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1 The design of experiments and econometric methods to test these alternatives is a delicate matter, but
considerable progress has been made (e.g., Ahn, Choi, Gale and Kariv [2009], Halevy [2007] and Hey, Lotito and
Maffioleti [2007][2008]).
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Subjective probabilities are widely viewed as being less certain than objective probabilities.

This view underlies theories of choice where the lack of precision in subjective probabilities affects

preferences directly, due to so-called ambiguity aversion or uncertainty aversion. In part it derives

from the intuition that subjectively perceived chances of an event occurring might suffer from some

lack of precision, and that this should matter for behavior.

In traditional expected utility models of choice behavior the uncertainty about the subjective

probability distribution does not affect the observed choice behavior for an individual as long as the

mean is unaffected. In other words, if one person has a mean-preserving change in their subjective

beliefs, they would have no reason to change their observed choices when betting on the eventual

outcome.

To account for preferences over ambiguity, and to obtain potentially refutable hypotheses

about how the degree of uncertainty in beliefs affects behavior, one therefore has to relax the

traditional model. Virtually all of the extensions of the expected utility model to date involve

allowing for the subjective probability of an event to be characterized as being uncertain, as if it were

one draw from a subjective probability distribution. Hence one talks about subjective beliefs, rather

than a single subjective probability. The subjective beliefs are therefore conceived of as a non-

degenerate probability distribution, and not just a scalar. One can then consider a range of non-

traditional models that admit of refutable changes in observable behavior (e.g., Segal [1987], Gilboa

and Schmeidler [1989], Klibanoff, Marinacci and Mukerji [2005] and Nau [2006]).1

We propose a method for estimating subjective beliefs, viewed as a subjective probability

distribution. The key insight is to characterize beliefs as a set of distributional parameters to be estimated from

observed choices in a well-defined experimental task, and to estimate those parameters as random coefficients. The

experimental task consists of a series of standard lottery choices defined over objective probabilities,

and then a series of betting choices in which the subject is presented with a range of bookies



2 There is no necessary tension between the two approaches to characterize heterogeneity, although in practice
one tends to see data evaluated using one or the other method. We employ them in a complementary manner, as
illustrated later.

3 The terminology across the econometric literature is not standard, so the expression “hyper-parameter” can
have other meanings. Here it refers to the parameters that characterize the estimated distribution of the behavioral
parameter of interest.
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offering odds on some outcome that the subject has a belief over. The event we focus on is a draw

from a humble bingo cage, populated with 60 balls that are orange and white. The subject knows

that there are 60, and that there are only orange and white balls. But the cage is only visible for about

10 seconds, and is rotating all the time to make it (practically) impossible for the subject to count the

number of orange balls. Thus it is unlikely that the subjective belief will match the objective

probability, or be an exact subjective probability.

The “random coefficients” approach is commonly used in econometrics to capture

unobserved individual heterogeneity, but that is just one interpretation of the estimates. To

understand the basic idea, assume that we were to estimate risk attitudes in a population, using a

sample of choices over standard lotteries (a common inferential task in experimental research). One

way to characterize individual heterogeneity in risk attitudes would be to assume that the risk

aversion coefficient was a linear function of observables. This is one way to model the observed

individual heterogeneity in behavior. Alternatively, and the approach adopted here, one might

assume that the coefficient was normally distributed across the sample.2 This is a way of modeling

the unobserved individual heterogeneity in behavior. In effect, in the traditional interpretation that

views all variance as being caused by observed or unobserved exogenous variables, each subject

would be assumed to have some true and precise coefficient value, but these values are viewed as

being distributed across the sample in a way that can be characterized by a normal distribution. One

then estimates hyper-parameters to reflect this population distribution.3

For example, if one assumes a normal distribution, the hyper-parameters to be estimated

would be a mean (population) risk aversion coefficient and a standard deviation in the (population)

risk aversion coefficient. Each hyper-parameter  would be estimated by a point estimate and a standard



4 To be pedantic, there are then four estimates: the point estimate and standard error of the mean of the
population parameter, and the point estimate and standard error of the standard deviation of the population parameter.

5  This extension to non-linear mixed logit, while formally modest, is also likely to be of considerable value
more generally, since it allows direct estimation of latent structural parameters of virtually any specification. Andersen,
Harrison, Hole and Rutström [2010] document general software, developed within Stata, to estimate non-linear mixed
logit models.
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error.4 As the sample size gets larger, one would expect the estimated standard errors of the hyper-

parameters to shrink, for the usual reasons, but one would not necessarily expect the standard deviation

of the population parameter to shrink. This approach generalizes naturally to non-normal

distributions for the population parameter, and to multi-variate distributions where there are several

population parameters.

Our approach then is to estimate subjective beliefs as a normal distribution in the

population. There are two, equivalent ways that one could interpret these estimates, which we

discuss below. For the moment, to focus on essentials, assume that we have a representative

decision maker in the population with beliefs about the event that are normally distributed.

In section 1 we review the “mixed logit” specification of random utility models, in which the

latent index is assumed to be a linear function of observable characteristics of the choice and/or

individual. One or more of the parameters is then estimated as a random coefficient, by estimating a

set of hyper-parameters that characterize the distribution of the coefficient in the population. Our

exposition is brief, reflecting the availability of excellent treatments by Train [2003] and others, and

sets the stage for an extension to allow for the latent index to be a non-linear function of

characteristics. This extension is needed since virtually all interesting functional forms for utility and

subjective probabilities involve non-linear functions, but virtually all applications of random utility

models assume a linear or linearized approximation of the true utility function.5

In section 2 we consider our experimental design and the raw data. The lottery choice task is

a replication of the classic study of individual choice under risk due to Hey and Orme [1994]. The

betting task we implement is one of the experimental procedures for eliciting subjective beliefs

proposed by Andersen, Fountain, Harrison and Rutström [2010], but building on an old and

venerable literature such as de Finetti [1937][1970], Savage [1971] and Epstein [1977; p. 298ff.].



6 It is trivial to allow J and T to vary with the individual, but for ease of notation we omit that generality.
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What is important here is that the second task be one that associates beliefs about some event with

observable consequences, such as bets with monetary consequences based on the outcome of an

event.

In section 3 we generate estimates of the subjective beliefs of our subjects, initially using

methods that assume that there is no subjective uncertainty and then methods that allow for some

subjective uncertainty. We find evidence that there is some subjective uncertainty in the population.

1. Linear and Non-Linear Mixed Logit

To fix ideas, assume that we initially want to estimate a parameter to reflect risk attitudes in a

conventional lottery choice task. Then we extend the analysis to consider the estimation of

subjective probabilities, and finally to subjective beliefs.

A. Non-Linear Mixed Logit for Lottery Choices

Assume a sample of N subjects making choices over J lotteries in T experimental tasks.6 In

all of the applications we consider, J=2 since the subjects are making choices over two lotteries, but

there are many designs in which the subject is asked to make choices over J>2 lotteries (e.g.,

Binswanger [1981], Eckel and Grossman [2002]). In the traditional mixed logit literature one can

view the individual n as deriving utility ) from alternative j in task t, given by

)njt = $n xnjt + gnjt (1)

where $n is a vector of coefficients specific to subject n, xnjt is a vector of observed attributes of

individual n and/or alternative j in task t, and gnjt is a random term that is assumed to be an

identically and independently distributed extreme value. We use the symbol ) for utility in (1), since

we will need to generalize to allow for non-linear utility functions, and expected utility functionals,

and prefer to think of (1) as defining a general, latent index rather than as specifically utility. In our

experience, this purely semantic difference avoids some confusions about interpretation. Each $n is



7 This approach generalizes immediately to non-EUT models in which there are more parameters, say to
account for probability weighting and loss aversion. It also generalizes to non-CRRA specifications within EUT models
that allow for more flexible specifications of risk attitudes that might vary with the level of the prizes.

8  The extension from a linear mixed logit specification, assuming (1), to a non-linear mixed logit specification,
assuming (2), has an attractive side-benefit when it comes to identifying the effects of demographic variables such as sex.
In the usual specification with linear latent indices of utility the effects of attribute-invariant effects drop out, and one
can only consider them by considering interactions with attributes. In effect, the non-linearity of (2) builds this
interaction in at a structural theoretical level. The intuition derives from the fact that only differences in (expected) utility
matter for choice. Thus one can re-normalize (expected) utility more or less at will, with minor mathematical constraints,
as long as the (expected) utility numbers have the same ordering. Then, as Train [2003; p.25] notes: “The same issue
affects the way that socio-demographic variables enter a model. Attributes of the alternatives, such as the time and cost
of travel on different modes, generally vary over alternatives. However, attributes of the decision maker do not vary over
alternatives. They can only enter the model if they are specified in ways that create differences in utility over alternatives.”
If the sex of the agent affects the risk attitude, then this characteristics will affect the (expected) utility evaluation of a
given lottery, since each lottery will typically have attributes given by probabilities and outcomes that vary across the two
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traditionally estimated as a distribution based on 2 or more hyper-parameters. In the case of a

normal distribution they would be the mean and standard deviation of the population distribution.

Specifically, for our purposes we need to extend (1) to allow for non-linear functions H

defined over $ and the values of x, such as

)njt = H($n, xnjt) + gnjt (2)

For example, x might consist of the vector of monetary prizes mk and probabilities pk, for outcome

k of K in a given lottery, and we might assume an Expo-Power (EP) utility function originally

proposed by Saha [1993]. Following Holt and Laury [2002], the EP function is defined as

U(mk) = [1-exp(-" mk 1-D)]/", (3)

where " and D are parameters to be jointly estimated. The EP function can exhibit increasing or

decreasing relative risk aversion (RRA), depending on the parameter ": RRA is defined by D + "(1-

D)mk
1-D, so RRA varies with income if " … 0 and the estimate of D defines RRA at a zero income.

This function nests CRRA (as " 6 0) and CARA (as D  6 0). Under expected utility theory (EUT)

the probabilities for each outcome are those that are induced by the experimenter.7 Hence expected

utility is simply the probability weighted utility of each outcome in each lottery j:

EUj = 'k [ pk × U(mk) ] (4)

If we let $ = {", D} here, so that we would estimate the hyper-parameters of the distribution over "

and D, our two risk preferences, we will want to let H($n, xnjt) be defined by H("n, Dn, mnjt, pnjt) using

(3) and (4). It is then possible to evaluate the latent index ) in (2).8



alternatives presented to the subject in any given choice. In effect, the non-linear specification (2) naturally builds in the
effect that characteristics have on utility differences. Andersen, Harrison, Hole and Rutström [2010] provide a more
formal statement of this result.
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The population density for $ is denoted f ($|2), where 2 is a vector defining what we refer

to as the hyper-parameters of the distribution of $. Thus individual realizations of $, such as $n, are

distributed according to some density function f. For example, if f  is a Normal density then 21

would be the mean of that density and 22 the standard deviation of that density, and we would

estimate the hyper-parameters 21 and 22. Or f could be a Uniform density and 21 would be the lower

bound and 22 would be the upper bound. If $ consisted of more than two parameters, as it does in

the case of an EP utility function (3), then 2 might also include terms representing the covariance of

those parameters.

Conditional on $n, the probability that the subject n chooses alternative i in task t is then

given by the conditional logit formula, modestly extended to allow our non-linear index

Lnit($n) = exp{H($n, xnit)} / 'j exp{H($n, xnjt)} (5)

The probability of the observed choices by subject n, over all tasks T, again conditional on knowing

$n, is given by

Pn($n) = (t  Ln i(n,t)t ($n) (6)

where i(n,t) denotes the lottery chosen by subject n in task t, following the notation of Revelt and

Train [1998]. The unconditional probability involves integrating over the distribution of $:

Pn(2) = I Pn($n) f ($|2) d $ (7)

and is therefore the weighted average of a product of logit formulas evaluated at different values of

$, with the weights given by the density f. 

We can then define the log-likelihood by

LL(2) = 'n ln Pn(2) (8)

and approximate it numerically using simulation methods, since it cannot be solved analytically.

Using the methods of Maximum Simulated Likelihood (MSL) reviewed in Train [2003; §6.6, ch.10]



9  An important practical consideration with MSL is the manner in which replicates are drawn, and the size of R
that is practically needed. We employ Halton draws to provide better coverage of the density than typical uniform
number generators: see Train [2003; ch.9] for an exposition, and Drukker and Gates [2006] for the numerical
implementation we employ. Our computational implementation generalizes the linear mixed logit program developed for
Stata by Hole [2007], and is documented in Andersen, Harrison, Hole and Rutström [2010].
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and Cameron and Trivedi [2005; ch.12], we define the simulated log-likelihood by taking r=1,R

replications $r from the density f ($|2):

SLL(2) = 'n ln 6 'r Pn($r)/R > (9)

The core insight of MSL is to evaluate the likelihood conditional on a randomly drawn $r, do that R

times, and then simply take the unweighted average over all R likelihoods so evaluated. The average

is unweighted since each replication r is equally likely, by design. If R is “large enough,” then MSL

converges, under modest assumptions, to the Maximum Likelihood (ML) estimator.9

It is a simple matter to extend this approach to include non-random coefficients as well. In

this case the hyper-parameter of the coefficient consists of just one scalar. To use the earlier

example, if f  is assumed to be a Normal density then 21 would be the mean of that density and 22

the standard deviation of that density, and we would estimate 21 and simply constrain 22=0.

B. Estimating a Subjective Probability

Having demonstrated the method of MSL based on estimating risk preference parameters,

we continue with a discussion of the parameters of core interest to us, the subjective beliefs. We

start by assuming away uncertainty and discuss the estimation of subjective probabilities.

Assume that there are two outcomes, A and B, that exhaust the set of outcomes. In our case

A would be an orange ball being selected from our experimental bingo cage, and B would be a white

ball being selected. The subject that selects event or outcome A from a given bookie b receives EU

EUA =      BA  × U(payout if A occurs | bet on A) +
         (1-BA) × U(payout if B occurs | bet on A) (10)

where BA is the subjective probability that A will occur. The payouts that enter the utility function

are defined by the odds that each bookie offers, and are set by the experimenter. We discuss them in



10 The value of joint estimation, particularly when paired with an experimental design with multiple tasks to
help identification, is discussed in more general terms in Harrison and Rutström [2008], Andersen, Harrison, Lau and
Rutström [2008], and Andersen, Fountain, Harrison and Rutström [2010].
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the next section, but for now assume that they vary from bookie to bookie. For the bet offered by a

bookie offering 10:1 odds on event A, for example, and assuming no “house take” by the bookie,

these payouts are $10 and $0 for every 1$ that is bet, so we have

EUA = BA × U($10) + (1-BA) × U($0) (10N)

We similarly define the EU received from a bet on event B as:

EUB =      BA × U(payout if A occurs | bet on B) +
        (1-BA) × U(payout if B occurs | bet on B). (11)

and this translates for the first bookie, offering 10:1 odds on A and (10/9):1 odds on B, into payouts

of $0 and $1.11, so we have

EUB = BA × U($0) + (1-BA) × U($1.11) (11N)

for this particular bookie and bet. We observe the bet made by the subject, so we can calculate the

likelihood of that choice given values of D, " and BA.

We need D and " to evaluate the utility function in (10) and (11), and we need BA to calculate

the EU in (10) and (11) once we know the utility values, and hence the latent indices (5) that

generate the likelihood of observing the choice of event A or event B. The joint maximum likelihood

problem is to find the values of these parameters that best explain observed choices in the belief

elicitation tasks as well as observed choices in the lottery tasks. In effect, the lottery task allow us to

identify D and " under EUT, since BA plays no direct role in explaining the choices in that task.10

In practical terms the only difference between the likelihood contribution from the lottery

tasks and the betting tasks is how the probability of the outcome enters each problem. For the

lottery tasks this is given as data, and for the betting tasks this is estimated as a parameter. Either

way, once the EU is defined, the likelihood of the observed choices are evaluated identically.
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C. Estimating a Subjective Belief

The extension to estimate a subjective belief is immediate, and involves setting $ = (", D, BA)

and treating the risk aversion coefficients " and D as non-random while the subjective belief BA is

treated as a random coefficient. We eventually treat both as random coefficients, but prefer to focus

attention here on the subjective belief alone.

There are two possible interpretations of the estimates obtained when one allows the

subjective probability to be estimated as a random coefficient. These interpretations are fundamental

to the validity of our approach.

One interpretation is that each subject picks one specific subjective probability value from that

distribution when they place their bets: it is as if they draw a specific subjective probability from the

population distribution “urn” and then use that probability draw to place their bets. In effect, one

subject sees the turning bingo cage and thinks he sees 15% orange balls, another subject sees the

same cage and thinks he sees 20%, and another subject sees the same cage and thinks he sees 25%;

in each case the subjects can be viewed as making draws from a single population distribution. Each

subject then acts as if there is no uncertainty around those individual perceptions when making their

bets. This interpretation is exactly the one that the traditional econometric literature makes when

estimating random coefficients, adapted for our task of estimating subjective beliefs. From a

behavioral viewpoint, at the time of placing the bet there is no uncertainty from the perspective of

the subject.

Another interpretation is that our subjects each carry around with them a personal subjective

(posterior) probability distribution after they see the spinning bingo cage, and access that

distribution when making their bets. This distribution can be assumed to be a replica of the

population distribution. Under this interpretation the estimated population distribution is in fact the

distribution used by each subject. Behaviorally, each subject is viewed as facing uncertainty when

placing the bet.

If we adopt the first interpretation, then the belief BA that we recover is actually consistent



11 Of course, in the case of RDU it is the average weighted probability that is elicited, and an additional step is
needed to recover the subjective probability itself.
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with many supporting belief distributions at the level of the individual, and is the mean of those

distributions. To see this well-known result, initially assume that we elicit the belief BA=0.65, and

that the subject has a degenerate belief distribution with all mass at that point. Under EUT the

subject has the EU for a bet on A occurring given by (10), and the EU for a bet on B occurring

given by (11). Now assume that the subject actually had a 2-point distribution with density f(BA
1)=½

at 0.60 and f(BA
2)=½ at 0.70. Define EUA

1 by substituting BA
1 for BA in (10), define EUA

2 by substituting

BA
2 for BA in (10), and similarly define EUB

1 and EUB
2 by corresponding substitutions in (11). Then the

EU for a bet on A is now the compound lottery

EUA = [ f(BA
1) ×  EUA

1 ] + [ f(BA
2) ×  EUA

2 ] (12)

and the EU for a bet on B is similarly defined. Since the outcomes in the conditional lotteries are the

same, one can collect terms and see that (12) is identical to 

:(BA)×U(payout if A occurs | bet on A) + (1-:(BA))×U(payout if B occurs | bet on A) (13)

where :(BA) / [ f(BA
1) × BA

1 ] + [ f(BA
2) × BA

2 ], the mean of the 2-point distribution. Thus the choice

behavior of an individual with a 2-point probability distribution is identical to the choice behavior of

an individual with a 1-point probability distribution where that one point is given by the mean of the

2-point distribution for that individual. This does not mean that the individual has a 1-point

distribution, just that we cannot use his choice behavior to say whether he has a 1-point or 2-point

distribution.

Thus we can only claim, at least under EUT, that we elicit the mean belief for an individual.

We cannot identify the underlying distribution of beliefs for an individual based solely on the choice of

that individual, nor can we rule out the possibility that the individual has a non-degenerate probability

distribution.  It is immediate that this result generalizes to asymmetric distributions with more than 2

mass points, and indeed to continuous distributions. The same result generalizes to RDU11 if one



12 The axiom of EUT that is typically relaxed is the Independence Axiom, and the Reduction of Compound
Lotteries axiom is almost always retained (e.g., Quiggin [1993; p. 19, 134, 154]). It also has considerable normative appeal
in a-temporal settings, such as we have in mind here. However, Segal [1987][1990] illustrates some implications of
relaxing the Reduction of Compound Lotteries axiom for RDU. To reiterate, we are focusing solely on probabilistically
sophisticated versions of RDU in which the subjective belief can be recovered.

13 Smith [1969] provides a particularly eloquent explanation of this elementary point, which was initially
forgotten in the debates over how to account for the Ellsberg paradox. Of course, subjective probabilities are not the
same as decision weights and “Choquet capacities,” which were applied to this problem well after Smith [1969].
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maintains the Reduction of Compound Lottery axiom, as is common.12

The upshot is that one has to look to choices across individuals to be able to identify the

underlying distribution of beliefs. Ideally this would involve different individuals making comparable

choices in response to the same physical stimuli, and where there is no reason to expect different

individuals to have different priors about the true outcome. This is exactly the domain in which

controlled laboratory experiments can play a critical role, and the design we propose implements this

ideal environment.

D. Bounded Beliefs

One essential characteristic of beliefs, if they are to have the interpretation of uncertain

probabilities, is that the distribution have a domain that is bounded on the unit interval.13

Unfortunately, Normal distributions do not have this property: even if the mean is constrained to be

in the unit interval (e.g., using some common non-linear transformation), there is no easy way to

constrain the standard deviation to ensure this property. Of course, one might be “lucky” and

generate estimates that are practically bounded in the unit interval in terms of non-negligible

densities, but in general one wants a more elegant solution to this problem.

One attractive option is to employ a transformation of the Normal distribution known as the

Logit-Normal (L-N) distribution. Originally proposed by Aitchison and Begg [1976; p.3] as an

excellent, tractable approximation to the Beta distribution, it has been resurrected by Lasaffre,

Rizopoulos and Tsonaka [2007]. One nice property of the L-N distribution is that MSL algorithms

developed for univariate or multivariate Normal distributions can be applied directly, providing one

allows non-linear transformations of the structural parameters, which is exactly what we need to do



14 The expression “prior” in these models refers to one specific subjective probability for an event BA from a
set of such subjective probabilities for an event (e.g., Gilboa and Schmeidler [1989; p.142-3].
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anyway to model subjective beliefs as bounded in the unit interval.

Figures 1 and 2 illustrate the wide array of distributional forms that are accommodated by

the L-N distribution. The bi-modal distributions in the top right of Figure 1 and top left of Figure 2

are particularly attractive, since they reflect the maintained assumptions of several of the most

tractable models of uncertainty aversion.

In the context of the betting task in our experiment, where there is uncertainty about the mix

of orange and white balls in a bingo cage, the continuous distributions of Figures 1 and 2 might be

used to approximate different discrete subjective belief distributions over the subjective probability

BA on the event A of an orange ball being drawn. The earlier discussion in §C provided an example

of 1 and 2 point belief distributions over the subjective probability BA, but one can imagine other

belief distributions with positive probability support for any of the discrete points in the range of

possible proportions of orange balls in the bingo cage. The distributions in Figure 1 can be used to

approximate discrete belief distributions that reflect a symmetry in beliefs about which color is likely,

while the distributions in Figure 2 can be used to approximate belief distributions expressing

uncertainty over all possible subjective probabilities BA, but where the chances of a ball being one

color can be favored. L-N distributions can also be used to approximate extreme 2-point

distributions about the proportion of orange balls in the cage, such as that there are either all orange

or all white balls in the bingo cage.

Similarly, more extreme versions of the distributions illustrated in Figure 2 capture the

“pessimism in priors” of the “maximin” characterization of Gilboa and Schmeidler [1989]. And the

top right panel of Figure 1 captures the characterization of Ghirardoto, Maccheroni and Marinacci

[2004] in which there is some weight on the most pessimistic prior and the most optimistic prior.

The interim cases in Figures 1 and 2 allow one to capture more general characterizations, such as

proposed by Klibanoff, Marinacci and Mukerji [2005].14
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We stress the flexibility of the L-N family because provides an attractive specification for

efforts to estimate general models of attitudes towards uncertainty.

E. A Final Extension

One final extension is to allow for a “behavioral noise” term to affect choices. We adopt the

contextual utility specification advocated by Wilcox [2008][2010] for this purpose, which adds one

additional non-random coefficient : to estimate. When the constraint :=1 is imposed there is no

behavioral noise term in the specification.

2. Experimental Design and Sample

We recruited 97 subjects from the student population of the University of Central Florida in

late October 2008 to participate in these experiments. 

Figure 3 illustrates the lottery choice that subjects were given. Each subject faced 45 such

choices, where prizes spanned the domain $0 up to $100. One choice was selected to be paid out at

random after all choices had been entered. Choices of indifference were resolved by flipping a coin

and picking one lottery, as had been explained to subject. This interface builds on the classic design

of Hey and Orme [1994], and is discussed in greater detail in Harrison and Rutström [2008;

Appendix B].

Figure 4 shows the betting interface presented to subjects, which was shown to subjects on a

computer screen and in hand instructions. Prior to this interface, the subjects had been introduced

to naturally occurring instances of this type of betting interface, on events ranging from the United

States Presidential Election, the winner of the American Idol television program, and outcomes of the

NBA basketball season. The interface in Figure 4 was then explained with these instructions:

First, for each betting task we will provide you with odds from 9 betting
houses. Think of these as just 9 different physical or online locations where you can
make your bet, each offering different odds. You need to decide what bet to place
for each betting house. You do not need to make the same bet for each betting
house.
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Second, in this hypothetical example we are giving you a $100 stake to bet
with for each betting house in each of the betting tasks you will be presented with.
The rules here are that you only get to place one bet in each betting house, and your
stake for one house cannot be applied to another betting house. In the actual tasks
today we will not be having stakes as high as $100, but the stakes we provide are real.

Third, after you have placed your bets on all 9 betting houses, we will
randomly choose one of the 9 betting houses to determine your actual payment.
After you have finished placing all of your bets, we will come over and let you roll a
die to decide which betting house we will actually use. So you are placing 9 bets in all,
will play out one of them, picked at random, and you could win or lose on that bet.

The subjects were then taken through a worked example in which they were told how many orange

and white balls were in the cage, and shown how to place bets. They were then taken through each

possible outcome. The concept of “house probabilities” was also explained, as follows:

Beside each set of house odds, we also display the house probability that
each event will occur. This is just another way of thinking about the odds offered by
each betting house. Some people understand house odds better, and some people
understand house probabilities better.

The house probabilities are just the inverse of the odds. So if the odds for a
particular betting house say that you will be paid $5 for every $1 bet if the ball is
Orange, as in betting House 2, then this implies a house probability for the Orange
ball of $1 ÷ $5 = 0.2. This is the same thing as saying that betting House 2 believes
there is a 20% chance of the ball being Orange. We have rounded some of the
probabilities to make the screen easier to read, and you will be paid according to the
odds.

The house probabilities might help you work out what is the best bet for
you. For example, if you personally think the probability of an Orange outcome is
lower than the house probability offered by a betting house, you might be inclined to
bet against Orange with that house. (You bet “against” Orange by betting “for”
White, of course). But if your personal probability of an Orange outcome is higher
than the house probability offered by a betting house, you might be inclined to bet
on Orange with that house. It is just as if you were placing a bet with a friend,
because you disagree on the chances of something happening.

All subjects were able to place a series of bets in this practice round before the actual bets for real

payment.

The actual betting tasks involved more draws from bingo cages with ping-pong balls. They

were explained as follows:

We will now repeat the task with Ping Pong balls a few times.

We have a number of ping pong balls in each of three bingo cages, which we
have labeled Cage A, Cage B and Cage C. Some of the ping pong balls are Orange



15 Beliefs for completely unrelated events were elicited after the beliefs about the ping-pong ball draws. One
event was the outcome of scores on a psychology test of the relative “empathy” of men and women, and three events
related to the 2008 Presidential Election outcomes. Those events did not provide the control that the ping-pong ball
events had, in terms of every subject being provided with exactly the same physical signals. We note, as anecdote, that we
were astonished to see how excited the subjects were about the draws of ping-pong balls from these bingo cages. The
nightlife in Orlando is not that bad.
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and some are White. We will roll each bingo cage and you can decide for yourself
what fraction of Orange balls you think are in the cage.  Of course, the balls will be
rolling around, and you may not be able to tell exactly how many Orange balls are in
the cage. You will be asked to bet on the color of one ping pong ball, selected at
random after you all place your bets. For example, if there are 20 Orange balls and
80 White balls, the chance of an Orange ball being picked at random is 20 ÷ 100, or
20%.

We will do this task 3 times, with 3 different bingo cages. Just be sure that
you check which cage you are placing a bet on. You can see this listed in the top left
corner of your screen, where it refers to Cage A, Cage B or Cage C. We will show
you each cage one at a time, and allow you to place your bets after we show it to you.

Figure 3 displays the sequence that was followed here. The cage was initially draped in an opaque

towel, bearing the Golden Knight logo of the University of Central Florida. The cage was placed atop a

tall table, so that all subjects had a clear view of it. A tall research assistant then took off the towel

and turned the cage for roughly 10 seconds, timed by another assistant. Then the cage was covered

again and subjects asked to place their bets. Once the bets for Cage A were completed, a similar

sequence was followed for Cages B and C. At that point we selected a ball from each of Cages A, B

and C. The final event for payment was decided at the end of the experimental session, and there

was a 3-in-7 chance that one of these cages would be selected for payment.15

The distribution of orange balls within each session spanned a “low,” “medium” and “high”

value, in random order across sessions. There were 6 physical stimuli used across all sessions. These

stimuli used 6, 12, 30, 33, 45 and 48 orange balls out of a total of 60, implying true objective

probabilities of 0.1, 0.2, 0.5, 0.55, 0.75 and 0.8, respectively.

Our betting task provides a clean counterpart to the theoretical framework used for decades

to operationalize what is meant by subjective beliefs. Consider two recent examples from the

literature. Machina [2004; p.2] carefully defines two ways of representing uncertainty. One he calls

“objective uncertainty,” and involves known probabilities and choices over lotteries. The other he



16 It is possible to design artefactual laboratory experiments that can do even more. Imagine an Ellsberg urn
with unknown mixtures of orange and white balls, but where the subject is told that there are only 10 balls. The urn is
presented, but with a thick towel draped over it. The subject is asked to place bets on each of the 11 possible mixtures:
they earn $1 if the mixture is in fact that one, $0 otherwise. Then simply remove the towel and have the composition of
the urn verified.

17 Virtually all other experimental procedures for evaluating choice under uncertainty, such as quadratic scoring
rules and auctions for eliciting certainty-equivalents, amount to bets in one form or another. So this point is not specific
to our design, of course.
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calls “subjective uncertainty,” and is represented by mutually exclusive and exhaustive states of

nature, and where the objects of choice consist of bets or acts which yield outcomes that depend on

the realized state of nature. Similarly, Klibanoff, Marinacci and Mukerji [2005; p.1854] stress the

importance of modeling preferences over what they call “second order acts” which assign utility-

relevant consequences to the events that the subject is uncertain about. They 

suggest that second order acts are not as strange or unfamiliar as they might first
appear. Consider any parametric setting, i.e., a finite dimensional parameter space
[such that the elements of this parameter space define the subjective belief]. Second
order acts would simply be bets on the value of the parameter. In a parametric
portfolio investment example, these could be bets about the parameter values that
characterize the asset returns, e.g., means, variances, and covariances. Similarly, in
model uncertainty applications, second order acts are bets about the values of the
relevant parameters in the underlying model. Closer to decision theory, for an
Ellsberg urn, second order acts may be viewed as bets on the composition of the
urn.

This is exactly the choice task our subjects faced when one considers the array of bookies, each with

different odds, they had to place bets with. The set of bet choices is based on the subject’s beliefs

about “the composition of the urn.”16

An additional feature of our design was that it allowed us to estimate the conventional risk

attitudes of the sample, as we were jointly estimating subjective beliefs. Because those beliefs can

only be identified in the context of some betting task of the kind we implemented,17 one has to

know risk attitudes in order to separate out the effects of subjective beliefs and preferences over

risk.



18 Even though we refer to estimating a mean and/or standard deviation, the resulting population is not
Gaussian, since we employ the Logistic-Normal distribution.

19 Detailed estimation results, and all software and data to replicate our results using Stata, are available on
request.
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3. Results

We initially estimate the subjective probability that a representative agent would have for

each of the stimuli using maximum likelihood, and thereby assuming away any variance in the

population distribution. This will allow us to see the “value added” from having the richer

characterization provided by a random coefficients specification using maximum simulated

likelihood. We then consider the interim random coefficients case in which we constrain the

population mean to be equal to the objective probability for each stimulus, and only estimate the

population standard deviation.18 This allows us to see the pure effect of allowing for some

population standard deviation in the estimated distribution. We finally consider the random

coefficients case in which we estimate the mean and standard deviation of the population process for

each stimulus.19

A. Maximum Likelihood Estimates

Table 1 shows the estimated subjective probabilities obtained using maximum likelihood

methods and  the assumption that there is no population standard deviation in subjective beliefs.

Underlying these estimates is evidence of a concave utility function, reflecting risk aversion for these

subjects. The estimates are familiar from the literature with student subjects of this type (see Holt

and Laury [2002] and Harrison and Rutström [2008]). The coefficient D is estimated to be 0.48 with

a 95% confidence interval of [0.44, 0.52], and the coefficient " is estimated to be 0.083 with a 95%

confidence interval of [0.06, 0.11]. So there is evidence of risk aversion at low levels of prizes, since

D>0, and there is evidence of increasing relative risk aversion as prizes increase up to $100, since

">0. The same qualitative pattern emerges with random coefficients estimates of these parameters,

reported in the next sections.



20 All standard errors are corrected for “clustering” at the level of the individual, which captures heterogeneity
to some extent.
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Turning to the estimates of the subjective probabilities, we find that there are some

significant deviations in subjective probabilities from objective probabilities for the case in which

there are 6 or 12 orange balls out of 60. However, for all other cases the estimated subjective

probabilities are relatively close to the objective probability. In the case of 6 orange balls, our

estimates “collapse” to suggest that subjects behaved as if there were none. In the case of 12 orange

balls, our estimates suggest that the subjective probability is significantly greater than the objective

probability.

These estimates reflect a further assumption that there is a single representative agent whose

subjective probability we are estimating. It is a simple matter to extend this analysis to allow the core

structural parameters to reflect observable covariates.20 Thus we could estimate the subjective

probability that women hold when we have 6 orange balls and contrast it to the subjective

probability that men hold. Even if the same bets were placed by men and women in this case, any

differences in their estimated utility functions could lead to differences in inferred subjective

probabilities.

To illustrate, consider the 12-ball case. If we allow for the effects of sex and having a self-

reported GPA greater than 3.75. The marginal effect on inferred subjective probabilities if for

women to have a higher probability of 5.4 percentage points (95% confidence interval of [0.8, 10]

percentage points) and those with a high GPA to have a higher probability of 0.1 percentage points

(95% confidence interval of [-4.9, 5.1] percentage points). Since a male that does not have a high

GPA has an estimated subjective probability of 0.36 (95% confidence interval of [0.33, 0.40]), we

can infer four subjective probabilities:

• women with a high GPA have a subjective probability of 0.420;
• women without a high GPA have a subjective probability of 0.4219;
• men a high GPA have a subjective probability of 0.366; and
• men without a high GPA have a subjective probability of 0.365.

One could obviously extend this analysis to consider more covariates, and more interactions of
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covariates, as in Andersen, Fountain, Harrison and Rutström [2010].

It is worth noting that women have a significantly higher estimate of D, and those with a

high GPA have a significantly higher estimate of ". These differences in utility functions need to be

taken into account when inferring subjective probabilities. That is, one might see the same pattern of

bookie choices for men and women, but if they have different utility functions one would draw

different inferences about their implied subjective probabilities. The same principle of inference

holds with the random coefficients specifications.

B. Random Coefficients Estimates, with the Mean Constrained to Equal the True Mean

Figure 6 collects results assuming that the average subjective belief is equal to the true

probability of the urn, but that allows for there to be some subjective uncertainty around that

average. This assumption maintains some degree of rational expectations, in the sense that there is

some “wisdom of crowds” with respect to the average belief. It also illustrates our approach in stark

form, since all that we estimate here is the population standard deviation in beliefs. All estimates

were obtained using maximum simulated likelihood methods, using 100 Halton draws.

We find a familiar pattern of risk aversion, with modest levels of RRA for small prize levels

and increasing RRA for higher prize levels, using the Expo-Power utility function (3). The estimate

of 1-D is distributed as N(0.551, 0.180), with the estimate of the population mean and population

standard deviation each being statistically significantly greater than zero. Hence we reject the

hypothesis that all subjects have the same risk attitude parameter D, consistent with the conventional

view that risk preferences are heterogeneous across subjects. There is not so much heterogeneity in

the parameter ", which is distributed as N(0.022, 0.004), and where the estimate of the population

standard deviation is not statistically different from zero. But the point estimate of the population

mean of " is positive, and statistically significant, implying that RRA increases by 0.22 (= 0.022 ×

100, since the highest prize was $100) over the prize domain [$0, $100]. Joint estimation of these risk



21 In other words, when bets with bookies offering one or two “low” stakes are evaluated, a smaller RRA is
used than when evaluating bookies offering one or more higher stakes.
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aversion parameters and the subjective belief distributions takes this increasing RRA into account.21

The estimates in Figure 6 are derived from 10,000 simulations of the L-N distribution

parameter estimates. To illustrate, consider the case of 30 orange balls first. Here the L-N

distribution is 7(N(0, 0.11)). The Normal distribution inside this composite function has a mean of

0 and standard deviation of 0.11, and each of those point estimates has a standard error (indicating,

incidentally, that each point estimate is significantly greater than 0). So one would take 10,000 draws

from a normal distribution centered around 0 with that standard deviation, and then transform each

such draw with the logistic transform. Since the logistic transforms values of 0 to be 0.5, it is not

surprising that this distribution is centered in Figure 6 at 0.5. The L-N distribution has a standard

deviation of 0.028.

Now consider the case of 33 balls, where the L-N distribution is 7(N(-0.2, 0.18)). The

Normal distribution inside this composite function has a lower mean than the 30-ball distribution,

and a larger standard deviation. The logistic transforms negative values to be greater than 0.5, hence

we see the L-N distribution for the 33-ball case to be centered around 0.55 with a standard deviation

of 0.044. Thus it is the same as the 30-ball distribution apart from being shifted to the right and with

a slightly larger standard deviation. Although the transformations are more extreme, of course, a

similar logic explains the shape of the other L-N distributions in Figure 6 given the core parameter

estimates.

Turning to the substance of the estimates, we see predictable symmetry for the stimuli

centered near 0.5, and skewness for the stimuli closer to 0 or 1. Given the lack of skewness for the

middle stimuli and the skewness for the extreme stimuli, the modes are either right on the objective

probabilities or to one side of them. There is more uncertainty about the extreme stimuli, not

surprisingly.

The distributions shown in Figure 6 could also be conditioned on observable covariates,



22 Nor did we have a subject pool dominated by Dutch football fans or pro-British Protestants from Northern
Ireland.
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such as sex and GPA level. In this case the underlying coefficients would be linear functions of these

covariates, so one would generate four distinct population distributions rather than just one for a

given stimulus.

C. Unconstrained Random Coefficients Estimates

Figure 7 takes one more step in the estimation compared to Figure 6, and allows the mean of

the population distribution to be unconstrained. The differences are striking.

For the 30-ball case we see an almost degenerate L-N distribution, with a mean of 0.54 and a

standard deviation of 0.003, much smaller than the standard deviation for the corresponding

distribution in Figure 6 where the mean was constrained to be 0.5. For the 33-ball case we see

virtually the same estimates as in the constrained case. Thus, shifting the physical stimuli from

exactly 0.5 to 0.55 added some degree of uncertainty to the subjective belief distribution.

For the 45-ball and 48-ball cases we infer virtually the same subjective probability

distributions as in Figure 6. But for the 6-ball and 12-ball cases we get very different results. In each

case the mode and mean of the subjective distribution are significantly greater than the objective

probability. This contrasts with the distributions for the 45-ball and 48-ball cases. Now the 45-ball

case corresponds to an objective probability of 0.75, and is therefore not directly symmetric to the

12-ball (0.2) or 6-ball (0.10) cases, but the 48-ball and 12-ball cases are exactly symmetric. Thus one

might have expected to see “mirror image” subjective belief distributions in these two cases, and we

do not.22

4. Conclusions

In some sense, our approach to estimating subjectively uncertain beliefs is “too simple.”

That simplicity derives from some strong assumptions, which we want to be clear about. We are not



23 For example, it is a simple matter to more flexible specifications that allow for the experimental prizes to be
integrated with some baseline income level (e.g., Andersen, Harrison, Lau and Rutström [2008]). Or non-EUT
specifications that allow for probability weighting and/or loss aversion (e.g., Harrison and Rutström [2008; p.85ff.]). Our
objective is not to find the best parametric specification for these data.

24 The literature uses different terminology for concepts that are very similar, if not identical. The expression
“uncertainty aversion” is used in Nau [2006], and is closely related to the concept of “ambiguity aversion” in Klibanoff,
Marinacci and Mukerji [2005], the concept of “second-order risk aversion” in Ergin and Gul [2009], and even the
concept of “information aversion” in Grant, Kajii and Polak [1998].

25 Non-EUT characterizations are also popular: see Gilboa and Schmeidler [1989], Ghirardoto, Maccheroni and
Marinacci [2004] and Gilboa, Postlewaite and Schmeidler [2008].
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particularly concerned here about the specific parametric forms assumed, since they can be relaxed

easily enough.23 Nor does the artefactual exploitation of simple “bingo cage” stimuli, in which we

know the true population process, concern us immediately, since if we cannot handle this controlled

domain of inference then we have no business wandering blind into the field of natural processes.

There are some deeper conceptual assumptions.

We assume that the subject evaluates lotteries defined over a stochastic process that has

uncertain probabilities with the same risk attitudes that are used to evaluate lotteries defined over a

stochastic process that has certain probabilities. In effect, we assume that aversion to uncertainty24 is

the same as aversion to risk. Starting with Ellsberg [1961], the validity of this assumption has been

questioned. Working within an EUT framework, or very close to it, Ergin and Gul [2009],

Klibanoff, Marinacci and Mukerji [2005], Nau [2006][2007] and Neilsen [2008] offer representations

of preferences over uncertain and risk choices that differentiate uncertainty aversion and risk

aversion.25 Each representation collapses to the one we employ as a special case in which the two

types of aversion are assumed to be the same, so in an important formal sense they each provide

“smooth” characterizations of uncertainty aversion that differentiate it from risk aversion. Our

approach provides the basis for estimating representations of this type.

Our results do show that beliefs for simple, physical stimuli do not appear to be statistically

degenerate probability distributions. Identifying the theoretical structure of that non-degeneracy

remains an open area of research. 
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Figure 2: Illustrative Asymmetric Logit-Normal Distributions
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Figure 3: Illustrative Lottery Choice

Figure 4: Illustrative Betting Choices
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Figure 5: The Event
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Table 1: Estimated Subjective Probabilities

There are 60 balls in all. So when there are 6, 12, 30, 33, 45 and 48 orange balls,
the true probability is 0.1, 0.2, 0.5, 0.55, 0.75 and 0.8, respectively.

Parameter Definition Point Estimate Standard Error 95% Confidence

B6 Subjective probability when 6 balls 0.001 0.014 0.000‡ 0.029
B12 Subjective probability when 12 balls 0.369 0.017 0.335 0.403
B30 Subjective probability when 30 balls 0.556 0.012 0.533 0.579
B33 Subjective probability when 33 balls 0.548 0.007 0.534 0.562
B45 Subjective probability when 45 balls 0.710 0.044 0.624 0.795
B48 Subjective probability when 48 balls 0.718 0.025 0.668 0.767

Note: ‡ These estimates are calculated using the delta method, and approximation error with a point
estimate so close to the lower boundary of 0 results in this lower bound being calculated to
be negative (-0.028). This value of 0 is imposed a priori. 
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With Means Constrained to True Probabilities
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