
The Rich Domain of Uncertainty: Comment

by

Glenn W. Harrison †

May 2011

ABSTRACT

Abdellaoui, Baillon, Placido and Wakker [2011] conclude that different probability weighting
functions are used when subjects face risky processes with known probabilities and uncertain
processes with subjective processes. They call this “source dependence,” where the notion of a
source is relatively easy to identify in the context of an artefactual laboratory experiment, and hence
provides the tightest test of this proposition. Unfortunately, their conclusions are an artefact of
estimation procedures that do not worry about sampling errors. These procedures have become
ingrained in experimental economics more generally, and need to be examined carefully. In this case,
they make a huge difference to the inferences one draws. Undertaking a maximum likelihood
evaluation of their data, allowing for sampling errors, there is no evidence for source dependence. 

† Department of Risk Management & Insurance and Center for the Economic Analysis of Risk,
Robinson College of Business, Georgia State University, USA. E-mail: gharrison@gsu.edu. I am
grateful to Aurélien Baillon, Elisabet Rutström and Peter Wakker for helpful discussions, but
suspect that two out of three do not agree with me.



1 These estimation procedures are defended by Wakker [2010; Appendix A], so this is not just an
inadvertent slip.

2 If there is even the slightest concern by the subject that the experimenter might be manipulating the
unknown urn strategically to reduce payouts, the Ellsberg paradox is explained: see Kadane [1992] and
Schneeweis [1973]. This is why one should never rely on computer-generated realizations of random
processes in behavioral research if at all possible. The experiment in ABPW was conducted entirely on a
computer.
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Abdellaoui, Baillon, Placido and Wakker [2011] (ABPW) conclude that different probability

weighting functions are used when subjects face risky processes with known probabilities and

uncertain processes with subjective processes. They call this “source dependence,” where the notion

of a source is relatively easy to identify in the context of an artefactual laboratory experiment, and

hence provides the tightest test of this proposition. Unfortunately, their conclusions are an artefact

of estimation procedures that do not worry about sampling errors.1 These procedures have become

ingrained in experimental economics more generally, and need to be examined carefully. In this case,

they make a huge difference to the inferences one draws.

Consider the simple two-urn Ellsberg design, the centrepiece of their analysis. The known

urn, K, has some objective distribution of balls with 5 colors. Design an experiment to elicit

certainty equivalents for a number of these urns, where the probabilities are generated objectively

and vary from urn to urn. Assume the subject believes that.2 The unknown urn, U, has some mix of

balls of the same colors. Define some lotteries from the U urn, such as “you get $100 if blue comes

out, otherwise $0 if any other color comes out” or “you get $100 if blue or red comes out, otherwise

$0 if any other color comes out.” Then elicit certainty-equivalents for these bets.

Now write out some models to describe behavior. For the K urn, which we call risk, and

restricting to two prizes, X and x, for X>x, we have

wK(p) uK(X) + [ 1 - wK(p) ] uK(x) (1)

for some objective probability p of the bet being true and the subject earning X. We then assume
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some specific functional forms for the probability weighting functions and utility functions, and

estimate those parameters. For the U urn, which we call uncertainty, we propose

wU(B) uU(X) + [ 1 - wU(B) ] uU(x) (2)

for some subjective probability B of the bet being true and the subject earning X. So in the general

models shown here the probability weighting function and the utility function are source-dependent.

This is the model that ABPW propose: source dependence in both utility and probability weighting

functions, which seems reasonable to test.

On the basis of a priori reasoning, some have suggested instead that we only have source-

dependence in the probability weighting function, so we would have

wK(p) u(X) + [ 1 - wK(p) ] u(x) (1N)

wU(B) u(X) + [ 1 - wU(B) ] u(x) (2N)

Of course this is a testable restriction of the general model to uK(z) = uU(z) for z 0 {X, x}. There is

an obvious, symmetric special case in which we only have source-dependence in the utility function:

w(p) uK(X) + [ 1 - w(p) ] uK(x) (1O)

w(B) uU(X) + [ 1 - w(B) ] uU(x) (2O)

Again this is a testable restriction of the general model to wK(p) = wU(B) for p=B. Indeed, it is the

alternative hypothesis offered by Vernon Smith [1969] in a comment on Ellsberg.

These models can be estimated using data generated from the “Ellsberg experiment” of

ABPW. In this experiment each subject was asked to state certainty-equivalents for 32 bets based on

the K urn, and 32 bets based on the U urn, generating 64 observations per subject. They propose a

power utility function defined over prizes z normalized to lie between 0 and 1

u(z) = z D (3)

where the parameter D is allowed to take on different values depending on the source K or U. So if 
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S is defined to be a binary variable such that S=1 when the U process was used and S=0 when the K

process was used, one estimates DK and DU in

D = DK + DU S (4)

and then there is an obvious hypothesis test that DU = 0 in order to test for source independence

with respect to the utility function.

The probability weighting function is due to Prelec [1998], and exhibits considerable

flexibility:

w(p) = exp{-$(-ln p"}, (5)

where w(p) is defined for 0<p<1, and $>0 and 0<"<1 for choices from the K process. The same

function w(B) can be defined for the choices from the U process. It is similarly possible to estimate

linear functions of the structural parameters " and $ to test for source-independence:

" = "K + "U S (6)

$ = $K + $U S (7)

The obvious hypothesis test for source independence in probability weighting is that "U=0 and

$U=0.

The experimental data of ABPW can be used to estimate these structural parameters and

undertake the hypothesis tests for source independence. Each of 66 subjects was presented with 32

tasks in which they were asked to indicate “switch points” between a bet on some outcome from

drawing a ball from the urn and a certain amount of money. Half of the bets were based on draws

from the K urn, and half from bets based on the U urn. The certainty-equivalents were ordered

increments between 0i and 25i, using 50 rows in a multiple price list elicitation. The end-result for

each subjective lottery is a certain amount of money which is evaluated as being just less valuable

than the lottery, and a certain amount of money which is evaluating as being just more valuable than



3 The use of an enforced switch points of this kind is studied in detail in Andersen, Harrison, Lau and
Rutström [2006], and is referred to as the “sequential multiple price list” procedure.

4 Each subject actually made 3,200 choices, since each of the 50 rows involved a binary choice.
However, the choices either side of the switch point are correlated by design in the “sequential multiple price
list” procedure, and contain no extra information. The results are qualitatively the same if one does include all
choices, including the implied ones.

5 The reference here to the mixture independence axiom follows Segal [1988][1990].
6 An alternative specification would use RDUR = uK(Z) for the certain amount when comparing to

the risky lottery based on the K urn, and RDUR = uU(Z) for the certain amount when comparing to the risky
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the lottery. The switch point is enforced for the subject, and involves an increment of 0.5i.3 Thus

we have 64 binary lottery comparisons for each subject over 32 tasks.4

Each subject was told that one of the 32 tasks would be selected for payment, thereby

incentivizing them to respond truthfully. Of course, this popular incentive mechanism presumes the

validity of the (mixture) independence axiom, which is of course considered suspect in axiomatic

derivations of the RDU model.5 In effect, empirical RDU models that use this incentive mechanism

require the analyst to entertain “bipolar” attitudes toward the independence axiom. They are

pessimistic about it when the subject makes evaluations of each constituent lottery in a binary choice

pair, but optimistic about it when the subject evaluates the overall compound lottery of payoffs

across 32 tasks.

These binary comparisons can be used to generate maximum likelihood estimates of the

structural parameters. Each comparison involves the “left” lottery

RDUL =  wK(p) uK(X) + [ 1 - wK(p) ] uK(x)

or 

RDUL = wU(B) uU(X) + [ 1 - wU(B) ] uU(x),

and the “right” lottery

RDUR = uK(Z)

for the certain amount Z.6 The latent index 



lottery based on the U urn. In effect, this specification assumes that the source-dependence is “contextual”
and defined by the choice context. Table A1 collates comparable results to those reported in Table 1 using
this specification, and it makes no difference to the qualitative conclusions.

-5-

LRDU = RDUR ! RDUL (8)

can then be calculated. This latent index, based on latent preferences, is then linked to observed

choices using a standard cumulative normal distribution function M(LRDU). This “probit” function

takes any argument between ±4 and transforms it into a number between 0 and 1 using an

increasing function. Thus we have the probit link function,

prob(choose lottery R) = M(LEU) (9)

In addition, we assume a behavioral error specification, due originally to Fechner and

popularized by Hey and Orme [1994]. This error specification posits the latent index

LRDU = (RDUR ! RDUL)/: (8N)

instead of (8). An important, recent contribution to the characterization of behavioral errors is the

“contextual error” specification proposed by Wilcox [2011]. It is designed to allow robust inferences

about the primitive “more stochastically risk averse than,” and avoids many potential specification

problems. It posits the latent index

LRDU = ((RDUR ! RDUL)/<)/: (8O)

instead of (3N), where < is a new, normalizing term for each lottery pair L and R. The normalizing

term < is defined as the maximum utility over all prizes in this lottery pair minus the minimum utility

over all prizes in this lottery pair. The value of < varies, in principle, from lottery choice to lottery

choice: hence it is said to be “contextual.” For the Fechner specification, dividing by < ensures that

the normalized RDU difference [(RDUR ! RDUL)/<] remains in the unit interval.

Thus the likelihood of the observed responses, conditional on these specifications being

true, depends on the estimates of D, ", $ and : given the above statistical specification and the



7 Data and computer code to replicate these results is available at http://cear.gsu.edu/gwh/.
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observed choices. The conditional log-likelihood is then

ln L(D, ", $, :; y, S) = 3i [ (ln M(LRDU)×I(yi = 1)) + (ln (1-M(LRDU))×I(yi = !1)) ]      (9)

where I(@) is the indicator function, yi =1(!1) denotes the choice of the Option R (L) lottery in

choice task i, and S is the binary variable defined earlier to denote the U source.

Table 1 reports hypothesis tests and selected estimates from maximum likelihood estimation

of this model.7 Column 1 shows the ID number of the subject, columns 2 through 6 report p-values

of hypothesis tests of source dependence, and columns 8 and 9 report the point estimate and

standard error for the "U parameter of the probability weighting function. As often happens with

estimation at the level of the individual, numerical instability arises for some subjects: in the present

case 13 of the 66 subjects were dropped due to the inability to estimate the model. 

The p-values indicate striking evidence for source independence, and are sorted using the values

on column 6. Those p-values less than 0.1, implying rejection of the null hypothesis of source

independence, are shaded: there are very few shaded cells. Column 2 shows the p-values on the

hypothesis test for the utility function, and the lowest three p-values are 0.14, 0.17 and 0.18 for

subjects 18, 8 and 29, respectively. Columns 3 and 4 report p-values for each of the parameters of

the probability weighting function, and column 5 and 6 report joint hypothesis tests. Only 4 subjects

violate source independence with respect to the " and $ parameters.

Columns 8 and 9 report the point estimates of the "U parameter to illustrate a concern with

the manner in which ABPW draw inferences from these data. For each subject they calculate the

values of the parameters in two steps. First, they use non-linear least squares for D, wK(0.5) and

wU(0.5) using choice tasks where one can a priori assume the value of p = B = 0.5. Thus they do not

estimate the parameters " and $ in this step, but directly estimate the decision weights. Second,



8 Of course, the latter claim may be true: with large sample errors one simply cannot say. The claim
that utility functions are linear in RDU models flies in the face of a wide range of data collected from
laboratory experiments on the matter, surveyed in Harrison and Rutström [2008].
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conditional on the point estimate for D, they calculate the values of " and $ that minimize a

quadratic distance metric using choice tasks for which one can a priori assume the value of p or B to

be c, ¼, d, e, ¾ or f.

One immediate concern with this approach is that sample errors in the estimation of D in the

first step are assumed away in the second step, likely resulting in an understatement of sample errors

in the estimation of " and $. The fact that sample errors are not reported in the first step does not

mean that they are zero. Indeed, it is common for all statistical packages to have non-linear least

squares procedures with several ways of calculating standard errors. Another concern with this

approach is that the estimates of wK(0.5) and wU(0.5) in the first step appear to play no role in

constraining the estimates of " and $ in the second step: for any values of " and $ there is an

implied value of wK(0.5) and wU(0.5), and these procedures do not respect that connection, which is

a matter of theoretical consistency.

These problems are compounded when inferences are drawn solely on the vector of point

estimates of some parameter, with no regard for possible sample errors. For example, ABPW

conclude that utility is linear because the median values of the point estimates of D for the K and U

processes are not statistically different from 1 using a sign test. As it happens, this conclusion is

generally correct, but for a very different reason: the point estimates of D have very large sample

errors. So the statistical result arises because of poor estimates, and does not arise because subjects

fail to exhibit diminishing marginal utility.8  The median point estimate from our maximum

likelihood specification is 1.003, but the median standard error is 0.67 (and significantly different

from zero, if one is can use this metric descriptively). This finding, of course, makes one particularly



9 ABPW also use inferences based on the experiment with objective probabilities to constrain their
experimental design with subjective probabilities, specifically the inference that there was no source
dependence in utility. Although we agree with that inference, for rather different statistical reasons, it is
perilous to build experimental designs in the domain of subjective probability that rely on such maintained
behavioral assumptions that are inferred from the domain of objective probability.

10  In which the subscript U denotes the deviation from the estimate with the subscript K.
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concerned about the assumption that the standard error of D=0 when making inferences about the

parameters of the probability weighting, " and $.9

The key finding from ABPW is that there is source dependence in the probability weighting

function. They first examine the median of the point estimates of " and $, noting that in their

estimations ("K+"U) < "K < 1 and ($K+$U) . $U for these median values and our notation.10 Of

course, without any sense of the precision of these estimates of median values, they have no

inferential value whatsoever. In fact, columns 3, 4 and 5 confirm that these inferences from the

median point estimates are generally invalid.

ABPW next examine the values of two indices that are intended to convey the “insensitivity”

and “pessimism” of the probability weighting function. These are derived from ordinary least

squares approximations of the probability weighting function evaluated at the point estimates of "

and $. They conclude that these two indices are significantly different for the K and U processes,

but of course this is an approximation based solely on point estimates. The same hypothesis test can

be undertaken directly, and more powerfully, by examining the " and $ parameters themselves for

each process and individual. Table 1 does precisely that, recognizing the standard errors in these

estimates, and the conclusion is apparent.

The need to pay attention to the precision of estimates is so important, in terms of the way

in which empirical inference in behavioral economics seems to be progressing, as to warrant an

alternative demonstration. Consider the " parameter. Table 1 lists the point estimate and standard
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error of the "U coefficient for each subject, where "U = 0 is consistent with source independence

with respect to this parameter. If one tests whether the point estimates of "U in column 7 of Table

are significantly different from 0, one would conclude that they are. A two-sided sign test has a p-

value of 0.027, and a two-sided t-test has a p-value of 0.0001. But these tests completely ignore the

imprecision of these estimates, shown in column 8. If one just looks at the standard errors, it is

apparent that these point estimates are not precisely estimated. The p-values in column 3 do formally

and properly what these sign tests and t-tests do incorrectly, and the difference in conclusions is

dramatic.

Of course, any failure to reject a null hypothesis could be an artefact of sample sizes being

too small. True, but that provides no rationale for ignoring sample errors. Indeed, this point is so

obvious that it leads one to question any statistical methodology that could claim to draw inferences

from samples that were arbitrarily small. What if the sample of ABPW had been 6 instead of 66?

They could still have drawn their conclusions, based on looking at the median values of individual

estimates, despite the patent imprecision that N=6 should alert anyone to. The use of a sample of

N=66 just confers this method with an illusion of statistical, large-sample validity.

ABPW (p. 704) note that

We also analyzed our data using probabilistic choice-error theories and econometric
maximum likelihood estimations. The results [...] all agree with the results reported
here. All estimations of utilities and weighting functions were done at the individual
level.

In fact, the maximum likelihood estimation referred to here was only undertaken with the pooled

sample, and not at the level of the individual. The individual “estimations” were only undertaken

with the least squares and quadratic distance procedures.

In conclusion, the evidence for source dependence is missing. This does not mean that the

behavioral phenomenon is missing. Indeed, it is intuitively plausible once one moves to the domain



11 For example, by the application of Bayes Rule or the reduction of compound lotteries.
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of subjective probabilities, or where objective probabilities are presumed to arise from some

inferential process.11 But we should not mistake our intuition for the evidence, as comforting as that

might be.
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Table 1: Maximum Likelihood Estimates

p-value on tests of source-dependence
Point

Estimate
of "U

Standard Error
on Estimate

of "USubject DU "U $U "U and $U DU, "U and $U

(1) (2) (3) (4) (5) (6) (7) (8)
53 0.59 0.01 0 0 0 -0.494 0.19
57 0.99 0.07 0.01 0 0 -0.301 0.17
29 0.18 0.03 0 0 0.01 -0.182 0.08
6 0.46 0.39 0 0.02 0.04 -0.232 0.27
71 0.92 0.48 0.39 0.38 0.22 -0.428 0.61
8 0.17 0.4 0.1 0.22 0.22 -0.413 0.49
50 0.37 0.23 0.61 0.23 0.23 -0.68 0.57
61 0.69 0.88 0.16 0.33 0.28 -0.069 0.44
18 0.14 0.44 0.19 0.27 0.36 0.223 0.29
7 0.64 0.27 0.15 0.3 0.5 0.43 0.39
45 0.53 0.54 0.37 0.61 0.51 -0.509 0.84
46 0.66 0.23 0.25 0.38 0.52 -0.54 0.45
55 0.43 0.9 0.18 0.41 0.56 0.067 0.51
34 0.83 0.61 0.8 0.38 0.58 0.387 0.75
5 0.95 0.86 0.3 0.58 0.63 0.059 0.33
10 0.61 0.62 0.5 0.75 0.69 0.222 0.45
3 0.55 0.3 0.54 0.49 0.7 -0.459 0.44
59 0.89 0.9 0.4 0.68 0.73 0.095 0.75
20 0.51 0.39 0.46 0.65 0.73 -0.615 0.71
40 0.62 0.87 0.28 0.54 0.74 0.073 0.46
48 0.56 0.53 0.52 0.53 0.74 -0.232 0.37
66 0.83 0.98 0.32 0.55 0.75 -0.006 0.26
38 0.41 0.65 0.33 0.62 0.75 -0.309 0.68
26 0.49 0.68 0.36 0.64 0.75 -0.279 0.68
60 0.69 0.55 0.34 0.6 0.77 -0.361 0.6
27 0.65 0.93 0.37 0.6 0.78 0.065 0.71
16 0.6 0.93 0.36 0.62 0.81 0.033 0.4
11 0.88 0.92 0.51 0.78 0.81 -0.053 0.51
24 0.65 0.9 0.62 0.86 0.87 0.126 1
39 0.42 0.95 0.86 0.98 0.88 0.048 0.72
17 0.54 0.91 0.88 0.99 0.9 -0.153 1.36
23 0.86 0.58 0.93 0.85 0.9 -0.561 1
54 0.66 0.73 0.91 0.79 0.92 -0.333 0.96
31 1 0.96 0.64 0.9 0.93 -0.095 1.9
28 0.89 0.91 0.53 0.82 0.93 0.034 0.31
2 0.86 0.52 0.76 0.81 0.93 -0.292 0.45
64 0.59 0.85 0.8 0.95 0.93 -0.271 1.41
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33 0.8 0.78 0.77 0.91 0.94 -0.329 1.18
15 0.8 0.96 0.55 0.83 0.94 0.033 0.75
44 0.62 0.97 0.88 0.98 0.94 -0.03 0.88
80 0.77 0.69 0.82 0.87 0.96 -0.442 1.11
42 0.82 0.85 0.85 0.9 0.98 -0.41 2.12
62 0.8 0.91 0.84 0.98 0.98 -0.331 2.9
30 0.87 0.96 0.7 0.93 0.99 0.155 2.8
43 0.98 0.99 0.74 0.94 0.99 0.021 1.65
9 0.89 0.82 0.87 0.94 0.99 -0.403 1.79
47 0.97 0.93 0.77 0.96 0.99 0.151 1.63
13 0.89 0.91 0.82 0.96 0.99 -0.083 0.7
106 1 0.91 0.88 0.98 1 -0.393 3.49
35 0.9 0.94 0.92 0.99 1 -0.097 1.22
49 1 0.98 0.87 0.99 1 -0.093 3.93
19 0.96 0.91 0.91 0.98 1 0.38 3.19
41 0.88 0.95 0.96 1 1 -0.142 2.24
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Table A1: Maximum Likelihood Estimates Under Alternative Specification

p-value on tests of source-dependence Point
Estimate

of "U

Standard Error
on Estimate

of "U
Subject DU "U $U "U and $U DU, "U and $U

(1) (2) (3) (4) (5) (6) (7) (8)
53 0.63 0.01 0 0 0 -0.506 0.18
57 0.62 0.06 0.21 0.04 0 -0.305 0.16
6 0.21 0.34 0.92 0.62 0.01 -0.21 0.22
29 0.47 0.05 0.74 0.11 0.03 -0.186 0.09
71 0.66 0.44 0.61 0.5 0.12 -0.447 0.57
59 0.03 0.79 0.22 0.13 0.14 0.069 0.26
61 0.78 0.88 0.49 0.68 0.22 -0.077 0.49
7 0.87 0.29 0.57 0.57 0.51 0.452 0.43
45 0.99 0.56 0.67 0.6 0.61 -0.665 1.14
34 0.45 0.66 0.52 0.75 0.62 0.25 0.57
5 0.79 0.85 0.71 0.93 0.62 0.06 0.32
3 0.47 0.24 0.6 0.51 0.63 -0.507 0.44
46 0.97 0.27 0.68 0.52 0.66 -0.606 0.55
8 0.48 0.56 0.75 0.7 0.67 -0.394 0.67
24 0.41 0.84 0.28 0.5 0.68 0.164 0.81
40 0.55 0.93 0.89 0.98 0.71 0.041 0.46
47 0.31 0.64 0.53 0.82 0.73 -0.431 0.91
11 0.58 0.99 0.8 0.97 0.76 -0.006 0.41
55 0.87 0.85 0.71 0.93 0.77 0.154 0.8
66 0.96 0.97 0.72 0.94 0.78 -0.008 0.26
16 0.57 0.93 0.8 0.97 0.8 0.031 0.38
27 0.99 0.87 0.64 0.82 0.81 0.156 0.95
10 0.98 0.72 0.68 0.9 0.83 0.176 0.49
60 1 0.5 0.73 0.79 0.86 -0.423 0.63
39 0.42 0.79 0.42 0.72 0.88 0.175 0.67
48 0.97 0.65 0.86 0.86 0.88 -0.202 0.45
23 0.84 0.54 0.9 0.79 0.89 -0.726 1.19
15 0.66 0.92 0.89 0.99 0.9 -0.08 0.75
28 0.73 0.99 0.97 1 0.91 0.004 0.32
20 0.85 0.48 0.96 0.77 0.91 -0.617 0.87
26 0.81 0.68 0.99 0.9 0.92 -0.347 0.83
18 0.86 0.78 0.99 0.96 0.92 0.116 0.41
33 0.76 0.8 0.66 0.84 0.93 -0.284 1.14
44 0.57 0.96 0.53 0.81 0.93 -0.04 0.74
17 0.67 0.98 0.58 0.82 0.94 -0.05 1.68
2 0.97 0.54 0.81 0.83 0.94 -0.283 0.46
38 0.94 0.68 0.87 0.92 0.95 -0.413 0.99
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80 0.72 0.65 0.77 0.89 0.95 -0.487 1.08
50 0.82 0.71 0.74 0.92 0.97 -0.407 1.11
106 0.73 0.97 0.69 0.92 0.98 -0.146 3.38
42 0.92 0.87 0.99 0.98 0.98 -0.422 2.5
64 0.72 0.93 0.75 0.94 0.99 0.18 2.15
43 0.98 1 0.87 0.98 0.99 0.009 1.6
54 0.81 0.79 0.8 0.95 0.99 -0.369 1.39
62 0.95 0.9 0.82 0.96 0.99 -0.404 3.16
9 0.96 0.84 0.99 0.98 0.99 -0.388 1.92
30 0.94 0.98 0.85 0.98 0.99 -0.086 2.76
13 0.94 0.92 1 0.99 1 -0.081 0.82
35 0.89 0.93 0.85 0.98 1 -0.104 1.26
49 1 0.98 0.92 0.99 1 -0.089 3.92
19 0.94 0.92 0.98 1 1 0.287 3.01
41 0.93 1 0.94 1 1 0.009 2.38


