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Abstract

Not-too-tight (NTT) debt limits are endogenous restrictions on debt that

prevent agents from defaulting and opting for a specified continuation utility,

while allowing for maximal credit expansion (Alvarez and Jermann 2000). For

an agent facing some fixed prices for the Arrow securities, we prove that dis-

counted NTT debt limits must differ by a martingale. Discounted debt limits

are submartingales/martingales under an interdiction to trade/borrow, and

can be supermartingales under a temporary interdiction to trade. With high

interest rates and borrowing limited by the agent’s ability to repay debt out of

his future endowments, nonpositive NTT debt limits are unique. With low in-

terest rates, bubbles limited by the size of the total martingale components in

debt limits can be sustained in equilibrium. Bubbles arise in response to debt

limits more restrictive (at the prevailing interest rates) than the total amount

of self-enforcing debt allowed by the underlying enforcement limitations.

1 Introduction

Alvarez and Jermann (2000) construct a theory of endogenous debt constraints in

complete markets economies with limited enforcement of financial contracts. Follow-
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ing Kehoe and Levine (1993) and Kocherlakota (1996), they assume that agents can

default on debt at the cost of being excluded permanently from financial markets.

At each date and state, an agent is allowed to borrow the maximum amount which is

self-enforcing (making repayment individually rational). These endogenous bounds

on debt are referred to as debt limits that are not-too-tight (NTT) for the respective

agent.

Kocherlakota (2008) uncovered a defining characteristic of the set of NTT debt

limits for an agent facing a fixed pricing kernel (or, equivalently, fixed prices of the

one-period Arrow securities at each date and state) and penalty for default: adding

a martingale to some discounted NTT debt limits results in bounds that are also

NTT. The proof is immediate, and is a consequence of agent’s budget constraint

being unchanged under the martingale-inflated bounds, if the initial value of the

martingale is added to his initial wealth.

We prove the converse, which is considerably more involved. A pair of discounted

debt limits that are NTT (for a given agent, pricing kernel and penalties for default)

must differ by a martingale.1 This theorem does not depend on equilibrium con-

siderations and stems only from the optimizing behavior of the agent. We allow

for general penalties for default specified by a continuation utility that can be date

and state contingent, and can depend on endogenous variables such as asset prices.

When the punishment for default is the interdiction to borrow, Hellwig and Lorenzoni

(2009a) proved that discounted NTT debt limits are martingales. With this outside

option, zero bounds on debt are NTT. Thus their result can be seen as a special case

of our theorem.2

This characterization of the NTT debt limits (for an agent facing a given pricing

kernel and penalties for default) can be used to establish their uniqueness, when the

present value of agent’s endowments is finite, that is with high interest rates. In this

case, borrowing should be limited by the agent’s ability to repay his debt out of his

future endowments (Santos and Woodford 1997), or equivalently, by the present value

of future endowments. The difference of two such nonpositive discounted NTT debt

1Let p and φ̄, φ be stochastic processes representing the pricing kernel and two (sequences of)
NTT debt limits. Then p · (φ − φ̄) is a martingale.

2Indeed, set φ̄ identically equal to zero at all dates and states. Hence φ̄ is NTT, and the debt
limits φ are NTT if and only p · φ (= p(φ − φ̄)) is a martingale.
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limits is therefore a uniformly integrable martingale converging to zero, and hence

identically equal to zero. When the punishment for default is the interdiction to trade,

Alvarez and Jermann (2000, Proposition 4.11) prove that nonpositive NTT debt

limits bounded by the present value of debt must exist. Our result establishes that

such debt limits are in fact unique. With an interdiction to borrow as punishment

for default, debt limits identically equal to zero are NTT, hence uniqueness implies

that debt is unsustainable in the presence of high interest rates. This confirms the

conclusion reached earlier by Bulow and Rogoff (1989) and Hellwig and Lorenzoni

(2009a).

The assumption of high interest rates is ad-hoc and extremely restrictive in mod-

els with limited enforcement. In these environments, low interest rates (making the

present value of aggregate endowment infinite) arise in equilibrium as a way to in-

duce agents not to renege on their debt. Such examples are provided in Hellwig

and Lorenzoni (2009a) for penalties resulting in an interdiction to borrow, and by

Antinolfi, Azariadis, and Bullard (2007) for an interdiction to trade. An adaptation

of the theorems of Santos and Woodford (1997) to economies with nonpositive debt

constraints as we have here (see Bidian 2011, Chapter 2), rather than borrowing

constraints, shows that low interest rates are necessary for the existence of asset

price bubbles. The martingale property of NTT debt limits suggests a strong con-

nection to bubbles, as they grow on average at the same rate as the interest rates

and therefore they are positive martingales when discounted by the pricing kernel.

By not discarding low interest rates on a priori grounds, we are able to pursue this

connection.

Kocherlakota (2008) shows that an arbitrary bubble can be injected in the price

of an infinitely-lived asset, without altering agents’ consumption. This can be accom-

plished by an upward adjustment of agents’ debt limits proportional to the size of the

bubble and their initial endowment of the asset, which leaves them NTT. The intro-

duction of a bubble gives consumers a windfall proportional to their initial holding of

the asset, which can be sterilized, leaving their budgets unaffected, by an appropriate

tightening of the debt limits. He refers to this result as the “bubble equivalence the-

orem”. While an intriguing way to generate bubbles, it raises the question whether

the tighter debt bounds needed to sustain the bubble can remain nonpositive, due to

the bubble component they now contain. Clearly arbitrary large bubble injections
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can only be sustained by forcing agents to save arbitrary large amounts. Moreover,

with high interest rates, even initially infinitesimal bubbles explode quickly and make

agents’s debt limits positive. Therefore it is unclear whether bubble injections can

occur at all with nonpositive debt limits. Positive debt limits force agents to save

and seem unreasonable given the presence of enforcement limitations.

We impose nonpositivity of debt limits as an equilibrium requirement. We show

that the necessary and sufficient condition for an equilibrium to sustain bubbles is

the existence of (negative) martingale components in agents’ discounted debt limits.

A bubble of size equal to the total martingale component in agents’ debt bounds can

be injected in equilibrium. Thus the amount of self-enforcing debt restricts the size

of a potential bubble. Rational bubbles enable agents to circumvent tight debt limits

and to achieve identical allocations to those possible under more relaxed, but still

self-enforcing debt limits. Our characterization of NTT debt limits (Theorem 3.5)

implies that low interest rates and asset price bubbles must occur in any equilibrium

with debt limits that are tighter than maximal self-enforcing levels of debt at the

prevailing interest rates.

The type of penalty for default determines the shape of debt limits and the ex-

istence of martingale components in them. When agents are allowed to borrow pre-

determined fixed fractions (possibly zero) of their endowments following default, an

equilibrium can sustain bubbles whenever the equilibrium did sustain debt amounts

in excess of the penalty levels, since by our theorem, the difference between the

equilibrium and the penalty (discounted) debt limits is a martingale. In particular,

for the interdiction to borrow case, agents’ discounted debt limits are martingales,

and an equilibrium can sustain bubbles in assets in unit supply equal to the total

amount of self-enforcing debt (agents’ total debt limits). When the punishment for

default is the interdiction to trade, we prove that the discounted NTT debt limits

of each agent are submartingales, and therefore bubbles can be sustained whenever

total amount of self-enforcing debt does not vanish in present value terms. A bubble

of initial size equal to the limit of discounted total debt limits can be sustained (for

an asset in unit supply).

We present an example in which we describe the equilibria under three types

of penalties for default. With an interdiction to trade, respectively borrow, total

discounted debt is a submartingale with nonzero limit, respectively a nonzero mar-
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tingale. With a temporary (one-period) interdiction to trade, discounted debt limits

are supermartingales, containing martingales components. Therefore bubbles can be

sustained under all three types of punishments for default. They are a robust and

intrinsic feature of economies where restrictions on debt arise endogenously from

enforcement limitations. The example illustrates that there is a complex interac-

tion between the severity of the punishment for default, interest rates, the amount

of risk sharing and the shape of endogenous debt limits. The amount of equilib-

rium risk-sharing is not necessarily comonotonic with the (initial) size of sustainable

bubbles.

The type of bubbles shown to exist in this paper develop in response to artificially

tight credit restrictions at given interest rates (compared to what the underlying

enforcement limitations allow). They are a mechanism to preserve the same amount

of risk-sharing as afforded by maximal self-enforcing debt limits (at the existing

interest rates). Therefore bubbles in this framework are associated to inefficiencies

only insofar as the enforcement limitations induce inefficient levels of interest rates

and risk sharing in the absence of bubbles. Our example suggests that low interest

rates equilibria that can sustain bubbles are not necessarily (constrained) inefficient.

They are inefficient for a permanent or temporary interdiction to trade, even though

this might be just a byproduct of the stationarity of agents’ endowments, as pointed

out by Bloise and Reichlin (2011).3 An interdiction to borrow can lead to both

efficient and inefficient equilibria that can sustain bubbles.

The empirical testing and calibration of models with limited enforcement focused

solely on constrained efficient equilibria with high interest rates, by following the lead

set in foundational theoretical work by Kehoe and Levine (1993, 2001) and Alvarez

and Jermann (2000). Alvarez and Jermann (2001) argue that these models deliver

too much risk sharing since the resulting pricing kernels are still not volatile enough

to explain the equity premium puzzle. Krueger and Perri (2006) also find excessive

risk sharing, which can only partially account for the rise in consumption inequality

in US. In our example, the equilibria with low interest rates result in less risk sharing

than the equilibrium with high interest rates, and by supporting bubbles, they can

3They construct an example, similar to ours, but with nonstationary endowments, where an
efficient allocation is supported as an equilibrium with low interest rates (under a permanent inter-
diction to trade after default).
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also explain a variety of asset pricing puzzles (Bejan and Bidian 2012). Therefore,

allowing for low interest rates has the potential to improve the risk sharing and

asset pricing implications of models with limited enforcement. Testing directly for

the presence of low interest rates is empirically challenging, and a discussion of the

literature is given by Hellwig and Lorenzoni (2009a). Indirectly, one can test for the

presence of bubbles in asset prices, which can arise only under low interest rates.

The paper is organized as follows. Section 2 introduces the model, and defines the

notion of an Alvarez-Jermann equilibrium, which is a sequential equilibrium where

agents are subject to NTT debt limits. In Section 3 we prove that discounted NTT

bounds (for a given agent, pricing kernel and penalties for default) are determined

only up to a martingale. In Section 4 we give necessary and sufficient conditions for

an AJ-equilibrium to sustain bubbles, and show that an interdiction to trade/borrow

results in discounted NTT debt limits that are submartingales/martingales. Section

5 contains an example, in which equilibria that can sustain bubbles are constructed

for the case where the penalty for default is the permanent or temporary (one-

period) interdiction to trade, or the interdiction to borrow. Appendices A and B

contain omitted proofs in Section 3 and 5. Appendix C discusses the efficiency of the

equilibria in Section 5. The Supplemental Material (Bidian and Bejan 2012) con-

tains three parts. The first part establishes necessary and sufficient transversality

conditions for an agent’s optimization problem. They are extensions to stochastic

environments of the conditions given by Kocherlakota (1992), or alternatively, ex-

tensions to nonzero debt constraints of the corresponding conditions in Forno and

Montrucchio (2003). The second part presents an elementary proof of Theorem 3.5

for the case when debt constraints bind in bounded time, that requires no martin-

gale techniques or boundedness assumptions on the discounted debt limits. The

third part complements results in Section 5.1, showing that all the equilibria that

can sustain bubbles under an interdiction to trade can be achieved from fixed, zero

initial wealth for the agents.

2 The model

We consider a stochastic, discrete-time, infinite horizon economy. The time periods

are indexed by the set of natural numbers N := {0, 1, . . .}. The uncertainty is
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described by a probability space (Ω,F , P ) and by the filtration (Ft)t∈N, which is an

increasing sequence of σ-algebras on the set of states of the world Ω generating F ,

that is such that F = σ(∪tFt). Each σ-algebra Ft is interpreted as the information

available at period t and is finite. There is no initial information, therefore F0 =

{∅, Ω}. For ω ∈ Ω and t ∈ N, the set of states that are known to be possible at t if

the true state is ω is Ft(ω) := ∩{A ∈ Ft | ω ∈ A}, and is assumed to have positive

probability.4

A sequence x = (xt)t∈N of random variables (F -measurable real-valued functions)

is an adapted stochastic process (“process” henceforth) if for each t ∈ N, xt is Ft-

measurable.5 We let X be the set of all stochastic processes, and denote by X+ the

processes x ∈ X such that xt ≥ 0 P -almost surely (“a.s.” henceforth) for all t ∈ N.

We write x ≥ 0 if x is a nonnegative process, and x = 0 if xt = 0 P -a.s. for all

t ∈ N. We write x 6= 0 if there exists t such that xt = 0 does not hold (that is,

xt differs from zero on a set of positive probability). All statements, equalities, and

inequalities involving random variables are assumed to hold only P -a.s., and we omit

this qualifier in what follows. When K,L ∈ N \ {0}, let XK×L be the set of vector

(or matrix) processes (xij)1≤i≤K,1≤j≤L with xij ∈ X. For x ∈ XK×L, we write x ≥ 0

(respectively x > 0, x = 0) if for all 1 ≤ i ≤ K, 1 ≤ j ≤ L and t ∈ N, xij
t ≥ 0

(respectively xij
t > 0, xij

t = 0). We write x 6= 0 if there exist t, i, j such that xi,j
t = 0

does not hold (that is, xi,j
t differs from zero on a set of positive probability). Similarly

x 	 0 means that x ≥ 0 but x 6= 0. The set of nonnegative processes x ∈ XK×L

(that is, such that x ≥ 0) is denoted by XK×L
+ .

A function T : Ω → N ∪ {∞} such that {T = n} ∈ Fn, for all n ∈ N, is called

a stopping time. The stopping time T is said to be finite if T < ∞, and bounded if

there exists n ∈ N such that T < n. A stopping time T induces the σ-algebra FT of

events known at T ,

FT := {A ∈ F | A ∩ {T = n} ∈ Fn for all n ∈ N} .

4Using the usual “event tree” terminology, Ft(ω) is the date t node containing state (“leaf”) ω
(for the parallel between the stochastic processes and event tree language, see Leroy and Werner
2001, chapter 21).

5Notice that the process x is integrable, since for any t ∈ N, xt belongs to the space of integrable
random variables L1 := L1(Ω,F , P ), as Ft is finite.
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The operator ET (·) denotes the conditional expectation with respect to FT . Let

x = (xn) ∈ X and T a finite stopping time. The random variable xT is defined

as xT (ω) := xT (ω)(ω), for all ω ∈ Ω. The process x starting at T is defined as the

sequence of random variables (xT+n)∞n=0, which we denote also by ΘT x (hence Θ is

the familiar shift operator). By extension, if A ⊂ X, then ΘT A := {ΘT x | x ∈ A}.

Let S be another stopping time, not necessarily finite, such that T ≤ S. The process

x stopped at S and starting at T is defined as the sequence of random variables

(x(T+n)∧S)∞n=0, where (T + n) ∧ S is an abbreviated notation for min{T + n, S}. We

use also the alternative notation (xn)S
n=T for the process x stopped at S and starting

at T .

There is a single consumption good and a finite number, I, of consumers. An

agent i ∈ {1, 2, . . . , I} has endowments ei ∈ X+, and his preferences are represented

by a utility U i : X+ → R given by U i(c) = E
∑∞

t=0 ui
t(ct), where ui

t(·) = βi
tu

i(·)

and E(·) is the expectation operator with respect to the probability P . We assume

that βi ∈ X+ and satisfies E
∑

t≥0 βi
t < ∞, and that ui : R+ → R is continuous,

increasing, strictly concave and bounded from above by ūi ∈ R and from below by

ui ∈ R. The conditional expectation given the information available at t, Ft, is

denoted by Et(·). Given the absence of information at period 0, E0(·) = E(·). Let

U i
t (c) := Et

∑
s≥t u

i
s(cs) be the continuation utility of agent i after t provided by a

consumption stream c ∈ X+.

Each consumer can trade at each date and state a complete set of one-period

Arrow securities. Their prices determine uniquely the pricing kernel p ∈ X++, and

conversely, the pricing kernel p determines unambiguously the prices of the Arrow se-

curities.6 Additionally, there is a finite number J of infinitely-lived, disposable securi-

ties. Asset j ∈ {1, 2, . . . , J} pays dividends dj ∈ X+, and has an ex-dividend price per

share qj ∈ X+. The dividend and price vector processes are d := (d1, . . . , dJ) ∈ X1×J
+

and q := (q1, . . . , qJ) ∈ X1×J
+ . Consumer i has an initial endowment θi

−1 ∈ RJ
+ of the

infinitely-lived securities, and ai
0 ∈ R additional wealth, and his trading strategy in

the J securities is represented by a process θi ∈ XJ×1, while his trading strategy in

the Arrow securities is given by a ∈ X.

Consumer i faces debt constraints requiring his beginning of period financial

6The price at date t − 1 and state ω ∈ Ω of the Arrow security paying one unit of consumption

at t in states Ft(ω) is related to the pricing kernel p by the formula pt(ω)
pt−1(ω) ·

P (Ft(ω))
P (Ft−1(ω)) .
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wealth to exceed some bounds φi ∈ X, meant to prevent Ponzi schemes. Thus if

consumer i starts at a finite stopping time T with wealth νT (FT -measurable) and

faces constraints φi and prices p, q, he solves the problem max(c,a,θ)∈Bi
T

(νT ,φi,p,q) U i
T (c),

denoted P i
T (νT , φi, p, q), where Bi

T (νT , φ, p, q) is his budget constraint following T ,

defined as

Bi
T (νT ,φi, p, q) := {(c, a, θ) ∈ ΘT X+ × ΘT+1X × ΘT XJ×1 |

cT + ET

pT+1

pT

aT+1 + qT θT ≤ ei
T + νT , as + (qs + ds)θs−1 ≥ φi

s,

cs + Es

ps+1

ps

as+1 + qsθs ≤ ei
s + as + (qs + ds)θs−1,∀s > T}. (2.1)

The indirect utility of the agent is given by

V i
T (νT , φi, p, q) := max

(c,a,θ)∈Bi
T

(νT ,φi,p,q)
U i

T (c). (2.2)

Consumer i can elect to default on his debt and receive a continuation utility

described by a process V i,d. Thus by defaulting at period t, agent i can guarantee

for himself a continuation utility V i,d
t (which is Ft-measurable) and can depend on

exogenous variables such as agents’ endowments, but also on prices p, q, and even

future debt limits φi
t+1, φ

i
t+2, . . .. When we need to emphasize the functional depen-

dence of penalties on prices and debt limits we use the full notation V i,d(p, q, φi),

but in most instances we drop the arguments and do not make the dependence ex-

plicit. The debt constraints φi are determined endogenously to reflect the maximal

amount of debt agents can hold without defaulting. We say that the debt limits φi

are self-enforcing for agent i at prices p, q given penalties V i,d if Bt(φt, φ, p, q) 6= ∅

for all t ∈ N and the agent prefers not to default, V i
t (φt, φ, p, q) ≥ V i,d

t ,∀t ∈ N. The

debt limits φi are not-too-tight (NTT) for agent i (at prices p, q) given penalties V i,d

if and only if

V i
t (φt, φ, p, q) = V i,d

t ,∀t ∈ N. (2.3)

Thus NTT debt limits are self-enforcing bounds that do not restrict credit unnec-

essarily. Alvarez and Jermann (2000), building on the work of Kehoe and Levine
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(1993), assume that the agents are banned from trading following default, that is

V i,d
t := U i

t (e
i),∀t ∈ N. (2.4)

Hellwig and Lorenzoni (2009a), following Bulow and Rogoff (1989), allow agents

to continue to lend, but not to borrow, upon default. Hence agents can renege

on their debt and be required to hold nonnegative wealth thereafter, resulting in a

continuation utility that depends on prices,

V i,d
t := V i

t (0, 0, p, q),∀t ∈ N, (2.5)

where the second argument in Vt(0, 0, p, q) denotes the process equal to zero at any

date and state.

A vector
(
p, q, (ci)I

i=1, (a
i)I

i=1, (θ
i)I

i=1, (φ
i)I

i=1, (V
i,d)I

i=1

)
consisting of a pricing ker-

nel p, prices q for the infinitely-lived securities, consumption (ci), trading strategies

(ai) (in Arrow securities) and (θi) (in the infinitely-lived securities), debt constraints

(φi) and penalties for default (V i,d) is an AJ-equilibrium with initial securities hold-

ings (θi
−1)

I
i=1 and initial additional wealth (ai

0)
I
i=1 if

i. Consumption and portfolios of each agent i are feasible and optimal: (ci, ai, θi) ∈

Bi
0(a

i
0 + (q0 + d0)θ

i
−1, φ

i, p, q) and U(ci) = V i
0 (ai

0 + (q0 + d0)θ
i
−1, φ

i, p, q).

ii. Markets clear:
∑I

i=1 ci
t =

∑I

i=1 ei
t,
∑I

i=1 θi
t =

∑I

i=1 θi
−1,
∑I

i=1 ai
t = 0,∀t ≥ 0.

iii. For each i, φi is NTT given V i,d: V i
t (φi

t, φ
i, p, q) = V i,d

t , for all t ≥ 0.

A pricing kernel p and security prices q under which the problem of an agent

admits a solution have to exclude arbitrage opportunities, which implies that (see

for example Bidian 2011, Chapter 2)

qt = Et

pt+1

pt

(qt+1 + dt+1),∀t ≥ 0. (2.6)

Therefore qt = 1
pt

Et

∑
s>t psds + limn→∞

1
pt

Etpnqn. Let ft(p, d) := 1
pt

Et

∑
s>t psds

denote the discounted present value at t of future dividends d, that is the fundamental
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value of d at period t. It follows that

bt(p, q) :=
1

pt

lim
n→∞

Etpnqn (2.7)

is well-defined and nonnegative, and qt = ft(p, d) + bt(p, q). The process b(p, q)

represents the part of asset prices in excess of fundamental values, and represents

the bubble component in the asset prices q. Notice that for all t ∈ N, ptbt(p, q) =

Etpt+1bt+1(p, q). Hence p · b(p, q) is a nonnegative martingale,7 and b(p, q) = 0 if and

only if 0 = b0(p, q) (= 1
p0

limt→∞ Eptqt).

3 Characterization of not-too-tight debt limits

There is an intimate connection between NTT debt limits and martingales, which will

be explored here. Throughout this section we fix an agent i facing a given pricing

kernel p, prices q for the infinitely-lived securities, and penalties for default V i,d.

We assume that prices p, q exclude arbitrage opportunities, that is they satisfy (2.6).

Thus the optimizing agent is concerned only with his total wealth at the beginning of

each period, rather than the composition of wealth (infinitely-lived securities versus

Arrow securities). If (ci, ai, θi) ∈ Bi
T (νT , φi, p, q), then (c, a′) ∈ Bi

T (νT , φi, p), where

for all s > T , a′
s := as + (qs + ds)θ

i
s−1 (that is, a′

s is the beginning of period s wealth

of the agent), and

Bi
T (νT , φi, p) :={(c, a) ∈ ΘT X+ × ΘT X |aT = νT , (3.1)

cT+t + ET+t

pT+t+1

pT+t

aT+t+1 ≤ ei
T+t + aT+t, aT+t+1 ≥ φi

T+t+1,∀t ≥ 0}.

Therefore we focus here on the simpler budgets of the form (3.1), in which we can

imagine that the agent is choosing directly the (beginning of period) wealth hold-

ings. We denote the problem max(c,a)∈Bi
T

(νT ,φi,p) U i
T (c) by P i

t (νT , φi, p), the optimal

solution to the problem P i
T (νT , φi, p) is denoted by Ci

T (νT , φi, p), and the maximum

7A process m ∈ X is a martingale if mt = Etmt+1, for all t ≥ 0, while m is a submartingale

(respectively supermartingale) if mt ≤ Etmt+1 (respectively mt ≥ Etmt+1) for all t ≥ 0.
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continuation utility attainable by the agent is V i
T (νT , φi, p), that is

Ci
T (νT , φi, p) := argmax(c,a)∈Bi

T
(νT ,φi,p)U

i
T (c), (3.2)

V i
T (νT , φi, p) := max

(c,a)∈Bi
T

(νT ,φi,p)
U i

T (c). (3.3)

As a consequence of the equivalence of the budgets Bi
T (νT , φi, p, q) and Bi

T (νT , φi, p)

(from the point of view of consumption), the consumption component in Ci
T (νT , φi, p, q)

and Ci
T (νT , φi, p) coincide, and

V i
T (νT , φi, p, q) = V i

T (νT , φi, p). (3.4)

We henceforth drop the last argument (q) in the indirect utility of the agent, as

arbitrage opportunities are absent in an equilibrium.

We drop also the agent-specific superscript i for the rest of the section, since we

focus on a single agent. We assume that φ̄ ∈ X are some NTT bounds (for the

chosen agent, at prices p and penalties V d), and that φ ∈ X are some alternative

debt limits, satisfying Bt(φt, φ, p) 6= ∅, for all t. Some of the results of this section

require the following assumption on φ̄, φ:

V d(p, q, φ) = V d(p, q, φ̄), (3.5)

that is, continuation utilities after default are the same under the two debt limits.

Condition 3.5 is clearly satisfied for penalties such as (2.4) and (2.5) since they do

not depend on agent’s debt limits. Set

M := p(φ − φ̄). (3.6)

We show next that discounted NTT constraints are determined only up to a martin-

gale, that is we prove that φ are NTT (for the given agent at prices p and penalties

V d) if and only if M is a martingale. The “if” part (sufficiency) is immediate, and

was shown by Kocherlakota (2008) (for less general penalties for default).

Proposition 3.1. If M is a martingale, then Vt(φ̄t, φ̄, p) = Vt(φt, φ, p) for all t ∈ N

and therefore φ are NTT if (3.5) holds.

12



Proof. It is immediate to check that (c, a) ∈ Bt(φ̄t, φ̄, p) if and only if (c, a+φ− φ̄) ∈

Bt(φt, φ, p). Thus for all t ∈ N, Vt(φ̄t, φ̄, p) = Vt(φt, φ, p) = V d(φ), and equal also to

V d(φ̄) under the additional assumption V d(p, q, φ) = V d(p, q, φ̄), thus φ̄ is NTT.

The next result is related.

Proposition 3.2. If M is a supermartingale, then for any t ≥ 0, Vt(φt, φ, p) ≥

Vt(φ̄t, φ̄, p) with strict inequality on the set {Mt > EtMt+1}.

Proof. It is immediate to check that if (c, a) ∈ Bt(φ̄t, φ̄, p), then (c̃, a + φ − φ̄) ∈

Bt(φt, φ, p), where c̃s := cs + Es (Ms − Ms+1) /ps ≥ cs, for all s ≥ t. Since c̃t > ct on

{Mt > EtMt+1}, the conclusion follows.

Hellwig and Lorenzoni (2009a) proved that the converse of Proposition 3.1 holds,

for the particular case (2.5) when agents are not allowed to borrow following default.

They prove that if φ are NTT, then p · φ is a martingale. Since in their framework

φ̄ := 0 are NTT, their result states that p(φ − φ̄)(= M) is a martingale. We prove

that this is the case, for general penalties V d satisfying (3.5).

Let T be an arbitrary stopping time. Define α(T ) to be the first time the bounds

φ bind after T , when the agent starts with wealth φT at T and faces bounds φ.

Concretely, for each ω ∈ {T < ∞},

α(T )(ω) := inf {t | t ∈ N, t > T (ω), at(ω) = φt(ω), (c, a) ∈ CT (φT , φ, p)} , (3.7)

and for ω ∈ {T = ∞}, α(T )(ω) := ∞. Notice that α(T ) is well-defined, as the

set CT (φT , φ, p) contains a unique element. Indeed, strict concavity of the period

utilities (ut) imply that if if (c, a), (c′, a′) ∈ CT (φT , φ, p), then c = c′, otherwise

((c + c′)/2, (a + a′)/2) ∈ BT (φT , φ, p) would be strictly preferred by the agent to

both (c, a) and (c′, a′). But then for any s ≥ T , Vs(as, φs, p) = Us(c) = Us(c
′) =

Vs(a
′
s, φ, p), hence as = a′

s (Vs is strictly increasing), and therefore (c, a) = (c′, a′).

With multiple optimal paths (without strict concavity), our arguments would go

through, but we would have to be explicit about which optimal path is selected in

the definition of α(T ). We also set α0(T ) := T and for k ≥ 1, we define αk(T )

recursively as αk(T ) := α(αk−1(T )).

13



We present next two ancillary results. First, optimal asset holdings of an agent

are nondecreasing in initial wealth. Secondly, for any period t, the process M stopped

at α(t) converges almost surely. Proofs are in Appendix A.

Lemma 3.3. Given any t ∈ N and Ft-measurable random variables ν ′ ≥ ν,

(c, a) ∈ Ct(ν, φ, p), (c′, a′) ∈ Ct(ν
′, φ, p) ⇒ a′

s ≥ as,∀s ≥ t. (3.8)

Proposition 3.4. Let t ∈ N. For n ∈ N, let ηn := α(t)∧n. If supn≥t Et(pηn
φηn

)+ <

∞,8 then (pηn
φηn

)
n∈N

converges a.s. If, additionally, supn≥t Et

(
pηn

φ̄ηn

)−
< ∞, then

(Mηn
)n∈N converges a.s.

We impose the following boundedness conditions on φ, φ̄.

Assumption 3.1. For each t ∈ N, supn≥t Et(pηn
φηn

)+ < ∞, supn≥t Et(pηn
φ̄ηn

)− <

∞, where ηn := α(t) ∧ n, and (Ms)
α(t)
s=t is uniformly integrable and has a uniformly

integrable lower Snell envelope.

The lower Snell envelope of a uniformly integrable process represents the largest

submartingale less or equal to the process. While Assumption 3.1 seems hard to

verify, it always holds under the following (stronger) condition:

Assumption 3.2. For each t ∈ N, the processes (p·φ)
α(t)
s=t and (p·φ̄)

α(t)
s=t are dominated

by an integrable random variable, that is supn≥t |pηn
φηn

| ∈ L1, supn≥t |pηn
φ̄ηn

| ∈ L1,

where ηn := α(t) ∧ n.

Indeed, Assumption 3.2 guarantees that infn≥t Mα(t)∧n > −∞, and therefore the

process (Ms)
α(t)
s=t has a lower Snell envelope (Kopp 1984, Theorem 2.11.3). Moreover

the uniform integrability conditions required by Assumption 3.1 are satisfied under

the stronger dominance conditions in Assumption 3.2. The technical boundedness

conditions reflected in the above assumptions are needed to insure that the order

of limits and expectations can be exchanged. They are very week, since they are

imposed piecewise on time intervals (t, α(t) + 1), rather than on the whole horizon.

8For x ∈ R, x+ and x− denote the positive and negative part of x, x+ := −(−x ∧ 0) and
x− := −(x ∧ 0).
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Therefore if debt limits bind in bounded time, Assumption 3.2 is automatically sat-

isfied. In Section 5.3, we construct an equilibrium9 in which each agent’s discounted

debt limits p · φ are supermartingales converging to −∞, and therefore p · φ is not

dominated by an integrable random variable. However, in that example α(t) ≤ t + 2

for all t, therefore Assumption 3.2 is trivially satisfied.

We can prove now (the harder) converse to Proposition 3.1, which completes the

characterization of NTT debt limits.

Theorem 3.5. If φ̄, φ are NTT (given p, q, V d) and (3.5) and Assumption 3.1 hold,

then the process M := p(φ − φ̄) is a martingale.

Proof. Fix a natural number t.

STEP 1. We show that

Mt ≥ EtMα(t), (3.9)

where Mα(t) := limn→∞ Mα(t)∧n, which is well-defined by Proposition 3.4. To this end,

let (M̂s)
α(t)
s=t be the (lower) Snell envelope of (Ms)

α(t)
s=t , that is M̂s := infs≤T<α(t)+1 EsMT ,

for t ≤ s < α(t) (Kopp 1984, Theorem 2.11.3).10 It is the largest submartingale

dominated from above by M (that is M̂ ≤ M), and it satisfies M̂s = Ms ∧ EsM̂s+1

and Et(M̂s) = infs≤T<α(t)+1 EtMT . Hence there exist a sequence of stopping times

(Tn) such that Tn ր α(t) and M̂t = limn→∞ EtMTn
= Et limn→∞ MTn

= EtMα(t).

Moreover, since (M̂s)
α(t)
s=t is a uniformly integrable submartingale smaller than M ,

M̂α(t) := limn→∞ M̂α(t)∧n exists, M̂α(t) ≤ Mα(t) and M̂t ≤ EtM̂α(t). We conclude that

M̂α(t) = Mα(t). (3.10)

We prove that (M̂s)
α(t)
s=t is in fact a martingale, rather than just a submartingale.

Assume, by contradiction, that there exists n ∈ N such that {t ≤ n < α(t)}∩{M̂n <

EnM̂n+1} has positive probability. Until we reach a contradiction, all statements

below are restricted to the set {t ≤ n < α(t)} ∩ {M̂n < EnM̂n+1} (which is Fn-

measurable). Notice that M̂n = Mn, since M̂n = Mn ∧ EnM̂n+1 and M̂n < EnM̂n+1.

9The penalty for default is a one-period interdiction to trade, see (5.2).
10The infimum in the definition of M̂s refers to the essential infimum over all finite stopping

times T greater than s and smaller or equal to α(t) (Kopp 1984, Proposition 2.11.1).
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Let (c, a) ∈ Cn(φn, φ, p). Define (ãs)
α(t)
s=n+1 by

ãs := as −
M̂s

ps

≥ φs −
Ms

ps

= φs − (φs − φ̄s) = φ̄s,

and let ãn = φ̄n. Let (c̃s)
α(t)−1
s=n be the consumption supported by asset holdings ã,

thus ps(c̃s − cs) = ps(ãs − as) − Esps+1(ãs+1 − as+1). Hence

pn(c̃n − cn) = −Mn + EnM̂n+1 = −M̂n + EnM̂n+1 > 0,

ps(c̃s − cs) = −M̂s + EsM̂s+1 ≥ 0, n + 1 ≤ s < α(t).

We reached a contradiction, since

V d
n = Vn(φ̄n, φ̄, p) ≥ En




α(t)−1∑

s=n

us(c̃s) + V d
α(t)1α(t)<∞




> En




α(t)−1∑

s=n

us(cs) + V d
α(t)1α(t)<∞


 = Vn(φn, φ, p) = V d

n .

Having established that M̂ is a martingale, (3.9) follows now from (3.10).

STEP 2. We show that

Mt = EtMα(t). (3.11)

For each k ∈ N, repeat the construction in STEP 1 for αk(t) instead of t, on the

set where {αk(t) < ∞}, and obtain the martingale (M̂s)
αk+1(t)

s=αk(t)+1
(the lower Snell

envelope of (Ms)
αk+1(t)

s=αk(t)+1
), dominated from above by M and such that M̂αk+1(t) =

Mαk+1(t).
11 We let also M̂t := EtM̂α(t). By (3.9), the resulting process (M̂s)

∞
s=t is a

supermartingale, M̂ ≤ M , and for all k ≥ 1, M̂αk(t) = Mαk(t).

Construct the process (φ̂)∞s=t defined by φ̂s := φ̄s +M̂s/ps. It follows that φs ≥ φ̂s

for all s ≥ t, and φ̂αk(t) = φαk(t) for all k ≥ 1. Let (c̄, ā) ∈ Ct(φt, φ, p). Then

(c̄, ā) satisfies the Kuhn-Tucker and necessary transversality conditions (Bidian and

11Equivalently, for αk(t) + 1 ≤ s < αk+1(t) + 1 define M̂s := EsMαk+1(t) and use repeatedly the

property (3.8) and (3.9) to show that M̂ ≤ M .
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Bejan 2012, Lemma 1.1)

u′
s(c̄s)

u′
s+1(c̄s+1)

−
ps

ps+1

≥ 0,

(
u′

s(c̄s)

u′
s+1(c̄s+1)

−
ps

ps+1

)
(ās+1 − φs+1) = 0,∀s ≥ t, (3.12)

lim
T→∞

Etβ
T u′(c̄T )(āT − φT ) = 0. (3.13)

We claim that (c̄, ā) is an optimal solution for the problem Pt(φt, φ̂, p) with relaxed

debt limits, that is we show that (c̄, ā) ∈ Ct(φt, φ̂, p). Since ā binds at the same dates

and states under the φ and φ̂ bounds, it follows that (c̄, ā) satisfies the Kuhn-Tucker

conditions for the problem Pt(φt, φ̂, p). Let (c, a) ∈ Bt(φt, φ̂, p) and ηn := αk(t) ∧ n,

for k ≥ 1 and n ≥ t. By (3.12) and Lemma 1.2 in Bidian and Bejan (2012),

Et

ηn−1∑

s=t

(us(cs) − us(c̄s)) ≤ Etu
′
ηn

(c̄ηn
)(āηn

− φ̂ηn
) ≤

≤ Etu
′
ηn

(c̄ηn
)(āηn

− φηn
) +

pt

u′
t(c̄t)

Etpηn
(φηn

− φ̂ηn
) =

= Etu
′
n(c̄n)(ān − φn)1n≤αk(t) +

pt

u′
t(c̄t)

Et(Mηn
− M̂ηn

), (3.14)

as (āηn
− φ̂ηn

)1n>αk(t) = 0. Using (3.13),

lim
n→∞

Etu
′
n(c̄n)(ān − φn)1n≤αk(t) ≤ lim

n→∞
Etu

′
n(c̄n)(ān − φn) = 0,

and limn→∞ Et(Mηn
− M̂ηn

) = 0 since M̂αk(t) = Mαk(t) and M̂αk(t),Mαk(t) are uni-

formly integrable. Making n → ∞ in (3.14), Et

∑αk(t)−1
s=t (us(cs) − us(c̄s)) ≤ 0.

Letting k → ∞, we conclude that (c̄, ā) ∈ Ct(φt, φ̂, p). Therefore Vt(φt, φ̂, p) =

Vt(φt, φ, p) = V d
t , and

V d
t = Vt(φt, φ̂, p) ≥ Vt(φ̂t, φ

′, p) ≥ V d
t .

The first inequality above is strict if φt > φ̂t and the second one is strict if M̂ is not

a martingale, but rather only a supermartingale, by Proposition 3.2. Thus M̂ is a

martingale and φt = φ̂t. Thus Mt = M̂t = EtMα(t), and (3.11) obtains.
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STEP 3. We show that

Mt = EtMt+1. (3.15)

It is enough to prove that

Mt+1 = Et+1Mα(t), (3.16)

since then Mt = EtMα(t) = EtEt+1Mα(t) = EtMt+1, as desired. Let η0 := t + 1 and

for m ≥ 1, ηm+1 := α(ηm) ∧ α(t). Thus ηm ր α(t). Fix l ∈ N. We show first that

Mηl = EηlMηl+1 . On the set {ηl < α(t)}, the monotonicity property (3.8) implies

that α(ηl) ≤ α(t), thus ηl+1 = α(ηl). By (3.11),

1ηl<α(t) · EηlMηl+1 = 1ηl<α(t) · EηlMα(ηl) = 1ηl<α(t) · Mηl .

On the set {ηl = α(t)}, ηl+1 = ηl = α(t). Therefore

EηlMηl+1 = 1ηl<α(t) ·EηlMηl+1 +1ηl=α(t) ·EηlMηl = 1ηl<α(t) ·Mηl +1ηl=α(t) ·Mηl = Mηl .

Using the law of iterated expectations, it follows that

Mt+1 = Mη0 = Eη0Mη1 = . . . = Eη0Mηl = Et+1Mηl ,∀l ∈ N.

By the dominated convergence theorem,

Mt+1 = lim
l→∞

Et+1Mηl = Et+1 lim
l→∞

Mηl = Et+1Mα(t).

Therefore (3.16) holds and hence (3.15) is true, thus M is a martingale.

The idea of the proof is depicted in Figure 1. In Step 1 we construct the Snell

envelope of M on the interval [t, α(t)] (the largest submartingale smaller than M),

and show that it has to be in fact a martingale (otherwise the agent will default when

faced with debt limits φ). It follows that the process M sampled at t and α(t) is a

supermartingale. In Step 2, we construct in a similar fashion the Snell Envelope M̂ for

the process M on the intervals [t, α(t)], (α(t), α2(t)], (α2(t), α3(t)], . . .. By Step 1, M̂

is a supermartingale. Using M̂ , we construct the relaxed bounds φ̂ := φ̄+ M̂/p ≤ φ,

which coincide with φ at α(t), α2(t), . . ., that is whenever φ are binding in the problem

Pt(φt, φ, p). Therefore the optimal solution for Pt(φt, φ, p) is also a solution of the
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t α(t) α2(t) α3(t)

M
M̂

Figure 1: Illustration of the proof of Theorem 3.5.

relaxed problem (with larger feasible set) Pt(φt, φ̂, p) if it satisfies the transversality

condition for the relaxed problem. We show that this is indeed the case, and by

Proposition 3.2, we conclude that φt = φ̂t, and therefore the process M sampled at

t and α(t) is a martingale (rather than just a supermartingale, as shown in Step 1).

Since t was arbitrary, Step 3 uses an optional sampling type of argument in reverse,

and proves that M must be a martingale.

An immediate consequence of Theorem 3.5 is the uniqueness of nonpositive12

NTT debt limits that are bounded by the present value of agent’s future endowments,

assumed finite.

Proposition 3.6. For each t ∈ N, let Yt := 1
pt

Et

∑
s≥t pses and assume Y0 < ∞. Let

φ, φ̄ be NTT given V d and satisfying (3.5). If 0 ≥ φ, φ̄ ≥ −Y , then φ = φ̄.

Proof. Notice that the process p·Y is a uniformly integrable positive supermartingale

converging to zero a.s. and in L1. Thus Assumption 3.1 is satisfied with α(t) replaced

by ∞, and the conclusion follows by Theorem 3.5.

12Nonpositivity implies that there is no forced saving.
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In fact, because of the strong boundedness and convergence assumptions implicit

here, we can give also a direct proof for this proposition using only the first part

of the proof of Theorem 3.5. The processes p · φ, p · φ̄, M := p · (φ − φ̄) and

M ′ := p · (φ̄ − φ) = −M are bounded (in absolute value) from above by p · Y ,

and therefore they converge to zero a.s. and in L1 (being uniformly integrable).

Moreover the lower Snell envelopes of the processes M,M ′ exist, since M and M ′ are

bounded from below by the uniformly integrable submartingale −p · Y . Repeating

the argument in STEP 1 of Theorem 3.5, with α(t) replaced by ∞, it follows that

for all t ≥ 0, Mt ≥ Et limn→∞ Mn = 0. In the same manner, with M ′ taking the

place of M , we infer that M ′ ≥ 0. Thus M = 0 and hence φ = φ̄.

Therefore with high interest rates and borrowing limited by the agent’s ability to

repay his debt out of his future endowments (Santos and Woodford 1997), nonposi-

tive NTT debt limits are unique (for a given agent, pricing kernel and penalties for

default). Proposition 3.6 fills some gaps and gives a unified view of results obtained

for various penalties for default. When the punishment for default is the interdiction

to trade, Alvarez and Jermann (2000, Proposition 4.11) prove that given any se-

quential equilibrium with NTT debt limits and high interest rates, one can construct

an equivalent equilibrium with identical pricing kernel and consumption, but with

nonpositive NTT debt limits bounded by the present value of aggregate endowment.

Proposition 3.6 shows that such debt limits are in fact unique. Moreover, when the

punishment for default is the loss of borrowing privileges, nonpositive NTT debt

limits restricted by the present value of future endowments must be identically equal

to zero, and therefore no borrowing can be sustained in an equilibrium, as pointed

out before by Bulow and Rogoff (1989) and Hellwig and Lorenzoni (2009a).

The assumption of high interest rates is ad-hoc and extremely restrictive in models

with limited enforcement. In these environments, low interest rates arise in equilib-

rium as a way to induce agents not to default. In fact, in the next section, we show

that Theorem 3.5 implies that low interest rates and asset price bubbles must oc-

cur in any equilibrium with debt limits that are tighter than maximal self-enforcing

levels of credit at the prevailing interest rates. Rational bubbles enable agents to

circumvent tight debt limits and to achieve identical allocations to those possible

under more relaxed, but still self-enforcing debt limits.
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4 Bubble injections

The martingale characterization of NTT debts in Proposition 3.1 and Theorem 3.5

can be used to show that robust bubbles can arise in limited enforcement economies.

The self-enforcing debt that can be sustained in an equilibrium can be converted into

asset price bubbles. We compare pairs of AJ-equilibria, therefore to avoid lengthy

notation, we set E :=
(
p, q, (ci)I

i=1, (a
i)I

i=1, (θ
i)I

i=1, (φ
i)I

i=1, (V
i,d)I

i=1

)
, while Ē , Ẽ , Ê

denote similar vectors, with all variables barred, tilded, respectively hatted. We

say that the AJ-equilibria E , Ê are equivalent if pricing kernels, consumptions and

penalties for default coincide: p̂ = p, ĉi = ci, V̂ i,d = V i,d, for all agents i.

Kocherlakota (2008) showed that an arbitrary bubble can be injected in an

infinitely-lived asset, while leaving agents’ budget constraints (hence consumption)

unchanged, as long as the debt constraints of the agents are allowed to be adjusted

upwards by their initial endowment of the asset multiplied by the bubble term.

The introduction of a bubble gives consumers a windfall proportional to their initial

holding of the asset, which can be sterilized, leaving their budgets unaffected, by

an appropriate tightening of the debt limits. He refers to this result as “the bubble

equivalence theorem”. The modified debt constraints bind in exactly the same dates

and states, and they are NTT if the initial bounds were NTT (in his paper, penalties

for default do not depend on asset prices or agents’ debt limits). The result goes

through in our framework with more general penalties for default, assuming that

they are not affected by the the addition of a bubble. Given a pricing kernel p, we

let M(p) be the set of nonnegative processes that are martingales when discounted

by p, M(p) := {ε ∈ X+|p · ε martingale }. Similarly, MJ(p) := (M(p))J ⊂ X1×J
+ .

Proposition 4.1 (Kocherlakota 2008). Let E be an AJ-equilibrium without bubbles

and ε ∈ MJ(p). Assume that penalties V i,d of each agent i satisfy V i,d(p, q, φi) =

V i,d(p, q̂, φ̂i), where q̂ = q + ε and φ̂i := φi + ε · θi
−1. Then Ê is an equivalent AJ-

equilibrium having asset price bubbles given by ε, where for each agent i and each

period t ≥ 0, q̂ = q + ε, θ̂i
t−1 = θi

t−1, âi
t := at + εt(θ

i
−1 − θi

t−1) and φ̂i
t := φi

t + εt · θ
i
−1.

The proof is immediate and relies on the equality of agents’ budgets constraints

in E and Ê . Market clearing conditions are clearly satisfied. Bounds φ̂i remain NTT

by Proposition 3.1, as V i
t (φ̂i

t, φ̂
i, p) = V i

t (φi
t, φ

i, p) = V i,d
t (p, q, φi) = V i,d

t (p, q̂, φ̂i), for
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all t. An AJ-equilibrium E satisfies automatically the condition

V i,d(p, q, φi) = V i,d(p, q + ε, φi + ε · θi
−1), ∀ε ∈ MJ(p),∀i (4.1)

if the penalties for default do not depend on debt limits and prices (interdiction

to trade (2.4)), or if they don’t depend on debt limits and depend on prices only

through the pricing kernel (interdiction to borrow (2.5)). In Section 5.3 we analyze

an example with penalties for default (one-period interdiction to trade, see (5.2))

that depend on debt limits and asset prices, and which nevertheless satisfy (4.1).

Proposition 4.1 uses only the “easy” direction in the characterization of NTT

bounds of Section 3 (Proposition 3.1) and it can be applied to more general environ-

ments. If the long-lived securities dynamically complete the markets or if markets are

incomplete, then a bubble injection can alternatively be achieved through a change

in agents’ trading of infinitely-lived securities, rather than through an adjustment of

agents’ holdings of Arrow securities (Bejan and Bidian 2012, Theorem 2.3).

The bubble equivalence theorem did not receive the attention it deserves, since it

was universally assumed that the new (tighter) debt bounds (φ̂i) required to sustain

the bubble injection in a positive supply asset must eventually become positive, due

to the bubble component they now contain, implying that agents are subjected to

forced saving. This is indeed the case in the presence of high interest rates that make

the present value of aggregate endowment finite. Intuitively, the bubble component

added to debt limits explodes and makes them positive eventually, since it grows on

average at the rate of interest. Formally, the claim follows by adapting the results

of Santos and Woodford (1997), derived for the case of borrowing constraints, to

economies with debt constraints. This is done in Bidian (2011, Chapter 2), where it

is shown that no bubbles can exist in assets in positive supply if the present value of

aggregate endowment is finite and if agents are subject to nonpositive debt limits.13

Therefore low interest rates (which make the present value of aggregate endowment

infinite) are a necessary condition for the tighter debt bounds (φ̂i) of Proposition 4.1

to remain nonpositive when bubbles are added to assets in positive supply.

13Hellwig and Lorenzoni (2009a) make the same point by appealing to the results of Santos
and Woodford (1997) on the nonexistence of bubbles. However, it is unclear how to apply Santos
and Woodford’s (1997) results to their environment with one-period assets, where bubbles are
impossible, and where agents are subject to debt rather than borrowing constraints.
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We subscribe to the view that debt limits have to be nonpositive, as forced saving

seems implausible with enforcement limitations. For the rest of the paper, we make

nonpositivity of debt limits a part of the definition of an AJ-equilibrium. Given an

AJ-equilibrium, we say that it can sustain bubbles (in assets in positive supply) if

there exists an equivalent equilibrium that has a bubble in one of the assets (in

positive supply). Proposition 4.1 seems to suggest that for an equilibrium to sustain

bubbles in positive supply assets, it must be the case that the discounted debt limits

of all agents that have nonzero endowments of the security must contain negative

martingale components. This condition is stronger than needed. The next result

develops necessary and sufficient conditions under which an equilibrium can sustain

bubbles, and characterizes the size of those bubbles. Bubbles can be sustained if and

only if at least one agent has discounted debt limits having a negative martingale

component. The size of the bubbles is limited by the total martingale components

in agents’ debt limits.

Proposition 4.2. Let E be an AJ-equilibrium with nonpositive debt limits and penal-

ties satisfying (4.1) in any equivalent equilibrium. Let ε,m1, . . . ,mI ∈ M(p) such that

φi ≤ −mi for each agent i, and ε·
∑I

i=1 θi,j
−1 =

∑I

i=1 mi, for some asset j ∈ {1, . . . , J}.

If ε 6= 0, there exists an equilibrium equivalent to E, with nonpositive debt limits and

in which the price of asset j is qj+ε, and therefore asset j has a bubble ε. Conversely,

if E has the bubble ε 6= 0 in the price of asset j, then there exists an equilibrium Ê

equivalent to E such that φ̂1 ≤ −
∑I

i=1 mi.

Proof. We construct an equilibrium Ē equivalent to E , with identical debt limits for

the agents, in which agent 1 has all the initial endowment of infinitely lived securities.

This can be accomplished by setting for all t ≥ 0, θ̄1
t−1 =

∑I

i=1 θi
−1, θ̄i

t−1 = 0 if i > 1,

and āi
t := ai

t + (qt + dt)(θ
i
t−1 − θ̄i

t−1) for all i. Showing that Ē is an AJ-equilibrium

is immediate, since agents have identical wealth levels as in the initial equilibrium,

and only the distribution of this wealth between Arrow securities and infinitely-lived

assets is changed.

For the first part, we construct an equilibrium Ẽ equivalent to Ē , in which agents’

debt limits are φ̃1 = φ1 + m1 −
∑I

i=1 mi, φ̃i = φi + mi for i > 1, and for all i ≥ 1,

ãi = āi+ φ̃i− φ̄i, θ̃i = θ̄i. Ẽ is indeed equivalent to Ē by the equality of agents’ budget

constraints established in Proposition 3.1. The conclusion then follows directly from
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Proposition 4.1, applied to Ẽ instead of E .

The second part (the converse) follows from Proposition 4.1, by injecting the

discounted martingale −ε in the price of asset j in the equilibrium Ē . Indeed, price

of asset j remains positive after the negative martingale injection due to the existing

bubble component, and Proposition 4.1 is valid, as agents’ budgets are identical and

market clearing conditions hold. It should be remarked that a negative martingale

injection in an equilibrium without bubbles would lead to negative prices, unraveling

this argument.

Proposition 4.2 shows that an any AJ-equilibrium can sustain bubbles of arbitrary

size on assets in zero supply. Moreover, it can sustain bubbles equal to the sum of

martingale components in agents’ debt limits on assets in unit supply.

We investigate next the existence of (negative) martingale components in debt

limits for some concrete punishments for default, including the most common penal-

ties used in the literature (see (2.4)) and (2.5)). We consider first a relatively general

situation where penalties for default for each agent are described by some exogenous

nonpositive debt restrictions φ̄i for each agent i. By defaulting at t, the agent has

his debt discharged, in exchange for a “fee” |φ̄i
t| at t and tighter future debt limits

φ̄i. The penalties φ̄i ≤ 0 can be arbitrarily small in absolute value, or even zero, in

which case we have an interdiction to borrow upon default, (2.5). For example, |φ̄i|

can be taken to be an arbitrary fraction of agent’s i income.

Proposition 4.3. Let (φ̄1, . . . , φ̄I) ∈ −X1×I
+ . Consider an AJ-equilibrium E with

debt limits φi ≤ φ̄i ≤ 0, and penalties for default given by V i,d
t := V i

t (φ̄i
t, φ̄, p, q), for

all i, t. If φi, φ̄i and p satisfy Assumption 3.1 for each i, then E can sustain bubbles

in assets in positive supply if and only if
∑I

i=1(φ
i− φ̄i) 6= 0. Any ε ∈ M(p) satisfying

ε
∑I

i=1 θi,j
−1 =

∑I

i=1(φ
i − φ̄i) can be injected in asset j as a bubble.

Proof. Theorem 3.5 ensures that for each agent i, the discounted debt limits p · (φi−

φ̄i) are negative martingales. The conclusion follows from Proposition 4.2, since the

penalties for default here do not vary with debt limits and depend on prices only

through the pricing kernel, hence (4.1) holds.

Proposition 4.3 showcases the full power of Theorem 3.5. It shows that under

penalties for default described by some exogenous nonpositive debt limits (φ̄i), an
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equilibrium can sustain bubbles whenever the equilibrium did sustain debt levels

in excess of the penalty levels. In particular, for the interdiction to borrow case

(2.5), agents’ discounted debt limits are martingales, and an equilibrium can sustain

bubbles in assets in positive supply if and only if at least one agent is allowed to

borrow (that is, he is subject to nonzero and nonpositive debt limits).

We analyze now the case when the punishment for default is the interdiction

to trade (2.4). We show that discounted NTT debt limits are submartingales, and

therefore bubble injections resulting in nonpositive debt constraints are possible if

and only if at least one agent has discounted debt bounds with nonzero limit (non-

vanishing discounted debt limits).

Theorem 4.4. Let E be an AJ-equilibrium with penalties (2.4) (no trading after

default). Then for each agent i, p · φi is a submartingale converging a.s. Bubbles

in positive supply assets can be sustained if and only limt→∞ pt

∑I

i=1 φi
t 6= 0. Any

ε ∈ M(p) satisfying εn

∑I

i=1 θi,j
−1 = 1

pn
limt→∞ pt

∑I

i=1 φi
t for all n ∈ N can be injected

in asset j as a bubble.

Proof. Fix an agent i and a period t. Agent i will default at period t, when

starting with wealth φi
t at period t, on the set {ptφ

i
t > Etpt+1φ

i
t+1}. Indeed, let

(c, a) ∈ Ci
t(φ

i
t, φ

i, p). Construct (c′, a′) ∈ Bi
t(φ

i
t, φ

i, p) (see (3.1)) given by c′t := ei
t +(

ptφ
i
t − Etpt+1φ

i
t+1

)
/pt, a′

t := φi
t, and (c′, a′) ∈ Ci

t+1(φ
i
t+1, φ

i, p) (hence a′
t+1 := φi

t+1).

On the set {ptφ
i
t > Etpt+1φ

i
t+1}, c′t > ei

t, and

U i
t (c

′) = ui
t(c

′
t) + EtV

i,d
t+1 > ui

t(e
i
t) + EtV

i,d
t+1 = ui

t(e
i
t) + EtU

i
t+1(e

i) = V i,d
t .

It follows that U i
t (c

′) > U i
t (c) = V i,d

t on the set {ptφ
i
t > Etpt+1φ

i
t+1}, contradicting

the optimality of the path c. Hence ptφ
i
t ≤ Etpt+1φ

i
t+1 for all t and therefore p · φ

is a submartingale. Since φ ≤ 0, the martingale convergence theorem (Kopp 1984,

Theorem 2.6.1) applies, and (ptφ
i
t) converges a.s. to an integrable variable.

For each agent i, let Zi := limt→∞ ptφ
i
t (≤ 0). A simple argument based on

Fatou’s lemma shows that ptφ
i
t ≤ EtZ

i (Kopp 1984, Remark 2.6.5). Define mi
t :=

−EtZ
i/pt, for all t and i. By construction, mi ∈ M(p) and φi ≤ −mi. Moreover,

∑I

i=1 Zi 6= 0 if and only if
∑I

i=1 mi 6= 0. The conclusion follows from Proposition

4.2.
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In the next section we introduce a deterministic monetary economy and study

the AJ-equilibria under three types of penalties for default, showing that bubbles

can be sustained in equilibrium.

5 An example

We consider a deterministic economy with two agents {e, o} with endowments alter-

nating between a high and a low value, but with constant aggregate endowment, as

in Woodford (1990), Kocherlakota (1992, Example 1) or Huang and Werner (2000,

Example 7.1). However, here we introduce enforcement limitations.

Agent e (o) has high endowment yH at even (odd) periods, and low endowment

yL at odd (even) periods, with yL < yH . Thus for all t ≥ 0, ee
2t = eo

2t+1 = yH

and ee
2t+1 = eo

2t = yL. Agent i ∈ {e, o} faces debt bounds (φi
t) and has a utility

U i(c) :=
∑

t≥0 ut(ct), where ut(ct) = βtu(ct), with β ∈ (0, 1) and u is strictly in-

creasing, strictly concave and twice differentiable. We assume that there is enough

heterogeneity in agents’ income or that the discount rate β is high enough so that

interest rates at an autarchic equilibrium are low,

βu′(yL)/u′(yH) > 1. (5.1)

The only infinitely-lived asset is fiat money, paying zero dividends and assumed in

unit supply. Each agent i ∈ {e, o} has an initial nonegative endowment of money

θi
−1 ≥ 0, and additional wealth (in the form of Arrow securities) ai

0. We consider

(alternatively) three types of penalties for default V i,d: interdiction to trade (2.4),

interdiction to borrow (2.5), and a temporary, one-period interdiction to trade fol-

lowing default, after which agents are granted a “fresh-start” and receive back their

initial endowment of money,

V i,d
t := ut(y

i
t) + V i

t+1(qt+1θ
i
−1, φ, p),∀t ∈ N. (5.2)

We focus on AJ-equilibria (p, q, (ci), (ai), (φi), (V i,d)) with unvalued money, that is

with q = 0 where, at each period, the agent with low endowment (low-type agent) is

borrowing constrained, while the high endowment agent (high-type agent) is uncon-
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strained. Thus high-type agents always start the period with wealth equal to their

debt limit. We call such equilibria cyclical, since each agent alternates between being

borrowing constrained or not. Using the results of Section 4, we show that (some

of) these equilibria can sustain bubbles, thus they are equivalent to equilibria with

valued money, in which the value of money is limited by the amount of self-enforcing

debt existing in the bubble-free equilibrium.

In any cyclical equilibria, the first order conditions for agent i ∈ {e, o} in the

problem P i(ai
0, φ

i, p) (at allocations with positive consumption) are

u′(ci
t) ≥ βu′(ci

t+1)
pt

pt+1

, with “=” if ai
t+1 > φi

t+1. (5.3)

Denote the endowment minus consumption of the high-type agent at period t by xt,

with 0 ≤ xt < yH . Thus xt represents the transfer from the high-type agent to the

low-type agent at t. Let πt := pt+1/pt be the one-period bond price at t (the price

at t of the Arrow security paying one unit of good at t + 1). Then the first order

conditions (5.3) for the two agents are equivalent to

u′(yH − xt)

βu′(yL + xt+1)
=

pt

pt+1

(
=

1

πt

)
,∀t ≥ 0, (5.4)

u′(yL + xt)

βu′(yH − xt+1)
≥

u′(yH − xt)

βu′(yL + xt+1)
. (5.5)

Notice that (5.5) can be written as

u′(yL + xt)

u′(yH − xt)
≥

u′(yL + (yH − yL − xt+1))

u′(yH − (yH − yL − xt+1))
,

which holds if and only if

xt + xt+1 ≤ yH − yL. (5.6)

Therefore transfers (xt) and bond prices (πt) are compatible with agents’ first order

conditions if and only if (5.4) and (5.6) are satisfied. Given transfers (xt), pricing

kernels and consumptions are

p0 := 1, pt+1 :=
t∏

s=0

βu′(yL + xs+1)

u′(yH − xs)
; ce

t := ee
t − (−1)txt, co

t := eo
t + (−1)txt. (5.7)

27



We preview the results to follow. When the penalty for default is the interdiction

to trade, there exists a stationary equilibrium characterized by constant transfers

min{x̄, (yH − yL)/2}, where x̄ is the unique strictly positive number satisfying

u(yH − x̄) + βu(yL + x̄) = u(yH) + βu(yL). (5.8)

Moreover, x̄ < (yH − yL)/2 if and only

(1 + β)u((yH + yL)/2) < u(yH) + βu(yL), (5.9)

in which case there is imperfect risk sharing, otherwise perfect risk sharing char-

acterized by constant transfers (yH − yL)/2 obtains.14 In the stationary equilib-

rium, interest rates are high (bond prices are less than 1), and therefore bubbles

cannot be sustained in equilibrium. However, for each initial transfer 0 < x0 <

min{x̄, (yH −yL)/2}, there exists a nonstationary equilibrium (xt) converging mono-

tonically to autarchy, xt ց 0. In all these equilibria, discounted debt limits are

submartingales, and the total credit in the economy equals the equilibrium trans-

fers, xt = −φt, where φt :=
∑

i∈{e,o} φi
t. Moreover (ptxt) is a decreasing sequence

with a non-zero limit, and therefore a bubble of maximal initial size limt→∞ ptxt

(= − limt→∞ ptφt) and vanishing asymptotically (due to low interest rates) can be

sustained in all nonstationary equilibria (Proposition 4.2 and Theorem 4.4).

When the penalty for default is the interdiction to borrow, there exists a unique

stationary equilibrium, characterized by transfers x∗ < min{x̄, (yH − yL)/2} such

that equilibrium interest rates are zero (bond prices are 1),

u′(yH − x∗) = βu′(yL + x∗). (5.10)

As in the previous case, for any initial transfer 0 < x0 < x∗, there are nonstation-

ary equilibria (xt) converging monotonically to autarchy, xt ց 0. In the stationary

and nonstationary equilibria, discounted debt limits are martingales and xt = −φt

(φt :=
∑

i∈{e,o} φi
t). All these equilibria can sustain bubbles of initial size x0 (Propo-

14The inequality in (5.9) can be understood as requiring that the first best symmetric allocation
in which each agent consumes half of the aggregate endowment does not satisfy the participation
constraints of the high type agents.
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sition 4.3), constant in the stationary equilibrium (and equal to x∗) but vanishing

asymptotically in the nonstationary equilibria.

With the temporary interdiction to trade (5.2), we show that there exist stationary

equilibria with even less risk sharing, x̂ < x∗, under parameter conditions where there

would be perfect risk sharing under a permanent interdiction to trade. In such an

equilibrium, interest rates are low, debt limits for the high-type agents are φH < 0

and for the low-type are φL < 0, and discounted debt limits are supermartingales.

Notice that penalties (5.2) satisfy (4.1). Indeed,

V i,d
t (p, q + ε, φi + θi

−1ε) = ut(e
i
t) + V i

t+1((qt+1 + εt+1)θ
i
−1, φ

i + θi
−1ε, p)

= ut(e
i
t) + V i

t+1(qt+1θ
i
−1, φ

i, p) = V i,d
t (p, q, φi), (5.11)

where the first and last equality follow from the definition of penalties (5.2), while

the middle equality holds by Proposition 3.1. Therefore by Proposition 4.2, a bubble

of maximal initial size −(φH +φL) and vanishing asymptotically (because of interest

rates greater than 1) can be sustained in equilibrium. It can be shown that −(φH +

φL) < x̂ (< x∗), therefore punishment (5.2) sustains both less risk sharing and

smaller initial bubbles than an interdiction to borrow (in stationary equilibria). The

interdiction to trade, on the other hand, sustains the maximum amount of risk

sharing (perfect risk-sharing for these parameters) and no bubble in a stationary

equilibrium. Therefore the equilibrium amount of risk sharing is not necessarily

comonotonic to the size of the bubble that can be sustained.

5.1 Interdiction to trade

We analyze first the case when the punishment for default is the interdiction to

trade. Alvarez and Jermann (2001) focused only on stationary equilibria with high

interest rates in this environment. Antinolfi, Azariadis, and Bullard (2007) pointed

out that, with initial transfers between agents, in addition to the stationary cyclical

equilibrium, there are an infinite number of nonstationary ones. However, they have

not computed the NTT debt limits supporting these allocations, which is crucial for

understanding whether bubbles can be sustained. We characterize fully these nonsta-

tionary equilibria and show that they can sustain bubbles. This conclusion is robust
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to fixing agents’ initial wealth levels. Indeed, in the supplementary material (Bidian

and Bejan 2012, Section 3), we show that all equilibrium paths (both stationary or

nonstationary) mentioned above can be reached after a one-period transition, from a

zero initial wealth for all agents.15 The NTT conditions (applied to high-type agents)

give

u(yH − xt) + βu(yL + xt+1) = u(yH) + βu(yL). (5.12)

We construct sequences (xt) satisfying (5.6) and prices p, trading strategies ai and

bounds φi supporting the transfers (xt) as an AJ-equilibrium. Let

f(xt, xt+1) := u(yH) + βu(yL) − u(yH − xt) − βu(yL + xt+1). (5.13)

Proposition 5.1. Let x̄ be the unique strictly positive solution of f(x̄, x̄) = 0. Choose

x0 such that 0 ≤ x0 ≤ min
{

x̄, yH−yL

2

}
. There exists a unique sequence (xt)t≥0

satisfying f(xt, xt+1) = 0 for all t ≥ 0, and (xt)t≥0 is strictly decreasing to 0 if

0 < x0 < x̄ and constant if x0 ∈ {0, x̄}. Moreover, (xt) are the transfers from high-

type to low-type agents in a cyclical AJ-equilibrium (p, q, (ci), (ai), (φi), (V i,d)) with

unvalued money (q = 0), outside options V i,d given by (2.4), and for all t ≥ 0, p and

(ci) are given by (5.7), while (ai) and the nonnegative debt limits (φi) satisfy

−ao
t+1 = ae

t+1 =
ae

0 + L(t)

pt+1

, φe
2t = ae

2t, φe
2t+1 =

p2t+2

p2t+1

φe
2t+2, φo

t = −xt − φe
t ,

with L(t) :=
∑t

s=0(−1)spsxs. Initial wealth levels are ae
0 := −ao

0 and ao
0 is arbitrarily

chosen in the interval [L1, L2], with L1 := limt→∞ L(2t − 1), L2 := limt→∞ L(2t).

Limits L1, L2 exist as (ptxt) is strictly decreasing if x0 > 0, and 0 ≤ L1 ≤ L2.

The proof is given in Appendix B. In all the equilibria constructed in Proposition

5.1, the total self-enforcing amount of credit −(φe +φo) equals the transfers between

agents x, but the actual allocation of debt limits between agents is indeterminate.

This is not surprising, since it is known from proposition 3.1 that martingale compo-

nents added to debt limits leave agents’ budget constraints unchanged if the initial

wealth of the agent is increased by the initial value of the martingale. Therefore the

15With zero initial wealth, there exists an equilibrium in which the transfers from the high-type to
low-type agents are constant after the first period and an infinite number of nonstationary equilibria
converging to autarchy.
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indeterminacy in debt limits is achieved by varying agents’ initial wealth.

In the stationary equilibrium with constant transfers min
{
x̄, (yH − yL)/2

}
, in-

terest rates are high. Indeed, assume first that x̄ < (yH − yL)/2, which happens if

and only if f̄((yH − yL)/2) > f̄(x̄)(= 0) (f̄(x) = f(x, x)), or equivalently, if and only

if (5.9) holds.16 Bond prices are constant and equal to some π < 1 as x̄ > x∗ with x∗

given in (5.10), as shown at the beginning of the proof of Proposition 5.1. If, on the

other hand, x̄ ≥ (yH − yL)/2, that is if (5.9) is violated, then the constant sequence

of transfers equal to (yH − yL)/2 (in which consumers get half of the aggregate en-

dowment) leads to equilibrium bond prices equal to β < 1. Thus the present value

of aggregate endowment is finite in the stationary case, and fiat money injections

would lead to positive debt limits, as argued in Section 4.

The next proposition shows that if agents have hyperbolic absolute risk aversion

(HARA) utility functions (Leroy and Werner 2001, p.96), the cyclical nonnstationary

equilibria associated to transfers (xt) constructed in Proposition 5.1 can support

injections of valued fiat money as in Section 4, while preserving the nonpositivity

of the upwardly adjusted debt limits. As shown in Theorem 4.4, the necessary and

sufficient condition for such bubble injections is that the discounted debt limits of at

least one agent do not vanish asymptotically, that is

lim
t→∞

pt(φ
e
t + φo

t ) < 0, or equivalently, lim
t→∞

ptxt > 0. (5.14)

Proposition 5.2. Assume that agents have HARA utilities. Any nonstationary

cyclical equilibrium associated to transfers (xt) with 0 < x0 < min
{

x̄, yH−yL

2

}
and

f(xt, xt+1) = 0 for all t ≥ 0 (as described in Proposition 5.1 ) satisfies (5.14), and

therefore can sustain bubble injections.

Proof. By (5.4) and (B.2),

pt+1xt+1 =
p0

x0

t∏

s=0

xs+1/xs

ps/ps+1

≥
p0

x0

t∏

s=0

u′(yH)/u′(yH − xs)

u′(yL)/u′(yL + xs+1)
.

16In order for (5.1) and (5.9) to hold jointly, β must satisfy

u′(yH)/u′(yL) < β <
(
u(yH) − u((yH + yL)/2)

)
/
(
u((yH + yL)/2) − u(yL)

)
,

and the strict concavity of u guarantees that β belongs to a nonempty interval.
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Assume that agents have HARA utilities u(c) := (α + γc)1− 1

γ /(γ − 1) defined on

{c | − α < γc}. We assume that α, γ ≥ 0, and therefore any positive consumption

belongs to the allowed domain. As usual, for γ = 1, u(c) := ln(α + c) and for γ = 0,

u(c) := −e−αc.

For γ > 0 (that is, for power or log utilities),

u′(yH)/u′(yH − xs)

u′(yL)/u′(yL + xs+1)
=

( (
α + γ(yH − xs)

)
/
(
α + γyH

)

(α + γ(yL + xs+1)) / (α + γyL)

)γ

=

(
1 − γxs/(α + γyH)

1 + γxs+1/(α + γyL)

)γ

.

As xt ց 0, there exists t0 ∈ N such that xt ≤ ln 2 for all t ≥ t0. Using the inequalities

ex ≥ 1 + x ∀x ∈ R, e−x < 1 − x/2 ∀x ∈ (0, ln 2],

it follows that for all t ≥ t0,

pt+1xt+1

pt0/xt0

≥
t∏

s=t0

e
− 2γxs

α+γyH −
γxs+1

α+γyL ≥
t∏

s=t0

e
− 3γxs

α+γyL ≥ e
− 3γ

α+γyL

∑∞
s=t0

xs . (5.15)

For γ = 0 (that is, for exponential utility),

pt+1xt+1

p0/x0

=
t∏

s=0

e−α(xs+xs+1) ≥
t∏

s=0

e−2αxs ≥ e−2α
∑∞

s=0
xs . (5.16)

Since xt ց 0, by (B.2) it follows that there exists 0 < l < 1 such that xt+1

xt
< l for all

t large enough, which implies the convergence of the series
∑

xt. Therefore (ptxt) is

bounded away from zero, hence lim ptxt > 0, by (5.15) and (5.16).

Therefore we showed that for a large class of utility functions the discounted total

debt limits do not vanish in the nonstationary AJ-equilibria, and therefore bubbles

can be sustained in equilibrium. The HARA utility assumption in Proposition 5.2

simplifies the proof, and it can likely be relaxed.

As mentioned at the beginning of this section, each non-autarchic cyclical equi-

librium described in Proposition 5.1 requires specific non-zero initial wealth for the

agents. However, in Bidian and Bejan (2012, Section 3), we show that all such cycli-

cal equilibrium paths can be reached after a one-period transition, when all agents
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start with predetermined, zero wealth.

5.2 Interdiction to borrow

The case where agents are not allowed to borrow after default was discussed also

in Hellwig and Lorenzoni (2009b), who show that from any initial level of transfers

x0 less than x∗ given by (5.10), there exist a unique sequence of transfers xt ց 0

forming an equilibrium, as long as agents’ period utility u has a coefficient of risk

aversion less than one (on consumption levels below the aggregate endowment). We

establish that these results hold also for utilities with coefficients of relative risk

aversion higher than one.

The martingale property of NTT bounds guaranteed by Theorem 3.5,17 that is the

fact that ptφ
i
t = pt+1φ

i
t+1 for all i and t, simplifies the task of characterizing cyclical

equilibria. Indeed, consider a cyclical AJ-equilibrium (p, q, (ci), (ai), (φi), (V i,d)) with

q = 0 and outside options V i,d given by (2.5). Let φt := φe
t + φo

t . If agent i is the

high-type at t, his budget constraint gives (j ∈ {e, o} \ {i} being the low-type at t)

xt = yH − ci
t = −φi

t +
pt+1

pt

ai
t+1 = −φi

t +
pt+1

pt

(−φj
t+1) = −φi

t − φj
t = −φt. (5.17)

It follows that xt = −φt for all t, as it was the case for the equilibria in Proposition

5.1, (where agents were not allowed to trade after default). Therefore for all t ≥ 0,

ptxt = pt+1xt+1, or equivalently, xt+1 = xt/πt. By (5.4), h(xt, πt) = 0, where

h(x, π) :=
u′(yH − x)

βu′(yL + x/π)
−

1

π
. (5.18)

Proposition 5.3. Let x∗ be given by (5.10) (equivalently, x∗ is the unique solution

of h(x∗, 1) = 0). Choose x0 such that 0 ≤ x0 ≤ x∗. Assume that the utility u

has a coefficient of relative risk aversion less than 1 + yL/x∗ for consumption in

the interval [yL, yL + yH ]. Then there are unique sequences (xt)t≥0 and (πt)t≥0 such

that h(xt, πt) = 0 and xt+1 = xt/πt for all t ≥ 0. When x0 = x∗ then xt = x∗

and πt = 1 for all t. When x0 = 0 then xt = 0 and πt = βu′(yL)/u′(yH) for all

t. When 0 < x0 < x∗ then xt ց 0 and πt ր βu′(yL)/u′(yH). The sequences (xt)

17Assumption 3.1 is satisfied, as debt limits bind in bounded time (in at most 2 periods).
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and (πt) represent the transfers from high-type to low-type agents and bond prices in

a cyclical AJ-equilibrium (p, q, (ci), (ai), (φi), (V i,d)) with unvalued money (q = 0),

outside options V i,d given by (2.5), and for all t ≥ 0, p and (ci) are given by (5.7),

while (ai) and the nonnegative debt limits (φi) satisfy

ae
2t := −

ao
0

p2t

, ae
2t+1 :=

x0 − ao
0

p2t+1

, ao
t+1 := −ae

t+1; φe
t := −

ao
0

pt

, φo
t := −xt − φe

t .

The initial wealth ao
0 of the odd agent is arbitrarily chosen in the interval [0, x0].

The proof is given in Appendix B. Proposition 5.3 constructs a class of nonsta-

tionary cyclical equilibria converging to autarchy. Autarchy is also an equilibrium,

characterized by zero transfers xt = 0 for all t. Additionally, there exists a stationary

equilibrium with transfers xt = x∗ for all t, which allows less risk sharing than the

stationary equilibrium of Proposition 5.1 where agents were not allowed to trade

after default (characterized by transfers xt = x̄ for all t). Indeed, as shown at the

beginning of the proof of Proposition 5.1, x∗ < x̄. This is in line with the intuition

that a more severe punishment for default would facilitate the extension of credit

and let agents smooth consumption better. As in the case of an interdiction to trade

as punishment for default, in all the equilibria uncovered in Proposition 5.3 the total

self-enforcing amount of credit −(φe +φo) that arises endogenously equals the trans-

fers between agents x, but the actual split of debt allowances (limits) between agents

depends on their initial wealth, which can take arbitrary values in some interval.

By Proposition 4.3, bubble injections of maximal initial size −φ0 = x0 are possi-

ble in each of the equilibria of Proposition 5.3. Thus only the autarchic equilibrium

cannot sustain bubbles. Notice also that all cyclical AJ-equilibrium allocations de-

scribed in Proposition 5.3 can be achieved from a zero initial wealth for the agents.

5.3 Temporary interdiction to trade

We relax the complete interdiction from trade as punishment for default, and we

assume that the penalty for default is (5.2). In a bubble-free equilibrium (that is,

with unvalued money), (5.2) coincides with the penalty analyzed in Azariadis and

Kaas (2008), where after default agents are excluded from access to financial markets

for one period. In line with their findings, we show that this mild punishment can
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guarantee steady state partial risk sharing even under parameter conditions where

full risk sharing would obtain under a permanent interdiction to trade after default.

New to this paper are conditions under which these steady state equilibria allow

for even less risk sharing than an interdiction to borrow, and therefore where low

interest rates prevail. Moreover, we characterize the NTT debt limits, showing that

they are supermartingales on a subsequence (when discounted by the pricing kernel),

and that bubbles can be sustained in equilibrium. Under mild additional parametric

assumptions, we prove that the discounted debt limits are in fact supermartingales.

As before, we focus on cyclical equilibria with unvalued money. Let at > 0 be the

beginning of period t wealth of a low-type at t. Thus πtat+1 represents the savings

of a high type at t. Let also φH
t := −at be the debt limit at t of a high-type at t,

and φL
t the debt limit of a low-type. Assume that agent i is the high-type at t. He

is indifferent between defaulting or not at t, since ai
t = −at = φi

t. The monotonicity

property (3.8) implies that debt limits bind at t + 2 in the problem P i
t+1(0, φ

i, p) (if

the agent i defaults at t), since they are binding in the problem P i
t+1(a

i
t+1, φ

i, p) and

ai
t+1 = at+1 > 0. It follows that

ut(y
H − xt) + ut+1(y

L + xt+1) + V i,d
t+2 = ut(y

H) + ut+1(y
L − πt+1φ

i
t+2) + V i,d

t+2. (5.19)

Either agent’s budget constraint at t gives

xt = at + πtat+1. (5.20)

With this notation, (5.19) becomes

u(yH − xt) + βu(yL + xt+1) = u(yH) + βu(yL + πt+1at+2). (5.21)

Any positive sequences of transfers (xt) and asset holdings (at) (for low types in

the corresponding period) satisfying the difference equations (5.20)-(5.21) and (5.6),

bond prices (πt) given by (5.4), debt limits φH
t = −at for the high-type at t and some

φL
t < 0 for the low-type at t form an equilibrium, as long as φL

t satisfies the NTT

condition. Indeed, the participation constraints of low types are clearly satisfied,

since their beginning of period wealth is positive, and they are subject to identical

debt limits upon reentering the market following default.
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We focus on non-autarchic stationary equilibria with imperfect risk-sharing, thus

we look for solutions (xt), (at) of (5.20) and (5.21) such that xt = x̂ ∈ (0, (yH−yL)/2),

at = â and πt = π̂, where π̂ = π(x̂) := βu′(yL + x̂)/u′(yH − x̂). Debt limits of a

high-type are φH := −â and of a low type are some φL < 0. The transfer x̂ must be

a zero of the function

g(x) := u(yH) + βu

(
yL +

π(x)

1 + π(x)
x

)
− u(yH − x) − βu(yL + x). (5.22)

We assume that (x∗ is given by (5.10))

u(yH − x∗) + βu(yL + x∗) > u(yH) + βu(yL + x∗/2). (5.23)

Notice that u(yH − x∗) + βu(yL + x∗) > (1 + β)u
(
(yH + yL)/2

)
and

u(yH) + βu(yL + x∗/2) < u(yH) + βu
(
yL + (yH − yL)/4

)
.

Therefore sufficient conditions for (5.23) consist in a strengthening of (5.1) to

β >
u(yH) − u

(
(yH + yL)/2

)

u ((yH + yL)/2) − u (yL + (yH − yL)/4)
, (5.24)

and requiring that u is concave enough so that β can be chosen less than 1,

u
(
(yH + yL)/2

)
− u

(
yL + (yH − yL)/4

)
> u(yH) − u

(
(yH + yL)/2

)
. (5.25)

Proposition 5.4. Assume that (5.23) holds (sufficient conditions are (5.24)-(5.25)).

There exists a stationary AJ-equilibrium with transfers x̂ ∈ (0, x∗) such that g(x̂) =

0, bond prices π̂ := βu′(yL + x̂)/u′(yH − x̂) > 1, pricing kernel pt+1 := π̂t for all

t ≥ 0 (and p0 = 1), and beginning of period asset holdings −â := −x̂/(1+π̂) and debt

limits φH := −â < 0 for the high-type, respectively â and φL < 0 for the low-type.

Moreover, φL > π̂φH , that is ptφ
L > pt+1φ

H , for all t. A sufficient condition for

φH ≥ π̂φL to hold, that is for ptφ
H ≥ pt+1φ

L to be true, is

u(yL − â/π̂ + π̂â) − u(yL) ≥ βu′(yH − x̂)â, (5.26)
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0

x̂ 1
2

g(x)

Figure 2: Numerical example: yL = 1, yH = 2, β = 0.99, u(x) = x1−γ

1−γ
with γ = 3 .

which therefore guarantees that agents’ discounted debt limits are supermartingales.

The proof is in Appendix B. As pt ր ∞ and φL, φH > 0, Proposition 4.3

guarantees that bubbles of initial size −(φH +φL) can be sustained. From φL > π̂φH

and (5.20),

−(φH + φL) < −φH − π̂φH = x̂ (< x∗),

therefore punishment (5.2) sustains both less risk sharing and smaller initial bubbles

than an interdiction to borrow (in the stationary equilibrium).

The equilibrium in Proposition 5.4 is described without having a general analytic

solution for x̂, the zero of g(x) in the interval (0, x∗). To show that there exist

parameters that jointly satisfy (5.23) and (5.26), we explore a numerical example.

Example 5.1

As a numerical illustration, let yL = 1, yH = 2, β = 0.99, u(x) = x1−γ

1−γ
with γ = 3.

Function g is represented in Figure 2. It follows that x∗ ≈ 0.497 and the chosen

parameters satisfy (5.23). The equilibrium transfers, prices and asset holdings are
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x̂ ≈ 0.427, π̂ ≈ 1.326 and â ≈ 0.184, thus (5.26) is satisfied. The debt limits of the

low-type are obtained from (B.4), by computing V i
t+1(0, φ

i, p), with agent i being the

high-type at t + 1. By (3.8), agent i is a saver at t + 1 in the problem P i
t+1(0, φ

i, p),

since he is a saver at t+1 in the problem P i
t+1(â, φi, 0). Let (c, a) ∈ Ci

t+1(0, φ
i, p). We

guess, and then verify, that agent i is borrowing-constrained at period t + 2 (when

he is low-type) in the problem P i
t+1(0, φ

i, p). If this is the case, the Euler equation

and budgets constraints imply that u′(ct+1)/u
′(ct+2) = β/π̂, ct+1 + π̂ct+2 − π̂2â =

yH + π̂yL. It follows that ct+1 ≈ 2 − 0.344, and ct+2 ≈ 1 + 0.503. We can confirm

that our guess was correct, and the agent is indeed borrowing constrained at t + 2,

as u′(ct+2)/u
′(yH − x̂) ≥ β/π̂. Therefore (B.4) rewrites as

u(yL + φH + π̂â) + β(u(yH − x̂) + βu(yL + x̂)) = u(yL) + β(u(ct+1) + βu(ct+2)),

from which we get φL ≈ −0.197. The debt limits of the high type are given by φH =

−â ≈ −0.184. As φL > π̂φH and φH > π̂φL, agents’ debt limits are supermartingales

when discounted by the pricing kernel (pt+1 = π̂t). Therefore the maximum initial

size of a bubble that can be sustained in equilibrium is −φL − φH = 0.381.

With this parametric values, we contrast the equilibrium here with the equilibria

of Propositions 5.1/5.3 for an interdiction to trade/borrow. Notice that (5.9) does

not hold, therefore under an interdiction to trade there is perfect risk sharing in a

stationary equilibrium, with transfers 1
2

from high-types to low-types. Interest rates

are high and bubbles cannot exist. In a nonstationary equilibrium with an initial

value x0 = 0.499 (close to the stationary level of transfers), limt→∞ ptxt ≈ 0.244,

which represents also the maximal initial size of a bubble that can be sustained

(from the initial level of transfers x0 = 0.499). Thus an interdiction to trade gener-

ates (initial) smaller bubbles than a temporary interdiction to trade, which in turn

are smaller than under an interdiction to borrow. Indeed, under an interdiction to

borrow, maximal initial size of a bubble is x∗ ≈ 0.497 in the stationary equilibrium,

or some x0 (which can be arbitrarily close to x∗) in the nonstationary equilibrium

with initial transfers x0. The amount of (initial) risk sharing however is maximal

under an interdiction to trade, followed by an interdiction to borrow, and then by

a temporary interdiction to trade. Thus amounts of risk sharing allowed by differ-

ent penalties are not necessarily comonotonic with the size of bubbles that can be
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sustained.

6 Conclusion

We build a theory of rational bubbles that jointly predicts their size (limited by the

amount of self-enforcing debt in the system), conditions favoring them (unnecessarily

tight credit restriction given the underlying contractual and enforcement limitations),

and a potential disconnect between the real and financial side of an economy (as

the real side is unaffected by bubbles). The setup is an infinite horizon, complete

markets economy, in which agents have the option to default on debt at any period

in exchange for a continuation utility that can be date and state contingent, and can

depend on the pricing kernel.

For an agent facing a given pricing kernel and penalty for default, we characterize

the set of debt limits that allow for maximum credit expansion while preventing de-

fault, à la Alvarez and Jermann (2000), known as “not-too-tight” (NTT) debt limits.

We show that two discounted NTT debt limits for an agent facing a given pricing ker-

nel must differ by a martingale. Our characterization is crucial for showing that the

tighter bounds resulting from the injection of a bubble using Kocherlakota’s (2008)

mechanism can remain nonpositive, despite the bubble component they contain. In-

deed, if agents are still allowed to borrow predetermined fixed fractions (arbitrarily

small and possibly zero) of their endowments upon default, an equilibrium can sus-

tain bubbles (on assets in unit supply) equal to the total debt limits in excess of

the penalty levels. When the punishment for default is the interdiction to borrow,

respectively trade, discounted NTT debt limits of each agent are martingales, respec-

tively submartingales, and bubbles of initial size equal with the value, respectively

asymptotic value, of total debt limits can be sustained.

We illustrate the sustainability of bubbles in an example in which we compute

the equilibria under three types of penalties: permanent or temporary (one-period)

interdiction to trade, or interdiction to borrow. The temporary interdiction to trade

gives rise to discounted debt limits that are supermartingales. The example reveals

that the size of bubbles is not necessarily co-monotonic with the amount of risk

sharing that can be sustained in equilibrium, and that equilibria supporting bubbles

are not always constrained inefficient.
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Thus economies with endogenous (NTT) debt limits provide robust examples of

bubbles, in the presence of fully rational, forward looking agents. Bejan and Bidian

(2012) point out that bubble injections can occur also with incomplete markets.

They also show that bubbles can lead to increases in the volume of trade and can

explain a large number of asset pricing puzzles.

A Omitted proofs in Section 3

Proof of Lemma 3.3

Proof. It is enough to prove that a′
t+1 ≥ at+1 and the conclusion follows by iteration.

If c′t < ct, then on {a′
t+1 > φt+1} it must be that a′

t+1 ≤ at+1, as Vt+1 is strictly

concave by standard arguments and the first order conditions are (we drop the fixed

arguments p, φ in the indirect utility function)

u′
t(c

′
t)

V ′
t+1(a

′
t+1)

=
pt

pt+1

≤
u′

t(ct)

V ′
t+1(at+1)

.

Moreover, on {a′
t+1 = φt+1}, φt+1 = a′

t+1 ≤ at+1, thus a′
t+1 ≤ at+1. This contradicts

at ≤ a′
t, as

at = ct + Et

pt+1

pt

at+1 − et > c′t + Et

pt+1

pt

a′
t+1 − et = a′

t.

We proved that c′t ≥ ct. Clearly a′
t+1 ≥ at+1 on the set {at+1 = φt=1}. On {at+1 >

φt=1}, agent’s first order conditions are

u′
t(ct)

V ′
t+1(at+1)

=
pt

pt+1

≤
u′

t(c
′
t)

V ′
t+1(a

′
t+1)

,

implying that a′
t+1 ≥ at+1, as required.

Proof of Proposition 3.4

Proof. Let (c, a) ∈ Ct(φt, φ, p). Aggregation of agent’s budget constraints gives

Et

ηn−1∑

s=t

pscs = Et

ηn−1∑

s=t

pses + ptφt − Etpηn
φηn

− Etpηn
(aηn

− φηn
) . (A.1)
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Using the inequality u′(x)x ≤ u(x) − u(0) ≤ ū − u and letting Ū :=
pt(ū−u)Et

∑
s≥t βs

βtu′(ct)
,

0 < Et

ηn−1∑

s=t

pscs =
pt

βtu′(ct)
· Et

ηn−1∑

s=t

βsu
′(cs)cs ≤ Ū < ∞. (A.2)

Since (c, a) ∈ Ct(φt, φ, p), by the transversality condition (Bidian and Bejan 2012,

Lemma 1.1),

lim
n→∞

Etpηn
(aηn

− φηn
) = lim

n→∞
Etpn (an − φn)1n<α(t) (A.3)

= lim
n→∞

pt

u′
t(ct)

Etu
′
n(cn)(an − φn)1n<α(t) ≤

pt

u′
t(ct)

Etu
′
n(cn)(an − φn) = 0.

From (A.1)-(A.3),

−ptφt + lim
n→∞

Et

ηn−1∑

s=t

pscs = lim
n→∞

(
Et

ηn−1∑

s=t

pses − Etpηn
φηn

)
≤ Ū − ptφt. (A.4)

It follows that

Et

α(t)−1∑

s=t

pses := lim
n→∞

Et

ηn−1∑

s=t

pses ≤ Ū − ptφt + sup
n≥t

Etpηn
φηn

< ∞.

Moreover, (A.1) in conjunction with (A.2)-(A.3) show that infn≥t Etpηn
φηn

> −∞,

and therefore (since supn≥t Et(pηn
φηn

)+ < ∞)

sup
n≥t

Et (pηn
φηn

)− < ∞. (A.5)

At any period s ∈ N, since Bs(φs, φ, p) 6= ∅, the agent can consume at least 0 if

his beginning of period s wealth is φs and he faces the bounds φ. Thus psφs +pses ≥

Esps+1φs+1. It follows that
(
psφs + Es

∑α(t)−1
n=s pnen

)α(t)

s=t
is supermartingale, which

converges by (A.5) (Kopp 1984, Corollary 2.6.2). Therefore (pηn
φηn

)n converges

a.s. Similarly,
(
psφ̄s + Es

∑α(t)−1
n=s pnen

)α(t)

s=t
is a supermartingale and we infer that

(pηn
φ̄ηn

)n converges a.s. Hence (Mηn
)n converges a.s.
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B Omitted proofs in Section 5

Proof of Proposition 5.1

Proof. An analysis of the function f̄(x) := f(x, x) reveals that it is convex (as sum

of convex functions), f̄(0) = 0 and f̄(yH − yL) > 0. Moreover f̄ ′(x) = u′(yH − x) −

βu′(yL + x), and therefore f̄ ′ is strictly increasing. Notice that f̄ ′((yH − yL)/2) > 0,

and, by (5.1), f̄ ′(0) < 0. Therefore there exists a unique x∗ ∈
(
0, yH−yL

2

)
such that

f̄ ′(x∗) = 0, that is, x∗ satisfies (5.10). The function f̄ decreases strictly up to x∗ and

then increases strictly. It follows that there exists a (unique) x̄ ∈ (x∗, yH − yL), such

that f̄(x̄) = f(x̄, x̄) = 0.

Given 0 < xt < x̄, since f(xt, 0) > 0, f(xt, xt) = f̄(xt) < 0 and f(xt, ·) is

strictly decreasing, it follows that the equation f(xt, xt+1) = 0 has a unique solution

xt+1, which moreover satisfies 0 < xt+1 < xt. Therefore the sequence (xt) satisfying

f(xt, xt+1) = 0 for all t is strictly decreasing if 0 < x0 < x̄. Moreover, the continuity

of f implies that f(lim xt, lim xt) = f̄(lim xt) = 0, and thus lim xt = 0. If xt ∈ {0, x̄},

then the solution of f(xt, xt+1) = 0 is xt+1 = xt, thus (xt) is constant if x0 ∈ {0, x̄}.

Construct the prices (pt) starting from p0 := 1 and using (5.4). The participation

constraints of high-type agents are satisfied by the construction of the sequence (xt).

The continuation utilities of low-type agents at a period t exceed the autarchy levels

(autarchy being the outside option) since they receive a positive transfer xt > 0 at

t, and starting from t + 1 they will receive a continuation utility equal to autarchy

(since they will be high-type next period). The first order condition of the low-type

agents are satisfied since (5.6) holds. Indeed, xt + xt+1 ≤ 2xt ≤ yH − yL.

From the agents’ budgets constraints, the asset holdings supporting the desired

transfers (xt), taking as given the initial wealth ai
0 of each agent i are ae

t+1 = ae
0 +

L(t)/pt+1, for all t ≥ 0, and ao = −ae. The asset holdings of the high-type agents

equal their debt limits, and therefore φe
2t = ae

2t, φo
2t+1 = ao

2t+1, for all t ≥ 0. To

determine φe
2t+1, let (c′, a′) ∈ Ce

2t+1(φ
e
2t+1, φ

e, p). The debt constraints of the even

agent are binding at 2t+2 along the path a′, since they bind at 2t+2 on the path a,

and his wealth at 2t + 1 on path a is higher than on path a′ (ae
2t+1 ≥ φe

2t+1 = a′
2t+1).

Thus a′
2t+2 = φe

2t+2 and V e,d
2t+1 = V e

2t+1(φ
e
2t+1, φ

e, p) = u2t+1(c
′
2t+1) + V e,d

2t+2. As the

penalty for default is autarchy, V e,d
2t+1 = u2t+1(y

L) + V e,d
2t+2, and therefore c′2t+1 = yL.
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Since p2t+1c
′
2t+1 + p2t+2a

′
2t+2 = p2t+1y

L + p2t+1φ
e
2t+1, we infer that

p2t+1φ
e
2t+1 = p2t+2a

′
2t+2 = p2t+2φ

e
2t+2. (B.1)

Similarly, p2tφ
o
2t = p2t+1φ

o
2t+1. Notice that for all t ≥ 0, φe

t + φo
t = xt, since

φe
2t + φo

2t = ae
2t −

p2t+1

p2t

ae
2t+1 = −

(−1)2tp2tx2t

p2t

= −x2t,

φe
2t+1 + φo

2t+1 =
p2t+2

p2t+1

ae
2t+2 − ae

2t+1 =
(−1)2t+1p2t+1x2t+1

p2t+1

= −x2t+1.

Next we determine the restrictions needed on the initial wealth of the agents such

that the debt bounds are nonpositive. This is clearly the case when xt = 0 for all

t (the autarchic equilibrium), since asset holdings and debt bounds are zero. For

non-autarchic equilibria, that is for nonzero sequences (xt), by (5.12) and the strict

concavity of u,

u′(yH − xt)xt > u(yH) − u(yH − xt) = β
(
u(yL + xt+1) − u(yL)

)
> βu′(yL + xt+1)xt+1

u′(yH)xt < u(yH) − u(yH − xt) = β
(
u(yL + xt+1) − u(yL)

)
< βu′(yL)xt+1.

Therefore by (5.4),

pt

pt+1

=
u′(yH − xt)

βu′(yL + xt+1)
>

xt+1

xt

>
u′(yH)

βu′(yL)
. (B.2)

It follows that ptxt > pt+1xt+1, and therefore the sequence (ptxt) is strictly decreasing.

Thus for i ∈ {e, o}, the sequences (ptφ
i
t) are nondecreasing, hence p · φe and p · φo

are indeed submartingales, in agreement to Theorem 4.4. As a consequence, the

necessary and sufficient condition for φi ≤ 0 is limt→∞ ptφ
i
t ≤ 0. Notice that

lim
t→∞

ptφ
o
t = lim

t→∞
p2t+1a

o
2t+1 = ao

0 − L2, lim
t→∞

ptφ
e
t = lim

t→∞
p2ta

e
2t = −ao

0 + L1.

The limits L1 := limt→∞

∑2t−1
s=0 (−1)spsxs and L2 := limt→∞

∑2t

s=0(−1)spsxs are well-

defined and L1 ≤ L2, since (ptxt) is decreasing. Therefore limt→∞ ptφ
o
t ≤ 0 and

limt→∞ ptφ
o
t ≤ 0 if and only if L1 ≤ ao

0 ≤ L2.
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For the given net savings, prices, trading strategies and debt limits to form an

AJ-equilibrium, all that is left is to check the (necessary and) sufficient transversality

conditions. They are clearly satisfied, as for i ∈ {e, o},

lim
t→∞

βtu′(ci
t)(a

i
t − φi

t) ≤ lim
t→∞

βtu′(ci
t)

(
∑

i

ai
t −
∑

i

φi
t

)
= lim

t→∞
βtu′(ci

t)xt = 0. (B.3)

Proof of Proposition 5.3

Proof. For each π > 0, h(·, π) is continuous and strictly decreasing in x. Moreover,

for each π ∈ [1, βu′(yL)/u′(yH)], h(0, π) ≤ 0 and h(x∗, π) ≥ 0, and therefore there

exists a unique x(π) ∈ [0, x∗] such that h(x(π), π) = 0. In particular, x(1) = x∗ and

x(βu′(yL)/u′(yH)) = 0. By the implicit function theorem,

x′(π) =
1

π2

u′(yH − x(π)) ·
(
πu′(yL + x(π)/π) + u′′(yL + x(π)/π)x(π)

)

u′(yL + x(π)/π) · u′′(yH − x(π)) + u′(yH − x(π)) · u′′(yL + x(π)/π)/π
.

The denominator in the right hand side of the above equation is negative, and

πu′(yL + x(π)/π) + u′′(yL + x(π)/π)x(π) =

= πu′(yL + x(π)/π)

(
1 −

−u′′(yL + x(π)/π)

u′(yL + x(π)/π)
(yL + x(π)/π)

x(π)/π

yL + x(π)/π

)
.

By the assumption on the coefficient of relative risk aversion of u,

−u′′(yL + x(π)/π)

u′(yL + x(π)/π)
(yL + x(π)/π)

x(π)/π

yL + x(π)/π
≤

x∗ + yL

x∗

x(π)/π

yL + x(π)/π
≤ 1,

with strict inequalities if π ∈ (1, βu′(yL)/u′(yH)).

Therefore x(·) is strictly decreasing. The sequences (xt), (πt) are determined

starting from x0 and using πt = x−1(xt) and xt+1 = xt/πt. When x0 = x∗ it follows

that π0 = 1, hence xt = x∗ and πt = 1 for all t. When x0 = 0 it follows that π0 =

βu′(yL)/u′(yH), hence xt = 0 and πt = βu′(yL)/u′(yH) for all t. When 0 < x0 < x∗

then xt ց 0 and πt ր βu′(yL)/u′(yH), it follows that π0 ∈ (1, βu′(yL)/u′(yH)),

therefore x1 = x0/π0 < x0, π1 = x−1(x1) > x−1(x0) = π0, and it follows immediately
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that xt ց 0 and πt ր βu′(yL)/u′(yH).

We verify now that (p, (ci), (ai), (φi), (V i,d)) is an AJ-equilibrium sustaining the

transfers (xt) and bond prices (πt). The first order conditions of the unconstrained

agents (high-type) are satisfied by construction, since h(xt, πt) = 0. The first order

conditions of the borrowing constrained agents (low-type) are satisfied since (5.6)

holds, because xt + xt+1 ≤ 2x∗ ≤ yH − yL. Agents’ transversality conditions can be

checked as in (B.3), while their budget constraints are satisfied by the construction

of the debt limits φo, φe (see (5.17)). Agents’ participation constraints are satisfied

since p · φo, p · φe are constant (martingales), and hence NTT.

Proof of Proposition 5.4

Proof. Notice that g(0) = 0, g′(0) = (u′(yH))2/(u′(yH)+βu′(yL)) > 0, and g(x∗) < 0,

by (5.22), hence there exists x̂ ∈ (0, x∗) such that g(x̂) = 0. For any φL < 0, transfers

x̂, asset holdings â, bond prices π̂, and debt limits φH = −â for high-types satisfy

market clearing conditions, the first order conditions (5.4) and (5.5) (or equivalently,

(5.6)), and the transversality conditions, since

lim
t→∞

βtu′(ci
t)(a

i
t − φi

t) ≤ lim
t→∞

βtu′(ci
t)(
∑

i

ai
t −
∑

i

φi
t) = lim

t→∞
βtu′(ci

t)(−φL − φH) = 0.

Moreover, φH satisfies by construction the NTT condition (for a high-type agent),

irrespective of φL < 0. All that is left is to establish the existence of a φL < 0 that

satisfies the NTT condition (for a low-type agent).

Assume that i is the low-type agent at t. If φi were NTT, V i
t (φL, φi, p) = V i,d

t . By

the monotonicity property (3.8), debt limits bind at t+1 in the problem P i
t (φ

L, φi, p)

since they bind in the problem P i
t (â, φi, p). It follows that a necessary and sufficient

condition for φi to be NTT is that φL satisfies

ut(y
L + φL + π̂â) + V i

t+1(−â, φi, p) = ut(y
L) + V i

t+1(0, φ
i, p). (B.4)

Let ζ(φL) := ut(y
L + φL + π̂â) + V i

t+1(−â, φi, p)− ut(y
L)− V i

t+1(0, φ
i, p). Notice that

for any φL < 0, V i
t+1(−â, φi, p) = βt+1(u(yH − x̂) + βu(yL + x̂))/(1− β2) and it does

not depend on φL. Moreover, V i
t+1(0, φ

i, p) is nonincreasing in φL. Therefore ζ is

strictly increasing in the domain R−. Concavity of V i
t+1 in the first argument and

45



the envelope theorem imply

ζ(φL) ≥ ut(y
L + φL + π̂â) − ut(y

L) −
∂V i

t+1(−â, φi, p)

∂a
· â

= ut(y
L + φL + π̂â) − ut(y

L) − u′
t+1(y

H − x̂) · â,

where the partial derivative refers to the first argument. Therefore

β−tζ(φL) ≥ u(yL + φL + π̂â) − u(yL) − βu′(yH − x̂) · â. (B.5)

As yL + π̂â < yL + (1 + π̂)â = yL + x̂,

u(yL + π̂â) − u(yL) > u′(yL + π̂â) · π̂â > u′(yL + x̂) · π̂â = βu′(yH − x̂) · â.

Therefore by (B.5), ζ(0) > 0. It is immediate to see that ζ(−π̂â) < 0. As a

consequence, there exists a unique φL < 0 satisfying (B.4). Moreover, φL > π̂â. In

fact, if (5.26) holds, ζ(−π̂â) > 0 and therefore φL ≤ −a/π̂, or equivalently φH ≥ π̂φL.

Thus under (5.26), discounted debt limits are supermartingales.

C Efficiency of the equilibria of Section 5

In order to discuss the efficiency of the equilibria constructed in Proposition 5.1,

we introduce first some definitions. An allocation c = (ce, co) ∈ XI
+ is feasible if

ce
t +co

t = ee
t +eo

t (= yH +yL) for all t, and individually rational if U i
t (c

i) ≥ U i
t (e

i), for all

t ∈ N and i ∈ {e, o}. An allocation c̄ Pareto dominates allocation c if U i(c̄e) ≥ U e(ce)

for i ∈ {e, o}, with at least one strict inequality. A feasible and individually rational

allocation c is constrained inefficient if it is Pareto dominated by another feasible

and incentive rational allocation c̄ (Alvarez and Jermann 2000). An allocation c is

ex-post inefficient if it is Pareto dominated by an allocation c̄ satisfying U i
t (c̄

i) ≥

U i
t (c

i) and
∑

i c̄
i
t ≤

∑
i c

i
t, for all t ∈ N and i ∈ {e, o}. Conversely, an allocation is

constrained efficient (respectively ex-post efficient), if it is not constrained inefficient

(respectively ex-post inefficient). Notice that a feasible and individually rational

allocation which is ex-post inefficient is always constrained inefficient.

Each nonstationary equilibrium of Proposition 5.1 associated to a sequence of
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transfers xt → 0 has the property that (by (5.4))

pt+1

pt

→
βu′(yL)

u′(yH)
> 1,

and therefore it satisfies the “modified Cass criterion”, which is a sufficient condition

for ex-post inefficiency (Bloise and Reichlin 2011, Lemma 2). Therefore all the non-

stationary equilibria constructed in Proposition 5.1 are also constrained inefficient.

By contrast, the stationary equilibrium is always constrained efficient. Indeed, if

(5.9) is violated, the stationary equilibrium associated to transfers (yH − yL)/2 is

actually Pareto optimal. If, instead, (5.9) holds, then in the stationary equilibrium

associated to transfers x̄, by (5.4) and (B.2),

pt+1

pt

=
βu′(yL + x̄)

u′(yH − x̄)
< 1.

Therefore the stationary equilibrium violates the “weak modified Cass criterion”,

which is a necessary condition for constrained inefficiency (Bloise and Reichlin 2011,

Lemma 3). Based on this example, it is tempting to equate equilibrium low interest

rates with inefficiency of the equilibrium. This would imply that bubbles, which

require low interest rates, can only exist in inefficient equilibria. However the equiv-

alence between efficiency of an equilibrium and the presence of high interest rates is

not true in general and is a consequence of the stationarity of agents’ endowments, as

pointed out by Bloise and Reichlin (2011, Appendix B). They construct an efficient

stationary equilibrium with low interest rates, in a framework similar to ours, but

with nonstationary endowments.

We investigate in what follows the efficiency of the equilibria constructed in

Propositions 5.3 and 5.4. The penalties for default now depend on endogenous

equilibrium variables such as prices and debt limits, and therefore a definition of

constrained inefficiency is not obvious. Following Bloise and Reichlin (2011), we say

that an allocation c = (ce, co) ∈ XI
+ is individually rational given reservation utilities

ν = (νe, νo) ∈ XI if U i
t (c

i) ≥ νi
t , for all t ∈ N and i ∈ {e, o}. A feasible allocation

c is constrained inefficient given some reservation utilities ν ∈ X i if it is Pareto

dominated by an allocation c̄ which is feasible and individually rational given the

reservation utilities ν. The nonstationary equilibria of Proposition 5.3 and the sta-
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tionary equilibrium of Proposition 5.4 are ex-post inefficient, by the modified Cass

criterion, as bond prices pt+1/pt > 1 for large enough t (for all t for the equilib-

rium of Proposition 5.4).18 The stationary equilibrium of Proposition 5.3, associated

to constant transfers x∗ and zero interest rates (constant pricing kernel), is not con-

strained inefficient given reservation utilities (V i,d)i∈{e,o} satisfying (2.5) (interdiction

to borrow after default). This follows using an identical argument to the one used

by Bloise and Reichlin (2011, Appendix B, Claims 5 and 7).
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