0;� � (�A; �B) and Zt = (ZAt ; ZBt )0

The manager�s investment problem is to decide on an optimal trading strategy, �t; to maximize

the following objective function

max
(�s)s2[0;T ]

E0[U(p(XT �HWM)+ +mXT � c(K �XT )+)] (5)

subject to the budget constraint (4) and the restrictions that 0 � Xt, 8t 2 [0; T ] and K � HWM .

The parameter p denotes performance fee, m denotes management fee and c denotes the level of

concern regarding the short put option positions (the funding and redemption options). In general,

the high-water mark level is de�ned as HWMt = maxs�tXs. This implies that future high-water

mark values are a¤ected by managerial decisions, so that the manager faces a sequence of call

options that depend on past actions. Examples of studies that explicitly account for this e¤ect

include Panageas and Wester�eld (2009) and Guasoni and Obloj (2011). Using di¤erent settings,

they discuss how the risk-seeking incentives of option-type compensation contracts a¤ect an in�nite

horizon investor. In their contexts, the optimal portfolio solution can be derived in closed-form: the

optimal portfolio weights are constant and independent of the distance between fund value, Xt, and

the high-water mark, HWM .

In this paper, we are interested in studying the implications of the �nite horizon problem since

in this case the risk-shifting behavior can become state dependent. On the one hand, to retain

tractability, we make the simplifying assumption that the high-water mark HWM is �xed and pre-

speci�ed at the beginning of the contracts�evaluation period. On the other hand, we allow for the

hedge fund manager to derive her utility from three components. The �rst two components, the

management and performance fee, are common in most hedge fund compensation contracts. The

�rst component is a claim to a fraction p of a call option-like payo¤ with the fund�s high-water mark

as its strike price. The level of the high-water mark is the running maximum process of the fund�s

historical net asset value and is known at the beginning of every evaluation periods. The second
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component is a linear claim on fund value at the end of the evaluation period. The management fee

constitutes a fraction m of the fund value. The last component is intended to capture the nature

of the relationship of the hedge fund with its prime broker. Typically, a hedge fund�s contract

with its prime broker gives the prime broker the right to reduce the supply of funding or to increase

margin calls in adverse economic states or when the counterparty risk of the hedge fund is considered

dangerously high. According to Dai and Sundaresan (2010), the relationship between a hedge fund

and its prime broker can be thought as a short put option position. We use the parameter c to

capture the deadweight costs induced by the forced deleveraging imposed by the prime broker. A

similar situation is also induced by the contractual arrangement of the hedge fund with its investors,

which gives investors the option to redeem their shares upon request. Hodder and Jackwerth (2007)

study a scenario that allows for the possibility of an endogenous fund closure decision by the hedge

fund manager and they solve the problem numerically.4 In contrast, we focus on the implication of

options embedded in the capital structure of a hedge fund. The options are put options given to

investors and prime brokers of the hedge fund. As a result, the manager does not have control over

the exercise of the options. Jurek and Sta¤ord (2011) �nd supporting evidence that the risk pro�le

of hedge funds resembles that of a short index put option strategy during negative systematic shocks.

2.3 Model�s solution

If markets are complete, one can use the martingale approach developed in Cox and Huang (1989)

to solve the optimal investment problem. This allows us to solve an easier static problem, instead

of solving the dynamic investment problem. Let 't be the state price process, which follows the

process:
d't
't

= �rdt� �0dZt; (6)

where � � (�A; �B)
0. When markets are complete, there exists a unique non-negative state price

process 't such that the solution of the optimal investment problem is such that:

XT = argmaxE0[U(p(XT �HWM)+ +mXT � c(K �XT )+)]; (7)

subject to

E0['TXT ] = X0 (8)

4The shutdown decision represents an option given to the manager to liquidate her fund and accept outside work
opportunities or to continue managing the fund when the fund performs poorly.
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and 0 � XT : The utility function is de�ned as

U(XT ;HWM;K; p;m; c) =

8>>>>><>>>>>:
U(p(XT �HWM) +mXT )

U(mXT )

U(mXT � c(K �XT ))

for XT > HWM

for K < XT � HWM

for b < XT � K

; (9)

we make the technical assumption that U(XT ) = �1 for XT � b; where b is the fund value at

which the hedge fund manager would otherwise begin to receive negative utility. This is illustrated

in Figure 1 and the utility function is of the following CRRA form: U(W ) = W 1�


1�
 .

[Insert Figure 1 here]

Notice that because of the non-linear managerial incentives, the objective function U(XT ; HWM ,

K; p; m; c) is not globally concave in XT : It is rational for the manager, therefore, to randomize

her investment strategies to achieve higher expected returns. To solve the problem, we use the

concavi�cation techniques discussed and used in Carpenter (2000) and Basak, Pavlova, and Shapiro

(2007).

Condition 1 bXHWM and bXK exist and satisfy the following conditions

1. bXHWM > HWM and bXK < K
2. U 0(p( bXHWM �HWM) +m bXHWM ) = U 0(m bXK � c(K � bXK))
3. U(p( bXHWM�HWM)+m bXHWM ) = U(m bXK�c(K� bXK))+U 0(m bXK�c(K� bXK))( bXHWM�bXK)
4. U(p(XT �HWM)+mXT ) � U(m bXK�c(K� bXK))+U 0(m bXK�c(K� bXK))(XT � bXK) :
8XT 2 [HWM; bXHWM ]

Under Condition 1, the concavi�cation ensures the continuity of the manager�s objective function

at the concavi�cation points. Figure 2 displays the concavi�ed objective function under Condition 1.

In this �gure, the original terminal utility function between bXK and bXHWM is dominated ex-ante by

the convex combination illustrated by the dotted line, which can be interpreted as a randomization

of the initial investment strategies.
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In general Condition 1 is satis�ed when risk aversion, 
, is low. However, if Condition 1 is

violated, one of the concavi�cation points has to occur at bXK = K, so that the problem admits a

closed form solution for high levels of risk aversion, 
. This causes a discontinuity of the concavi�ed

objective function which results in a corner solution (Basak, Pavlova, and Shapiro (2007)). The

solution to this case is similar to Proposition 1 but with a constraint bXK = K: Basak, Pavlova, and
Shapiro (2007) argue that it is possible to adapt the martingale representation and convex-duality

techniques to the non-concave problem.

[Insert Figure 2 here]

Therefore, the concavi�ed objective function reads:

eU(XT ;HWM;K;�;m; c) =
8>>>>><>>>>>:

U(p(XT �HWM) +mXT )

U(m bXK � c(K � bXK)) + �(XT � bXK)
U(mXT � c(K �XT ))

for XT > bXHWM

for bXK < XT � bXHWM

for b < XT � bXK
;

(10)

where � = U(p( bXHWM�HWM)+m bXHWM )�U(m bXK�c(K� bXK))bXHWM� bXK
We then solve the problem of a hedge fund manager described in function (7) with the concavi�ed

objective function (10). In terms of the new objective function, the manager solves max
XT

E0[eU(XT ;
HWM; K; �; m; c)] subject to E0['TXT ] = X0. The �rst-order conditions of the optimization

problem require, �rstly, that the manager�s marginal utility is proportional to the level of the state

price at the terminal time and, secondly, that the budget constraint is satis�ed. These conditions

uniquely determine the optimal terminal fund value X�
T � I(�'T ); where � is the Lagrange multiplier

corresponding to the static constraint, I � (eU 0)�1. Then the stochastic process of the optimal fund
value can be determined by X�

t = Et(
'T
't
X�
T ): Using Ito�s lemma, we can derive the dynamics of dX

�
t

and compare the coe¢ cients of its di¤usion term to equation (4) to obtain the optimal allocation

��t . The result is summarized in Proposition 1. We simplify the derivation of Et(
'T
't
X�
T ) by mapping

optimal terminal fund values to terminal state prices as in Carpenter (2000). Appendix A shows the

derivation in details.

Proposition 1 Under Condition 1, the optimal allocation of a hedge fund manager facing non-linear
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incentives is given by

��t = �
@X�(t; 't)

@'t

't
X�
t

(��0)�1�� (11)

where

@X�(t; 't)

@'
= � ��1=
Gt

'
1+




t (p+m)1�1=


 
N(dzHWM

2;t )



+
N 0(dzHWM
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where: dzi1;t �
ln(zi='t)+(r�0:5�0�)(T�t)

k�k
p
T�t , dzi2;t � dzi1;t +

k�k
p
T�t

 , Ct � exp(ln('t) � r(T � t)), Dt �

exp(1�

 ln('t)� 1�


 (r+0:5�

0�)(T�t)+0:5
�
1�




�2
k�k2 (T�t)), Gt � exp(�1�



 (r+0:5�
0�)(T�t)+

0:5
�
1�




�2
k�k2 (T � t)), Ht � exp(�r(T � t)) and N(x) denotes the cumulative Normal distribution

function. The characterization for X�
t is made explicit in Appendix A.

Although the optimal allocation described in equation (11) might look complex, it can be rewrit-

ten as

��t =
(��0)�1��e
t (14)

where e
t can be interpreted as the e¤ective risk aversion. The key result of Proposition 1 is that e
t
is endogenous and state-dependent: e
t(
; �;Xt;HWM;K; p;m; c) � �@X�(t;'t)

@'t

't
X�
t
. Equation (14)

reveals that, even if the investment opportunity set were constant (as in Merton), agency contracts

make the optimal allocation state dependent. The optimal allocation is not only driven by the

characteristics of the investment opportunity set and the speci�c risk aversion of the hedge fund

manager, but also by the contractual parameters such as fee rates (p, m and c), the distance of fund

value from HWM , the existence of short put option-like positions and its perceived strike value K.

Figure 3 displays the results implied by (14). When fund value exceeds the high-water mark

level, the manager allocates a lower amount of her funds to the risky asset than would be implied by

Merton (1969)5 benchmark solution. When her call option starts being in the money, the manager

has an incentive to reduce leverage, thus reducing her fund volatility, to lock-in her performance

5The Merton (1969) constant allocation is �

�2
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fee. However, the results suggest that the manager begins to increase her leverage with respect

to Merton�s allocation when her fund value is considerably higher than the high-water mark. The

results in this region are similar to the analytical result of the problem studied in Carpenter (2000)

as well as the numerical solution to the problem in Hodder and Jackwerth (2007). However, our

result implies di¤erent dynamics when the fund value is less than the high-water mark. Unlike the

manager who is maximizing only performance fees (Figure 4, dashed line), the fund manager in our

set up doesn�t monotonically increase her allocation to the risky asset as fund value decreases, but

instead reduces her leverage as fund value decreases toward the put�s option strike. The presence

of put options induces the manager to reduce leverage quite aggressively. The optimal leverage can

fall below what is implied by the Merton benchmark solution (Figure 4, solid line) and the manager

continues reducing leverage until a level at which the manager is about to receive negative utility.

The manager then increases leverage again when fund value falls below that point.6

[Insert Figure 3 and 4 here]

Thus, a simple calibration of the model shows that the economic magnitude of the di¤erence

in endogenous leverage induced by realistic parameters for the agency contracts can be signi�cant.

The empirical implications of these e¤ects and their role in performance attribution measures are

the questions that we study next.

2.4 Model�s Implied Restrictions and Bias in Reduced-Form Regression Alpha

The closed-form solution in equation (11) is reminiscent of the classical Merton (1969) optimal port-

folio choice solution. It depends, however, on the fund speci�c structural parameters that describe

the agency contracts and the realization of the state variable, the distance between net-asset-value

and high-water mark. We use this solution to derive explicit restrictions and study the link between

the parameters obtained from a standard reduced form regression and the structural parameters in

the same way as in Koijen (2010). Consider the reduced form regression with constant coe¢ cients,

where we regress fund performance on the benchmark excess return:

dXt
Xt

� rdt = �̂OLSdt+ �̂OLS(
dSBt
SBt

� rdt) + �̂";OLSdZAt : (15)

6This is similar to the numerical results shown in Hodder and Jackwerth (2007)
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If we substitute the return process of the benchmark, the standard reduced form regression becomes:

dXt
Xt

= (r + �̂OLS + �̂OLS�B�B)dt+ �̂OLS�BdZ
B
t + �̂";OLSdZ

A
t : (16)

where �̂OLS denotes reduced-form alpha, �̂OLS denotes reduced-form beta and �̂";OLS is the standard

deviation. According to the fund value process (4) and its optimal investment (14), the optimal fund

value evolves according to:

dX�
t

X�
t

= (r +
��2e
t�2A + �

2
Be
t )dt+ �Be
t dZBt + ��e
t�AdZAt : (17)

Let �B;t and �A;t be the portfolio allocations to the investment opportunities described in (2) and

(3). By matching the drift and di¤usion terms, the cross restrictions implied by the structural model

are:

�̂OLS = �
�
At�

� =
��2e
t�2A = �2Ae
t (18)

�̂OLS = �
�
Bt =

�Be
t�B ; (19)

�̂OLS;" = �
�
At�A =

��e
t�A = �Ae
t (20)

Restriction (18) provides a link between traditional reduced-form alpha, �̂OLS , and true alpha,

��. The link reveals that typical reduced-form alpha, �̂OLS , is proportional to true alpha, ��, in a

non-linear way. The non-linear relationship arises from the state-dependent allocation, ��At, which is

endogenously determined by the incentives perceived by the manager. A question which naturally

arises from this restriction is how well the reduced-form alpha measures true managerial skill of a

hedge fund manager. The answer depends on the determinants of the optimal allocation made by

the manager. If the optimal allocation is constant and determined exclusively by the risk and return

characteristics of the investment opportunity set (as in a traditional Merton model without agency

distortions), then reduced-from alpha is an unbiased estimate of managerial skill. However, if the

optimal allocation is in�uenced by non-linear agency contracts, then reduced-form alpha is a biased

inference of true skill. For instance, a high reduced-form alpha can be the fortunate result of the

excessive use of leverage when the managers aim to maximize their incentive options. Obviously,

high leverage not only increases expected return to the manager (because of the call option) but it

also increases the probability of large negative returns.
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These non linearity in the incentives have important implications for reduced-form alphas. We

document some preliminary evidence of this e¤ect in Figure 5. If one focuses on the cross-sectional

dispersion of OLS alphas, it is possible to see that these reach their highest dispersion around the

high-water mark. In this case OLS alphas range from range -15% to +20%. The cross-section

dispersion of OLS alphas are much smaller for fund values well below the high-water mark (they

range between -0.5% and 5%). In this case, it is optimal for the managers decrease leverage. This

can be explained by managers�concern about the impact of their actions on the value of funding

and redemption options. The manager reduces the volatility of the portfolio to prevent investors and

prime brokers from exercising their redemption and funding options. This structural e¤ect is missed

by OLS alphas.

[Insert Figure 5 here]

The restriction (18) also reveals that reduced-form alpha varies over time, since e¤ective (en-

dogenous) risk aversion, e
t, is state dependent. This implies that reduced-form speci�cations with

constant coe¢ cients are potentially mispeci�ed and motivates the use of a structural approach that

uses fund-speci�c information to help identify e
t. To better illustrate the state-dependent nature of
reduced-form alpha (i.e. the link between fund�s value in relation to its high-water mark), we plot

the model-implied reduced form alpha, �OLS , and true managerial skill, ��, against di¤erent fund

values.

[Insert Figure 6 here]

Figure 6 illustrates that typical reduced-form alpha, �̂OLS ; signi�cantly overestimates true active

managerial skill, �� when the fund value is about 20% below the high-water mark. In contrast, the

standard reduced-form alpha, �̂OLS ; underestimates true active managerial skill, ��, in the region

where the fund value is about 50% below the put option�s strike price, K, and fund value is about

18% above high-water mark. The standard reduced-form alpha, �̂OLS ; overestimates true alpha

when the short option positions are deep out-of-the-money. In the region where fund value is far

above high-water mark, the call option is deep in-the-money and the bias is reduced. In general,

the bias is very signi�cant exactly when a hedge fund�s assets under management spend signi�cant

time close to the high-water mark, which is the most common situation. This shows the importance

of adopting a methodology that explicitly takes into account the endogenous e¤ects generated by

non-linear incentive contracts.

15



3 Estimation Methodology

When estimating a manager�s true alpha per unit of her investment technology�s volatility, one notices

that fund performance (17) is driven by ��

�A
rather than each of the two parameters separately; for

this reason, we proceed by estimating the ratio, �A, and use it as our primitive measure of true skill

(i.e. the Sharpe Ratio of the manager�s alpha technology which is insensitive to endogenous risk-

taking arising from the agency contracts). Next, we estimate true managerial skill using a structural

approach and compare it to reduced-form values. First, we investigate the results in the context of

a simulated economy, then we apply the methodology to a very comprehensive panel data of hedge

funds.

3.1 Structural Estimation

The structural estimation procedure is articulated in two-steps. First we estimate the set of a

benchmark asset parameters �̂B � f�̂B; �̂Bg. Then, since the fund�s conditional return generating

process satis�es
dX�

t

X�
t

= (r +
��2e
t�2A + 1e
t �̂2B)dt+ 1e
t �̂BdZBt + ��e
t�AdZAt , (21)

we proceed to estimate the Sharpe Ratio of the manager�s investment technology, �A, where �A � ��

�A
,

and use this as our proxy for the manager�s true managerial skill. Assuming that asset prices are log-

normal, we estimate the structural parameters by maximizing log-likelihood, as argmax
T=hP
t=h

`(rXt j

rBt ;�A; �̂B): Under the assumption of log-normality, the joint dynamics of benchmark and asset

returns can be written in discrete time as

rBt = (�r + �̂B�̂B �
1

2
�̂2B)h+ �̂B�Z

B
t , (22)

rXt = (�r +
�̂
2

Be
t + �
2
Ae
t � 12 �̂

2

Be
2t � 12 �
2
Ae
2t )h+ �̂Be
t dZBt + �Ae
t �ZAt , (23)

where
�
4ZBt
4ZAt

�
� N(0; hI). Thus, the distribution of rAt satis�es :

rAt j rBt � N(�t; �2t ); (24)

where

�t � (�r +
�̂
2

Be
t + �
2
Ae
t � 12 �̂

2

Be
2t � 12 �
2
Ae
2t )h+ �̂Be
t�̂B (rBt � (�r + �̂B�̂B � 12 �̂2B)h); (25)
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�2t =
�2Ae
2t h: (26)

Since we know the solution of e
t(
; �;Xt;HWM;K; p;m; c) in closed-form (see Proposition 1), we

not only use fund returns when drawing inference about true managerial skill but also fund speci�c

information about their current high-water mark and their contractual arrangements. Applying the

above estimation approach to a large hedge fund data set is very computationally intensive due to

the complex functional form of e
t. The reason is that one needs to calculate the Lagrange multiplier
��; which is not available in closed-form. Moreover, �� is also a function of a key parameter we aim

to estimate, �A. As a result, the econometrician faces numerical iterations for solving �� inside the

maximizing log-likelihood iteration, which in turn signi�cantly slows the estimation process.

We address this numerical issue using a two steps procedure. First, we solve for the exact

functional form of e
t as a function of the structural parameters and the state variables, i.e. �f �
fXt=HWMt; �; 
g. The volatility parameters are held �xed at their sample values. We use semi-

parametric methods to estimate the exponential polynomial function that minimizes the distance to

the exact functional form 1e
t :

1e
t = a



+
b � e(�(c�

Xt
HWMt

�d)2=h2)

Xt
HWMt

� � � 

+
e
(�(g Xt

HWMt
)2)

Xt
HWMt

� � � k
(27)

Figure 7 displays the exact functional form 1e
t . It is noticeable that the functional form is relatively

simple and almost Gaussian in the region between the put and call strike prices. We �nd that a

second order exponential polynomial provides su¢ cient accuracy and is able to capture the functional

dependence of 1e
t with respect to the variables of interest. Figure 8 shows the behavior of the

estimated function (27).

[Insert Figure 7 and Figure 8 here]

3.2 Reduced-Form and Structural Estimation in a Simulated Economy

To investigate both the precision of the estimation method and the di¤erences between the reduced-

form alpha, �OLS ; estimated from OLS regression with constant coe¢ cients and the one implied from

the theoretical restriction, �t;OLS = �2A=e
t, which varies over time, we simulate the economy and
compute the model implied estimates. First, the innovation terms 4ZAt and 4ZBt are independently
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simulated 2,500 times. Each simulation is then used to calculate 36 monthly returns. The simulated

value of 4ZBt is used to calculate rBt according to equation (22). We calibrate the parameters to the

following values: r = 0:05; �B = 0:05, �B = 0:2 and 
 = 5. Similarly, rXt is calculated according to

equation (23) where the true skill per unit of volatility, �
�

�A
, is assumed to be �A 2 f0:5; 1; 1:5g and

�A = 0:05. The variable �A is then estimated by means of maximum likelihood and then compared

to the true values. Finally, we compute e
t by using the estimation of true skill, b�A; and information
about current fund values, Xt, and its high-water marks, HWMt. The current high-water mark is

de�ned as HWMt = maxs�tXs and updated on an annual basis. We assume an initial investment

of one dollar.

The distribution of the estimated parameters implied by the structural model are summarized in

(24). Table 1 reports the estimation results. Panel A displays the mean and standard deviation (in

parentheses) of the 2,500 reduced-formed alpha estimates, b�OLS ; computed from OLS regressions.

Panel B shows the mean and standard deviation (in parentheses) of the structural skill and alpha

estimates, b�A and b�t;OLS respectively, implied from the structural restriction (20).

[Insert Table 1 here]

As Table 1 Panel B shows, structural estimation accurately recovers the true value of �A: the

means of the estimates are close to their corresponding true values and their standard deviations are

low. This shows that the estimation methodology performs well even when using discretely sampled

(monthly) data. The structural estimation of alpha in the last column of Panel B also con�rms

that alpha is time varying, despite a constant investment opportunity set, �A. The time varying

component is caused by a hedge fund manager�s time varying e¤ective risk aversion, e
t. This occurs
even if the hedge fund manager utility function has constant 
: the agency incentives perceived by

the manager endogenously cause the indirect risk aversion to changes over time.

The second result relates to the e¢ ciency of the estimators. The structural estimator of alpha,b�t;OLS , has a lower standard deviation than the reduced-form estimator of alpha, b�OLS , in �nite
samples. The result is robust to di¤erent levels of true skill as the standard deviations of cross-

sectional estimates suggests. For instance, the standard deviation of b�OLS is 18.20 when �A is 1.5,
while the standard deviation of the mean of b�t;OLS is 9.28. The reason for the improved e¢ ciency
is that the structural estimator of alpha uses additional information about skill based on the second

moments of fund returns, (20).
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4 Data and Benchmark assets

We analyze the performance of hedge funds using monthly net-of-fee returns of live and dead hedge

funds reported in BarclayHedge database from January 1994 until December 2010.

There are several reasons why we use the BarclayHedge database for our analysis. A recent

comprehensive study of the main commercial hedge fund databases by Joenvaara, Kosowski, and

Tolonen (2012), abbreviated JKT (2012)) compares �ve databases (the BarclayHedge, TASS, HFR,

Eurekahedge and Morningstar databases) and �nds that Barclayhedge has the largest number of

funds (9719), compared to 8220 funds in the TASS database. Moreover, BarclayHedge has the highest

percentage of dead/defunct funds (65 percent), thus making it least likely to su¤er from survivorship

bias. The BarclayHedge database accounts for the largest contribution to the aggregate database that

JKT(2012) create. The authors also note that BarclayHedge is superior in the terms of AuM coverage,

since it has the longest AuM time-series (57 percent) suggesting di¤erent behavior when aggregate

returns are calculated on a value-weighted basis. The amount of missing AuM observations varies

signi�cantly across data vendors, being lowest for BarclayHedge (11 percent) and HFR (19%) and

signi�cantly higher for EurekaHedge (37%), TASS (34%), and Morningstar (32%). JKT (2012) do

�nd, however, that economic inferences based on the Barclayhedge and TASS databases are similar in

a number of dimensions. For instance, BarclayHedge, HFR and TASS show economically signi�cant

performance persistence for the equal-weighted portfolios at semi-annual horizons, whereas using

EurekaHedge and Morningstar databases they �nd limited evidence of performance persistence.

A key distinguishing feature of this database is its detailed cross-sectional information on hedge

fund characteristics. Importantly, the database also includes monthly assets under management as

well as information about fund�s high-water mark provisions, which are key determinants of manager�s

incentives, performance and risk. Our initial fund universe contains more than 16,000 live and dead

funds. To ensure that we have a su¢ cient number of observations to precisely estimate our model

we exclude hedge funds with less than 36 monthly return observations.7 These restrictions lead to a

sample of 4,828 hedge funds.

We group funds into 11 categories according to their investment objectives: CTA, Convertible

Arbitrage, Emerging Markets, Equity Long/Short, Equity Market Neutral, Equity Short Bias, Event

Driven, Fixed Income Arbitrage, Global Macro, Multi Strategies and Others. Table 2 displays

7 In unreported results we show that our results do not qualitatively change when we exclude funds with less than
24 monthly observations.
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summary statistics for the sample of funds including medians as well as the �rst and third quartile

of the �rst four moments of the funds�excess returns. The average excess return across all funds

is 6.38 percent per year. Emerging Markets funds and Equity Short Bias funds exhibit the highest

volatility while having the highest and the lowest average return, respectively.

[Insert Table 2 here]

We also collect hedge fund investment style index benchmark returns compiled by Dow Jones

Credit Suisse and use them as hedge fund benchmark returns in our estimation. According to our

assumption about the investment opportunity set, although we assume that all hedge fund managers

within the same investment style di¤er in terms of their alpha generating asset, SA; they invest in

the same strategy speci�c asset, SB: Since the strategy-speci�c benchmark assets are unobservable,

we proxy SB by using the style index returns, adjusting for any potential alpha with respect to seven

Fung and Hsieh factors. The strategy-speci�c proxy can be seen as a portfolio of basis assets in the

investment opportunity set of hedge funds in the same investment style. Thus, �rst we regress each

style index�returns on the seven Fung and Hsieh factors including an intercept. Then we use only

statistically signi�cant betas from the regression to compute our proxy for the benchmark asset SBt .

Table 3 reports summary statistics for hedge fund investment style index returns as well as

their maximum drawdowns. The Equity Short Bias index has the largest drawdown among all the

benchmarks while the Event Driven index exhibits the lowest maximum drawdown. The Equity

Market Neutral index exhibits extreme values for higher order moments because of a big loss in

November 2008 when this strategy lost about 40% in a single month.

[Insert Table 3 here]

Table 4 reports the regression results of style index returns on the seven Fung and Hsieh factors by

investment objectives. One can notice the large positive Fung-Hsieh reduced-fom alphas discussed

in the Introduction. These are 4:33 (Global Macro), 4.34 percent (Equity Long/Short), and 4.11

percent (Event Driven). Equity Short Bias exhibits the lowest Fung and Hsieh alpha. Table 5

reports summary statistics of the proxies we use for the benchmark asset returns for each investment

objective.

[Insert Table 4 and 5 here]
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5 In sample Analysis

5.1 Evidence of Risk Shifting

What is the extent to which one observes direct evidence of hedge funds�risk-shifting in the data?

The model predicts a bell-shape link between (endogenous) leverage and distance from high-water

mark (Figure 3). We address this question by investigating, for each hedge fund, the relationship

between current distance to high-water mark, de�ned as (Xt�HWMt)=HWMt; and the subsequent

change in 12-month realized volatility. We sample the data at a monthly frequency and produce

scatter plots controlling for investment objective (see Figure 9-10). The �gures exhibit a bell shape

distribution which is consistent with the risk shifting pro�le suggested in Figure 3.

[Insert Figure 9 to 10 here]

Despite the resemblance to Figure 3, however, Figures 9 and 10 do not unambiguously provide

evidence of risk shifting since most observations are concentrated in the middle of each plot. It is

possible that these observations are generated by funds which on average have relatively high constant

realized volatility regardless of the current distance to high-water mark and the fund asset values

happen to be near their high-water marks. These funds seem to provide limited information about

risk shifting as a function of their distance to high-water mark. In order to control for this potential

source of ambiguity, therefore, we condition on those funds that have experienced large negative

or positive distance to high-water mark at some stage in the overall sample. We set the deviation

threshold for inclusion to be 15 percent below or above their high-water mark. Then, we recalculate

scatter plots for the relative change in realized volatilities as a function of funds�current distance

to their high-water mark. We de�ne the relative change in realized volatility as the ratio between

subsequent and prior 12-month realized volatility. Finally, we use non-parametric kernel �tting to

visualize the risk shifting. Figure 11 and 12 displays the results for Fixed Income Arbitrage and Event

Driven funds (the results for other investment objective are similar). The evidence of risk shifting

near the high-water mark is striking. Moreover, the �gures are consistent with the interpretation

that the fund managers do not only consider the call option component of her incentive contract

but also the put option component. If only the call option component were active, the link between

the increase in volatility and distance to high-water mark would be monotone and decreasing (see

Carpenter (2000). Finally, the results are consistent with fund managers having �nite investment

horizons. Otherwise, the �tted line should be �at as suggested by Panageas and Wester�eld (2009)
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and Guasoni and Obloj (2011).

[Insert Figure 11 to 12 here]

We run a panel regression controlling for �rm-�xed e¤ect to test the hypothesis of risk shifting.

We de�ne risk shifting by the change in volatility between periods [t; t+ T ] and [t� T; t]:

�i;[t;t+T ] � �i;[t�T;t] = ui + �1 �DfDist2HWMi;t>0g �Dist2HWMi;t (28)

+�2 �DfDist2HWMi;t<0g �Dist2HWMi;t (29)

+�3 � (AV GV IX[t;t+T ] �AV GV IX[t�lag;t]) + "i;t (30)

where Dist2HWMt � (Xt �HWMt)=HWMt and DfXg is an indicator variable equal to 1 if X =

true and equal to 0 if X = false. In the regression we also control for market volatility proxied by

the di¤erence in the average VIX index over the period [t; t+T ] and [t� T; t]. According to the bell

shape function of the optimal portfolio volatility around the high-water mark, we should expect that

funds with a negative (positive) distance to high-water mark experience an increase (decrease) in

volatility. In terms of regression (28), there is evidence of risk shifting if H0 : �1 < 0 and �2 > 0. On

the other hand, a Merton type investor should have �1 and �2 coe¢ cients which are not signi�cantly

di¤erent from zero, i.e. H0 : �1 = 0 and �2 = 0. This is also the optimal allocation of the hedge fund

managers studied in Panageas and Wester�eld (2009) and Guasoni and Obloj (2011). The manager

studied in Carpenter (2000) would exhibit H1 : �2 < 0 and �1 < 0:

Since it is possible that the realized volatility of hedge fund returns are a¤ected by market-wide

volatility, we control for this potential e¤ect by including the change in VIX index over [t; t+T ] and

[t� T; t] in the regression. We further distinguish between funds that have experienced a deviation

of at least 15 percent below or above the high-water mark from the overall sample. Panel A of

Table 7 summarizes the regression results when we use the di¤erence between subsequent 12-month

and prior 12-month realized volatility, T = 12, as the proxy for risk-shifting; Panel B reports the

equivalent results when one considers the di¤erence between subsequent 6-month and prior 6-month

realized volatility, T = 6. We �nd that the results are robust to di¤erent volatility proxies. In both

cases, hedge funds on average exhibit risk shifting around high-water mark as our theory predicts.

When we condition the regression on hedge fund investment categories, the results in Panel A show

strong evidence of risk shifting at a 12 month frequency for almost all investment categories with the

exception of Equity Market Neutral. While the results are marginally weaker when we use 6-month
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windows (Panel B), Convertible Arbitrage, Equity Long/Short, Equity Short Bias, Event Driven,

Fixed Income Arbitrage, Multi Strategy funds and Others exhibit risk-shifting.

[Insert Table 7 here ]

5.2 In sample estimation

In this section we �rst discuss the implementation of the estimation methodology described in Section

3 and then discuss the estimation results, which are summarized in Table 6.

According to Section 3, one of the inputs we need in the estimation is the fund-speci�c time-

varying moneyness of the agency contracts, Xt
HWMt

. The quantity is not simple to compute since

the high-water mark of a hedge fund is unobservable as it depends on the speci�c timing of the

fund �ows at the individual investor level. We carefully build an empirical proxy for the current

high-water mark for each fund by using fund-speci�c fund �ow information.8 At each month, when

the fund receives net positive in�ows, we assume the creation of a new share class with a high-water

mark equal to the current value of the fund. The total high-water mark of the fund manager is then

the value weighted average of high-water marks of all existing and new share classes. When there

is negative fund �ow, we assume that the out�ows occur from investors holding the average vintage

share class.9

Besides high-water mark, the strike price of put options is also unobservable and it is non-trivial

to proxy accurately. According to a sensitivity analysis of the e¤ective risk-taking with respect to

the strike price of put options, the strike price of put options a¤ects the width and height of the bell

shape pro�le. We estimate the width and height of bell shape of the function (27) through parameter

h and b in such a way that it maximizes average in-sample likelihood, by investment objectives. See

Appendix C for the calibration details.

Using these fund-speci�c characteristics, we then estimate using panel information structural skill

measures, �A; the OLS alpha, �OLS ; and the OLS alpha implied from the structural model restriction,

(18), �t;OLS . Table 6 summarizes the main results by investment objectives with the results across

all investment objectives in the bottom row. In each column we report the cross-sectional median

of the skill measures as well as their �rst and third quartiles in parentheses. Since structural alpha

8See Agarwal, Daniel and Naik (2009) for the fund �ows calculation.
9To improve this last approximation, we further optimize by calibrating the position of the peak of the function

(27) through the parameter d to maximize the average in-sample likelihood, by investment objectives. Refer Appendix
C for the calibration details.
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estimate, �t;OLS ; varies over time due to the time varying e¤ective risk aversion, e
t, we report the
mean and standard deviation in the fourth and �fth column respectively. First we observe that

OLS alpha, which is assumed to be constant by construction in reduced-form regressions, di¤ers

from the mean of the time varying structural alpha, �t;OLS : The overall median of the OLS alpha is

greater than the overall median of the structural alpha. When we look at the investment objective

level, the same remark still applies with the exception of two investment strategies, Equity Short

Bias and Multi Strategy. The relative ranking of the OLS and structural alpha is also di¤erent.

The OLS alpha measure implies that Emerging Markets funds have the highest active skill while

the structural alpha measure suggests that Equity Short Bias funds o¤er the highest alpha. Fixed

Income Arbitrage funds are the least skillful by the OLS alpha measure; in contrast, the structural

measure suggests Convertible Arbitrage funds (see Table 6, second column). This is due to the fact

that the true skill measure is di¤erent from OLS alpha in the sense that it is not a¤ected by time

varying e¤ective risk aversion, e
t; through the hedge fund manager�s portfolio allocation. The time
varying risk aversion could cause OLS alpha to be misleadingly high. For instance, a low skill hedge

fund manager which observes her fund value to be below the high-water mark could temporarily

increase her risk-taking level. This way she could increase the volatility of her fund in the short

term to increase the probability that her fund value can get above the high-water mark and hence

receive performance fees. If the gamble turns out to be successful, this could result in an arti�cially

high value of alpha due to pure luck rather than genuine skill. A direct way to investigate these

properties is to conduct an out-of-sample analysis of the di¤erent skill measures, which is the focus

of the following Section.

[Insert Table 6 here]

6 Out of sample Analysis

6.1 Portfolio sorted by true skill measure

The implication of Section 5.2 is that a true skill measure, �A, has better in-sample properties than

reduced-form estimates both because of a reduction in bias and an improvement in e¢ ciency. This is

due to the fact that it controls for endogenous leverage and uses information from the second moments

of fund returns in the estimation of skill. In this section, we test this hypothesis by comparing the

out-of-sample performance of a portfolio of hedge funds formed on these two measures. Every year
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we sort all hedge funds according to (a) their structural true skill measure, �iA; and (b) their reduced

form alpha, �iOLS into deciles. Then we form decile portfolios. The portfolios are rebalanced every

January from 2001 until 2010 based on the skill measures estimated using hedge fund monthly net-

of-fee returns and high-water marks in the 36-month window preceding portfolio rebalancing month.

The portfolios are equally weighted on a monthly basis, so that the weights are readjusted whenever

a fund disappears10. Finally, we compute the out-of-sample performance of these portfolios.

We report two tables with the out-of-sample results conditional on di¤erent skill measures. Table

8 reports the results based on reduced form alpha while Table 9 is based on a true skill measure.

Both tables report several portfolio performance measures including alphas based on the Fung-Hsieh

7-factor model.

Table 8 shows that OLS alpha, �iOLS , doesn�t perform well in distinguishing good funds from

bad funds. The out-of-sample alpha performance is only 1.85 (=6.28-4.43) percent higher for the

top decile portfolio (6.28) than the bottom decile portfolio (4.43) as the second column of Table 8

demonstrates. We test the signi�cance of the di¤erence in alpha by computing Fung-Hsieh 7-factor

alpha of the spread returns between top and bottom decile portfolio. The alpha performance of the

portfolio is -0.46 and insigni�cantly di¤erent from zero (with a t-statistics of -0.14) as the results show

in the last row of the table. Some performance measures such as portfolio average return (�Mean

Ret�) and growth of one dollar investment (�1$ growth�) show that the top decile portfolio slightly

outperform the bottom decile portfolio. In contrast, the information ratio performance (IR) suggests

that bottom decile portfolio outperforms top decile portfolio and both portfolios perform equally

well when considering the Sharpe Ratio (SR). These show that the out-of-sample performances of

OLS alpha are mixed and very sensitive to the performance measure. Based on this evidence, OLS

alpha is an unreliable measure of managerial skill when the agent faces non-linear agency contracts.

[Insert Table 8 here ]

Table 9 displays the out-of-sample performances of true skill, �iA, obtained from structural

estimates. The results show that structural skill measures perform well in distinguishing good hedge

funds from bad hedge funds as the top decile portfolio outperforms the bottom decile portfolio by

11.01 (=11.44-0.43) percent in term of Fung-Hsieh 7-factor alpha. The di¤erence is statistically

signi�cant as the alpha of the spread portfolio, reported in the last row of the table, is 8.70 percent

10We follow the same portfolio construction procedure as described in Carhart (1997) and Kosowski, Naik, and Teo
(2007).
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and signi�cantly di¤erent from zero at 5 percent con�dence level. Other performance measures

also suggest that the top decile portfolio signi�cantly outperforms the bottom decile portfolio. For

instance, a hedge fund investor investing one dollar in the top decile portfolio ranked by structural

skill, �iA, in January 2001, would receive 4.32 dollars at the end of th sample period. This compares

to 1.46 dollars by investing in bottom decile portfolio. The Sharpe Ratio of the top decile portfolio

over the 10-year investment is 0.51 (=1.05-0.54) higher than the bottom decile portfolio. According

to this evidence, structural skill measure performs well in distinguishing good and bad hedge funds.

[Insert Table 9 here ]

Table 10 reports the Fung-Hsieh 7-factor alphas of the decile portfolio returns conditional on

hedge fund investment objectives and skill measures. Similar to the results reported in Table 8 and 9,

the results suggest that the structural skill measure is better than OLS alpha in term of distinguishing

good and bad hedge fund managers for eight out of eleven investment objectives as the di¤erences

between Fung-Hsieh 7-factor alphas of top and bottom decile portfolios between the two measures

suggest. For instance, the di¤erence between the alphas of Decile 1 and Decile 10 portfolios formed

by structural skill is 10.93 percent while it is only 0.89 percent for the portfolios formed by OLS

alpha as the last column suggests. The di¤erence is even more signi�cant for �xed income arbitrage

and global macro funds: the bottom decile portfolios of the two strategies outperform the top decile

portfolios by 6.98 percent (�xed income arbitrage) and 5.37 percent (global macro). In contrast, the

decile portfolios of �xed income arbitrage funds and global macro funds sorted by the structural skill

measure outperform their bottom decile portfolio by 8.74 and 17.59 percent.

[Insert Table 10 here ]

An additional result should be highlighted. The top decile portfolio across all hedge funds,

formed on the basis of structural skill, delivers Fung-Hsieh 7-factor alpha of 11.44 percent while the

portfolio formed by OLS alpha provides the risk-adjusted measure of 6.28 percent (see Table 10, last

row). This result holds also within strategies in eight out of eleven strategies. For instance, the top

decile portfolio of Fixed Income Arbitrage funds formed by structural skill measure is 11.33 (12.87-

1.54) percent higher than the portfolio formed by OLS alpha. This large outperformance is likely

related to the tendency of this group of funds to use leverage dynamically. When risk aversion is low

and leverage is high, then reduced-form performance can be driven by low risk aversion and not by
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true skill, possibly explaining why ranking these funds based on the structural skill estimate leads

to out-of-sample superior performance. In addition to Fixed Income Arbitrage, another investment

objective that shows similar results is Global Macro. Funds in this strategy are often viewed as a

directional bets on macro economic themes. As a result, Global Macro funds have more potential for

discretionary variations in leverage than systematic investment funds such as CTA whose leverage is

(supposedly) decided independenly of the di¤erence between NAV and high-water mark.

Figure 13-15 display the growth of 1 dollar invested in the top decile portfolio based on OLS

alpha and structural skill measure for all hedge funds and each investment objective. The �rst �gure

shows that investing in the top 10 percent of the hedge funds selected by structural skill measure

would have generated a greater �nal period wealth than the OLS alpha (January 2001- December

2010), as the "ALL" sub-�gure demonstrates. The same observation applies to six out of eleven

investment objectives when we condition the analysis by hedge fund strategies.

[Insert Figure 13-15 here ]

It is also interesting to note that despite the similarity between the performance of the two skill

measures for Convertible Arbitrage funds prior the second half of 2008, the structural skill measure

signi�cantly outperforms OLS alpha after 2008. This is likely due to the fact that, unlike the struc-

tural skill measure, the OLS alpha is sensitive to the dynamics of leverage before, during, and after

the 2008 Crisis. An example is o¤ered by convertible funds. Managers in this strategy experienced

very severe volatility in their NAV due to the prime-broker crisis and forced deleveraging, making

them very sensitive to accounting for endogeneity issues. Conditioning on their structural skills,

these hedge fund managers perform better as the "Convertible Arbitrage" sub-�gure demonstrates.

We also see a similar phenomenon for All, Emerging Markets, Long/Short Equity, Fixed Income

Arbitrage and Global Macro funds.

7 Conclusion

In this paper we develop a comprehensive structural approach to better measure and predict the

performance of leveraged �nancial institutions with complex incentive contracts. The empirical

application of the structural model allows us to use previously unexploited information in second

moments in a novel way to draw inference about the structural risk-adjusted performance of invest-

ment funds with option-like contractual features. Intuitively, we are able to better distinguish the
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e¤ect of risk taking and skill on past fund performance. In the structural model, we carefully moti-

vate our assumptions about the manager�s objective and trading technology, and derive the optimal

investment strategy and the implied dynamics of assets under management. We build on and extend

the pioneering work of Koijen (2010) on mutual funds by explicitly modelling hedge fund speci�c

contractual features such as (i) high-water marks, (ii) equity investors�redemption options and (iii)

primer broker contracts that together create option-like payo¤s and a¤ect hedge funds�risk taking.

Our second contribution is to apply the model to a large sample of hedge funds. We impose the

structural restrictions implied by economic theory to estimate the deep parameters of the model.

These restrictions allow us to separately identify true skills from endogenous risk appetite. We

document di¤erences between in-sample reduced form regression estimates of performance and the

estimates based on the structural model.

Our third contribution is to present empirical evidence of hedge funds�risk-shifting, as suggested

by our theoretical model. The �ndings reject the hypothesis of constant risk taking implied by models

with in�nite horizon or models with a monotonically decreasing optimal leverage in distance to high-

water mark. They emphasizes the importance of accounting for short option positions in reducing

leverage when fund value is below high-water mark; these options act as a disciplining device for the

manager, who would otherwise increase unboundedly leverage as fund value decreases.

Finaly, we document the economic impact of using structural versus reduced form estimates.

Estimates of managerial ability based on our structural model are shown in-sample to be more

accurate than those based on reduced form models. Out-of-sample portfolios of hedge funds formed

using a structural measures of skill outperform portfolios based on reduced-form alphas.

Although we use hedge funds in our empirical application, our results have broader economic

implications. Separating the e¤ect of risk aversion and skill on investment performance is a funda-

mental problem that not only a¤ects investors in alternative investment funds, but also investors

(and regulators of) levered �nancial institutions such as banks which employ incentive contracts.
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A Appendix A: Proof of Proposition 1

Under Condition 1, a hedge fund manager facing non-linear incentives maximizes the following

concavi�ed objective function:

max
XT

E0[eU(XT ;HWM;K; p;m; c)]; (31)

subject to

E0['TXT ] = X0; (32)

where eU(XT ;HWM;K; p;m; c) is de�ned as:

eU(XT ;HWM;K;�;m; c) =
8>>>>><>>>>>:

U(p(XT �HWM) +mXT )

U(m bXK � c(K � bXK)) + �(XT � bXK)
U(mXT � c(K �XT ))

for XT > bXHWM

for bXK < XT � bXHWM

for b < XT � bXK
;

(33)

We then proceed to de�ne the Lagrangian problem, which can be written in terms of the optimal

control XT applied to the concavi�ed utility function (33). Let � be the Lagrange multiplier applied

to the constraint (32), the Lagrangian reads:

max
XT

eU(XT ;HWM;K; p;m; c)� �'TXT : (34)

From the �rst order conditions, it is possible to show that optimal terminal fund value is given by:

X�
T =

�
�'T
p+m

��1=

+ pHWM

p+m
1fXT> bXHWMg +

bXHWM1f bXK<XT� bXHWMg (35)

+

�
�'T
m+c

��1=

+ cK

m+ c
1fb<XT< bXKg + b1fXT�bg,

where � solves E['TX
�
T ] = X0 and 1z = 1 when z occurs and 1z = 0 otherwise.

We can simplify the derivation of the expectation of 'TX
�
T by mapping the set of terminal fund

value to the state price. This is similar to the solution method used in Carpenter (2000). Therefore

equation (35) is equivalent to :
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X�
T =

�
�'T
p+m

��1=

+ pHWM

p+m
1f'T<zHWMg +

bXHWM1fzK>'T>zHWMg (36)

+

�
�'T
m+c

��1=

+ cK

m+ c
1fzb>'T>zKg + b1f'T>zbg,

where state price, zi; solves eU 0
(Xi;HWM;K; p;m; c) = �zi . This is the �rst order condition of the

Lagrangian. As a results, critical value for the state prices are :

zHWM = (p( bXHWM �HWM) +m bXHWM )
�
(p+m)=� (37)

zK = (m bXK � c(K � bXK))�
(m+ c)=� (38)

zb = (mb� c(K � b))�
(m+ c)=� (39)

Notice that there is an inverse relation between the state price and fund value. This is intuitive

since the state price is closely related to marginal utility which is a decreasing function of the level

of consumption. According to the martingale property, the optimal fund value is the process:

X�
t = Et(

'T
't
X�
T ) (40)

This can be analytically derived: the optimal fund value is given by:

X�
t =

��1=


't(p+m)
1�1=
 I1;t +

pHWM

't(p+m)
I2;t +

bXHWM

't
I5;t (41)

+
��1=


't(m+ c)
1�1=
 I3;t +

cK

't(m+ c)
I4;t +

b

't
I6;t

where: I1;t � Et('
1�1=

T 1f'T<zHWMg) =DtN(d

zHWM
2;t ), I2;t � Et('T 1f'T<zHWMg) =CtN(d

zHWM
1;t ),

I3;t � Et('
1�1=

T 1fzK�'T<zbg) = Dt(N(d

zb
2;t) � N(d

zK
2;t )), I4;t � Et('T 1fzK�'T<zbg) = Ct(N(d

zb
1;t) �

N(dzK1;t )), I5;t � Et('T 1fzHWM�'T<zKg) = Ct(N(d
zK
1;t ) � N(dzHWM

1;t )), I6;t � Et('T 1fzb�'T g) =

CtN(�dzb1;t). Where N(x) denotes the cdf function, with dzi1;t �
ln(zi='t)+(r�0:5�0�)(T�t)

k�k
p
T�t , dzi2;t �

dzi1;t +
k�k

p
T�t

 , and Ct � exp(ln('t) � r(T � t)), Dt � exp(1�

 ln('t) � 1�



 (r + 0:5�
0�)(T � t) +

0:5
�
1�




�2
k�k2 (T � t)).

According to the optimal fund value in equation (41), we can use Ito�s lemma to derive the
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dynamic of dX�(t; 't) and then compare a coe¢ cient of its di¤usion term to equation (4) to obtain

the following optimal allocation:

��t = �
@X�(t; 't)

@'t

't
X�
t

(��0)�1�� (42)

where

@X�(t; 't)

@'
= � ��1=
Gt

'
1+




t (p+m)1�1=


 
N(dzHWM

2;t )



+
N 0(dzHWM

2;t )

k�k
p
T � t

!
� �HWM

't(�+m)

HtN
0(dzHWM

1;t )

k�k
p
T � t

(43)

�
bXHWMHt

't k�k
p
T � t

h
N 0(dzK1;t )�N 0(dzHWM

1;t )
i

� ��1=
Gt

'
1+




t (m+ c)1�1=


"
N 0(dzb2;t)�N 0(dzK2;t )

k�k
p
T � t

+
N(dzb2;t)�N(d

zK
2;t )




#

� cKHt

't(m+ c) k�k
p
T � t

(N 0(dzb1;t)�N 0(dzK1;t )) + b
HtN(�dzb1;t)
't k�k

p
T � t

(44)

with Gt � exp(�1�


 (r + 0:5�

0�)(T � t) + 0:5
�
1�




�2
k�k2 (T � t)) and Ht � exp(�r(T � t)).

B Appendix B: Concavi�cation

In this Appendix we discuss concavi�cation technique and role of Condition 1. The objective function

which we study is not globally concave, therefore we transform the utility function with a tangent

line superimposed on the convex region of the function to solve the optimization problem.

The concavi�cation of this problem is to solve for the concavi�cation point bXK and bXHWM and

the tangent line between the two points which dominates the convex region. Condition 1 guarantees

the continuity of manager�s objective function at concavi�cation points.

In general bXK and bXHWM under Condition 1 exist when level of risk aversion, 
; is low. However,

Condition 1 could be insatiable when risk aversion, 
; is high. Panel (a) of Figure 16 depicts this

case. When risk aversion, 
; is high, for a set of other parameters, it is possible that even the point

with lowest slope between (b;K) cannot provide a tangent line which satisfy Condition 1.

Similar to Basak, Pavlova, and Shapiro (2007) we solve the optimization problem with discon-

tinuous objective function by putting a constraint: bXK = K: The concavi�ed objective function

with the discontinuous point at bXK = K is displayed in Panel (b) of Figure 16. See Basak, Pavlova,
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and Shapiro (2007) . for the proof that shows it is possible to �adapts the martingale representation

and convex-duality techniques to a non-concave problem.�

[Insert Figure 16 here ]

C Appendix C: E¤ective risk aversion function

In this Appendix we discuss the importance of simplifying and calibrating the state-dependant ef-

fective risk aversion function, e
t,when estimating the model with real hedge fund data. First as we
discuss in Section 3.1, even though we know the full functional form of e
t, estimating the model on
a large hedge fund data set is infeasible due to its extensive computational time. The reason is that

one needs to calculate the Lagrange multiplier ��; which is not available in closed-form. Moreover, ��

is also a function of a key parameter we aim to estimate, �A. As a result, one is faced with numerical

iterations for solving �� inside the maximizing log-likelihood iteration, which in turn signi�cantly

slows the estimation process.

To circumvent the numerical issue we use a two steps procedure. First, we solve for the exact

functional form of e
t as a function of the structural parameters and the state variables, i.e. �f �
fXt=HWMt; �; 
g. The volatility parameters are held �xed at their sample values. We use semi-

parametric methods to estimate the exponential polynomial function that minimize the distance to

the exact functional form 1e
t :

1e
t = a



+
b � e(�(c�

Xt
HWMt

�d)2=h2)

Xt
HWMt

� � � 

+
e
(�(g Xt

HWMt
)2)

Xt
HWMt

� � � k
(45)

Figure 8 shows the behavior of the estimated function (45). We �nd that a second order expo-

nential function provides su¢ cient accuracy.

Nevertheless, the empirical implementation of the estimation using function (45) with hedge

fund data is non-trivial for two reasons. First we cannot observe the true current high-water mark

perceived by a hedge fund manager due to the share classes structure of hedge funds. Although, we

try to compute the true high-water mark of a hedge fund manager by using fund �ow information, we

cannot completely control for the share classes structure, as we discuss in section 5.2. To address the

problem we allow function (45) to adapt slightly to di¤erent values of the high-water mark implied
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by the data. This can be done by calibrating the position of the peak of the function (45) slightly

further toward the left or right depending on the hedge fund data. For each investment objective,

we calibrate this this through parameter d in such away that it maximizes the average in-sample

likelihood.

In addition to the computational issue related to the high-water mark, the strike price of put

options is also unobservable and it is non-trivial to proxy it. According Figure 17, a sensitivity

analysis of the e¤ective risk-taking with respect to the strike price of put options, the strike price of

put options a¤ects the width and height of the bell shape pro�le. Based on this �nding we account

for the strike price of put options into the model by calibrating the width and height of bell shape

of the function (27) through parameter h and b in such away that it maximizes average in-sample

likelihood, by investment objectives.

Therefore instead of just estimating variable �; we also calibrate centrality parameter d, width

parameter h and height parameter b in such away that it maximizes average in-sample likelihood,

by investment objectives. Figure 18 shows the pro�le of the function (45) with di¤erent values of

the parameters.

[Insert Figure 17 and 18 here ]
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Table 1: Reduced-Form and Structural Skill Estimates in Simulated Economies. This table dis-
plays means and standard deviations (in parentheses) of skill estimates from 2,500 simulations of 36
monthly returns. Panel A shows the estimate of reduced-form alpha, �OLS , while Panel B shows the
estimates of true skill measure, �A, mean and standard deviation of time varying reduced-form alpha,
�t;OLS , which is implied from the theoretical restriction: �t;OLS = �2A=~
t. The 36-month returns are
simulated with the following parameters; �A 2 f0:5; 1; 1:5g; 
 = 5; r = 0:05; �B = 0:2 �B = 0:05 and
�A = 0:05. Where �A denotes true skilll, 
 denotes constant coe¢ cient of relative risk aversion , r
denotes risk free rate , �B denotes Sharpe Ratio of benchmark asset B and �B denotes volatility of
benchnark asset B.

True parameter Panel A: Reduced-form Estimation Panel B: Structural Estimation

�A b�OLS b�A Mean ( b�t;OLS) Std ( b�t;OLS)
0.5 5.93 0.49 5.39 3.12

( 10.15 ) ( 0.09 ) ( 2.44 ) ( 1.49 )
1 19.67 0.99 19.12 8.05

( 14.99 ) ( 0.15 ) ( 5.95 ) ( 2.60 )
1.5 39.82 1.48 38.80 13.68

( 18.20 ) ( 0.19 ) ( 9.28 ) ( 3.13 )
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Table 8: Performance persistence tests - Ranking funds on OLS alphas. This tables displays out-
of-sample performances of decile portfolios ranked by OLS alphas relative to empirical proxies for
benchmark assets. The hedge funds are sorted every year into deciles on the 1st January ( from
2001 until 2010 ) based on the OLS alpha estimation The monthly net-of-fee returns of individual
hedge funds, considered all investment categories, in the 36-month rolling window preceding every
1st January are used to evaluate the OLS alphas. The portfolios are equal weighted on monthly
basis, therefore the weights are readjusted whenever a fund disappears. Decile 1 comprises funds
with the highest OLS alphas, while decile 10 comprises the lowest. The last row represents the
spread returns between 1st and 10th decile portfolios, Decile 1 - Decile 10. Column two reports Fung
and Hsieh (2004) OLS alphas based on out-of-sample portfolios returns between January 2001 and
December 2010. Column three and four report t-statistics and p-values of the Fung and Hsieh (2004)
OLS alphas. Column �ve reports the adjusted R2 (Adj R2) of the OLS regression of out-of-sample
portfolio returns on Fung and Hseih 7 factors. The rest of the columns report annualised percentage
mean returns (Mean Ret), growth of 1 dollar investment ($1 growth), annualised information ratio
(IR), tracking error (TE), and Sharpe Ratio (SR) of out-of-sample portfolios returns.

Portfolio FH Alpha t-stat p-value Adj R2 Mean Ret $1 growth IR TE SR
(pct/ann.) (pct/ann.)

Decile 1 6.28 2.13 0.04 40.37 11.25 2.90 0.78 8.00 0.85
Decile 2 3.14 1.77 0.08 40.43 7.03 1.96 0.58 5.45 0.66
Decile 3 3.36 2.21 0.03 33.04 7.44 2.07 0.77 4.36 0.95
Decile 4 3.46 3.18 0.00 40.37 6.72 1.93 0.92 3.77 0.90
Decile 5 3.38 2.86 0.01 42.46 7.15 2.02 1.01 3.34 1.09
Decile 6 2.79 3.00 0.00 49.97 6.30 1.86 0.94 2.98 0.95
Decile 7 2.40 2.58 0.01 47.21 6.01 1.81 0.85 2.81 0.95
Decile 8 2.79 3.54 0.00 47.55 6.13 1.83 1.05 2.65 1.05
Decile 9 3.23 2.82 0.01 52.86 6.69 1.93 1.03 3.14 0.96
Decile 10 4.43 2.71 0.01 56.30 8.05 2.18 1.00 4.44 0.85

Spread (Decile1-10) -0.46 -0.14 0.89 12.83 3.20 1.33 -0.06 7.41 0.12
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Table 9: Performance persistence tests - Ranking funds on True skill measure. This table displays
out-of-sample performances of decile portfolios ranked by true skill measure, �A,relative to empirical
proxies for benchmark assets. The hedge funds are sorted every year into deciles on the 1st January (
from 2001 until 2010 ) based on the true skill measure, �A, estimation The monthly net-of-fee returns
of individual hedge funds, considered all investment categories, in the 36-month rolling window
preceding every 1st January are used to evaluate the true skill measure, �A. The portfolios are equal
weighted on monthly basis, therefore the weights are readjusted whenever a fund disappears. Decile
1 comprises funds with the highest true skill measure, while decile 10 comprises the lowest. The
last row represents the spread returns between 1st and 10th decile portfolios, Decile 1 - Decile 10.
Column two reports Fung and Hsieh (2004) OLS alphas based on out-of-sample portfolios returns
between January 2001 and December 2010. Column three and four report t-statistics and p-values
of the Fung and Hsieh (2004) OLS alphas. Column �ve reports the adjusted R2 (Adj R2) of the OLS
regression of out-of-sample portfolio returns on Fung and Hseih 7 factors. The rest of the columns
report annualised percentage mean returns (Mean Ret), growth of 1 dollar investment ($1 growth),
annualised information ratio (IR), tracking error (TE), and Sharpe Ratio (SR) of out-of-sample
portfolios returns.

Portfolio Alpha t-stat p-value Adj R2 Mean Ret $1 growth IR TE SR
(pct/ann.) (pct/ann.)

Decile 1 11.44 3.55 0.00 41.73 15.50 4.32 1.22 9.41 1.05
Decile 2 5.58 3.15 0.00 52.14 9.36 2.45 0.98 5.69 0.85
Decile 3 5.09 2.89 0.00 42.92 9.34 2.47 0.95 5.38 0.98
Decile 4 2.25 1.36 0.18 42.24 6.85 1.95 0.51 4.37 0.78
Decile 5 2.87 2.35 0.02 43.72 6.56 1.90 0.76 3.79 0.83
Decile 6 2.21 1.89 0.06 41.86 5.96 1.79 0.64 3.43 0.81
Decile 7 2.35 2.50 0.01 47.30 5.76 1.76 0.86 2.75 0.91
Decile 8 1.45 1.63 0.11 48.58 4.91 1.62 0.56 2.60 0.72
Decile 9 1.58 2.32 0.02 27.06 4.65 1.58 0.73 2.16 0.91
Decile 10 0.43 0.38 0.71 39.20 3.87 1.46 0.19 2.25 0.54

Spread (Decile1-10) 8.70 2.43 0.02 35.29 11.64 2.98 0.94 9.26 0.80

44



.

T
ab
le
10
:
P
er
fo
rm
an
ce
p
er
si
st
en
ce
te
st
s
-
C
on
di
ti
on
al
on
in
ve
st
m
en
t
ob
je
ct
iv
es
an
d
sk
ill
m
ea
su
re
s.
T
hi
s
ta
bl
es
di
sp
la
ys
,
by
in
ve
st
m
en
t

ob
je
ct
iv
es
,
ou
t-
of
-s
am
pl
e
Fu
ng
an
d
H
si
eh
(2
00
4)
O
L
S
al
ph
as
of
de
ci
le
p
or
tf
ol
io
s
ra
nk
ed
by
O
L
S
al
ph
a
an
d
tr
ue
sk
ill
m
ea
su
re
,
�
A
,r
el
at
iv
e

to
em
pi
ri
ca
l
pr
ox
ie
s
fo
r
b
en
ch
m
ar
k
as
se
ts
.
T
he
he
dg
e
fu
nd
s
ar
e
so
rt
ed
ev
er
y
ye
ar
in
to
de
ci
le
s
on
th
e
1s
t
Ja
nu
ar
y
(
fr
om

20
01
un
ti
l
20
10
)

ba
se
d
on
th
e
O
L
S
al
ph
a
an
d
tr
ue
sk
ill
m
ea
su
re
,
�
A
,
es
ti
m
at
io
n
T
he
m
on
th
ly
ne
t-
of
-f
ee
re
tu
rn
s
of
in
di
vi
du
al
he
dg
e
fu
nd
s
in
th
e
36
-m
on
th

ro
lli
ng
w
in
do
w
pr
ec
ed
in
g
ev
er
y
1s
t
Ja
nu
ar
y
ar
e
us
ed
to
ev
al
ua
te
th
e
O
L
S
al
ph
a
an
d
tr
ue
sk
ill
m
ea
su
re
,
�
A
.
T
he
p
or
tf
ol
io
s
ar
e
eq
ua
l

w
ei
gh
te
d
on
m
on
th
ly
ba
si
s,
th
er
ef
or
e
th
e
w
ei
gh
ts
ar
e
re
ad
ju
st
ed
w
he
ne
ve
r
a
fu
nd
di
sa
pp
ea
rs
.
D
ec
ile
1
co
m
pr
is
es
fu
nd
s
w
it
h
th
e
hi
gh
es
t

tr
ue
sk
ill
m
ea
su
re
,
w
hi
le
de
ci
le
10
co
m
pr
is
es
th
e
lo
w
es
t.
T
he
la
st
co
lu
m
n
re
p
or
ts
th
e
di
¤
er
en
ce
b
et
w
ee
n
Fu
ng
an
d
H
si
eh
(2
00
4)
O
L
S

al
ph
as
of
D
ec
ile
1
an
d
D
ec
ile
10
p
or
tf
ol
io
.

In
ve
st
m
en
t
O
b
je
ct
iv
es

P
or
tf
ol
io

D
ec
ile
1

2
3

4
5

6
7

8
9

D
ec
ile
10

D
ec
ile
1-
10

C
T
A

O
L
S
al
ph
a

10
.7
1

7.
48

4.
84

3.
37

4.
51

3.
39

3.
73

4.
14

2.
91

1.
41

9.
31

T
ru
e
sk
ill

12
.5
2

5.
50

6.
63

4.
88

5.
13

4.
37

2.
62

3.
11

0.
06

1.
55

10
.9
6

C
on
ve
rt
ib
le
A
rb
it
ra
ge

O
L
S
al
ph
a

-2
.3
9

8.
83

4.
47

5.
56

1.
81

-1
.6
7

1.
15

2.
91

5.
43

-2
.7
2

0.
33

T
ru
e
sk
ill

3.
97

5.
63

3.
65

2.
35

0.
11

1.
62

3.
96

3.
53

-0
.5
4

1.
11

2.
86

E
m
er
gi
ng
M
ar
ke
ts

O
L
S
al
ph
a

11
.6
5

11
.1
3

8.
96

6.
39

4.
16

5.
39

7.
18

8.
69

8.
95

10
.7
5

0.
89

T
ru
e
sk
ill

17
.5
1

12
.2
8

5.
77

12
.7
8

8.
39

4.
41

4.
83

6.
53

3.
26

6.
58

10
.9
3

L
on
g/
Sh
or
t
E
qu
it
y

O
L
S
al
ph
a

2.
49

-0
.6
3

2.
79

2.
30

1.
12

2.
11

1.
85

2.
91

4.
19

3.
97

-1
.4
8

T
ru
e
sk
ill

6.
09

1.
68

3.
55

1.
86

1.
80

2.
08

0.
89

2.
49

0.
75

1.
66

4.
43

E
qu
it
y
M
ar
ke
t
N
eu
tr
al

O
L
S
al
ph
a

1.
26

3.
69

4.
74

-1
.1
0

1.
04

-1
.0
1

-0
.8
2

1.
43

0.
57

-0
.2
9

1.
54

T
ru
e
sk
ill

2.
17

1.
32

-0
.8
2

0.
43

2.
19

-0
.6
0

0.
11

-0
.6
8

2.
59

1.
21

0.
97

E
qu
it
y
Sh
or
t
B
ia
s

O
L
S
al
ph
a

-1
.2
6

-7
.5
1

2.
02

-1
.5
6

3.
05

4.
17

-2
.0
0

-2
.7
4

-5
.1
6

-1
.7
1

0.
44

T
ru
e
sk
ill

0.
38

5.
34

6.
36

4.
72

-0
.2
3

3.
36

-9
.0
9

-0
.9
4

-0
.8
3

-6
.9
2

7.
30

45



.
T
ab
le
10
(c
on
ti
nu
ed
)

In
ve
st
m
en
t
O
b
je
ct
iv
es

P
or
tf
ol
io
/D
ec
ile

D
ec
ile
1

2
3

4
5

6
7

8
9

D
ec
ile
10

D
ec
ile
1-
10

E
ve
nt
D
ri
ve
n

O
L
S
al
ph
a

9.
41

1.
98

3.
97

1.
24

2.
86

3.
17

0.
84

3.
48

4.
56

3.
99

5.
42

T
ru
e
sk
ill

8.
76

6.
39

2.
93

5.
55

2.
44

2.
37

-2
.0
6

2.
56

1.
30

5.
62

3.
14

F
ix
ed
In
co
m
e
A
rb
it
ra
ge

O
L
S
al
ph
a

1.
54

-1
.9
5

-3
.1
7

-0
.5
0

2.
64

0.
91

-0
.1
0

0.
62

-1
.9
1

8.
52

-6
.9
8

T
ru
e
sk
ill

12
.8
7

-3
.2
1

3.
09

0.
79

2.
81

0.
67

-6
.9
3

-1
.1
5

-6
.0
8

4.
13

8.
74

G
lo
ba
l
M
ac
ro

O
L
S
al
ph
a

3.
70

8.
87

3.
98

3.
87

3.
44

0.
84

7.
12

5.
68

2.
61

9.
06

-5
.3
7

T
ru
e
sk
ill

17
.3
4

9.
52

2.
02

1.
87

7.
58

2.
03

1.
37

1.
19

5.
24

-0
.2
5

17
.5
9

M
ul
ti
-S
tr
at
eg
y

O
L
S
al
ph
a

7.
27

2.
02

5.
32

5.
31

5.
71

3.
08

0.
54

3.
85

2.
21

1.
04

6.
23

T
ru
e
sk
ill

5.
78

2.
59

9.
32

4.
98

3.
64

1.
87

3.
77

1.
82

2.
27

1.
63

4.
15

O
th
er
(H
ed
ge
Fu
nd
In
de
x)

O
L
S
al
ph
a

4.
16

2.
44

2.
67

-0
.6
3

2.
63

-0
.8
1

1.
15

-0
.9
2

4.
58

2.
77

1.
39

T
ru
e
sk
ill

3.
75

3.
03

2.
79

-0
.8
6

2.
73

4.
06

2.
03

-1
.7
7

0.
28

1.
41

2.
34

A
ll

O
L
S
al
ph
a

6.
28

3.
14

3.
36

3.
46

3.
38

2.
79

2.
40

2.
79

3.
23

4.
43

1.
85

T
ru
e
sk
ill

11
.4
4

5.
58

5.
09

2.
25

2.
87

2.
21

2.
35

1.
45

1.
58

0.
43

11
.0
1

46



Figure 1: Payo¤ Function. This �gure displays the payo¤ to a hedge fund manager plotted against
terminal fund value. The payo¤ is derived from performance fee, management fee and concern about
short put positions. The underlying parameters are as follows p = 0:2;m = 0:02 and c = 0:02.
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Figure 2: Concavi�ed Utility Function. This �gure displays the concavi�ed utility function at di¤er-
ent levels of terminal fund value. The solid line is the original utility function which is superimposed
with a dotted line between XK and XHWM :
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Figure 3: Optimal Allocation. This �gure displays the optimal allocation to the risky asset against
current fund value. The manager considers an incentive fee, management fee and the presence
of put options when making her investment decision. The underlying parameters are as follows:
p = 0:2;m = 0:02; c = 0:02; 
 = 2; � = 0:4; r = 0 and t = 0:Where p denotes the performance fee;m
denotes the management fee; c denotes the concern level on short put option positions; 
 denotes the
level of risk aversion; � denotes the Sharpe Ratio and r denotes the risk free rate:
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Figure 4: Sensitity Anlaysis of Optimal Allocation. This �gure displays the optimal allocation to a
risky asset against current fund value. The dashed line represents the decision made by a manager
who considers only an incentive fee, while the solid line represents a manager who considers both
incentive fee and management fee when making her investment decision. The underlying parameters
are as follows: p = 0:2;m = [0; 0:02]; c = 0; 
 = 2; � = 0:4; r = 0 and t = 0:Where p denotes the per-
formance fee;m denotes the management fee; c denotes the concern level on short put oppositions; 

denotes level of the risk aversion; � denotes the Sharpe Ratio and r denotes the risk free rate :
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Figure 5: Scatter Plot of Fung-Hsieh Alpha. This �gure displays the scatter plot of OLS Fung and
Hsieh alpha on the y-axis and the ratio of current fund value to fund high water mark on the x-axis.
Each dot corresponds to the estimated alpha of a fund over 36-month rolling estimation window.
The hedge fund data is monthly net-of-fee returns of live and dead hedge funds reported in the
BarclayHedge database . We exclude funds with less than 36 monthly observations from our fund
universe.
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Figure 6: Di¤erence between Reduced Form and True Alpha. This �gure displays the di¤erence
between typical OLS alpha and true alpha against current fund value. The underlying parameters
are as follows: �� = 0:05; � = 0:1; c = 0:02; 
 = 1:5; � = 0:5; and r = 0:05: Where �� denotes true
alpha, � denotes volatility of alpha generating process; c denotes concern level about short put option
positions; 
 denotes level of risk aversion; � denotes Sharpe Ratio and r denotes the risk free rate:
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Figure 7: Risk Taking Plots. This �gure displays the value of 1
t as function of current fund value (Xt)
normalised by current level of high water mark (HWMt) at di¤erent value of �A:Other parameters
are calibrated to the following values: K = 0:6 �HWMt; 
 = 1:5; � = 20%;m = 2%; c = 2%:
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Figure 8: Risk Taking Plots from Simpli�ed Functional Form. This �gure displays the value of
1

t
implied from simplied function. The value of 1


t
is ploted against the current fund value (Xt)

normalised by current level of high water mark (HWMt) at di¤erent value of �A:The calibrated
parameters in the function are; a = 0:413; b = 0:221; c = 4:307; d = 3:483; g = 4:646 and h = 0:090:
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Figure 9: Evidence of Risk Shifting. This �gure displays scatter plots, by investment category,
between the current distances to high water marks, de�ned as (Xt �HWMt)=HWMt; of all hedge
funds and their corresponding subsequent 12-month realized volatility between December 1999 and
December 2010.
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Figure 10: Evidence of Risk Shifting (cont). This �gure displays scatter plots, by investment category,
between the current distances to high water marks, de�ned as (Xt �HWMt)=HWMt; of all hedge
funds and their corresponding subsequent 12-month realized volatility between December 1999 and
December 2010.
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Figure 11: Evidence of Risk Shifting - Kernel �t, Fixed Income Arbitrage. This �gure displays the
scatter plot and its kernel �t between distance to high water mark and relative change in subsequent
12 month realized volatility of Fixed Income Arbitrage funds. The observation is between December
1999 and December 2010.
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Figure 12: Evidence of Risk Shifting - Kernel �t, Event Driven. This �gure displays the scatter
plot and its kernel �t between distance to high water mark and relative change in subsequent 12
month realized volatility of Event Driven funds. The observation is between December 1999 and
December2010.
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Figure 13: Performance persistence test - Cumulative returns of 1 dollar investment. This �gure
displays plots, for all hedge funds and by investment objectives, of cumulative returns of 1 dollar
investment in top decile portfolios sorted by true skill measure and typical OLS alpha between
January 2001 and December 2010.
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Figure 14: Performance persistence test - Cumulative returns of 1 dollar (cont) investment. This
�gure displays plots, for all hedge funds and by investment objectives, of cumulative returns of 1
dollar investment in top decile portfolios sorted by true skill measure and typical OLS alpha between
January 2001 and December 2010.
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Figure 15: Performance persistence test - Cumulative returns of 1 dollar investment (cont). This
�gure displays plots, for all hedge funds and by investment objectives, of cumulative returns of 1
dollar investment in top decile portfolios sorted by true skill measure and typical OLS alpha between
January 2001 and December 2010.
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Figure 16: Nonconcave Utility Function. This �gure displays a nonconcave utility function with a
set of parameters which violates Condition 1. Panel (a) displays the nonconcave utility function with
a tangent line which cannot satisfy Condtion 1. Panel (b) displays the nonconcave utility function
with a tangent line which statis�es Condtion 1 when contraint XK equal to K:
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Figure 17: Sensitivity of risk taking pro�le with respect to put strike. This �gure displays the
sensitivity analysis of risk taking, an inverse of risk aversion, with respect to strike price of a put
option.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Current Fund Value/Current HWM

K = 0.7HWM
K = 0.8HWM
K = 0.9HWM

64



Figure 18: Calibration of risk taking function. This �gure display the pro�le of risk taking pro�le,
an inverse of risk aversion, with respect to di¤erent value of height, width and centrality parameters.
The height parameter takes value (2,4,6), the width parameter takes value (0.5,0.8,1.1) and centrality
parameter takes value (3.2,3.5,4).
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