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1. Introduction

The experimental economics literature contains many instances of subjective belief

elicitation. The elicitation of beliefs provides valuable insight into the latent decision-making

process. These elicitation exercises have, almost always, involved estimating a summary statistic of

the true underlying subjective belief distribution – usually the expected value. For some applications,

a summary statistic of the latent belief distribution may be sufficient. However, there are other

applications for which knowledge of the actual latent belief distribution itself would be beneficial.

With this in mind, we characterize the properties of a procedure for eliciting entire subjective belief

distributions. Through the use of simulation, theory and an experiment, we demonstrate several

attractive properties of our procedure.1

It is well known that risk aversion can dramatically affect the incentives to correctly report

the true subjective probability of a binary event.2 To address this inferential problem, one can

“calibrate” inferences about true subjective probabilities from elicited subjective probabilities,

recognizing the incentives that risk averse agents have to report the same probability for the two

outcomes and reduce the variability of payoffs from the scoring rule.3 Or one must use relatively

more complex scoring rules that “risk-neutralize” the agent.4 Or one must eschew the use of any

incentives for truthful elicitation.5

1 The theoretical development of the specific scoring rule procedure we consider is due to Matheson
and Winkler [1976]. Assuming risk neutrality, it has been used in the experimental literature in economics by
Offerman, Sonnemans and Schram [1996], and in psychology by Moore and Healy [2008] and Merkle and
Weber [2011], inter alia. Our general contribution is to propose a general characterization of the validity of this
procedure under SEU, not assuming risk neutrality. We also provide an intuitive operationalization of the
elicitation procedure. Harrison and Ulm [2016] extend our results to show how to recover latent beliefs when
probability weighting behavior is identified for the individual.

2 See Winkler and Murphy [1970], Savage [1971; p. 785] and Kadane and Winkler [1988].
3 See Fiore, Harrison, Hughes and Rutström [2009], Offerman, Sonnemans, van de Kuilen and

Wakker [2009], Andersen, Fountain, Harrison and Rutström [2014] or Antoniou, Harrison, Lau and Read
[2015][2016].

4 See Smith [1961], Grether [1992], Köszegi and Rabin [2008; p.199], Karni [2009], Holt and Smith
[2009] and Harrison, Martínez-Correa and Swarthout [2014].

5 Delavande, Gineé and McKenzie [2001; p. 156] make the case for not bothering about incentives.
Referring to studies in developing countries that have all been hypothetical, they argue that “even without
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Given the bias that risk aversion presents when eliciting a subjective probability, it would be 

reasonable to think that a similar bias exists when eliciting a subjective distribution.  In fact, we

characterize the implications of the general SEU case of a risk averse agent when facing the popular

Quadratic Scoring Rule (QSR) over continuous events,6 and find that the biasing effect of risk aversion

is severely reduced as compared to the case of eliciting the probability of a binary event. On reflection,

the intuition is simple. Under SEU, risk aversion causes a “left or right distortion” in reports

compared to latent beliefs over binary events, but only causes a “flattening distortion” in reports

compared to latent beliefs over continuous events, spread and diffused over two or more reports in

finite implementations. These two very different patterns of distortion are the result of preferences

for payoff smoothing over (binary or continuous) events.

For empirically plausible levels of risk aversion, which we quantify below, our theoretical

results imply that one can reliably elicit the most important features of the latent subjective belief

distribution without undertaking calibration for risk attitudes. In particular, as explained in the

example, under relatively weak conditions we can recover the mean of the subjective distribution.7

The mean is of particular interest to economists, since it corresponds to the single subjective

probability to which subjective belief distributions are reduced under SEU by application of the

Reduction of Compound Lotteries axiom. Therefore one could test, for example, if deviations from

SEU theory, as modeled by ambiguity aversion theories, are due to violations of this axiom by

comparing if choices under ambiguity are consistent with the elicited mean of the distribution.

payment, the answers received from such questions appear reasonable, and as such, there seems to have been
a de facto decision that payments are not needed.” We do not know what “reasonable” might possibly mean
when it comes to subjective beliefs.

6 We use the expression “continuous events” to refer to events with a continuous probability
distribution over a continuum of possible outcomes, i.e. with continuous support. These continuous events
are continuous  intervals of the support of the distribution and therefore can be infinitesimally small, a
property that will be used in some of our theoretical results. 

7 If one is only interested in eliciting the mean  of a continuous subjective belief distribution, and
willing to assume risk neutrality, then one can directly apply the QSR as shown by Costa-Gomes, Huck and
Weizsäcker [2014]. In effect, this is the same as our procedure in which the subject is forced to allocate all
“reports” to one interval, as explained below.
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In section 2 we provide examples of eliciting subjective belief distributions and simulate

varying levels of risk aversion in order to illustrate the minimal bias risk aversion has on reported

belief distributions. Following from the intuition provided by the preceding examples, in section 3

we present theory to formally characterize our intuition and discuss the implications of the theory.

In section 4 we report an experiment developed from some of the testable implications of the

theory. And we conclude in section 5.

2. Examples

Let the decision maker report his subjective beliefs in a discrete version of a QSR for

continuous distributions (Matheson and Winkler [1976]). We consider the QSR since it is the most

popular scoring rule in use, but show that all theoretical results generalize to any proper scoring rule,

which is any rule for which truthful reporting generates the highest expected payoff .

Partition the domain into K intervals, and denote as r k the report of the likelihood that the

event falls in interval k = 1, ÿ, K. Assume for the moment that the decision maker is risk neutral,

and that the full report consists of a series of reports for each interval, { r1, r2, ÿ, r k ,ÿ, r K } such that

r k $ 0 œk and  ' i = 1ÿK (r i ) = 1.

If k is the interval in which the actual value lies, then the payoff score is defined by

Matheson and Winkler [1976; p.1088, equation (6)]:

S = (2 × r k)  -  ' i = 1ÿK (r i )
2 

So the reward in the score is a doubling of the report allocated to the true interval, and the penalty

depends on how these reports are distributed across the K intervals. The subject is rewarded for

accuracy, but if that accuracy misses the true interval the punishment is severe. The punishment

includes all possible reports, including the correct one.

Take some examples, assuming K = 4. What if the subject has very tight subjective beliefs

and allocates all of the weight to the correct interval? Then the score is

S = (2 × 1) - (12 + 02 + 02 + 02 ) = 2 - 1 = 1,
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and this is positive. But if the subject has tight subjective beliefs that are wrong, the score is

S = (2 × 0) ! (12 + 02 + 02 + 02 ) = 0 ! 1 = !1,

and the score is negative. So we see that this score would have to include some additional

“endowment” to ensure that the earnings are positive; this is a point of practical behavioral

significance, but is not important for the immediate theory. Assuming that the subject has very

diffuse subjective beliefs and allocates 25% of the weight to each interval, the score is less than 1:

S = (2 × ¼) ! ((¼)2 + (¼)2 + (¼)2 + (¼)2 ) = ½ ! ¼ = ¼ < 1.

So the tradeoff from the last case is that one can always ensure a score of ¼, but there is an

incentive to provide less diffuse reports, and that incentive is the possibility of a score of 1.

To ensure complete generality, and avoid any decision maker facing losses, allow some

endowment, α, and scaling of the score, β. We then get the following scoring rule from the report {

r1, r2, ÿ, r k ,ÿ, r K } when the true event is in interval k:

α + β [ (2 × r k)  -  ' i =1ÿK (r i )
 2 ],

where we initially assumed α=0 and β=1. We can assume α>0 and β>0 to get the payoffs to any

positive level and units we want. Let pk represent the underlying, true, latent subjective probability of

an individual for an outcome that falls into interval k.

Figures 1, 2 and 3 illustrate this scoring rule for the case in which K = 10,  α = β = 25, and

we assume a subjective expected utility maximizer with a CRRA utility function u(w) = w 1-D/(1-D)

such that D = 0 denotes risk neutrality and D > 0 risk aversion.8 Figure 1 shows the simplest case in

8 Utility is defined solely over the income generated by the scoring rule. If utility is event-dependent
then one must assume away any effects of the subjective outcome on initial wealth (Kadane and Winkler
[1988], Karni and Safra [1995]). In our experiment this is natural, since subjects are betting on the outcome of
a draw from an urn that has no connection to events outside the lab, other than the income these bets might
generate. In field applications of these scoring rules this assumption might not be so natural. For instance, one
might be eliciting beliefs about housing prices from somebody that already owns a house, so that the possible
events affect the value of the initial endowment the individual has before any income from the scoring rule.
Or preferences themselves might be state-dependent, quite apart from any effect on the arguments of the
utility function: different health outcomes, over which one might naturally have subjective beliefs, might
affect the utility associated with given endowments. Finally, scoring rules might be embedded in a competitive
environment in which performance relative to others becomes a factor. This can lead to an additional
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which the true subjective distribution is symmetric. The histogram shows the true distribution, and

the black “droplines” show the optimal report. Under risk-neutrality, the top left panel of Figure 1

shows that the individual truthfully reports the true subjective distribution.  Looking at the

additional panels in Figure 1, we see the trend toward the reported distribution being a flattened

version of the subjective distribution as D increases from 0 up to 3. Also apparent is the complete

absence of any reports for outcomes 1, 7, 8, 9 and 10, which have no subjective density.

Maintaining the true subjective belief distribution from Figure 1, we now consider the more

realistic case in which the agent is risk averse at a parameter value typical in the laboratory (Harrison

and Rutström [2008]). An individual with relative risk aversion of D = 0.65, for instance, under-

reports the true subjective probability for outcome 4 (r 4 = 0.356 < p 4 = 0.4). Such an individual

over-reports the true subjective probability for outcomes 3 and 5 (r 3 = r 5 = 0.207 > p 3 = p 5 = 0.2),

but the distortion is barely noticeable. The over-reporting for outcomes 2 and 6, however, is

noticeable (r 2 = r 6 = 0.115 > p 2 = p 6 = 0.1). Since the extent of the reporting deviations are the

same on either side of the mode, and the true distribution is symmetric, the average of the reported

distribution would always equal the average of the true distribution when rounded to the interval

widths used in a specific application.

Figure 2 considers the case of an asymmetric, unimodal subjective distribution, and varying

levels of risk aversion. For relative risk aversion level D > 0, the true probabilities for outcomes 6

and 5 are under-reported, and for outcomes 4 and 3 are over-reported. Again, there are no reports

for outcomes that have no subjective density.

Finally, using the parameters and beliefs from Figure 2, Figure 3 shows how the average of

the reported distribution deviates from the average of the true subjective distribution in the

unimodal, asymmetric case. For a wide range of risk attitudes observed in the same experimental

distortion of reports (Lichtendahl and Winkler [2007]).
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context that we would undertake these belief elicitations (D < 1), we find the difference to be less

than a percentage point. Of course, there is no point showing comparable figures for the symmetric

distributions, since in that case there is no difference at all when rounded to the interval widths used

in a specific application.

The preceding discussion used numerical simulations to provide visual and descriptive

evidence of our results. We now formalize our results with the theory in the following section.

3. Theory

We focus on the discrete case, in part for expository reasons, but also because this is the

interesting case in terms of operational scoring rules. All proofs for the discrete case are in Appendix

A. The proofs for the continuous case are similar, and collected in Appendix B in the Online

Supplement. Again, unless otherwise noted, the following proofs assume that the decision maker is a

SEU maximizer. Proposition 1 assumes symmetric subjective distributions; Propositions 2, 3, 4, 5

and 6 and the Lemmata do not  assume symmetric subjective distributions, nor do they assume that

the distribution is even unimodal.9

Lemma 1: Let pk represent the underlying subjective probability of an individual for

outcome k and let rk represent the reported probability for outcome k in a given scoring rule. Let

w(k) = α + β2r k - β ' i=1ÿK (r i)
2 be the scoring rule that determines the wealth if state k occurs. If the

individual has a utility function u(w) that is continuous, twice differentiable, increasing and concave

and maximizes expected utility over actual subjective probabilities, the actual and reported

probabilities must obey the following system of equations:

9 On the other hand, for many applications we have observed symmetry to be a plausible empirical
assumption, providing one does not select bin intervals that lead to reports bunched at extremes (e.g., imagine
eliciting beliefs about the future paths of nominal sovereign interest rates, when they are historically close to
zero). Appendix E in the Online Supplement documents this empirical claim for our data, and suggests a
general methodology for checking in specific applications. The plausibility of symmetry is likely to vary with
the belief being elicited, but it is valuable to have a simple check for the plausibility of assuming it if one
wants to apply Proposition 1.
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pk × Mu/Mw *w=w(k) !rk × Ep[Mu/Mw] = 0, œ k = 1,..., K (1)

Lemma 2: Under the assumptions of Lemma 1, let gk = rk ! pk be the deviation between the

reported and actual subjective probabilities for outcome k. Then

gk = pk × {Mu/Mw *w=w(k) ! Ep[ Mu/Mw ]}/Ep[ Mu/Mw ], œ k=1,ÿ, K. (7)

Lemma 3: Assume an individual who has a continuous, twice differentiable utility function

u(w) that is increasing in random wealth and who is also risk averse (i.e., M2u/M2w < 0, œ w). If pi = pj

for some i and j, then ri = rj. This result does not hold for risk loving individuals.

Proposition 1: For the risk-averse individual in Lemma 3, if the underlying subjective

distribution is symmetric then the mean of the reported distribution is equal to the mean of the

actual subjective distribution.

Lemma 4: The converse of Lemma 3. Assume an individual with a continuous,

differentiable utility function u(w), where risk aversion is not necessary in this case. If r i = r j for this

individual, then p i = p j.

Proposition 2: For the individual in Lemma 4, if the reported distribution is symmetric then

the mean of the reported distribution is equal to the mean of the actual subjective distribution.

Proposition 3: Assume an individual with a continuous, twice differentiable utility function

u(w) that is increasing in w. The individual reports probability rk = 0 if and only if the true subjective

probability of the individual for state k is pk = 0.10

Proposition 4: A risk-averse individual has a reported probability distribution that

approaches a uniform distribution over those states where pk > 0 in the following sense: There exists

a value p* for this individual such that if pk > p* then pk > rk > p* and if pk < p* then pk < rk < p*. A

risk-loving agent reverses all the conditions.

10 Proposition 3 also applies to models of decision-making under risk that allow for continuous,
weakly-monotonic probability weighting functions with fixed points at 0 and 1.
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Proposition 5: An individual with sufficiently high risk aversion will have a reported

probability arbitrarily close to p*.

Proposition 6: The following relationship exists between means of the reported and actual

subjective distributions up to the first order approximation: If u(w) = w + δ × u*(w), then for any

random variable y, Er[y] ! Ep[y] . δ × Cov p [Mu/Mw, y].

Proposition 7: The following relationship exists between means of the reported and actual

subjective distributions up to the first order approximation: If u(w) = w + δ × u*(w), then for any

random variable y, Er[y] ! Ep[y]. Cov r [Mu/Mw, y].

Proposition 8: Lemma 1 generalizes to include all proper scoring rules. Hence all of the

results that flow from Lemma 1 also generalize.

We summarize and restate the implications of this theory, some of which we then test:

1. The individual reports a positive probability for an event only if the individual has a positive

subjective probability for the event. So if the individual believes that inflation will never fall

below 1.5% per annum, we would never see the individual reporting that it would.

2. If an individual has the same subjective probability for two events, then the reported

probabilities for the two events will also be the same if the individual is risk averse or risk

neutral. So if the individual attaches a probability of 0.25 to the chance that inflation will be

between 1% and 2%, and a probability of 0.25 to the chance that inflation will be between

4% and 5%, the reported probabilities for these two intervals will be the same as well

(although typically not 0.25).

3. The converse is true for risk averse subjects, as well as for risk lovers. That is, if we observe

two events receiving the same reported probability, we know that the true subjective

probabilities are also equal, although not necessarily the same as the reported probabilities.
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4. If the individual has a symmetric subjective distribution, then the reported mean will be the

“same” as the true subjective mean, whether or not the subjective distribution is unimodal.11

This result is exact when the interval widths are arbitrarily small, and is valid in terms of the

rounded means when the interval widths are finite. Further, this result follows from the

previous two results, and is of great significance for tests of theories about ambiguous events

that stress the role of the Reduction of Compound Lotteries axiom over subjective belief

distributions (e.g., Nau [2006] and Ergin and Gul [2009]). A testable implication of that

axiom is that the individual behaves as if holding a subjective probability equal to the average

of some subjective belief distribution. Hence if we simply assume symmetry of the true

distribution, a relatively weak assumption in some settings, we can elicit that mean directly.

5. If the individual reports a symmetric distribution then their true subjective distribution is

also symmetric. This result also follows from earlier results, but provides a practically useful

way to check if the assumption of symmetric beliefs is plausible in particular instances.

6. The more risk averse an agent is, the more their reported distribution will resemble a

uniform distribution defined on the support of their true distribution. In effect, risk aversion

causes the individual to report a “flattened” version of their true distribution. Merkle and

Weber [2011; p. 268] state this result intuitively, without proof.

7. It is possible to bound the effect of increased risk aversion on the difference between the

reported distribution and true distribution. This result provides a characterization of the

empirical finding that the reported distribution is “very close” to the true subjective

distribution for a wide range of empirically plausible risk attitudes.

11 We define a symmetric subjective distribution in the usual manner as being a continuous
probability density function p(s) for which there exists some ξ such that p(ξ-s) = p(ξ+s) for all real s. It refers to
the underlying, true subjective probability density function, not any “discretized” probability mass function
over which we elicit reports.
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8. All of these results for the QSR generalize to any proper scoring rule.

4. Experiment

The above theoretical results are meant to help apply and interpret empirical efforts to elicit

subjective belief distributions. Many of the properties of the scoring rule cannot be directly tested,

given that they refer to unknown subjective beliefs: de opinio non est disputandum. For instance,

Proposition 3 is a valuable property, but to test it we would need to know that some individual

attached zero subjective weight to some specific interval of events.

However, it is possible with a controlled laboratory experiment to offer some evidence in

support of the claim that, for a risk-averse individual with symmetric subjective beliefs, the mean of

the reported distribution is equal to the mean of the actual subjective distribution (Proposition 1). 

In the laboratory we can present a stimulus for beliefs which provides a basis for symmetric beliefs,

and for which we know, by design, the true objective probability distribution implied by the

stimulus. It is then a simple matter to compare that true stimulus with the average elicited belief,

under the maintained assumption that there is no basis for subjective beliefs to be biased in

comparison to the true stimulus. This assumption cannot be easily made outside of this laboratory

environment. Of course, our conclusions are limited to these controlled stimuli.

Our experiment elicits beliefs from subjects over the composition of a bingo cage containing

both red and white ping-pong balls.  Subjects did not know with certainty the proportion of red and

white balls, but they did receive a noisy signal from which to form beliefs.  The subjects were told

that there were no other salient, rewarded choices for them to make before or after they made their

choices, avoiding possible confounds by having to assume the “isolation effect” if one were making

many choices.12

12 The “random lottery” payment protocol in which one asks the subject to make K>1 choices, and
pick 1 of the K at random for payment at the end, requires that the Mixture Independence axiom applies, or
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Our experimental design consisted of 8 laboratory sessions. A total of 184 participants were

recruited from a general subject pool of undergraduates at Georgia State University. We implement

two between-subjects treatments within sessions 1-4 so that both groups are presented with the

same randomly chosen and session-specific stimulus, thus we are able to compare treatment effects

while conditioning on a specific realized stimulus. In treatment 10bin we elicit subjective belief

distributions about the true fraction of red balls in the bingo cage by using a generalized QSR with

monetary outcomes. In this treatment the belief elicitation tool divides the possible proportions of

red balls into 10 disjoint sets that we label bins,13 and subjects can make bets on each bin according

to their beliefs. In treatment 2bin we elicit subjective probabilities that a single red ball would be

drawn from bingo cage by using the QSR with monetary outcomes. In this treatment the ball drawn

from the Bingo cage can be red or not, and thus subjects can make bets only on those two events

that are represented by two bins.  This probability elicitation task is known to be one in which risk

averse subjects would rationally and significantly distort their reports towards ½. By comparing

elicited reports across treatments in these sessions, we can assess the practical significance of our

claims about the weak effects of risk aversion on optimal reports under treatment 10bin.14 In

sessions 5-8 we only conducted the 10bin treatment, in exactly the same manner as the 10bin

at least a violation of one of the two axioms that constitute it (i.e., the Reduction of Compound Lotteries
axiom and the Compound Independence axiom). But then one cannot use those data to estimate models of
decision-making behavior that assumes the invalidity of that axiom. The only reliable payment protocol in this
case is to ask subjects to only make one choice, and pay them for it. See Harrison and Swarthout [2014] for
discussion, including the literature evaluating the behavioral validity of the isolation effect and the theoretical
explanation of the behavioral axioms needed for the lottery payment mechanism to work.

13 We use the term “bin” as synonymous with the term “event” from standard  probability theory.
Specifically, we define a bin as a set of outcomes of a random process to which a probability measure is
assigned. We elected to refer to bins in our experiment, thinking that this term would be more natural for our
subjects.  

14 Our 2bin treatment is formally the same as eliciting the subjective fraction of the true distribution,
rather than a single-draw realization. It could also have been operationalized by giving subjects the 10bin
interface and restricting them to allocate all 100 tokens to only one interval. Whether these different ways of
operationalizing the task are behaviorally identical is another matter. We see no reason to expect them to be
different, but recognize that funny things can always happen in the lab.
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treatment in sessions 1-4. Table 1 presents the number of subjects by treatment in each of the 8

sessions.

Each session was conducted in the manner described below. Upon arrival at the laboratory,

each subject drew a number from a box which determined random seating position within the

laboratory.  After being seated and signing the informed consent document, subjects were given

printed introductory instructions and allowed sufficient time to read these instructions (Appendix C

in the Online Supplement provides complete subject instructions). Then a Verifier was selected at

random among the subjects solely for the purpose of verifying that the procedures of the

experiment were carried out according to the instructions. The Verifier was paid a fixed amount for

this task and did not participate in the decision-making task.

Each subject was assigned to one of the two groups depending on whether their seat

number was even or odd. One of the treatment groups was then taken out of the lab for a few

minutes, always under the supervision of an experimenter. The other group remained in the

laboratory and went over the treatment-specific instructions with an experimenter. Simultaneously,

subjects waiting outside were given instructions to read individually. Then the groups swapped

places and the experimenter read the treatment-specific instructions designed for the other group.

Once all instructions were finished, and both groups were brought together in the room again, and

we proceeded with the remainder of the experiment. 

We used two bingo cages: Bingo Cage 1 and Bingo Cage 2.  Bingo Cage 1 was loaded with

balls numbered 1 to 99 in front of everyone.15 A numbered ball was drawn from Bingo Cage 1, but

the draw took place behind a divider. The outcome of this draw was not verified in front of subjects

15 When shown in public, Bingo Cages 1 and 2 were always displayed in front of the laboratory where
everyone could see them. We also used a high resolution video camera to display the bingo cages on three flat
screen TVs distributed throughout the laboratory, and on the projection screen at the front of the room. Our
intention was for everyone to have a generally equivalent view of the bingo cages.
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until the very end of the experiment, after their decisions had been made. The number on the

chosen ball from Bingo Cage 1 was used to construct Bingo Cage 2 behind the divider. The total

number of balls in Bingo Cage 2 was always 100: the number of red balls matched the number on

the ball drawn from Bingo Cage 1, and the number of white balls was 100 minus the number of red

balls. Since the actual composition of Bingo Cage 2 was only revealed and verified in front of

everybody at the end of the experiment, the Verifier’s role was to confirm that the experimenter

constructed Bingo Cage 2 according to the randomly chosen numbered ball. Once Bingo Cage 2 was

constructed, the experimenter put the chosen numbered ball in an envelope and affixed it to the

front wall of the laboratory.

Bingo Cage 2 was then covered with a black blanket and placed on a platform in the front of

the room. After subjects were alerted to pay attention, Bingo Cage 2 was then uncovered for

subjects to see, spun for 10 turns, and covered again.  This visual display was the information that

each subject received. Subjects then made their decisions based on this information about the

number of red and white balls in Bingo Cage 2. After decisions were made, subjects completed a

non-salient demographic survey. Immediately after, earnings were determined. To resolve payments

in treatment 2bin, the experimenter drew a ball from Bingo Cage 2. The sealed envelope was then

opened and the chosen numbered ball was shown to everyone, and the experimenter publicly

counted the number of red and white balls in Bingo Cage 2.

A computer interface was used to present to subjects the belief elicitation tasks and to record

their choices, allowing them to allocate tokens to reflect their subjective beliefs.  Figure 4 presents

the interface used for the distribution elicitation treatment (treatment 10bin). The interface

implements the QSR discussed earlier, with α=β=25. Subjects could move the sliders at the bottom

of the screen interface to re-allocate the 100 tokens as they wished, ending up with some distribution
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as shown in Figure 5. The instructions explained that they could earn up to $50, but only by

allocating all 100 tokens to one interval and that interval containing the true percent: if the true

percent was just outside the selected interval, they would in that case receive $0.

The stimulus, the number of red balls in Bingo cage 2, was different in each session since we

wanted the true number of red balls to be generated in a credible manner, to avoid subjects second-

guessing the procedure. This credibility comes at the risk that the stimulus is extreme and

uninformative: if there had been only 1 red ball, or 99 red balls, we would not have generated

informative data. As it happens, we had a good variety of realizations over the 4 sessions.

A. Eliciting Belief Distributions

Consider the subjective belief distributions elicited with the generalized QSR in treatment

10bin. We provide evidence consistent with our claims that, given the risk aversion observed in our

subject population, the generalized QSR can directly elicit important features of subjective

probability distributions. We provide some illustrative pictures and then formal statistical tests of the

main hypotheses.

As a preliminary, we note that we have independent evidence that subjects from our

population do “robustly” exhibit risk aversion over stakes comparable to those used in the present

experiment: Holt and Laury [2002][2005], Harrison and Swarthout [2014], Harrison, Martínez-

Correa and Swarthout [2015] and Harrison and Ng [2016]. All of these other experiments were run

in the same laboratory with the same undergraduate population as our present experiment. Thus any

correspondence with the predictions of Proposition 1 is not due to the risk neutrality of the subjects

over these stakes.

To illustrate the data, Figure 6 presents the elicited beliefs pooled over the 15 subjects in the

first session, in which the true percent was 69%. Of course there is some dispersion in beliefs, since
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the stimulus was deliberately designed not to provide exact information (unless, by unfortunate

chance, the number of red balls was extreme). As it happens, the average of this elicited distribution

is 71% and very close to the true proportion of red balls.16

Figure 7 reports the results across all sessions. With one exception, the elicited averages

closely track the true averages. Again, the maintained joint hypothesis that allows us to view this as

evidence for the truthful elicitation of subjective belief distributions is that subjects behave

consistently with SEU and that their subjective belief distributions are distributed around the true

population average that provides the common stimulus they all observe.

The clear exception in Figure 7 is session 7, in which the true number of red balls was 11%

and the elicited average was 25%. This disparity is due to three outliers; we believe a priori these

subjects did not understand the task. One subject allocated 36 tokens to the interval for 81% to

90%, and 64 tokens to the interval for 91% to 100%. It is possible this subject was confused as to

whether he was betting on red or white. If this subject is removed, the average becomes 19%. Then

there were two subjects who exhibited some degree of confusion, although less extreme than the

first outlier.17 If these two are also removed, the average becomes 16%, close to the true number of

red balls. Of course one is always wary claiming that a subject is an outlier, although every behavioral

economist knows that such subjects exist, and occasionally even in clusters like this.

We can formally statistically test the hypothesis that the elicited averages in Figure 7 are

equal to the true percent by estimating an interval regression model in which the intervals are the bin

16 The average is estimated using an interval regression model with no covariates. Hence the
dependent variable is literally the interval selected by the subject, and the weight on that interval is the number
of tokens allocated to the interval. Since the latent variable is bounded between 0% and 100%, we use an
interval regression model assuming a Beta distribution rather than a Normal distribution.

17 One of these subjects allocated roughly 10 tokens to each and every interval, which could have
been due to not properly seeing the visual stimulus (e.g., inattention or some form of vision problem).  The
other subject allocated roughly 10 tokens to each interval below 50%, 28 tokens to the interval for 71% to
80%, and small numbers of tokens for other intervals greater than 50%.
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“labels” in Figures 4 and 5, and the tokens allocated to each bin are frequency weights for each

subject. We also cluster the standard errors on each subject. If we estimate this model with only a

constant term and no covariates, we can directly test the hypothesis that the estimate of the constant

term is equal to the true percent. For session 1 we estimate the mean to be 0.71 with a 95%

confidence interval between 0.66 and 0.77, and a p-value of 0.42 on the null hypothesis that it is

equal to 0.69. Hence we cannot reject the null hypothesis that average elicited beliefs are statistically

significantly equal to the true percent. Table 2 shows comparable estimates and p-values for each

session.

Table 2 has only one surprise, compared to the conclusions we would draw from Figure 7.

This is in session 3, in which the true value was 0.10 and the estimated mean is 0.12, but the p-value

is only 0.002. The reason for this very simple: we have a very precise estimate of the mean, with a

standard error of only 0.006 and a 95% confidence interval between 0.11 and 0.13. Here we have a

familiar conflict between statistical significance and economic significance. The difference between

0.10 and 0.12 is small in economic terms, but happens to be statistically significant. Moreover, the

true value of 0.10 essentially straddles bin #1 and bin #2 in our elicitation tool, causing many

subjects to allocate roughly 50% of their tokens to each of these bins. The bottom panel of Table 2

shows the effect of allowing for individual heterogeneity in the structural parameter that affects the

variance of elicited distributions (conditional on the mean).18 The effect of allowing for

heterogeneity in variance is to slightly widen the 95% confidence interval on the estimate of the

mean, resulting in a p-value on the hypothesis test of 0.09.

Session 7 also has a low p-value of 0.03 in Table 2 on the hypothesis test, but this is no

surprise given the outliers noted above. If they are removed the p-value becomes 0.10. If we leave

18 Formally, this is the “precision” parameter n. The variance of the inferred latent belief distribution
is equal to μ(1+μ)/(1+n), where μ is the mean.
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them in, and allow for individual heterogeneity in the variance, the p-value becomes 0.13 as shown in

the bottom panel of Table 2.

Apart from these two cases, the evidence is clearly consistent with the claim that we have

elicited belief distributions whose averages are close to the true means of the stimuli. 

B. Eliciting Distributions Versus Probabilities

We conduct a test of the effect of risk aversion by comparing elicited beliefs for the same

physical stimulus but using different scoring rules. As is well known, the QSR for binary events will

elicit biased responses if the subject is risk averse: intuitively, the subject is drawn to report 50% so

as to equalize earnings under each possible outcome, providing subjective beliefs are not

degenerate.19 In sessions 1 through 4, we compare the elicited belief distributions discussed above

with elicited probabilities based on the QSR for binary events, as shown in Figure 8.20 In this case

the binary event was a single draw from Bingo Cage 2 containing the red and white balls. Although

all subjects within a given session are presented with the same physical stimulus, the two groups of

19 A potential confound is the initialization of the token allocation at 50 tokens to each two bins in
Figure 8. This might have generated an “anchoring effect” in which subjects were drawn to report 50 tokens
to each bin for reasons other than risk aversion. Online appendix D explains why we deliberately chose this
initialization and, more importantly, reviews evidence from Andersen, Fountain, Harrison and Rutström
[2014] that there is no systematic or statistically significant evidence of anchoring on initial allocations in this
type of task.

20 A referee makes the astute observation that there are two, potentially confounding, issues to be
considered. First, if one is not careful in selecting the K discrete intervals for the distribution elicitation task
one could find no difference between the elicited distribution and the elicited probability since the former
would not have much discriminatory power. For instance, if K=2 one would not be able to tease the two
apart. In the experiments reported here it is an easy matter to select 10 intervals that are a priori informative,
but in general applications this might require some care. A practical, field example is provided by Harrison
and Phillips [2014], where the intervals for subjective belief elicitation of 11 global financial risks are selected
by first estimating a simple econometric time series model and using it to forecast a 95% confidence interval
from the data. Selecting intervals for the belief elicitation that span that interval provide informative
comparisons of the forecasts of a statistical model and the subjective beliefs of Chief Risk Officers, which is
the objective of the exercise from a risk management perspective. Second, even if one is careful to select, say,
10 intervals to span a wide range of responses, there is no guarantee that subjects will report more than 2 of
those intervals. Appendix F in the Online Supplement demonstrates that this potential concern is not
applicable in our case, since we observe over 70% of reports in the 10bin treatments spanning more than 2
intervals.
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subjects face different tasks: in the binary case the individual is betting over their subjective

perception of an order statistic, and in the 10-event case the individual is betting over their

subjective perception of a sufficient statistic of the population. Nonetheless, for the sessions in

which the stimuli were not close to 50% already, sessions 1 through 3, we observe in Figure 9 a

striking tendency for the reports using the binary scoring rule to be closer to 50% than to the true

proportion. This is perfectly consistent with our predictions, since risk aversion has a significantly

biasing effect for the binary scoring rule, and virtually none for the 10-event scoring rule.21

We now undertake a formal statistical test of the hypothesis that the average of the 2bin and

10bin treatments are the same. In this case we add a binary covariate to the interval regression

model to identify the 2bin responses, and test the statistical significance of that variable’s coefficient

on the mean of the latent subjective belief distribution.22 For sessions 1, 2 and 3 the p-values on

these tests are each less than 0.0001, and for session 4 the p-value is 0.53. These results are

consistent with the conclusions drawn from Figure 9.

5. Conclusions

These results provide strong support for the use of practical methods for eliciting subjective

belief distributions over continuous events. Contrary to the case in which one elicits subjective

probabilities over binary events, there is a priori and empirical support for not needing to adjust or de-

21 An astute referee notes that while this striking difference in the 2bin distortion and 10bin distortion
is in the direction predicted by risk aversion, the size of the distortion in the 2bin treatment is larger than can be
explained by risk aversion due to diminishing marginal utility alone. In fact, we conjecture that it is due to the
sharp effects of probability weighting, which also can generate risk aversion. The quantitative importance of
probability weighting in the 2bin case is discussed and demonstrated by Andersen, Fountain, Harrison and
Rutström [2014] in closely comparable experiments and samples. Harrison and Ulm [2016] demonstrate the
same quantitative importance in the 10bin elicitation procedure considered here, by demonstrating how to
recover latent beliefs when individuals probability weight, and showing that the distortions can be significant
(e.g., their Figures 4, 10 and 12).

22 The responses from the 2bin treatment provide non-interval, point data, but these can be pooled
with the interval data from the 10bin treatment.
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bias the reports for continuous events on account of risk aversion.23

Our findings are limited to agents who are assumed to follow SEU. One would ideally also

like to have comparable procedures for eliciting whole distributions under alternative theories of

decision making under risk, uncertainty or ambiguity, but this is a challenging task. Most popular

alternatives to SEU allow for probability weighting behavior to occur, leading to decision weights

that are non-additive (or directly assume non-additive decision weights). This adds a fundamental

identification problem when trying to infer subjective beliefs. One can solve it, to some degree, by

using methods developed for inferring subjective probabilities for binary events24, and undertaking

multiple elicitations and inferences to slice up the subjective distribution. For instance, instead of

eliciting the complete distribution for the percentage return on the Standard and Poors Index in one

year, one could elicit the probability that it is below -5%, between -5% and 0%, between 0% and

5%, and then that it is greater than 5%. This information could be then used directly as a coarse

subjective belief distribution for the individual, or as the basis for some inferred parametric

distribution.25 However, it obviously adds several “chained” elicitation tasks, and requires calibration

of each inference to risk attitudes or probability weighting behavior, depending on what model of

behavior is assumed. We see our results as complementary to this approach: at the cost of assuming

23 This is not the same as eliciting a series of binary subjective probabilities and “knitting together” an
elicited subjective belief distribution. Our approach is to elicit the distribution in one task, not in a number of
independent tasks. Undertaking a series of binary elicitations runs the risk of order effects, or the risk of
elicited probabilities not summing to 1. It is also much harder to correctly estimate standard errors for the
inferred latent distribution when making a series of independent inferences about binary slices of the
underlying distribution. Of course, in future work it might be interesting to compare the consistency of
elicited distribution from one task with constructed distribution from a series of binary elicitations.

24 For example, Offerman, Sonnemans, van de Kuilen and Wakker [2009], Karni [2009] or Andersen,
Fountain, Harrison and Rutström [2014], who each explicitly consider the case of probabilistically
sophisticated non-SEU agents.

25 An excellent example is the evaluation of the Survey of Economic Expectations responses on equity
returns in Dominitz and Manski [2011; §2.2], although they do not consider the effects of risk aversion and
probability weighting on inferences.
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SEU, we argue that one can reliably infer whole subjective distributions in one task up to the

discretization of the support space used in the elicitation task.26 One task for future research is to

compare elicited distributions with our approach and elicited “chained” distributions, where one can

correct the latter for possible non-SEU behavior. Another task for future research is to use choices

over objective risk to characterize subjects that are more likely to be EUT-consistent, and to make

the weaker assumption that EUT-consistency implies SEU-consistency.27

26 What is “one” task and what is “several tasks on one computer screen” is a semantic matter we do
not want to be overly dogmatic about.

27 To implement this robustness check one would add another series of tasks in which subjects make
choices over objective risk so that one could test whether the subject was EUT-consistent, compared to some
alternative such as Rank Dependent Utility (RDU), at a given significance level. It is then possible to see if the
sub-sample of EUT-consistent subjects report different beliefs than the entire sample. Harrison [2014]
implements this approach, and finds no statistical difference in elicited beliefs of RDU-consistent subjects. Of
course, the maintained assumption here is that EUT-consistency is a useful measure of whether an individual
is SEU-consistent.
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Note: This figure provides an example showing how a subjective probability distribution can deviate
from the reported distribution under a scoring rule for the hypothetical case of a distribution with 10
possible outcomes. It compares a unimodal symmetric subjective probability distribution (gray bars)
and implied optimal report (black “droplines”) under the quadratic scoring rule α + β [ (2 × r k)  -  '
i =1ÿK (r i )

 2 ], for the case in which K = 10,  α = β = 25. We further assume a subjective expected
utility maximizer with a CRRA utility function u(w) = w 1-D/(1-D) such that D = 0 denotes risk
neutrality and D > 0 denotes risk aversion. 

0

.1

.2

.3

.4

pk

rk

1 2 3 4 5 6 7 8 9 10
Outcome k

ρ = 0

0

.1

.2

.3

.4

pk

rk

1 2 3 4 5 6 7 8 9 10
Outcome k

ρ = 1

0

.1

.2

.3

.4

pk

rk

1 2 3 4 5 6 7 8 9 10
Outcome k

ρ = 2

0

.1

.2

.3

.4

pk

rk

1 2 3 4 5 6 7 8 9 10
Outcome k

ρ = 3

Figure 1: Optimal Reports Assuming Unimodal, Symmetric
Beliefs and Subjective Expected Utility

-21-



Note: This figure provides an example showing how a subjective probability distribution can deviate
from the reported distribution under a scoring rule for the hypothetical case of a distribution with
ten possible outcomes. It compares a unimodal asymmetric subjective probability distribution (gray
bars) and implied optimal report (black “droplines”) under the quadratic scoring rule α + β [ (2 × r k) 
-  ' i =1ÿK (r i )

 2 ], for the case in which K = 10,  α = β = 25. We further assume a subjective expected
utility maximizer with a CRRA utility function u(w) = w 1-D/(1-D) such that D = 0 denotes risk
neutrality and D > 0 denotes risk aversion. 
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Figure 2: Optimal Reports Assuming Unimodal, Asymmetric
Beliefs and Subjective Expected Utility
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Note: This figure shows how the average of the reported distribution deviates from the average of
the true subjective distribution in the unimodal, asymmetric case. We use the same parameters used
in Figure 2 with the scoring rule α + β [ (2 × r k)  -  ' i =1ÿK (r i )

 2 ], for the case in which K = 10,  α =
β = 25 and a subjective expected utility maximizer with a CRRA utility function u(w) = w 1-D/(1-D)
such that D = 0 denotes risk neutrality and D > 0 denotes risk aversion. The bold line shows the
assumed mean of the subjective distribution and the dotted line shows how the mean of the
reported distribution changes as risk aversion increases as D increases.
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Table 1: Experiment Design and Sample Sizes

Treatments
Total

Session 10bin 2bin

1 15 14 29

2 15 16 31

3 15 17 32

4 13 14 27

5 15 15

6 18 18

7 18 18

8 14 14

Total 123 61 184

Notes: Treatment 10bin is elicitation of a distribution with the QSR, treatment 2bin is elicitation of a
probability with the QSR.
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Table 2: Interval Regression Results

Session
True % of
Red Balls

(True)

Estimated
Mean in 10bin 

(μ10)

Standard Error
of Estimated

μ10

95% Confidence
Interval for μ10

p-value for
H0: μ10 = TrueLower

Limit
Upper
Limit

A. Without Controls

1 0.69 0.71 0.03 0.66 0.77 0.42

2 0.13 0.14 0.03 0.08 0.21 0.70

3 0.10 0.12 0.006 0.11 0.13 0.002

4 0.57 0.59 0.04 0.51 0.66 0.67

5 0.41 0.37 0.02 0.32 0.42 0.11

6 0.62 0.59 0.02 0.55 0.64 0.27

7 0.11 0.25 0.06 0.12 0.37 0.03

8 0.33 0.35 0.03 0.30 0.41 0.42

B. With Controls for Individual Heterogeneity of Variance

3 0.10 0.11 0.007 0.098 0.12 0.09

7 0.11 0.15 0.03 0.097 0.20 0.13
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Figure 4: Initial Belief Elicitation Interface

Figure 5: Typical Belief Elicitation Response

-26-



True Percent

0

10

20

30
P

er
ce

nt
 o

f 
R

es
p

on
se

s

5% 15% 25% 35% 45% 55% 65% 75% 85% 95%
Mid-Point of Elicitation Interval

Figure 6: Elicited Subjective Distribution Pooled Over
15 Subjects and With True Percent of 69%

0 10 20 30 40 50 60 70 80
Percent of Red Balls

8
7
6
5
4
3
2
1

Pooled average for each of 8 sessions
Sample s izes: 15, 15, 15, 13, 15, 18, 18 and 14

Figure 7: Average Elicited Subjective Belief Distribution

True Percent Average Elicited Percent

-27-



Figure 8: Subjective Probability Elicitation Interface
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Appendix A: Proofs for the Discrete Case

Lemma 1. Suppose a subjective discrete probability distribution {p1, p2 ,..., pk ,..., pK} over K
states of nature and utility function u(w) over random wealth. If the subject is given a scoring rule
determined by w(k) = α + β2rk - β ' i=1ÿK (r i )

2, then the optimal report r  = {r1, r2,..., rk ,..., r K} solves
the following problem:

Max{ r }  Ep[ u(w) ] subject to  ' i=1ÿK (r i ) = 1 (A.2)

where Ep[ u(w) ] = 'j=1ÿK  pj × u[ α + β2r j - β ' i=1ÿK (r i)
2 ]. In some experimental configurations there

may be K additional constraints: r i $ 0 for i = 1,ÿ, K. These constraints are not included in (A.2)
because they are automatically satisfied by the solution (A.1) for both risk-averse and risk-loving
individuals.

Problem (A.2) can be solved by maximizing the Lagrangian

‹ = ' j=1ÿK  pj × u[ α + β2r j - β ' i=1ÿK (r i)
2 ] ! λ [ ' i=1ÿK (r i ) - 1]. (A.3)

The solution to the problem must satisfy K+1 conditions. The K first order conditions with respect
to report rk, œ k = 1,ÿ, K, are 

M‹/Mr k = ' j=1ÿK ( pj × Mu(w( j ))/Mr k  ) ! λ = 0, œ k = 1,ÿ, K (A.4)

where Mu(w( j ))/Mr k = Mu/Mw *w=w(j) × (2βδ jk ! 2β × r k) and δ jk is equal to 1 if j = k and equal to zero
if j …k. The (K+1)-th condition is the first order derivative of (A.3) with respect to the Lagrangian
constant

' i=1ÿK (r i ) ! 1 = 0. (A.5)

We can simplify the K equations in (A.4) as

2βpk × ( Mu/Mw *w=w(k) ) ! 2βrk ' j=1ÿK  pj × ( Mu/Mw *w=w(j) ) ! λ = 0, œ k = 1,ÿ, K 

or pk × ( Mu/Mw *w=w(k) ) ! rk Ep [ Mu/Mw ] = λ/2β, œ k = 1,ÿ, K. (A.4N)

Summing over the K first-order conditions we get 

Ep [ Mu/Mw *w=w(k) ] ! ' k=1ÿK r k Ep [ Mu/Mw ] = K λ/2β . (A.6)

Notice that ' k=1ÿK r k Ep [ Mu/Mw ] = Ep [ Mu/Mw ] because the expectation term is a constant and
because of (A.5). Then (A.6) implies that K λ/2β = 0, which can only be satisfied if λ = 0 since K>0
and β>0. This result and (A.4N) implies that the solution to problem (A.2) must satisfy the following
K conditions:

pk × Mu/Mw *w=w(k) !r k × Ep[Mu/Mw] = 0, œ k = 1,ÿ, K. 
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Lemma 2. Assume that the conditions of Lemma 1 in (A.1) are satisfied and the distortions
between the actual and reported probabilities are given by r k = pk + g k , with ' k=1ÿK g k = 0. Define 
f k  = Mu/Mw *w=w(k) and f = Mu/Mw. Then the K conditions in (A.1) become

pk ×  fk  ! pk × Ep[ f ] ! gk × Ep[ f ] = 0, œ k = 1,ÿ, K. (A.1N)

Solving for gk we get the K conditions stated in Lemma 2:

gk = pk × { fk ! Ep[ f ]}/Ep[ f ], œ k = 1,ÿ, K. 

Lemma 3. The intuition for the result is as follows. Suppose that {r1, r2, ÿ, rk, ÿ, r K}* is a
solution to (A.2). Then if pi = pj for some i and j, the subject must assign the same weight to reports
in states i and j, that is ri = rj. The proof is then by contradiction.

Assume that pi = pj for some i and j. Now suppose without loss of generality that ri > rj. By
definition of the deviation of subjective and reported probabilities the latter implies that gi > gj

because

ri = pi + gi  > rj = pj + gj. (A.8)

Since ri  > rj, we also know that w( i ) > w( j ), and by the concavity of u(.) the latter implies that fi < fj.
Therefore 

{ fi ! Ep[ f ]}/Ep[ f ] < { fj ! Ep[ f ]}/Ep[ f ]. (A.9)

But by Lemma 2, (A.9) implies that ri < rj, which is a contradiction. 

Lemma 3 does not hold for risk loving individuals. The following counterexample proves it.
Suppose that u(w) = w 2, p 1 = ½ and p 2 = ½, α = 0 and β = 1. We see that

Ep[ u(w(r 1)) ] = 0.5 (2 r 1 ! r 1
2 ! (1-r 1)

2 )2  + 0.5 (2 (1-r 1) ! r 1
2 ! (1-r 1)

2 )2 

= 4 r 1
4 ! 8 r 1

3 +8 r 1
2 !4 r 1 + 1 

 MEp[ u ]/Mr 1 =   16 r 1
3 ! 24 r 1

2 +16 r 1 !4.

To maximize subjective EU set the first order condition equal to zero, and then check the end
points r 1 = 0 and r  1 = 1. We then have

r 1
3 ! (1½) r 1

2 + r 1 !¼ = 0
(r 1 ! ½)(r 1

2 !r 1 + ½) = 0.

Solving for the real root we get r 1 = ½. By reporting r 1 = ½, the subjective EU is equal to ¼, while
if the report is r 1 = 1 or r 1 = 0 the subjective EU is equal to 1. Thus symmetry is broken, and the
optimal report is (r 1 = 1, r 2 = 0) or (r 1 = 0, r 2 = 1): that is, p 1 = p 2 but r 1 … r 2.

Proposition 1. A symmetric subjective distribution for random variable у with mean μ is
one of two types: odd and even. Take the case of the odd type first. Consider a subjective probability
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pk and report rk, for k = 1, ÿ, n, with n being an odd integer. Let m = (n+1)/2 such that the
subjective probability pm is the likelihood that the random variable takes the value of μ. Also let pm!i

and pm+i be, respectively, the subjective probability that the random variable takes the value of μ!η i

and μ+η i, for i = 1...m!1 and pm!i = pm+i.

By Lemma 3, rm!i = rm+i ,

Ep[ у ] = ' i=1...m!1 pm!i (μ!ηi) + ' i=1...m!1  pm+i (μ+ηi)+ pm μ (A.10)
= ' j=1...n pj μ + ' i=1...m!1 [ pm!i ! pm+i ] ηi = μ + 0 = μ,

and Er[ у ] = ' i=1...m!1 rm!i (μ!ηi) + ' i=1...m!1 rm+i (μ+ηi)+ rm μ (A.11)
= 'j=1...n rj μ + 'i=1...m!1 [ rm!i ! rm+i ] ηi = μ + 0 = μ.

By (A.10) and (A.11) we have that Ep[у]!Er[у] = 0. The even case is similar except that m = n/2 and
the random variable taking a value equal to μ has no weight. 

Lemma 4. Follows from Lemma 1. If r i = r j then

p i Mu/Mw|r i
  ! r i Ep[Mu/Mw]=0 and p j Mu/Mw|r j

 ! r j Ep[Mu/Mw]=0.  (A.12)

Thus,

p i  = r i Ep[Mu/Mw]/ Mu/Mw|r i = r j  Ep[Mu/Mw]/ Mu/Mw|r j = p j . 

Proposition 2. Identical to Proposition 1, with rk and pk, œk, interchanged at all steps. 

Proposition 3. Using Lemma 2, if pi = 0, then gi=0 and ri = 0. The converse claim follows
from Lemma 1: since Mu/Mw *w=w(k) and Ep[ f ] are both positive, if rk = 0 then pk = 0. 

Proposition 4. We will show that › p* such that if pk > p* then pk > rk > p* and  p* is the
value such that

Mu/Mw *w=w(p*) = Ep[ Mu/Mw ]. 

From Lemma 2 we know that 

gk = pk × {Mu/Mw *w=w(k) ! Ep[ Mu/Mw ]}/Ep[ Mu/Mw ], œ k=1,ÿ, K.

We also know that w(k) is monotonically increasing in r k , and therefore Mu/Mw is monotonically
decreasing in r k . If  rk > (<) p*, gk<(>)0,  rk < (>) pk by definition. Since p* <(>) rk , then   p* <(>)
rk<( >) pk. 

Proposition 5. By Lemma 2 we know that rk = pk × {Mu/Mw *w=w(k)}/Ep[ Mu/Mw ]. Let p* be
selected such that Mu/Mw *w=w(p*) = Ep[ Mu/Mw ]. Then let u(w) = w !c [w !w(p*)]2 without loss of
generality. Therefore 

Ep[ Mu/Mw ]=Mu/Mw *w=w(p*) =1. 
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Let  rk = p* + δk be the deviations in reports with respect to p* due to risk aversion. Additionally,

w(k) = α + β2r k - β ' i=1ÿK (r i)
2

w(k) = α + β2(p* + δk) - β ' i…k [(p
* + δi)

2] - β (p* + δk)
2 (A.13)

and w(p* ) = α + β2p* - β ' i=1ÿK (r i)
2

w(p* ) = α + β2(p*) - β ' i…k [(p
* + δi)

2] - β (p* + δk)
2. (A.14)

Both (A.13) and (A.14) imply that w(k) ! w(p* ) = β2δk. Taking the derivative of the utility function
with respect to w and evaluating at w(k), we obtain

Mu/Mw *w=w(k) = 1 ! 2c [w(k) ! w(p* )] = 1 ! 2c [ β2δk] = 1 ! 4c βδk. (A.15)

By the definition of rk, Mu/Mw *w=w(k) and  Ep[ Mu/Mw ] we have

 rk = p* + δk =  pk × {Mu/Mw *w=w(k)}/Ep[ Mu/Mw ],

which implies that

p* + δk =  pk × {1 ! 2c [ β2δk] }/{1}.

Solving for δk we obtain δk = {pk ! p*}/{1 + 4c β pk }. If pk … 0, then lim c v 4 δk = 0 and the
deviations become vanishingly small for sufficiently risk-averse individuals.

Now prove that p* .1/K, where K is the number of states for which pk … 0. By definition 

' i=1ÿK (r i ) = ' i=1ÿK (p* + δk).

If pk = 0, then lim c v 0 δk = pk ! p* and lim c v 4 rk = p* + δk = pk = 0. If pk … 0, then ' pk …0 (δk) tends to
zero and  ' pk …0 (p

* ) = 1 = K p* = 1, so  p* = 1/K in the limit. These two facts combine to prove that
if pk … 0 then lim c v 4 rk = lim c v 4 p

* + δk = 1/K. That is, the reported probabilities approach a
uniform distribution over the outcomes where the subjective probability is non-zero. 

Proposition 6. If a subject exhibits utility function u(w) = w + δ × u*(w), we know from
(A.1N) that the following K conditions must be satisfied:

pk × [1+δ × Mu*/Mw *w=w(k)]!pk × {1+δ Ep[ Mu*/Mw ]}!gk × {1+δ Ep[ Mu*/Mw ]} = 0, œ k = 1,ÿ, K, 

where gk is defined in (A.7) for Lemma 2. Solving for gk we obtain

gk = δ pk × {Mu*/Mw *w=w(k) ! Ep[ Mu*/Mw ]}/{1+δ Ep[ Mu*/Mw ]}, œ k = 1,ÿ, K . (A.16)

Assume a random variable y with K possible states of nature. Define Er[ y ] = 'k=1ÿn r k yk and Ep[ y ]
= 'k=1ÿn p k yk. Then the difference of the expected value of y under measures {r1, r2, ÿ, rk, ÿ, r K}
and {p1, p2, ÿ, pk, ÿ, p K} is equal to Er[ y ] ! Ep[ y ]  = 'k=1ÿK gk yk . Substituting for gk using (A.16), it
can be shown that the denominator {1+δ Ep[ Mu*/Mw ]} drops out (take a Taylor Series expansion of
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the reciprocal, multiply terms with the numerator, and drop higher-order terms). Then we have 

Er[ y ] ! Ep[ y ] .  δ  ×  'k=1ÿK pk{Mu*/Mw *w=w(k) ! Ep[ Mu*/Mw ]} yk

.  δ  × {Ep [ Mu*/Mw × y ] ! Ep [ Mu*/Mw ]  Ep [ y ]}
 .  δ  × Cov p[Mu*/Mw, y] = Cov p[Mu/Mw, y]. 

Proposition 7. From Proposition 6 we know that

Er[ y ] ! Ep[ y ] .  δ  ×  'k=1ÿK pk{Mu*/Mw *w=w(k) ! Ep[ Mu*/Mw ]} yk (A.17)

Now, pk = rk !gk and 

gk =  δ × pk × {Mu*/Mw *w=w(k) ! Ep[ Mu*/Mw ]},

also from proposition 6. Therefore,

Er[ y ] ! Ep[ y ] .  δ  ×  'k=1ÿK rk{Mu*/Mw *w=w(k) ! Ep[ Mu*/Mw ]} yk

                             ! δ2  ×  'k=1ÿK pk{Mu*/Mw *w=w(k) ! Ep[ Mu*/Mw ]}2 yk. (A.18)

The second term above is a second order in δ and can be removed. Thus

Er[ y ] ! Ep[ y ] .  δ  ×  'k=1ÿK rk{Mu*/Mw *w=w(k) ! Ep[ Mu*/Mw ]} yk. (A.19)

We now see that 

Ep[ Mu*/Mw ] . 'k=1ÿK pk Mu*/Mw *w=w(k)

. 'k=1ÿK rk Mu*/Mw *w=w(k) ! δ 'k=1ÿK pk {Mu*/Mw *w=w(k) ! Ep[ Mu*/Mw ]}Mu*/Mw *w=w(k)

.Er[Mu*/Mw ] ! δ [Ep[ (Mu*/Mw )2]!(Ep[ (Mu*/Mw )])2]
.Er[Mu*/Mw ] ! δ Varp[Mu*/Mw ].

Substituting into (A.19) we get

Er[ y ] ! Ep[ y ] .  δ  ×  'k=1ÿK rk{Mu*/Mw *w=w(k) ! Er[ Mu*/Mw ]} yk

+ δ2  ×  'k=1ÿK rk Varp[Mu*/Mw ]  yk. (A.20)

Eliminating the second order term gives us

Er[ y ] ! Ep[ y ] .  δ  ×  'k=1ÿK rk{Mu*/Mw *w=w(k) ! Er[ Mu*/Mw ]} yk

                     .  δ  ×  {Er[ Mu*/Mw × y]! Er[ Mu*/Mw ]×Er[ y ]}
.  δ  ×  Cov r[Mu*/Mw, y] 

. Cov r[Mu/Mw, y] 

To prove Proposition 8 we must first prove Theorem 1, which is interesting in its own right.
Lemma 1 will then follow for all proper scoring rules. Since Proposition 8 states that Propositions 1-
7 generalize and those propositions follow from Lemma 1, Proposition 8 will be proved. We follow
Armantier and Treich [2013] who proved the result for 2 elicitation bins. We prove an analogous
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theorem for an arbitrary number of bins.

Define a scoring rule S where S1(r1,..., rn), S2(r1,..., rn),..., and Sn(r1,..., rn) represent the payoffs
for each of the possible states of nature 1,..., n. Sk is the payoff if state k is realized after reports r1,...,
rn, where rn = 1 - ' i=1ÿn-1 r i. Let 

f (p1,..., pn; r1,..., rn) =  ' i=1ÿn piSi(r1,..., rn). 

A scoring rule is “proper” if the maximizing arguments are ri = pi for all i.

Theorem 1: A scoring rule is proper if and only if there exists a function g (q1,..., qn-1) with
conditions on the second derivatives guaranteeing uniqueness and maximization such that 

Sn (q1,..., qn-1) = g - ' j=1ÿn-1 qj Mg/Mqj 

and Sj (q1,..., qn-1) = Sn (q1,..., qn-1) + Mg/Mqj for j 0[1,n-1].

Notice that qn is not an argument in the functions anymore because the latter is defined by q1,..., qn-1.

Necessity (only if).

Let  g (q1,..., qn-1) = max{r*}  f (q1,..., qn-1; r1,..., rn-1) where r*  = {r1
*, r2

*,..., rn-1
*} is the vector of

reports that maximizes the function f.  

By the envelope theorem, we see that

 Mg/Mqj  =  Mf (q1,..., qn-1; r1,..., rn-1)/Mqj|r i = q i œ i 

  = Sj (q1,..., qn-1) - Sn (q1,..., qn-1).

Notice that Sn (q1,..., qn-1) comes from a (1- ' i=1ÿn-1 ri) Sn (r1,..., rn-1) term. Therefore

Sj (q1,..., qn-1) = Sn (q1,..., qn-1) +  Mg/Mqj.

Substituting these into the formula for g, we get 

g (q1,..., qn-1)  = max{r*}  f (q1,..., qn-1; r1,..., rn-1) = f (q1,..., qn-1; q1,..., qn-1),  

since S is a proper scoring rule.

Therefore, 

g (q1,..., qn-1) = ' j=1ÿn-1 qj [Sn (q1,..., qn-1) + Mg/Mqj ] + (1- ' j=1ÿn-1 qj ) Sn (q1,..., qn-1)

      = Sn (q1,..., qn-1) +  ' j=1ÿn-1 qj Mg/Mqj. 
Rearranging terms we get
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Sn (q1,..., qn-1) = g(q1,..., qn-1)-  ' j=1ÿn-1 qj Mg/Mqj. 

Sufficiency (if).

f (q1,..., qn-1; r1,..., rn-1) =  ' i=1ÿn-1 qi Si (r1,..., rn-1) + (1 - ' i=1ÿn-1 qi) Sn (r1,..., rn-1)

        = ' i=1ÿn-1 qi [g - ' j=1ÿn-1 rj  Mg/Mrj +Mg/Mri] 

            + (1 - ' i=1ÿn-1 qi) (g - ' j=1ÿn-1 rj  Mg/Mrj)

We maximize f  by setting the n-1 first order conditions to zero:

Mf/Mrk = ' i=1ÿn-1 qi [Mg/Mrk - ' j=1ÿn-1 rj  M
2g/Mrj Mrk - Mg/Mrk + M2g/Mri Mrk]

 + (1 - ' i=1ÿn-1 qi) (Mg/Mrk - ' j=1ÿn-1 rj  M
2g/Mrj Mrk - Mg/Mrk) = 0.

This gives us

- ' i=1ÿn-1 qi  ' j=1ÿn-1 rj M
2g/Mrj Mrk + ' i=1ÿn-1 qi M

2g/Mri Mrk - ' j=1ÿn-1 rj M
2g/Mrj Mrk

+ ' i=1ÿn-1 qi  ' j=1ÿn-1 rj M
2g/Mrj Mrk = 0.

Cancelling terms, we obtain

' i=1ÿn-1 qi M
2g/Mri Mrk - ' j=1ÿn-1 rj M

2g/Mrj Mrk = 0.

Changing the index from j to i in the second summation of the first order condition above we see
that

' i=1ÿn-1 (qi - ri) M
2g/Mri Mrk = 0. (A.21)

This system consists of  n-1 equations (indexed by k) in the n-1 unknowns (qi - ri) indexed by i . One
solution is clearly qi - ri = 0 (or qi = ri) for all i. Thus, the scoring rule S is proper.

There must be conditions on the second derivatives of g such that this solution is unique and
maximizes, rather than minimizes, f. 

Now we can prove Lemma 1 for general proper scoring rules.

Suppose an individual is now trying to maximize utility V(p1,..., pn-1; r1,..., rn-1) rather than
money f(p1,..., pn-1; r1,..., rn-1). Suppose a utility function of wealth u(W). We have

V(p1,..., pn-1; r1,..., rn-1) = ' j=1ÿn-1 pj u(Sj (p1,..., pn-1)) + pn u(Sn (p1,..., pn-1)), where ' j=1ÿn pj  = 1.

We solve the following n-1 first order conditions to maximize:
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MV/Mrk =  ' j=1ÿn-1 pj Mu/MW|sj  MSj /Mrk + pn Mu/MW|sn  MSn /Mrk.

Now, since Sj = Sn + Mg/Mrj, we see

MSj/Mrk = MSn/Mrk + M2g/MrjMrk

and MV/Mrk = ' j=1ÿn pj Mu/MW|sj  MSn/Mrk + ' j=1ÿn-1 pj Mu/MW|sj  M
2g /Mrj Mrk = 0

= MSn/Mrk ' j=1ÿn pj Mu/MW|sj   + ' j=1ÿn-1 pj Mu/MW|sj M
2g /Mrj Mrk = 0

= MSn/Mrk Ep[Mu/MW] + ' j=1ÿn-1 pj Mu/MW|sj M2g /Mrj Mrk = 0

where Ep[ . ] denotes the expectations operator under probability measure p = {p1,...,pn}.  Now, since
Sn = g -  ' j=1ÿn-1 rj Mg/Mrj, we get

MSn/Mrk = Mg/Mrk - ' j=1ÿn-1 rj M
2g /Mrj Mrk - Mg/Mrk = - ' j=1ÿn-1 rj M

2g /Mrj Mrk, 

 so MV/Mrk = - ' j=1ÿn-1 rj M
2g /Mrj Mrk Ep[Mu/MW] + ' j=1ÿn-1 pj Mu/MW|sj M2g /Mrj Mrk = 0.

Therefore, we obtain

' j=1ÿn-1 [ pj Mu/MW|sj- rj Ep[Mu/MW]] M2g /Mrj Mrk = 0. (A.22)

Equation (A.22) looks just like equation (A.21) except the n-1 unknowns are 

pj Mu/MW|sj - rj Ep[Mu/MW]. 

As before, 

pj Mu/MW|sj - rj Ep[Mu/MW] = 0 œ j. 

This is unique and maximizing from the convexity conditions on g. 

Since Propositions 1-7 follow from Lemma 1, Proposition 8 has been proved.
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