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1 Introduction

Traditional principal–agent models typically assume symmetric beliefs about parameters that

are imperfectly observable to both parties. In some applications, however, the assumption of a

common prior may be quite strong. For example, there is empirical and anecdotal evidence to

suggest that entrepreneurs are usually more optimistic about the prospects of their startups

than venture capitalists. The abilities of firm managers are typically uncertain, and managers’

perceptions of their own abilities could differ from those of shareholders. Additionally, in the

presence of imperfect public information about a parameter that affects payoffs, the agent

has “implicit incentives” to use his unobservable actions to influence the dynamic process

of learning about the parameter. In addition to the presence of asymmetric beliefs and risk

attitudes, therefore, optimal long-term contracts are also affected by the presence of inter-

temporal adverse selection arising from the agent’s unobservable actions. In particular, the

theoretical study of such settings necessitates the analysis of a dynamic mechanism design

problem that features “hidden actions” and “hidden states.”

We contribute to the literature by developing a principal-agent model that differs from

previous models by integrating five key elements in a unified framework: (i) imperfect public

information and asymmetric beliefs; (ii) asymmetric risk attitudes; (iii) two-sided Bayesian

learning; (iv) dynamic moral hazard; and (v) dynamic adverse selection. Our continuous-time

formulation leads to a simple characterization of optimal contracts in terms of the solution

to a first-order nonlinear ordinary differential equation (ODE). We exploit the properties of

the ODE to derive a number of novel implications that demonstrate how asymmetric beliefs,

agency conflicts, Bayesian learning, and inter-temporal adverse selection interact to affect

optimal dynamic contracts. Our results show that asymmetric beliefs play a central role in

potentially reconciling a number of empirical findings: the significant levels of investment in

venture capital and R&D projects despite their high failure rates or the “private equity” puzzle;

the tenuous relation between risk and incentives; and the non-monotonic relation between firm

value and incentives. The inter-temporal interplay among heterogeneous beliefs, moral hazard

and adverse selection also generates potentially testable implications for the differing effects

of permanent and transient components of risk on compensation and investment schedules.

We first develop a discrete–time model in which a risk-averse agent with CARA prefer-

ences obtains financing for a project from a risk-neutral principal over a finite time horizon.

The project’s payoff occurs at the terminal date and the key state variable is the project’s
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observable incremental payoff in each period; the contribution of the principal’s investment

and the agent’s unobservable effort over the period to the project’s final payoff. The vari-

ance of the incremental payoff is the project’s intrinsic risk, which is invariant through time.

The expected incremental payoff has two components: a fixed component that represents the

project’s quality and a discretionary component that is affected by the principal’s investment

and the agent’s effort.1 The principal and the agent have imperfect information about the

project’s quality and have differing priors. They “agree to disagree” about their respective

mean assessments; the difference between them is the initial degree of agent optimism. We

consider the (empirically relevant) scenario in which the agent is optimistic although our

analysis can easily accommodate the general scenario where the agent could be optimistic or

pessimistic relative to the principal.

While the principal and the agent could disagree on the mean assessments of project

quality, they agree on the variance, which is the project’s transient risk. The project’s transient

risk is resolved over time as the parties form posterior assessments of the project’s quality

in a Bayesian manner. Because the agent’s effort is unobservable to the principal, he has

implicit incentives to influence the principal’s posterior assessments of the project’s quality

through his “off equilibrium” effort choices. The presence of adverse selection arising from

the agent’s unobserved effort necessitates the consideration of a general mechanism in which

the agent’s “type” is his past history of effort choices, and the terms of the contract between

the principal and the agent are dynamically contingent on the agent’s reports about his type.

Although the principal correctly infers the agent’s effort choices in equilibrium, the derivation

of the equilibrium itself requires the consideration of “off equilibrium” paths on which the

agent’s posterior beliefs constitute a “hidden” state variable. The dynamic mechanism design

problem, therefore, features “hidden actions” and “hidden states.”

We derive equilibrium long-term contracts and show that the contractual variables—the

principal’s investments, the agent’s effort, and their payoffs—are determined by the agent’s

total incentive intensity path. The total incentive intensity at each date is the sum of the

agent’s explicit and implicit incentive intensities. The explicit incentive intensity is the sen-

sitivity of the change in the agent’s stake to the project’s incremental payoff over the period.

The agent’s implicit incentive intensity reflects his incentives to influence the principal’s future

assessments of the project’s quality through his current actions. The optimal total incentive

1In applications of the framework to “reputation concerns” settings (Holmstrom, 1999), the project’s quality
could be interpreted as the agent’s ability.
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intensity at any date maximizes an objective function that has four components: (i) rents

due to the agent’s optimism; (ii) costs of risk-sharing; (iii) costs arising from adverse selection

due to the agent’s unobservable effort; and (iv) the payoff arising from the complementarity

between effort and investment.

In any period, the agent’s total incentive intensity and effort increase with the degree of

agent optimism. An increase in the degree of agent optimism increases the extent to which

he overvalues the project’s future payoffs relative to the principal that can potentially be ex-

ploited by increasing the performance-sensitive component of his compensation relative to the

performance-invariant component. However, the adverse selection costs at any date increase

with the agent’s future total incentives that has a dampening effect on the agent’s current

total incentives. We show that the positive effects of optimism dominate the countervailing

effects of adverse selection.

The effects of the agent’s optimism on the principal’s investment depend on its magni-

tude. If the initial degree of agent optimism is below a threshold—the agent is “moderately

optimistic”— the principal’s investment increases with the degree of agent optimism. If the

initial degree of agent optimism exceeds the threshold, however—the agent is “exuberant”—

the principal’s investment decreases with the degree of agent optimism. When the agent is

moderately optimistic, his total incentive intensity is less than one; the agent’s optimal in-

centive intensity in the benchmark “no agency” scenario with symmetric beliefs and universal

risk-neutrality. The complementarity of investment and effort makes it optimal for the prin-

cipal to increase her investment as the degree of agent optimism increases because the agent’s

effort also increases. When the agent is exuberant, however, his total incentive intensity ex-

ceeds one. In this region, investment and effort effectively become “substitutes.” As the degree

of agent optimism increases, the optimal contract exploits the agent’s exuberance by lowering

the principal’s investments and allowing the project’s output to be dominated by the agent’s

effort. If the agent is sufficiently exuberant, he over-invests effort relative to the benchmark

“no agency” scenario that could explain why venture capitalists and entrepreneurs continue

to invest in innovative ventures despite their high failure rates.

The non-monotonic variation of the principal’s investment with the degree of agent opti-

mism causes the project/firm value to also vary non-monotonically with the degree of agent

optimism. Since the agent’s total incentives increase with his optimism, the relation between

project/firm value and incentives is non-monotonic, which is consistent with empirical evidence
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(Morck et al, 1988). Himmelberg et al (1999) argue that cross-sectional empirical analyses of

the relation between firm value and incentives are affected by the possibility that they do not

appropriately control for unobserved determinants of firm heterogeneity that simultaneously

determine firm value and incentives. Our analysis identifies one such unobserved factor—the

degree of asymmetry in beliefs—that leads to a non-monotonic relation between firm value

and managerial incentives.

We derive the continuous-time model as the (weak) limit of the discrete-time model as

the length of each period tends to zero. We show that the agent’s total incentive intensity

in the continuous-time equilibrium is the solution of a first-order non-linear ordinary differ-

ential equation (ODE). We exploit the properties of the ODE to characterize the equilibrium

dynamics. The dynamics of equilibrium contracts are influenced by the two-sided Bayesian

learning of the principal and the agent. The passage of time lowers the adverse selection costs

that depend on the agent’s implicit incentives to influence the principal’s future assessments

of project quality. However, the passage of time also lowers the agent’s optimism as he revises

his assessments of project quality. The equilibrium dynamics depend on the relative rates of

decline of the degree of agent optimism and adverse selection costs.

If the agent is initially moderately optimistic, the effects of the agent’s adverse selection

costs on incentives dominate those of his optimism. His total incentive intensities and effort,

therefore, increase over time. Because investment and effort are complementary in this region,

the principal’s investments also increase. When the agent is initially exuberant, the effects

of optimism dominate. Because the degree of agent optimism declines over time, his total

incentive intensities and effort decline. As investment and effort are substitutes in this region,

the principal’s investments increase to compensate for the decline in the agent’s effort. If we

were to assume that the agent’s effort is observable (but non-contractible) so that implicit

incentives are absent, the negative effects of the decline of agent optimism over time cause

his total incentives to decline over time regardless of his degree of optimism. The presence

of implicit incentives and inter-temporal adverse selection, therefore, plays a central role in

driving the differing dynamics—increasing or decreasing—of total incentives depending on the

level of agent optimism.

In dynamic principal-agent models with imperfect information and symmetric beliefs, the

resolution of uncertainty with the passage of time generally improves risk-sharing. In con-

trast, our results show that the presence of asymmetric beliefs and adverse selection could
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cause risk-sharing to improve or deteriorate over time because the passage of time not only

resolves uncertainty, but also the agent’s optimism. Our results have two additional surprising

implications. First, the agent’s explicit incentive intensity exceeds his total incentive intensity

when he is exuberant. Significant optimism, therefore, causes the agent’s implicit incentives

to influence the principal’s future assessments of the project’s quality to be negative. Second,

if the duration of the relationship is sufficiently long, the agent’s implicit incentives could be

so strong as to cause his explicit incentives to be negative early in the relationship.

The project’s intrinsic and transient risks have complex and differing effects on contractual

dynamics. The differing effects arise from the fact that the intrinsic risk is invariant through

time and affects the costs of risk sharing. The transient risk, however, affects the inter-

temporal adverse selection costs and is resolved over time due to the process of Bayesian

learning. Furthermore, the intrinsic and transient risks have opposite effects on the speed

with which the degree of agent optimism decreases over time. In particular, our results show

that, depending on the level of agent optimism, both types of risk could have positive or

negative effects on the agent’s incentives as well as the principal’s investments.

Our results contrast sharply with the predictions of traditional principal-agent models (e.g.

Holmstrom and Milgrom, 1987) in which the relation between risk and incentives is negative.

Prendergast (1999) highlights the lack of consensus in the empirical literature on whether the

relation between risk and incentives is positive or negative. Our study suggests an alternate

explanation for the data by showing that the presence of asymmetric beliefs and dynamic

adverse selection could lead to an ambiguous relation between risk and incentives.

2 Related Literature

Our study belongs to the body of literature that analyzes dynamic principal-agent models

with moral hazard. Holmstrom and Milgrom (1987) present a continuous-time principal-

agent framework with CARA preferences and normally distributed payoffs. Schattler and

Sung (1993) develop the first-order approach to the analysis of continuous-time principal-

agent problems with exponential utility using martingale methods. Spear and Srivastava

(1987) develop a recursive approach for the analysis of dynamic principal-agent models with

moral hazard that has been subsequently applied and extended to investigate managerial

compensation (e.g., Wang, 1997, Spear and Wang, 2005), financial contracting (e.g. Quadrini,

2004, Clementi and Hopenhayn, 2006, DeMarzo and Fishman, 2007a, 2007b), and various
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issues in macroeconomics (see Part V of Ljungqvist and Sargent, 2004). More recent studies

show how to apply recursive techniques to analyze continuous-time principal-agent models (e.g.

Cadenillas, Cvitanic and Zapatero, 2007, Biais et al, 2007, Sannikov, 2008, Williams, 2009,

Biais et al, 2010). We contribute to this literature by analyzing a model with heterogeneous

beliefs, hidden actions and hidden states. In addition to the usual tradeoff between risk-

sharing and incentives, the optimal dynamic contracts in our framework reflect the effects of

Bayesian learning and dynamic adverse selection.

Gibbons and Murphy (1992) adapt the framework of Holmstrom (1999, formerly 1982) to

study how reputation concerns affect incentive contracts for workers and predict that incen-

tive intensities increase with experience. Meyer and Vickers (1997) develop a dynamic model

with explicit and implicit incentives and examine the effects of relative performance evalu-

ation. Zwiebel (1995) shows that reputation concerns could lead to conservative behavior

by managers. Prendergast and Stole (1996) show that, in a dynamic setting with reputa-

tion concerns, agents could invest aggressively in early periods, but ultimately become too

conservative. None of these studies focuses on the effects of asymmetric beliefs.

Landier and Thesmar (2009) examine the effects of optimism in a two-period model in

which the principal and agent are risk-neutral and the contractual space is exogenously re-

stricted to debt contracts. They show that optimistic entrepreneurs are more likely to choose

short-term debt. Adrian and Westerfield (2009) analyze a continuous-time principal-agent

model with heterogeneous beliefs. They show that asymmetric beliefs create disagreement

risk that alters optimal risk-sharing. For tractability, they assume that the agent “cannot

learn in secret” so that his posterior beliefs are observable to the principal and, therefore,

do not constitute a hidden state variable. We also complement their study by incorporating

dynamic actions by both parties and two-sided Bayesian learning.

The discrete-time model that we develop (before moving to continuous-time) is based on

the framework of Giat et al (2010). For tractability, they assume that the agent’s actions are

observable (but non-contractible) so that his posterior beliefs are observable to the principal.

As discussed earlier, the lack of observability of the agent’s actions necessitates the analysis of

a more complex dynamic mechanism design problem with hidden actions and hidden states.

In addition to the effects of asymmetric beliefs and risk-sharing, the optimal contracts in our

framework also reflect the effects of implicit incentives and dynamic adverse selection.
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3 A Discrete-Time Model

We begin by analyzing a discrete-time model. The continuous-time model that we present

later in Section 5 is the limit (in a rigorously defined sense) of the discrete-time model as

the time interval between successive dates tends to zero. The presence of imperfect public

information, Bayesian learning, and persistent private information for the agent arising from

his unobserved actions makes it very difficult to rigorously pursue a direct analysis of the

continuous–time model in our setting as in studies such as Sannikov (2008). Further, the

investigation of the discrete–time model helps to clarify the intuition underlying the properties

of the continuous–time equilibrium.

We consider a finite time horizon [0, T ] with dates 0,∆t, 2∆t, ..., T −∆t, T. At date zero,

an agent with a project approaches a principal for investments in the project. The project

generates value through physical capital investments by the principal and human capital

investments (effort) by the agent in each period.

3.1 The Project’s Payoff

The project’s payoff, which occurs at the terminal date T , is

VT = V0 +
T−∆t∑
t=0

∆Vt.

In the above ∆Vt is the contribution to the project’s final payoff from the principal’s and

agent’s actions in the interval [t, t+∆t], which we hereafter refer to as the project’s incremental

payoff over the period [t, t+∆t].2

The incremental payoff, ∆Vt, is the sum of a base output—a normal random variable

that is unaffected by the actions of the principal and agent—and a discretionary output—a

deterministic component that depends on the principal’s investment and the agent’s effort. It

is given by

∆Vt =

Base Output︷ ︸︸ ︷
Θ∆t+ s (Wt+∆t −Wt) +

Discretionary Output︷ ︸︸ ︷
Φ(ct, ηt)∆t. (1)

The first component, Θ, of the base output represents the project’s core output growth

rate, which we refer to as the project’s intrinsic quality. In applications of our framework to

2We can extend the model to incorporate intermediate cash flows that are proportional to the project’s
incremental payoffs without altering our results.
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settings with “reputation concerns,” Θ could be interpreted as the ability of the agent. The

principal and agent have imperfect information about Θ and could also differ in their beliefs

about its value. Their respective beliefs are, however, common knowledge, that is, they agree

to disagree (see Morris, 1995, Allen and Gale, 1999). The principal’s (Pr) and agent’s (Ag)

initial priors on Θ are normally distributed N(µPr
0 , σ2

0) and N(µAg
0 , σ2

0), respectively.

We make no assumptions about the true project quality distribution because the equilib-

rium does not depend on it. We can consider the general scenario in which the agent could

be optimistic or pessimistic relative to the principal. To simplify the exposition, and keeping

in mind the canonical applications of our framework (e.g. venture capital, R&D), we restrict

consideration to the empirically relevant scenario in which the agent is optimistic relative to

the principal so that µAg
0 is greater than or equal to µPr

0 . We define Ω0 = µAg
0 − µPr

0 as the

degree of agent optimism at date zero.

The second component of the base output, s (Wt+∆t −Wt) = s∆Wt, where s > 0 is a

constant and W is a standard Brownian motion, represents the “intrinsic” component of the

project’s risk in period [t, t + ∆t]. It is the component of the project’s risk that remains

invariant over time, and is independent of Θ. We refer to s2 as the project’s intrinsic risk.

The discretionary output in period [t, t + ∆t] is a direct result of the principal’s capital

investment rate ct and the agent’s effort ηt, and is given by

Φ(ct, ηt) = Acαt η
β
t , α, β > 0. (2)

The agent’s effort choices are unobservable to the principal, but are correctly inferred by the

principal in equilibrium.

The principal and the agent update their prior beliefs of the project’s intrinsic quality, Θ,

over time based on intermediate observations of the project’s incremental payoffs. Because

the agent’s effort is unobservable to the principal, the principal’s posterior assessments of

the project’s quality depend on her inferences of the agent’s past effort. Let ηPr
t denote the

principal’s inference of the agent’s effort over the interval [t, t + ∆t]. Let ηAg
t denote the

agent’s (possibly off-equilibrium) effort over the interval. It follows from well-known formulae

(see Oksendal, 2003) that the principal’s and agent’s posterior assessments of Θ at each date
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t ∈ {∆t, ..., T} are normally distributed and denoted as N
(
µPr
t , σ2

t

)
and N

(
µAg
t , σ2

t

)
, where

σ2
t =

s2σ2
0

s2 + tσ2
0

, (3)

µPr
t =

s2µPr
0 + σ2

0

t−∆t∑
u=0

(∆Vt−Φ(ct, η
Pr
t )∆t)

s2 + tσ2
0

,

µAg
t =

s2µAg
0 + σ2

0

t−∆t∑
u=0

(∆Vt−Φ(ct, η
Ag
t )∆t)

s2 + tσ2
0

=

s2µAg
0 + σ2

0

t−∆t∑
u=0

(Θ∆t+s∆Wt)

s2 + tσ2
0

. (4)

The degree of uncertainty, σ2
t , in the principal’s and agent’s posterior assessments of the

project’s intrinsic quality, Θ, at any date t is the project’s transient risk. It is resolved over

time as the principal and agent update their assessments of Θ.

From (4), we note that, because the agent knows his own effort choices, his posterior

assessments of the project’s quality do not depend on his prior effort choices. However,

because the agent’s effort choices affect the evolution of the state variable V (·), it follows

from (4) that the agent can influence the principal’s posterior assessments of project quality

through his “off equilibrium” effort choices. Because the principal correctly infers the agent’s

effort choices in equilibrium, her posterior assessments do not depend on the agent’s prior

effort choices on the equilibrium path.

Let Ωt denote the equilibrium degree of agent optimism at date t. By (4),

Ωt = µAg
t − µPr

t = Ω0
s2

s2 + tσ2
0

. (5)

Hence, the equilibrium degree of agent optimism declines deterministically over time. Keep

in mind that only the agent knows the true degree of agent optimism off equilibrium.

3.2 Contracting

The principal offers the agent a long-term contract at date zero. The contract describes

the principal’s capital investments in each period and their respective payoffs. The contract

could be explicitly contingent on the project’s contractible incremental payoffs ∆Vt. As in the

traditional principal-agent literature, it is convenient to augment the definition of the contract

to also include the agent’s recommended effort choices. The contract must then be incentive

compatible or implementable with respect to the agent’s effort.

9



Because the agent’s effort is unobservable to the principal, there is adverse selection be-

tween the principal and agent at intermediate dates. The agent’s unknown “type” at date

t > 0 is his sequence of prior effort choices, which affects his posterior assessment, µAg
t , of the

project’s intrinsic quality (see 4). The presence of adverse selection necessitates the consid-

eration of the general mechanism in which the agent sends messages about his type to the

principal, and the contract could be dynamically contingent on the agent’s messages. Because

we consider a contracting environment with full commitment, it follows from the revelation

principle that we can restrict consideration to direct revelation mechanisms in which the agent

announces his type to the principal.

Let {FPr
t } denote the principal’s information filtration (which is common knowledge) at

date t ∈ {0,∆t, ..., T} that is generated by the history of the project’s incremental payoffs,

the principal’s investments, and the agent’s announced effort choices {η̂Ag
t }. Let {FAg

t }; t ∈

{0,∆t, ..., T} denote the agent’s information filtration that is generated by the history of the

project’s incremental payoffs, the principal’s investments, and the agent’s actual effort choices

{ηAg
t }. A contract is described by (QT , c, η), where QT is {FPr

T }-measurable and c, η are

{FPr
t }-adapted processes. QT is the principal’s contractually promised payoff at date T so

that PT = VT −QT is the payoff to the agent. ct∆t is the principal’s investment and ηt is the

recommended effort of the agent over the interval [t, t+∆t].

The principal is risk-neutral whereas the agent is risk-averse with CARA preferences.

Their respective discount rates are equal and set to zero to simplify the notation. The agent’s

expected utility at date zero from a contract (QT , c, η) is

−EAg
0

{
exp

(
−λ

[
PT −

T−∆t∑
t=0

kηγt∆t

])}
. (6)

In (6), the parameter λ ≥ 0 characterizes the agent’s risk aversion, and kηγt∆t is the agent’s

disutility of effort in the interval [t, t+∆t].

Define the principal’s promised payoff Qt at date t ∈ {0,∆t, ..., T} as the expected future

payoff to the principal less her subsequent capital investments under the contract, that is,

Qt = EPr
t

{
QT −

T−∆t∑
u=t

cu∆t

}
. (7)

For future reference, we refer to Pt = Vt −Qt as the agent’s stake at date t.
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For our analysis, it is convenient to define the agent’s continuation utility ratio at date t,

CURAg
t (the superscript indicates that this is the continuation utility ratio under the agent’s

information and beliefs), which is the ratio of his expected future utility (including disutilities

of effort) to the expected utility from his current stake. Since the agent has a negative

exponential utility function, his continuation utility ratio is

CURAg
t = EAg

t

{
exp

[
−λ

(
PT − Pt −

T−∆t∑
u=t

kηγu∆t

)]}
, (8)

where the notation EAg
t denotes the agent’s expectation conditioned on the agent’s information

and beliefs at date t, that is, the σ-field FAg
t .

A contract (Q, c, η) is incentive compatible for the agent if and only if it is optimal for

the agent to exert effort η and truthfully announce his prior effort choices (or “type”) to the

principal. A contract is feasible if and only if it is incentive compatible and guarantees the

principal the promised payoff, Q0, at date zero.

We consider the sub-class of contracts in which the change in the principal’s promised

payoff over any period [t, t+∆t] is affine in the project’s incremental payoff, that is,

∆Qt = −at∆t+ (1− bt)∆Vt, (9)

where at and bt are FPr
t -measurable random variables. It immediately follows from the above

that the change in the agent’s stake is

∆Pt = at∆t+ bt∆Vt. (10)

From (10), the parameter bt represents the sensitivity of the change in the agent’s stake to the

project’s performance ∆Vt that we hereafter refer to as the agent’s explicit incentive intensity.

The parameter at determines the agent’s performance-invariant compensation; the component

of the change in the stake that does not depend on performance during the period. Note that

we allow for both at and bt to be random variables.

It follows by adapting the arguments of Mirrlees (1999, originally 1975) that an optimal

contract among the entire set of incentive feasible contracts in the discrete-time model does

not exist. We, therefore, derive the optimal contract in the continuous-time model by first

showing that it must be “locally affine” in Proposition 3 (more precisely, the principal’s

11



promised payoff under the optimal contract evolves as an Ito process). We then prove that

the optimal contract in the sub-class of affine contracts described by (9) and (10) converges

to the optimal contract (among all incentive feasible contracts) in the continuous-time model

described in Section 5 as the time interval ∆t between successive dates tends to zero.

Remark 1

In our continuous–time model, we characterize the set of incentive feasible contracts that max-

imize the agent’s expected utility, while guaranteeing the principal an initial promised payoff,

Q0. Such contracts lie on the “utility possibility frontier.” The principal’s initial promised

payoff represents an allocation of bargaining power between the principal and the agent. Tra-

ditional dynamic contracting models with moral hazard characterize optimal contracts by

maximizing the principal’s expected payoff while guaranteeing the agent a promised expected

utility (e.g. Spear and Srivastava, 1987). In our setting with imperfect public information

and inter-temporal adverse selection, it is much more convenient to adopt the “reflected” per-

spective in which we maximize the agent’s expected utility while guaranteeing the principal

a promised expected payoff.

4 The Discrete-Time Equilibrium

We assume the following condition that guarantees the existence of an equilibrium by ensuring

that (i) the agent faces decreasing returns to scale from effort; and (ii) his disutility from his

effort is sufficiently pronounced relative to its positive contribution to output.

Assumption 1 (1− α)γ/β ≥ 2.

4.1 The Discrete-Time Optimal Contract: A Special Case

Before deriving the discrete–time equilibrium of the full model, it is useful to analyze the

special case where the agent’s effort is the only factor of production. Specifically, we set

A = 1, α = 0, β = 1 in (2). Further, we set γ = 2 in (6). The intuition underlying some of

the features of the optimal contract in this special case carries over to the general setting. We

derive the optimal contract by backward induction.
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Optimal Contractual Parameters in the Last Period

Consider the last period [T −∆t, T ]. Suppose that the contractual compensation parameters

are (a, b) (see (10)). If the agent exerts effort η, his continuation utility ratio (8) is

CURAg
T−∆t = EAg

T−∆t

{
exp

[
−λ
(
a∆t+b∆Vt−kη2∆t

)]}
.

Using the fact that

EAg
T−∆t [∆Vt] = (η + µAg

T−∆t)∆t and V arAg
T−∆t [∆Vt] = s2∆t+ σ2

T−∆t∆t2,

where µAg
T−∆t and σ2

T−∆t are defined in (4) and (3), respectively, the continuation utility ratio is

CURAg
T−∆t = exp

[
−λ
(
a∆t+b(η +µAg

T−∆t)∆t−kη2∆t− 0.5λb2
(
s2∆t+ σ2

T−∆t∆t2
))]

. (11)

Because the agent has a negative exponential utility function, he chooses the effort level to

minimize (11). The agent’s effort η is therefore implementable if and only if η = η(b), where

η(b) =
b

2k
. (12)

The principal’s inferences of the agent’s prior effort choices are {ηPr
u ;u<T−∆t} so that

her mean assessment of the project’s intrinsic quality at date t = T −∆t is µPr
T−∆t (given

by 4). The derivation of the equilibrium necessitates the consideration of “off equilibrium”

paths in the game tree at which the agent’s past effort choices could differ from the principal’s

inferences. Further, we need to consider the general dynamic mechanism in which the agent’s

announcements regarding his past effort choices could differ from his actual effort choices.

Accordingly, suppose that the agent announces that his prior effort choices are {η̂Ag
u ;u<

T −∆t}, while his actual effort choices are {ηAg
u ; u < T −∆t}. Hence, the agent’s actual

mean assessment of the project’s intrinsic quality at date t = T−∆t is µAg
T−∆t, but his mean

assessment based on his announced prior effort is µ̂Ag
T−∆t. µ

Ag
T−∆t and µ̂Ag

T−∆t are given by (4)

with the agent’s prior effort choices set to ηAg
u and η̂Ag

u , respectively.

The contract must satisfy the promise-keeping constraint for the principal, that is, the

principal’s promised payoff must be delivered by the contract under the principal’s beliefs.

We conjecture that, under the optimal contract, the principal does not alter her inferences

of the agent’s prior effort in response to the agent’s announcement. We later verify that our

13



conjecture is correct by showing that the principal correctly infers the agent’s effort choices

in equilibrium and that the principal’s response to the agent’s announcements supports the

equilibrium. By (7) and (9), the principal’s promise-keeping constraint is (recall that effort is

the only driver of production in this special case, that is, there is no inter-temporal investment

by the principal)

EPr
T−∆t[∆Qt] = 0. (13)

The expectation above assumes that the principal’s assessment of the project’s intrinsic quality

at date t = T−∆t is µPr
T−∆t. It follows from (13) and (12) that the agent’s performance-invariant

compensation a, expressed in terms of the agent’s explicit incentive intensity b, is

a(b) = (1− b)

[
b

2k
+ µPr

T−∆t

]
. (14)

Substituting (12) and (14) into (11), the agent’s continuation utility ratio simplifies to

CURAg
T−∆t = exp

[
−λΛAg

T−∆t(b)∆t
]

= exp

[
−λ

(
ΩAg

T−∆tb−0.5λ(s2+σ2
T−∆t∆t)b2+

b

2k
− b2

4k
+ µPr

T−∆t

)
∆t

]
. (15)

In (15), ΩAg
T−∆t = µAg

T−∆t − µPr
T−∆t.

Based on the agent’s announcement regarding his prior effort choices, however, his “an-

nounced” or “apparent” continuation utility ratio is

ĈUR
Ag

T−∆t=exp
[
−λΛ̂Ag

T−∆t(b)∆t
]
=exp

[
−λ

(̂
ΩAg

T−∆tb−0.5λ(s2+σ2
T−∆t∆t)b2+

b

2k
− b2

4k
+µPr

T−∆t

)
∆t

]
,

(16)

where Ω̂Ag
T−∆t = µ̂Ag

T−∆t − µPr
T−∆t. Comparing (16) with (15), note that the true degree of agent

optimism, ΩAg
T−∆t, is replaced with the “announced” degree of agent optimism, Ω̂Ag

T−∆t.

As we justify shortly, under the optimal contract, the agent’s explicit incentive intensity

minimizes (16) so that it solves

b̂∗T−∆t = argmax
b≥0

Λ̂Ag
T−∆t(b). (17)

By (17) and the preceding analysis, the agent’s explicit incentive intensity minimizes his con-

tinuation utility ratio (16) based on his announcement regarding his type, while guaranteeing

the principal her promised payoff based on her beliefs. That is, the agent appropriates the

14



“announced” surplus from the project. It is, therefore, optimal for the agent to truthfully

announce his type so that the contractual parameters maximize the actual surplus. Conse-

quently, the contract is incentive compatible for the agent and Λ̂Ag
T−∆t = ΛAg

T−∆t. The agent’s

explicit incentive intensity therefore solves

b∗T−∆t = argmax
b≥0

ΛAg
T−∆t(b)

= argmax
b≥0

ΩAg
T−∆tb−0.5λ(s2+σ2

T−∆t∆t)b2+
b

2k
− b2

4k

=
1 + 2kΩAg

T−∆t

2kλ(s2+σ2
T−∆t∆t) + 1

(18)

The other contractual parameters are a∗T−∆t = (1 − b∗T−∆t)
[
b∗T−∆t

2k
+ µPr

T−∆t

]
, η∗T−∆t =

b∗T−∆t

2k
.

Because the agent’s explicit incentive intensity maximizes his expected utility, while guaran-

teeing the principal her promised payoff, the contract is incentive efficient in the last period.

Optimal Contractual Parameters in the Penultimate Period

We now examine the penultimate period [T − 2∆t, T −∆t]. Set t = T − 2∆t. Suppose that

the contractual compensation parameters in the period [t, t+∆t] are (a, b). If the agent exerts

effort η, his continuation utility ratio (8) is

CURAg
t =EAg

t

[
exp
(
−λ
(
a∆t+b∆Vt−kη2∆t+ a∗t+∆t∆t+b∗t+∆t∆Vt+∆t−k

(
η∗t+∆t

)2
∆t
))]

=EAg
t

[
exp

(
−λ
(
a∆t+b(Θ∆t+ s∆Wt + η∆t)−kη2∆t

+(1−b∗t+∆t)µ
Pr
t+∆t∆t+b∗t+∆t(Θ∆t+s∆Wt+∆t)

))]
, (19)

where the second equality follows from (14) and (1). By (4),

µPr
t+∆t=

s2µPr
t +σ2

t

(
∆Vt−ηPr

t ∆t
)

s2 +∆tσ2
t

=
s2µPr

t +σ2
t

(
Θ∆t+s∆Wt+(η −ηPr

t )∆t
)

s2 +∆tσ2
t

(20)

where ηPr
t is the principal’s inference of the agent’s effort over the penultimate period [T −

2∆t, T −∆t]. Notice that, at this point in the analysis, we must allow for the “off equilibrium”

possibility that the principal’s inference of the agent’s effort differs from his actual effort.

Substituting (20) in (19), using the fact that b∗t+∆t is FPr
t −measurable by (16), (17), (20),

and the fact that the agent truthfully announces his type in the final period, the agent’s effort
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η is implementable if and only if

η = η(B) =
B

2k
,where (21)

B = b+ (1− b∗t+∆t)
σ2
t

s2 +∆tσ2
t

∆t. (22)

We refer to B as the agent’s total incentive intensity because it is the sum of his explicit

incentive intensity b and his implicit incentive intensity (1 − b∗t+∆t)
σ2
t

s2+∆tσ2
t
∆t. By (21), the

agent’s effort depends on the total incentive intensity B. Note further that, given the total

incentive intensity B, the principal’s inference of the agent’s effort in the penultimate period,

ηPr
t = η(B).

Let µAg
t and µ̂Ag

t denote the agent’s mean assessments of project quality based on his

“actual” and “announced” prior effort choices, respectively. As in our analysis of the final

period, we conjecture that the principal does not alter her inferences of the agent’s past effort

in response to the agent’s announcement. Accordingly, the contract must satisfy the promise

keeping constraint (13) for the principal, where the principal’s current mean assessment of the

project’s quality is µPr
t . Therefore,

a(b, c) = (1− b)

[
B

2k
+ µPr

t

]
. (23)

Substituting (21) and (23) in (19), the agent’s actual continuation utility ratio is

CURAg
t (b, c) = EAg

t (exp(−λZ)) , where

Z =

 [
(1−b)

[
B
2k

+ µPr
t

]
+b(Θ + B

2k
)−B2

4k

]
∆t+ bs∆Wt

+(1−b∗t+∆t)µ
Pr
t+∆t∆t+b∗t+∆t [Θ∆t+ s∆Wt+∆t]

 . (24)

We note that by (20)

EAg
t [Z] =

[
ΩAg

t b+
B

2k
−B2

4k
+µPr

t + ΩAg
t b∗t+∆t

]
∆t. (25)

V arAg
t [Z] = σ2

t

[
Bt∆t+ b∗t+∆t∆t

]2
+ s2

[
B2

t∆t+ (b∗t+∆t)
2∆t
]
. (26)

The agent’s continuation utility ratio based on his “announced” effort choices—his “an-

nounced” continuation utility ratio—is, however, given by
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ĈUR
Ag

t (b, c) = ÊAg
t (exp(−λZ)) , (27)

where ÊAg
t [·] denote the conditional expectation under the agent’s “announced” beliefs. ÊAg

t [Z]

and V̂ ar
Ag

t [Z] are the mean and variance of Z under the agent’s “announced” beliefs, and are

given by (25) and (26), respectively, with ΩAg
t replaced by Ω̂Ag

t = µ̂Ag
t − µPr

t .

As in our analysis of the last period, the agent’s explicit incentive intensity minimizes the

agent’s “announced” continuation utility ratio and is given by

b∗t = argmax
b

Ω̂Ag
t b− 0.5λ

(
σ2
t

[
B +b∗t+∆t

]2
∆t+s2

[
B2+(b∗t+∆t)

2
])
+

B

2k
− B2

4k
.

= argmax
b

Ω̂Ag
t B − 0.5λ

(
σ2
t

[
B +b∗t+∆t

]2
∆t+s2B2

)
+

B

2k
− B2

4k
. (28)

The second equality above follows from (22) and the fact that b∗t+∆t does not depend on b.

It follows again from (22) that the optimization problem (28) can be replaced by one that

maximizes the agent’s total incentive intensity

B∗
t = argmax

B
Ω̂Ag

t B − 0.5λ
(
σ2
t

[
B +b∗t+∆t

]2
∆t+s2B2

)
+

B

2k
− B2

4k
. (29)

The optimal explicit incentive intensity b∗t is obtained from B∗
t using (22).

As in the analysis of the last period, it is incentive compatible for the agent to truthfully

announce his type so that his contract maximizes the actual surplus. Hence, Ω̂Ag
t = ΩAg

t . It

follows from (29) that

B∗
t =argmax

B
ΩAg

t B − 0.5λ
(
σ2
t

[
B +b∗t+∆t

]2
∆t+s2B2

)
+

B

2k
−B2

4k
=

1+2kΩAg
t −λσ2

t b
∗
t+∆t∆t

2kλ(s2+σ2
t∆t) + 1

(30)

In equilibrium, the principal correctly infers the agent’s effort in each period. Extending

the above analysis by backward induction (see the proof of Theorem 1 in the Appendix), we

obtain the following expression for the agent’s equilibrium total incentive intensity:

B∗
t =

1 +

Effects of Optimism︷︸︸︷
2kΩt −

Effects of Implicit Incentives︷ ︸︸ ︷
λσ2

t

T−∆t∑
u=t+∆t

B∗
u∆t

2kλ(s2+σ2
t∆t) + 1

(31)

Because the principal correctly infers the agent’s effort choices in equilibrium, the equilibrium
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degree of agent optimism, Ωt, appears in the numerator on the right hand side above.

From (31), the agent’s total incentive intensity at any date increases with the degree of

agent optimism. Optimism causes the agent to overvalue the performance-sensitive com-

ponent of his compensation relative to the performance-invariant component. The optimal

contract exploits this by increasing the sensitivity of the agent’s compensation to performance.

However, the agent’s total incentive intensity at each date is also affected by his future total

incentives through the second term in the numerator of (31). This term represents the effects

of the agent’s implicit incentives on his total incentive intensity. The agent’s implicit incentives

negatively affect his total incentives and the negative effects increase with the agent’s future

total incentives. As we see shortly, these basic “forces”—the positive effects of optimism and

the negative effects of implicit incentives—carry over to the general setting with investment

and effort.

4.2 The Discrete-Time Optimal Contract: The General Case

The following theorem describes the discrete-time equilibrium contract in the general model.

Theorem 1 (Discrete-Time Equilibrium)

Let (a∗t , b
∗
t , c

∗
t , η

∗
t ) denote the equilibrium contractual parameters in the interval [t, t + ∆t],

where t ∈ [0, T − ∆t]. Let Ωt denote the equilibrium degree of agent optimism at date t.

Define the sequence B∗
t recursively as follows starting from t = T −∆t,

B∗
t = argmax

B
ΩtB−0.5λs2B2−0.5λσ2

t

[
B +

T−∆t∑
u=t+∆t

B∗
u

]2
∆t+

γ − β − αγ

αγ
c(B), where (32)

c(B) = 1B< γ
β

[
αγ

γ − β
A

γ
γ−β

[
1

k

] β
γ−β
(
βB

γ

) β
γ−β
(
1− βB

γ

)] γ−β
(1−α)γ−β

(33)

The optimal explicit incentive intensity is

b∗t = B∗
t −

T−∆t∑
v=t+∆t

(1− b∗v)
σ2
0

σ2
0v + s2

∆t = B∗
t −

σ2
0

σ2
0(t+∆t)+s2

T−∆t∑
v=t+∆t

(1−B∗
v)∆t. (34)

The principal’s optimal investment is

c∗t = c(B∗
t ). (35)
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The agent’s optimal effort is

η∗t =

(
Aβ(c∗t )

αB∗
t

γk

) 1
γ−β

. (36)

The agent’s performance-invariant compensation is

a∗t = (1− b∗t )
[
A(c∗t )

α(η∗t )
β + µPr

t

]
− c∗t . (37)

Proof. The proofs of all results are provided in the Appendix.

4.3 The Agent’s Total Incentive Intensity

By Theorem 1, the contractual parameters at any date are determined by the agent’s total

incentive intensity, B∗
t that is given by

B∗
t =

explicit incentive intensity︷︸︸︷
b∗t +

implicit incentive intensity︷ ︸︸ ︷
T−∆t∑
v=t+∆t

(1− b∗v)
σ2
0

σ2
0v + s2

∆t. (38)

Extending the discussion in Section 4.1, the total incentive intensity is the sum of the

agent’s “explicit” incentive intensity, b∗t and the “implicit” incentive intensity. From (32), the

agent’s optimal total incentive intensity maximizes the objective function Ft(B) that is

Ft(B) =

Rents from Agent Optimism︷︸︸︷
ΩtB −

Costs of Risk-Sharing︷ ︸︸ ︷
0.5λs2B2 −

Adverse Selection Costs︷ ︸︸ ︷
0.5λσ2

t

[
B+

T−∆t∑
u=t+∆t

B∗
u

]2
∆t+

Return on Investment and Effort︷ ︸︸ ︷
γ − β − αγ

αγ
c(B) .

(39)

The objective function has four key components.

• Rents from Agent Optimism: The term ΩtB represents the positive effects of agent

optimism on incentives.

• Costs of Risk-Sharing: The term 0.5λs2B2 represents the usual costs of risk-sharing

between the risk-neutral principal and the risk-averse agent that negatively affect total

incentives.

• Adverse Selection Costs: The term 0.5λσ2
t

[
B +

∑T−∆t
u=t+∆tB

∗
u

]2
∆t arises from the pres-

ence of inter-temporal adverse selection between the principal and the agent because the

agent knows his own past effort choices, while the principal doesn’t. Consistent with
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the intuition gleaned from the analysis of the special case in Section 4.1, the adverse

selection costs at any date decline with the agent’s future total incentives.

• Return on Investment and Effort: The term γ−β−αγ
αγ

c(B) arises from the complemen-

tarity of investment and effort.

The following proposition, which is similar to Proposition 1.1 in Giat et al (2010), estab-

lishes some properties of the function c(.) that are important for our subsequent analysis. The

proof and the intuition underlying the proposition are as in Giat et al (2010).

Proposition 1

The function c(B) achieves its maximum at B = 1. It is strictly concave on [0, BM ] and strictly

convex on [BM , γ
β
], where BM ∈ (1, γ

β
(1−α) ) is the unique minimum of the function c′(·).

We make the following standing assumption, which ensures that the optimal investment

function is strictly concave for realized equilibrium values of the total incentive intensity.

Assumption 2 Ω0/λs
2 ≤ BM , where BM is defined in Proposition 1.

The following proposition establishes properties of the optimal total incentive intensity,

B∗
t , that we use later.

Proposition 2

(i) The optimal total incentive intensity B∗
t is strictly positive at each date t. (ii) B∗

t ≤

max{ Ω0

λs2
, 1}.

By Proposition 1, c′(0) = ∞ so that F ′
t(0) = ∞. It follows from (39) that the total

incentive intensity must be strictly positive at each date. As shown by the second part of the

proposition, the total incentive intensity at each date is bounded above with the upper bound

determined by the initial degree of agent optimism.

5 The Continuous-Time Model

The continuous-time model is obtained as the limit of the discrete-time model as the time

interval between successive dates, ∆t, tends to zero. More precisely, the project’s terminal

payoff, VT is

VT = V0 +

∫ T

0

dVt, (40)
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where the incremental payoff Vt evolves as follows:

dVt = Θdt+ sdWt + Φ(ct, ηt)dt. (41)

The principal’s and agent’s posterior beliefs about the project’s quality, Θ, are similarly given

by (3) and (4) where the summations in (4) are replaced by stochastic integrals.

The agent’s utility function from a contract (QT , c, η) is given by

−EAg
0

{
exp

(
−λ

[
PT −

∫ T

0

kηγt dt

])}
,

where PT = VT −QT .

5.1 Structure of Long-Term Contract

The following proposition characterizes the evolution of the principal’s promised payoff process

under the optimal contract.

Proposition 3

The principal’s promised payoff under the optimal contract evolves as follows:

dQt = −atdt+ (1− bt)dVt, (42)

where the contractual parameters at, bt ∈ R are {FPr
t }-progressively measurable. It follows

directly from (42) that the principal’s terminal payoff QT can be expressed as

QT = Q0 +

∫ T

0

[−atdt+ (1− bt)dVt] .

The agent’s stake, Pt = Vt −Qt, at date t evolves as follows:

dPt = atdt+ btdVt. (43)

Analogous to the discrete-time model, we refer to the parameter bt as the agent’s explicit

incentive intensity and the parameter at as the agent’s performance-invariant compensation. In

light of Proposition 3 a contract is completely specified by at, bt, and the principal’s investment

rate, ct, at each time t. It is worth mentioning here that, by the martingale representation

theorem for Brownian motion that we use to prove Proposition 3, the principal’s promised
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payoff under any incentive feasible contract must evolve as (42), that is, it must be an Ito

process. Therefore, the proposition actually holds for any incentive feasible contract.

5.2 The Continuous-Time Equilibrium

The continuous-time equilibrium is the limit of the equilibrium in the discrete time model

described in Theorem 1 as ∆t −→ 0. Before presenting the main theorem describing the

equilibrium, it is useful to describe its derivation using heuristic arguments. From the first

order condition in (39) and taking the limit as ∆t −→ 0, the total incentive intensity in the

continuous time model solves

F
′

t (B
∗
t ) = Ωt − λs2B∗

t − λσ2
t

T∫
t

B∗
udu+

γ − β − αγ

αγ
c
′
(B∗

t ) = 0 (44)

From the above, we obtain

0 =
Ωt

λσ2
t

− s2

σ2
t

B∗
t −

T∫
t

B∗
udu+

γ − β − αγ

αγλσ2
t

c
′
(B∗

t )

=
Ω0

λσ2
0

− s2 + tσ2
0

σ2
0

B∗
t −

T∫
t

B∗
udu+

γ − β − αγ

αγλs2
s2 + tσ2

0

σ2
0

c
′
(B∗

t ),

where the second equality above follows from (3) and (5). Differentiating the second expression

above with respect to time and rearranging terms, the total incentive intensity must solve the

following nonlinear ODE:

dB∗
t

dt
=

σ2
0

s2 + tσ2
0

c′(B∗
t )(

αγλs2

γ−β−αγ
− c′′(B∗

t )
) , (45)

The following theorem formally describes the equilibrium and its proof makes the above heuris-

tic derivation rigorous.

Theorem 2 (Continuous-Time Equilibrium)

Let (a∗t , b
∗
t , c

∗
t , η

∗
t ) denote the equilibrium contractual parameters at date t. Define the total

incentive intensity B∗(t) as the solution of the nonlinear ODE (45) with boundary condition

ΩT − λs2B∗
T +

γ − β − αγ

αγ
c′(B∗

T ) = 0. (46)
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where c(B) is defined in (33) at date T .

• There exists a unique solution to the ODE (45) with boundary condition (46).

• The agent’s explicit incentive intensity at date t is:

b∗t = B∗
t −

σ2
0

s2 + tσ2
0

∫ T

t

(1−B∗
u)du. (47)

• The principal’s equilibrium investment rate at date t is c∗t = c(B∗
t ).

• The agent’s equilibrium effort at date t is given by (36).

• The agent’s performance-invariant compensation rate at date t is given by (37).

As we show in Appendix, the total incentive intensity path in the continuous-time model

is the (point-wise) limit of the total incentive intensity paths in the discrete time model as

the length of a period tends to zero. Consequently, Proposition 2 is also true for the total

incentive intensities in the continuous-time model.

6 Contractual Dynamics

Although the ODE (45) cannot be solved analytically, its properties can be exploited to

qualitatively characterize the contractual dynamics.

6.1 The Dynamics of Incentives, Effort and Investment

The following theorem describes how the agent’s total incentive intensity, explicit incentive

intensity, effort, and the principal’s investments evolve over time. As the results show, the

contractual dynamics crucially depend on the initial degree of agent optimism, specifically,

the sign of the quantity Ω0 − λ (s2 + Tσ2
0). We define the agent as “reasonably optimistic” if

Ω0 < λ (s2 + Tσ2
0) and “exuberant” if Ω0 > λ (s2 + Tσ2

0).

Theorem 3 (Contractual Dynamics)

• Suppose that Ω0 < λ (s2 + Tσ2
0) . (i) The agent’s total incentive intensity B∗

t < 1 for all

t and B∗
t increases with t. (ii) The agent’s explicit incentive intensity b∗t < B∗

t < 1 for all

t and b∗t increases with t. (iii) The investments c∗t increase over time. (iv) The agent’s

effort η∗t increases over time.

23



Figure 1: Contractual Dynamics. Here, Ωn
0 , n = 1, 2 are initial levels of agent optimism,

Ω1
0 < λ(Tσ2

0 + s2) < Ω2
0.
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(d) Effort Schedules

• Suppose that Ω0 = λ (s2 + Tσ2
0) . (i) The agent’s total incentive intensity B∗

t = 1 for all

t. (ii) The agent’s explicit incentive intensity bt = 1 for all t. (iii) The investments c∗t

and effort η∗t are constant over time.

• Suppose that Ω0 > λ (s2 + Tσ2
0) . (i) The agent’s total incentive intensity B∗

t > 1 for all

t and B∗
t decreases with t. (ii) The agent’s explicit incentive intensity b∗t > B∗

t > 1 for all

t and b∗t decreases with t. (iii) The investments c∗t increase over time. (iv) The agent’s

effort η∗t decreases over time.

Figure 1 illustrates the results of the theorem by showing the variations of the total in-

centive intensities, explicit incentive intensities, investments and effort choices over time. To

understand the intuition for the results, recall the discussion after Theorem 1. The equilibrium

depends on the interplay among four forces: agent optimism, risk-sharing costs, inter-temporal

adverse selection costs, and the return on investment and effort.

From (39), we note that the effects of agent optimism and the adverse selection costs are

explicitly time-dependent, while the costs of risk-sharing and the return on investment are

not. By (3) and (5), the transient risk, σ2
t and the degree of agent optimism, Ωt, both decline

over time. Hence, by (39), the rents due to the agent’s optimism and the adverse selection
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costs both decline over time. The equilibrium dynamics are essentially determined by the

relative rates of decline of these two components of the objective function Ft(B).

When the agent’s degree of optimism is below a threshold (that is, he is “reasonably

optimistic”), the effects of agent optimism are outweighed by risk-sharing and adverse selection

costs so that the agent’s total incentive intensity is initially low. As mentioned above, the

degree of agent optimism and adverse selection costs both decline over time. When the agent’s

optimism is below a threshold however, the positive effects of the decline in adverse selection

costs on incentives dominate the negative effects of the decline in agent optimism so that the

agent’s total incentive intensity and effort increase. In the region where B∗
t < 1, investment

and effort are complementary (recall Proposition 1 and its intuition) so that the principal’s

investments also increase over time.

When the agent’s degree of optimism is above a threshold (that is, he is “exuberant”), the

positive effects of agent optimism dominate the negative effects of risk-sharing and adverse

selection costs. The agent’s total incentive intensity is, therefore, initially high and exceeds

one. In this region, the negative effects of the decline in agent optimism on incentives as time

passes dominate the positive effects of the decline in adverse selection costs. Hence, the agent’s

total incentive intensity and effort decline over time. By Proposition 1, the optimal investment

function is decreasing for B > 1, that is, investment and effort are effectively “substitutes”

rather than “complements”in this region. The principal’s investments, therefore, increase over

time to compensate for the decline in the agent’s effort.

A surprising implication of Theorem 3 is that the agent’s explicit incentive intensity b∗t

exceeds his total incentive intensity B∗
t when he is exuberant. It follows from (38) that the

presence of significant optimism could cause the agent’s implicit incentives to influence the

principal’s posterior assessments about project quality to be negative.

The Effects of Implicit Incentives: By the above discussion, the presence of adverse se-

lection arising from the agent’s implicit incentives to influence the principal’s posterior assess-

ments of project quality plays a central role in driving the contractual dynamics. To further

understand the effects of implicit incentives, we examine the scenario in which they are absent.

As discussed earlier, the agent has no implicit incentives when his effort is observable (but

non-contractible). In this scenario, the agent’s explicit incentive intensity b∗t at each date t

solves

Ωtb
∗
t − λs2b∗t +

γ − β − αγ

αγ
c′(b∗t ) = 0 (48)
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Comparing (48) with (44), we see that, because the agent has no implicit incentives, his

explicit incentive intensity equals his total incentive intensity. Further, the explicit incentive

intensity maximizes an objective function in which adverse selection costs are absent. The

following proposition describes the contractual dynamics in this scenario. We omit the proof

for brevity because it follows using arguments similar to those used to prove Theorem 3.

Proposition 4 (Contractual Dynamics When Implicit Incentives are Absent)

(i) The agent’s explicit incentive sensitivity b∗t decreases monotonically with t. Define t∗ :=

(Ω0

p
− 1) s

2

σ2
0
= Ω0

λσ2
0
− s2

σ2
0
. The agent’s explicit incentive intensity b∗t exceeds 1 if t < t∗, equals

1 at t = t∗, and less than 1 if t > t∗. (ii) The investments c∗t increase until time t∗ and then

decrease monotonically. (iii) For t ≥ t∗, the agent’s effort η∗t decreases monotonically. For

t < t∗, the effort could vary non-monotonically.

Comparing Proposition 4 with Theorem 3, we see that the absence of implicit incentives

leads to very different contractual dynamics. In contrast with Theorem 3, incentives always

decline over time regardless of the agent’s optimism. In the absence of implicit incentives

and adverse selection costs, the dynamics of incentives are entirely driven by the fact that

the agent’s optimism declines over time due to Bayesian learning. The investment and effort

paths in the absence of implicit incentives are also very different. In particular, investments

and effort vary non-monotonically in general when implicit incentives are absent.

6.2 Sensitivity of Equilibrium Dynamics

We now explore the effects of project characteristics on the contractual dynamics.

The Effects of Agent Optimism

The following theorem describes the effects of agent optimism on the equilibrium paths of the

total incentive intensity, investment and effort.

Theorem 4 (Effects of Agent Optimism)

• The time paths of total incentive intensities B∗
t and effort η∗t increase pointwise with the

initial degree of agent optimism Ω0.

• If the total incentive intensity path is less (greater) than one (see Theorem 3) then the

paths of investments increase (decrease) pointwise with Ω0.
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Figure 2: Variations of Total Incentive Intensities with Agent Optimism. Here, Ωn
0 , n =

1, 2, 3, 4 are initial levels of agent optimism, Ω1
0 < Ω2

0 < λ(Tσ2
0 + s2) < Ω3

0 < Ω4
0.
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(b) Exuberant Agent

By the discussion following Theorem 1, an increase in the degree of agent optimism in-

creases the positive effects of agent optimism on the total incentive intensity. The total

incentive intensity at any date is, however, also affected by the three other terms in the ob-

jective function (39). In particular, the negative effects of adverse selection costs increase

with the future total incentive intensities that has a negative effect on the current total in-

centive intensity. As the theorem shows, the direct positive effects of agent optimism on total

incentives dominates the indirect negative effects of adverse selection costs so that the total

incentive intensity at each date increases with the initial degree of agent optimism.

Theorem 4 predicts that optimism positively affects the agent’s total incentives B∗
t . How-

ever, the effects of optimism on the agent’s explicit incentives b∗t are ambiguous for general

parameter values because of the presence of nonzero implicit incentives for the agent. In con-

trast, in the framework of Giat et al (2009a), in which adverse selection and implicit incentives

are absent, agent optimism always positive affects his explicit incentives. The absence of ad-

verse selection in their framework implies that the beneficial effects of optimism are unaffected

by the potentially countervailing effects of adverse selection that play a key role in our model.

The effects of agent optimism on investment and effort depend on whether the total incen-

tive intensity path is less than or greater than one because the optimal investment function

is non-monotonic as described by Proposition 1. When the total incentive intensities are less

than one, investment and effort are complements. Hence, the increase of total incentive in-

tensities with the degree of agent optimism causes the investment and effort paths to also

increase. When the total incentive intensities are greater than one, investment and effort are

effectively substitutes. Therefore, an increase in the degree of agent optimism increases total

incentives and effort, but causes the principal to lower her investments. Put differently, agent
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optimism is significant in this region so that it is optimal for the principal to allow output to

be relatively dominated by the agent’s effort.

Our results imply that optimism could significantly mitigate the detrimental effects of risk-

sharing and adverse selection costs. In fact, if the degree of agent optimism is sufficiently high,

it could even cause him to over-invest effort relative to the benchmark scenario with symmetric

beliefs and universal risk-neutrality. In contrast, in traditional principal-agent models with

symmetric beliefs, the negative effects of the costs of risk-sharing lead to under-investment of

effort relative to the scenario in which the principal and agent are risk-neutral. The significant

impact of optimism on investment and effort could reconcile evidence that venture capitalists

and entrepreneurs invest in highly innovative ventures even though the chances of failure are

extremely high. To explain observed venture capital (VC) investment, a number of previous

studies introduce non-pecuniary private benefits for entrepreneurs. The empirical findings in

Moskowitz and Vissing-Jorgensen (2002), however, suggest a “private equity” puzzle in that

private benefits have to be very high relative to typical entrepreneurial incomes to explain

observed levels of VC investment. Our results suggest that entrepreneurial optimism, and its

rational exploitation by venture capitalists, could reconcile the puzzle.

The Effects of Transient Risk and Intrinsic Risk

The following theorem describes the effects of the project’s initial transient risk on the equi-

librium paths of the incentive intensity, investment and effort.

Theorem 5 (Effects of Transient Risk)

Consider any pair of possible values, σ1 > σ2 of the project’s initial transient risk σ0.

• B∗
T (σ1) ≤ B∗

T (σ2).

• If B∗
T (σ1) ≤ 1 ≤ B∗

T (σ2) with at least one strict inequality, then B∗
t (σ1) < B∗

t (σ2);

η∗t (σ1) < η∗t (σ2) for all t. c
∗
t (σ1) could be greater than, equal to, or less than c∗t (σ2).

• If B∗
T (σ1) ≤ B∗

T (σ2) ≤ 1 then B∗
t (σ1) ≤ B∗

t (σ2); c
∗
t (σ1) ≤ c∗t (σ2); η

∗
t (σ1) ≤ η∗t (σ2).

• If 1 ≤ B∗
T (σ1) ≤ B∗

T (σ2) with at least one strict inequality, then there exists u ∈ [0, T )

such that B∗
t (σ1) > B∗

t (σ2); c
∗
t (σ1) < c∗t (σ2); η

∗
t (σ1) > η∗t (σ2) for t < u and B∗

t (σ1) <

B∗
t (σ2); c

∗
t (σ1) > c∗t (σ2); η

∗
t (σ1) < η∗t (σ2) for t > u.
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Figure 3: The sensitivity of total incentives (B∗
t ) and investment schedules (c∗t ) to transient

risk for reasonably optimistic and exuberant agent. Here, σn, n = 1, 2 are initial levels of
transient risk, σ1 > σ2. The initial levels of agent optimism for the reasonably optimistic and
exuberant agent are Ω1 and Ω2, respectively, where Ω1 < λ(Tσ2

n + s2) < Ω2 for n = 1, 2
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(d) c∗t - Exuberant

Figure 3 illustrates the results of Theorem 5 by showing the effects of transient risk on the

agent’s total incentive intensity path in the scenarios where the agent is initially reasonably

optimistic and exuberant.

By (5), an increase in the initial transient risk lowers the degree of agent optimism at the

terminal date T. It follows from (46) that B∗
T (σ1) < B∗

T (σ2). If B
∗
T (σ1) ≤ 1 ≤ B∗

T (σ2), the

assertions of the theorem immediately follow from Theorem 3. The non-monotonicity of the

optimal investment function (see Proposition 1) implies that c∗t (σ1) could be greater than,

equal to, or less than c∗t (σ2).

Suppose that B∗
T (σ1) < B∗

T (σ2) ≤ 1. By (3), an increase in the initial transient risk

increases the adverse selection costs in (39). If the agent is moderately optimistic so that

B∗
t < 1, the effects of adverse selection costs dominate the effects of asymmetric beliefs. The

increase in adverse selection costs with the initial transient risk, therefore, has a negative effect

on total incentives so that the agent’s total incentive intensities, effort, and the principal’s

investments decline with the initial transient risk.

Suppose the agent is initially “exuberant” so that B∗
t > 1. In this region, the effects of

agent optimism and adverse selection costs are both significant. By (5), the degree of agent
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optimism, Ωt, at each date declines with the initial transient risk. The decline in the degree

of agent optimism has a negative effect on total incentives in (39). An increase in the initial

transient risk also increases adverse selection costs by (3) and (39). In sufficiently early periods

of the relationship, it could be optimal to exploit the agent’s exuberance by increasing his

total incentives and his effort as the initial transient risk increases. The inverted U-shape

nature of the optimal investment function in this region (see Proposition 1) implies that it is

optimal for the principal to lower her investment so that output is dominated by the agent’s

effort. In later periods, however, the degree of agent optimism falls below a threshold so that

the agent’s total incentives and effort decrease with the initial transient risk. The principal’s

investment increases to offset the decline in the agent’s effort.

The results of the theorem show that the complex interplay among agent optimism, ad-

verse selection and risk-sharing costs could cause the relationship between transient risk and

incentives to be positive or negative. Further, depending on the level of agent optimism,

transient risk could have a positive or negative effect on the principal’s investments.

The following theorem describes the effects of the project’s intrinsic risk on the equilibrium

paths of the incentive intensity, investment and effort.

Theorem 6 (The Effects of Intrinsic Risk)

Consider any pair of possible values, s1 > s2 of the project’s intrinsic risk. We could have

B∗
T (s1) ≥ B∗

T (s2) or B
∗
T (s1) ≤ B∗

T (s2).

• Suppose B∗
T (s1) ≤ B∗

T (s2):

– If B∗
T (s1) ≤ 1 ≤ B∗

T (s2) then B∗
t (s1) < B∗

t (s2); η
∗
t (s1) < η∗t (s2) for all t. c

∗
t (s1) could

be greater than, equal to, or less than c∗t (s2).

– If B∗
T (s1) < B∗

T (s2) ≤ 1 then there exists u ∈ [0, T ) such that B∗
t (s1) > B∗

t (s2); c
∗
t (s1) >

c∗t (s2); η
∗
t (s1) > η∗t (s2) for t < u and B∗

t (s1) < B∗
t (s2); c

∗
t (s1) < c∗t (s2); η

∗
t (s1) <

η∗t (s2) for t > u.

– If 1 ≤ B∗
T (s1) < B∗

T (s2) then (i) B∗
t (s1) < B∗

t (s2); (ii) c∗t (s1) > c∗t (s2); and (iii)

η∗t (s1) < η∗t (s2) for all t.

• Suppose B∗
T (s1) > B∗

T (s2)
3

– If 1≥B∗
T (s1)>B∗

T (s2) then B∗
t (s1) > B∗

t (s2); c
∗
t (s1) > c∗t (s2); η

∗
t (s1) > η∗t (s2) ∀ t.

3In this case it is not possible to have B∗
T (s1) ≥ 1 ≥ B∗

T (s2).
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Figure 4: The sensitivity of total incentives (B∗
t ) and investment schedules (c∗t ) to intrinsic

risk for a reasonably optimistic and exuberant agent. Here, sn, n = 1, 2, ..., s5 are levels of
intrinsic risk, s1 > s2 > s3 and s4 > s5. The initial level of optimism for the optimistic
(exuberant) agent is less (more) than λ(Tσ2

0 + s2n), n=1,2,3 (n=4,5).
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(d) c∗t - Exuberant

– If B∗
T (s1) > B∗

T (s2) ≥ 1 then there exists u ∈ [0, T ) such that B∗
t (s1) > B∗

t (s2); c
∗
t (s1) <

c∗t (s2); η
∗
t (s1) > η∗t (s2) for t > u and B∗

t (s1) < B∗
t (s2); c

∗
t (s1) < c∗t (s2); η

∗
t (s1) <

η∗t (s2) for t < u.

Figure 4 illustrates the results of the theorem by showing the effects of intrinsic risk on the

agent’s total incentive intensity path in the scenarios where the agent is initially reasonably

optimistic and exuberant.

First, we note that by (5), an increase in the intrinsic risk increases the degree of agent

optimism at each date. By (39), however, an increase in the intrinsic risk also increases

the costs of risk-sharing. The agent’s total incentive intensity at the terminal date T could,

therefore, increase or decrease depending on the relative effects of intrinsic risk on these two

components of (39).

We discuss the intuition for our results whenB∗
T (s1) < B∗

T (s2). (The intuition for the results

in the case where B∗
T (s1) > B∗

T (s2) is analogous and is omitted.) If B∗
T (s1) ≤ 1 ≤ B∗

T (s2), the

assertions follow from Theorem 3 and Proposition 1.
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If B∗
T (s1) < B∗

T (s2) ≤ 1, then the corresponding total incentive intensity paths are mono-

tonically increasing by Theorem 3. When T − t is below a threshold—that is, in later periods

of the relationship—the increase in the costs of risk-sharing in (39) associated with an in-

crease in the intrinsic risk outweighs the positive effects of intrinsic risk on the degree of agent

optimism. Hence, the agent’s total incentive intensity, the principal’s investment and the

agents’ effort decline. When T − t is above a threshold, however, the increase in the costs

of risk-sharing with intrinsic risk is potentially offset by the increase in the degree of agent

optimism. By (5), the degree of agent optimism is higher in early periods of the relationship.

An increase in the intrinsic risk also has an effect on adverse selection costs that depend on

the future total incentive intensities (see 39). Because future total incentive intensities decline

with intrinsic risk, the current adverse selection costs decline, which has a positive effect on

total incentives. Put differently, the effects of the agent’s implicit incentives to influence the

principal’s learning about the project’s quality are much stronger early in the relationship.

These implicit incentives potentially become stronger as the intrinsic risk increases. Conse-

quently, the total incentive intensities, the principal’s investments and the agent’s effort could

increase with intrinsic risk in early periods of the relationship.

Suppose now that the total incentive intensities are greater than or equal to one for s1

and s2 so that the corresponding total incentive intensity paths are monotonically decreasing

by Theorem 3. By (3), an increase in the intrinsic risk increases the project’s transient risk

at each future date that, in turn, increases the adverse selection costs by (39). This effect

coupled with the increase in the costs of risk-sharing cause the total incentive intensities and

the agent’s effort to decline at each date. The non-monotonicity of the optimal investment

function in this region (see Proposition 1) causes the principal’s investment to increase with

intrinsic risk.

Broadly, Theorems 5 and 6 show that the presence of imperfect information about project

quality, asymmetric beliefs, and inter-temporal adverse selection arising from the agent’s un-

observable effort leads to complex effects of risk on incentives. These results contrast sharply

with the predictions of traditional dynamic principal-agent models such as Holmstrom and

Milgrom (1987) in which risk unambiguously has a negative effect on incentives. Prendergast

(1999), however, highlights the lack of consensus in the empirical literature on the relation

between risk and incentives. Our study suggests an alternate explanation for the data by

showing that the effects of asymmetric beliefs and implicit incentives could lead to a positive
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or negative relation between risk and incentives.

We can also characterize the effects of the agent’s risk aversion λ on the contractual

dynamics. Since its effects are similar to the effects of the project’s intrinsic risk as described

in the first part of Theorem 6, we avoid stating the precise results.

6.3 Project Characteristics and Firm/Project Value

We now discuss the effects of project characteristics on the project/firm value. By (40) and

(41), the firm value H0 at date 0 is

H0 = EPr
0

[ T∫
0

(Θ + Φ(c∗t , η
∗
t ))dt

]
, (49)

where the expectation is with respect to the principal’s beliefs.

By (49), the effects of underlying parameters on firm value clearly depend on their effects on

the discretionary output rate Φ(c∗t , η
∗
t ) As the following proposition shows, the non-monotonic

behavior of the optimal investment function causes the discretionary output rate Φ(c∗t , η
∗
t ) at

any date to also vary non-monotonically with the total incentive intensity B∗
t .

Proposition 5 (Discretionary Output and Total Incentive Intensity)

The discretionary output rate Φ(c∗t , η
∗
t ) at any date varies non-monotonically in an inverted

U-shaped manner with the agent’s total incentive intensity B∗
t . It attains its maximum at

B∗
t = γ

β+αγ
> 1.

The discretionary output in any period is determined by the principal’s investment and the

agent’s effort. Because the investment varies in an inverted U-shaped manner by Proposition

1, the discretionary output also varies in an inverted U-shaped manner. The maximum occurs

for a total incentive intensity that exceeds one because the agent’s effort (given by 36) depends

on the total incentive intensity and the principal’s investment. Below a trigger level of the total

incentive intensity that exceeds one, the agent’s effort increases. Above the trigger level, the

decline in the principal’s investment dominates so that the agent’s effort and the discretionary

output decrease. The following theorem examines the relationship between the agent’s total

incentives and firm value.

Theorem 7 (Total Incentives and Firm Value)

(i) Suppose the agent is initially reasonably optimistic so that his total incentive intensities
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B∗
t are less than one and increase over time as described in Theorem 3. An increase in the

agent’s total incentive intensity path increases firm value.

(ii) Suppose the agent is initially exuberant so that his total incentive intensities B∗
t are greater

than one and decrease over time as described in Theorem 3.

• If B∗
0 < γ

β+αγ
, then an increase in the total incentive intensity path increases firm value.

• If B∗
0 ≥ γ

β+αγ
, then an increase in the total incentive intensity path could cause firm

value to increase or decrease at date t.

By Proposition 5, the discretionary output increases with the total incentive intensity

when the latter is less than one. By Theorem 3, the agent’s total incentive intensities are

less than one if the agent is initially reasonably optimistic. An increase in the total incentive

intensity path, therefore, increases the discretionary output at each date and, consequently,

the firm’s value. By Proposition 5, if the agent is exuberant, the discretionary output at any

date declines with the total incentive intensity if the latter is greater than γ
β+αγ

, but increases

with the total incentive intensity if the latter is less than γ
β+αγ

. It follows that, depending on

the level of agent optimism, and the duration of the relationship, firm value could increase or

decrease with the total incentive intensity path.

By Theorems 4 and 7, if the agent is reasonably optimistic, an increase in the degree

of optimism increases the agent’s total incentive intensities at each date and, therefore, the

firm’s values at each date. If the agent is exuberant, however, the firm’s value could increase

or decrease with the agent’s optimism. The project’s intrinsic and transient risks have much

more complex effects on firm value because they have non-monotonic effects on the agent’s

total incentive intensity path.

The above results have interesting implications for the empirical literature that investigates

the relation between managerial incentives and firm value. Himmelberg et al (1999) note

that previous empirical studies find non-monotonic relationships between manager ownership

and firm value. They point out that cross-section empirical analyses do not appropriately

control for unobserved sources of firm heterogeneity that endogenously determine managerial

incentives and firm value. Consistent with empirical evidence, our results imply that, in the

cross-section, firm value varies non-monotonically with managerial incentives. Moreover, our

analysis identifies key determinants of firm heterogeneity—the degree of asymmetry in beliefs,

intrinsic risk and transient risk—that lead to the non-monotonic variation of firm value.
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7 Conclusions

We develop a continuous-time principal–agent model to study how uncertainty and asymmetric

beliefs, asymmetric risk attitudes, two-sided actions, and inter-temporal adverse selection

interact to affect dynamic contracts. We show that equilibrium contracts are determined by

a solution to a first order nonlinear ODE. We exploit the properties of the ODE to derive

a number of novel implications that demonstrate how asymmetric beliefs, agency conflicts,

and dynamic adverse selection interact to affect optimal contracts. In particular, our results

show that asymmetric beliefs play a central role in potentially reconciling empirical findings

such as the “private equity” puzzle, the tenuous relation between risk and incentives, the

non-monotonic relation between firm value and incentives. We also derive potentially testable

implications for the effects of permanent and transient components of risk on compensation

and investment schedules.

From an empirical standpoint, one could apply the framework to study settings such as

venture capital (VC) and R&D where asymmetric beliefs likely play an important role. We

could estimate the parameters of our structural model to VC or R&D project data and obtain

quantitative assessments of the impacts of asymmetric beliefs, adverse selection, and risk-

sharing on optimal contracts.

Appendix

Proof of Theorem 1

The proof proceeds by backward induction. It is easy to extend the analysis of the special case in

Section 4.1 to show that the assertions of the theorem hold in the last period. Consider any date

t ≤ T −∆t. Assume that the assertions of the theorem are true over the interval [t+∆t, T −∆t]. In

addition, suppose that the agent truthfully announces his type at each date and state (on or off the

equilibrium path) in the interval [t+∆t, T −∆t], and that the assertions of the theorem are also true

at “off-equilibrium nodes” at which the principal’s inferences of the agent’s past effort choices differ

from his actual effort choices. In particular, at any off-equilibrium node at date u ∈ [t+∆t, T −∆t],

the agent’s total incentive intensity solves (32) with the degree of agent optimism equal to ΩAg
u ; the

true degree of agent optimism at that node.

Suppose that the contractual parameters in period [t, t+∆t] are (a, b) and the principal’s invest-

ment is c. Suppose the agent exerts effort η in period [t, t + ∆t]. Using the inductive assumptions,
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we can show that the agent’s actual continuation utility ratio (8) is

CURAg
t = EAg

t

[
exp

(
−λ

(
a∆t+b(Vt+∆t−Vt)−kηγ∆t+

T−∆t∑
u=t+∆t

[a∗u∆t+b∗u∆Vu−k (η∗u)
γ ∆t]

))]

= EAg
t

exp
−λ


(
a+b(Θ +Acαηβ)−kηγ

)
∆t+ bs∆Wt

+
T−∆t∑

u=t+∆t

[
a∗u +b∗u

(
Θ+A (c∗u)

α (η∗u)
β
)
−k (η∗u)

γ ]∆t+ b∗us∆Wu

]




= EAg
t

exp
−λ


(
a+b(Θ +Acαηβ)−kηγ

)
∆t+ bs∆Wt

+
T−∆t∑

u=t+∆t

[ [
(1− b∗u)

(
A(c∗u)

α(η∗u)
β + µPr

u

)
− c∗u

]
∆t

+
[
b∗u

(
Θ+A (c∗u)

α (η∗u)
β
)
−k (η∗u)

γ
]
∆t+ b∗us∆Wu

]

 .(50)

By (1) and (4)

µPr
u =

s2µPr
t +σ2

t

u−∆t∑
v=t

(
Θ∆t+s∆Wv+(Φ(cv, η

Ag
v )− Φ(cv, η

Pr
v ))∆t

)
s2 + (u− t)σ2

t

=
s2µPr

t +σ2
t

(
Θ∆t+s∆Wt+

(
Φ(ct, η)−Φ(ct, η

Pr
t )
)
∆t
)

s2 + (u− t)σ2
t

+

σ2
t

u−∆t∑
v=t+∆t

(Θ∆t+s∆Wv)

s2 + (u− t)σ2
t

. (51)

where the last equality follows from the inductive assumption that the agent’s effort choices are

incentive compatible for v ≥ t+∆t, and the hypothesis that the agent exerts effort η over the period

[t, t+∆t]. Substituting (51) in (50), and using the fact that (b∗v, c
∗
v, η

∗
v) are all FPr

t −measurable for

v ≥ t+∆t by (51) and the inductive assumptions, the agent’s implementable effort is

η(B, c) = argmax
η

(
b+

T−∆t∑
v=t+∆t

(1− b∗v)
σ2
t

σ2
t (v − t) + s2

∆t

)
Acαηβ −kηγ

= argmax
η

BAcαηβ − kηγ =

(
AβcαB

γk

) 1

γ−β

. (52)

The principal’s inference of the agent’s effort over the period [t, t+∆t], ηPr
t = η(B, c).

Suppose that the principal’s inferences of the agent’s prior effort choices are {ηPr
u ;u≤ t−∆t} and

the agent announces that his effort choices prior to date t are {η̂Ag
u ;u≤ t−∆t}. As in our analysis of

the special case in Section 4.1, we conjecture that the principal does not alter her inferences of the

agent’s prior effort choices. The contract must, therefore, satisfy the promise keeping constraint (7)

for the principal, where the principal’s current mean assessment of the project’s quality is µPr
t . It

then follows that a = a(b, c) given by

a(b, c) = (1− b)
[
Acαη(b, c)β + µPr

t

]
− c. (53)

The agent’s current mean assessment of the project’s quality based on his “announced” past

effort choices is µ̂Ag
t . Substituting (52) and (53) in (50), the agent’s continuation utility ratio based

36



on his “announced” effort choices is ĈUR
Ag

t (b, c)

=ÊAg
t

exp
−λ

[
(1−b)

[
Acαη(B, c)β+µPr

t

]
−c+b(Θ+Acαη(B, c)β)−kη(B, c)γ

]
∆t+bs∆Wt

+
T−∆t∑

u=t+∆t

[ [
(1− b∗u)

(
A(c∗u)

α(η∗u)
β + µPr

u

)
− c∗u

]
∆t

+
[
b∗u

(
Θ+A (c∗u)

α (η∗u)
β
)
−k (η∗u)

γ
]
∆t+ b∗us∆Wu

] 



=ÊAg
t


exp


−λ



[
(1−b)µPr

t −c+bΘ+Acαη(B, c)β−kη(B, c)γ
]
∆t+bs∆Wt

+
T−∆t∑

u=t+∆t

[
γ−β−αγ

αγ c∗u∆t+b∗u (Θ∆t+ s∆Wu)
]

+
T−∆t∑

u=t+∆t

(1− b∗u)

 s2µPr
t ∆t

s2+(u−t)σ2
t
+

σ2
t∆t

u−∆t∑
v=t

(Θ∆t+s∆Wv)

s2+(u−t)σ2
t








(54)

where ÊAg
t [·] denotes the conditional expectation under the agent’s “announced” beliefs so that

ÊAg
t [Θ] = µ̂Ag

t . The second equality above follows by substituting (51) (setting η=ηPr
t =η(B, c)) and

the fact that A(c∗u)
α(η∗u)

β−c∗u−k(η∗u)
γ = γ−β−αγ

αγ c∗u, by the inductive assumptions. Changing the order

of the summations in the third term of (54) we have ĈUR
Ag

t (b, c)

= ÊAg
t

exp
−λ


[
(1−b)µPr

t −c+Acαη(B, c)β−kη(B, c)γ
]
∆t+b(Θ∆t+s∆Wt)

+
T−∆t∑

u=t+∆t

[
γ−β−αγ

αγ c∗u∆t+b∗u (Θ∆t+ s∆Wu)
]

+
T−∆t∑

u=t+∆t

[
(1− b∗u)

s2µPr
t ∆t

s2+(u−t)σ2
t
+ σ2

t∆t
T−∆t∑

v=u+∆t

(1− b∗v)
Θ∆t+s∆Wu

s2+(v−t)σ2
t

]




 (55)

Re-arranging terms we have ĈUR
Ag

t (b, c)

=ÊAg
t

exp
−λ


[
(1−b)µPr

t −c+Acαη(B, c)β−kη(B, c)γ
]
∆t+B (Θ∆t+s∆Wt)

+
T−∆t∑

u=t+∆t

[
γ−β−αγ

αγ c∗u∆t+ (1−b∗u)
s2µPr

t

s2+(u−t)σ2
t
∆t+B∗

u (Θ∆t+s∆Wu)
]


 (56)

where

B∗
u =

(
b∗u +

T−∆t∑
v=u+∆t

(1− b∗v)
σ2
t

σ2
t (v − t) + s2

∆t

)
. (57)

Similar to our analysis in Section 4.1, we conjecture that the principal’s investment and the agent’s

incentive intensity minimize the agent’s “announced” continuation utility ratio. Using arguments

similar to those in the proof of Theorem 3.1 in Giat et al (2010), we can show that the optimal

investment as a function of the incentive intensity, c(B), is given by (33). The agent’s optimal total

incentive intensity solves

B∗
t = argmax

B
Ω̂Ag
t B − 0.5λ

σ2
t

[
B+

T−∆t∑
u=t+∆t

B∗
u

]2
∆t+s2

[
B2+

T−∆t∑
u=t+∆t

(B∗
u)

2

]+
γ−β−αγ

αγ
c(B). (58)

Because the contractual parameters are chosen to maximize the “apparent” or “announced”

surplus based on the agent’s announced effort choices, it is incentive compatible for the agent to tell
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the truth so that the contractual parameters maximize the “actual” surplus. Therefore, Ω̂Ag
t = ΩAg

t .

Since {B∗
u;u > t} do not depend on B, the agent’s optimal total incentive intensity solves (32).

Further, note that, along the equilibrium path, the contract as constructed above maximizes the

agent’s expected utility conditional on delivering the principal her promised payoff. As described

above, the principal correctly infers the agent’s effort in equilibrium. Hence, our conjecture that the

principal does not alter her inferences about the agent’s past effort in response to his announcements

is correct. This completes the inductive step in the analysis.

To complete the proof of the theorem, we now establish the second equality of (34) by induction.

This equality holds for b∗T−∆t. Assume now that it is true for t+∆t, i.e.

b∗t+∆t = B∗
t+∆t −

T−∆t∑
v=t+2∆t

(1− b∗v)
σ2
0

σ2
0v + s2

∆t = B∗
t+∆t −

σ2
0

σ2
0(t+ 2∆t) + s2

∆t

T−∆t∑
v=t+2∆t

(1−B∗
v)

1− b∗t+∆t = 1−B∗
t+∆t +

σ2
0

σ2
0(t+ 2∆t) + s2

∆t

T−∆t∑
v=t+2∆t

(1−B∗
v). (59)

We now consider date t. By definition

b∗t = B∗
t −

T−∆t∑
v=t+∆t

(1− b∗v)
σ2
0∆t

σ2
0v + s2

= B∗
t − (1− b∗t+∆t)

σ2
0∆t

σ2
0(t+∆t) + s2

− σ2
0∆t

σ2
0(t+2∆t) + s2

T−∆t∑
v=t+2∆t

(1−B∗
v)

= B∗
t −
(
1−B∗

t+∆t+
σ2
0∆t

σ2
0(t+2∆t)+s2

T−∆t∑
v=t+2∆t

(1−B∗
v)
) σ2

0∆t

σ2
0(t+∆t) + s2

− σ2
0∆t

σ2
0(t+2∆t)+s2

T−∆t∑
v=t+2∆t

(1−B∗
v)

= B∗
t −

σ2
0

σ2
0(t+∆t) + s2

∆t

T−∆t∑
v=t+∆t

(1−B∗
v),

where the third equality follows by (59).

Proof of Proposition 2

By Proposition 1, c′(0) = ∞. It follows from (39) that F ′
t(0) = ∞. By (32), B∗

t > 0.

Suppose that Ω0

λs2 < 1. It follows from (5) that Ωt

λs2 < 1 for t > 0. Hence, Ωt−λs2B < 0 for B > 1.

Because B∗
t > 0 for all t, and c′(B) < 0 for B > 1 by Proposition 1, it follows that

F ′
t(B) = Ωt − λs2B − λσ2

t

[
B +

T−∆t∑
u=t+∆t

B∗
u

]
∆t+

γ − β − αγ

αγ
c′(B) < 0

for B > 1. Therefore, by (32), B∗
t ≤ 1.
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Suppose now that 1 ≤ Ω0

λs2 < BM . If B > Ω0

λs2 then Ωt − λs2B < 0 so that

F ′
t(B) = Ωt − λs2B − λσ2

t

[
B +

T−∆t∑
u=t+∆t

B∗
u

]
∆t+

γ − β − αγ

αγ
c′(B) < 0.

It follows that we must have B∗
t ≤ Ω0

λs2 .

Proof of Proposition 3

The proof requires a precise interpretation of equation (41), which describes the evolution of the

incremental payoff. We consider the process V (·) to be a given random process on a probability

space with investment and effort altering its probability distribution.

We consider an underlying probability space (Ω, F ) with probability measures Qℓ, ℓ ∈ {Pr,Ag},
representing the principal’s and agent’s beliefs. Θ is a normal random variable with mean µℓ

0 and

variance σ2
0 under measure Qℓ and Ŵ is a standard Brownian motion. The complete and augmented

filtration of the probability space generated by the Brownian motion B̂(·) is denoted by {Ft}. Con-
sider the process V (·) = sŴ (·) where s2 is the intrinsic risk of the project. We use the Girsanov

transformation (see Oksendal, 2003) to obtain new probability measures on (Ω, F ) such that the

process V (·) evolves as in (41).

Suppose that η(·) and c(·) are strictly positive, square-integrable {Ft}-progressively measurable

stochastic processes (under the measures QPr and QAg) defined on the time horizon [0, T ] describing

the agent’s effort and the principal’s investments over time. Define

ζc,η(t) = exp[

∫ t

0
(Θ +Ac(u)αη(u)β)s−1dŴ (u)− 1

2

∫ t

0
(Θ +Ac(u)αη(u)β)2s−2du]

Wc,η(t) = Ŵ (t)−
∫ t

0
(Θ +Ac(u)αη(u)β)s−1du .

The process ζc,η(·) is a positive, square-integrable martingale.4 Define the new measure Πℓ
c,η; ℓ ∈

{Pr,Ag}
dΠℓ

c,η

dQℓ
= ζc,η(T ).

By Girsanov’s theorem (see Oksendal, 2003), the process Wc,η(·) is a Brownian motion under the

measure Πℓ
c,η. Further, under this measure, the process V (·) evolves as

dV (t) = [Θ +Ac(t)αη(t)β ]dt+ sdWc,η(t) . (60)

Equation (60) describes the evolution of the incremental payoff process and is identical to equa-

tion (41). However, the Brownian motion and the probability measures representing the principal’s

and agent’s beliefs depend on the investment and effort processes. It is important to keep in mind

that V (·) is a fixed process whose sample paths are not affected by investment and effort. Investment

4The processes are assumed to satisfy the Novikov condition Eℓ exp[12
∫ T

0
(Θ + Ac(u)αη(u)β)2s−2du] <

∞, ℓ ∈ {Pr,Ag} . Note that, because the equilibrium investment and effort processes described in Theorem 1
are deterministic and Θ is a normal random variable, the Novikov condition is satisfied by these processes.
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and effort, however, alter the probability distribution of the sample paths of V (·). The process

dWc,η(t) = s−1[dV (t)− (Ac(t)αη(t)β)dt− µℓ
tdt] (61)

is an {Ft}-Brownian motion with respect to the probability measure Πℓ
c,η. Moreover, the complete

and augmented filtration generated by this Brownian motion is {Ft}. The agent’s and principal’s

mean assessments of project quality Θ at date t, µAg
t , µPr

t are given by (4).

Let (Q∗, c∗, η∗) denote an optimal contract. It follows from (7) that

Q∗
t = EPr

t

{
Q∗

T −
∫ T

t
c∗udu

}
.

From the above, the process

Z∗
t = Q∗

t +

∫ t

0
c∗udu (62)

is an {Ft}−martingale under the measure ΠPr
c∗,η∗ . Because Wc∗,η∗ is an {Ft}-Brownian motion under

the measure ΠPr
c∗,η∗ that generates the filtration {Ft}, it follows from the martingale representation

theorem that there exists an {Ft}−progressively measurable, square-integrable process z∗t such that

Z∗
t = Z∗

0 +

∫ t

0
z∗udWc∗,η∗(u)

= Q0 +

∫ t

0
z∗us

−1[dV (t)− (Ac(t)αη(t)β)dt− µℓ
tdt] (63)

The second equality above follows from (61), (62) and the fact that Z∗
0 = Q∗

0 = Q0. By (62) and

(63),

dQ∗
t = −a∗tdt+ (1− b∗t )dVt,

where a∗t is {Ft}−progressively measurable, and b∗t is {Ft}−progressively measurable and square-

integrable. It follows that the principal’s promised payoff process under the optimal contract evolves

as in (42). Since the agent’s stake is Vt −Q∗
t , it evolves as in (43).

Proof of Theorem 2

We establish that the optimal contract within the class of affine contracts in the discrete-time model

converges to the optimal contract among the class of all incentive feasible contracts in the continuous-

time model as the time interval ∆t between successive dates tends to zero. Define the processes

b∗∆t(·), B∗
∆t(·), c∗∆t(·), η∗∆t(·), σ∆t(·) in continuous-time by “piecewise constant interpolation” of the

corresponding discrete-time processes as follows:

b∗∆t(t) = b∗u1(u,u+∆t](t); B∗
∆t(t) = B∗

u1(u,u+∆t](t); a∗∆t(t) = a∗u1(u,u+∆t](t) (64)

c∗∆t(t) = c∗u1(u,u+∆t](t); η∗∆t(t) = η∗u1(u,u+∆t](t),

where b∗u, B
∗
u, a

∗
u, c

∗
u, and η∗u are defined in the statement of Theorem 1. Note here that the subscripts

in the notation for the processes on the left hand sides of the equalities above denote the length of
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each interval in the discrete-time model. We require four intermediate lemmas.

Lemma 1

The processes b∗∆t(·), B∗
∆t(·), a∗∆t(·), c∗∆t(·), η∗∆t(·) are uniformly bounded for all ∆t.

Proof. By Proposition 2, it immediately follows that the process B∗
∆t(·) is uniformly bounded for all

∆t. By the second equality in (34), the process b∗∆t(·) is also uniformly bounded. It follows from (33),

(36) and (37) that the processes a∗∆t(·), c∗∆t(·), η∗∆t(·) are also uniformly bounded for all ∆t. Q.E.D.

Lemma 2

The processes b∗∆t(·), B∗
∆t(·), a∗∆t(·), c∗∆t(·), η∗∆t(·) converge point-wise to the processes

b∗(·), B∗(·), a∗(·), c∗(·), η∗(·) defined in the statement of the theorem as ∆t −→ 0.

Proof. Consider any countable decreasing sequence of subinterval lengths (∆t1,∆t2, ....) where

∆ti −→ 0, and the sequence of processes B∗
∆ti

(·). Because the processes are uniformly bounded

by the result of Lemma 1, there exists a subsequence (again denoted by B∗
∆ti

(·) for notational conve-
nience) that converges pointwise to a process B̃∗. For u ∈ {0,∆ti, 2∆ti, ..., T −∆ti} , it follows from
(32) that B∗

u must satisfy the first order condition

Ωu − λs2B∗
u − λσ2

u

(
T−∆ti∑
v=u

B∗
u

)
∆t+

γ − β − αγ

αγ
c′(B∗

u) = 0

It follows from the above, the uniform boundedness of the processes B∗
∆t(·) for all ∆t, and the

dominated convergence theorem that the process B̃∗ must satisfy the following integral equation:

Ωt − λs2B̃∗(t)− λσ2
t

T∫
t

B̃∗(s)ds+
γ − β − αγ

αγ
c′(B̃∗(t)) = 0 or (65)

Ωt

λσ2
t

− s2

σ2
t

B̃∗(t) +
γ − β − αγ

λαγσ2
t

c′(B̃∗(t)) =

T∫
t

B̃∗(s)ds.

By (4) and (3), the above can be re-expressed as

Ω0

λσ2
0

− s2 + tσ2
0

σ2
0

B̃∗(t) +
(γ − β − αγ) (s2 + tσ2

0)

λαγs2σ2
0

c′(B̃∗(t)) =

T∫
t

B̃∗(s)ds. (66)

Differentiating the above with respect to time, we have[
(γ − β − αγ) (s2 + tσ2

0)

λαγs2σ2
0

c”(B̃∗(t))− s2 + tσ2
0

σ2
0

]
dB̃∗(t)

dt
+

(γ − β − αγ)

λαγs2
c′(B̃∗(t)) = 0, (67)

which is identical to (45). Furthermore, it follows directly from (65) that B̃∗(T ) must satisfy the

boundary condition (46).

We now prove that the solution to the ODE (45) and boundary condition (46) is unique. Because

the processes B∗
∆t(·) are uniformly bounded for all ∆t, the limit process B̃∗(·) constructed above is

bounded. It follows that the right hand side of (66) is uniformly bounded for all t so that the left
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hand side must also be uniformly bounded. Because limx−→0 c
′(x) = ∞, the process B̃∗(·) must be

uniformly bounded below away from zero. Denoting the lower bound by B, the process B̃∗(·) must

lie in the interval [B,BM ]. Rewrite (67) as

dB̃∗(t)

dt
= − σ2

0

s2 + tσ2
0

c′(B̃∗(t))(
c′′(B̃∗(t))− αγλs2

γ−β−αγ

) = f(t, B̃∗(t)), (68)

The derivative of f(t, B) is bounded for B ∈ [B,BM ] so that f(t, B) is uniformly Lipschitz for

B ∈ [B,BM ]. By the Picard-Lindelof theorem, the solution of the ODE (68) is unique.

We now complete the proof of the lemma by contradiction. Suppose the process B∗
∆t(·) does

not converge point-wise to the process B∗(·). There exists a sequence of processes
{
B∗

∆ti
(·)
}
with

∆ti −→ 0 that does not converge to B∗(·) at some t. By the above arguments, there exists a

convergent subsequence that converges to a limit process that satisfies the ODE (67). Since the

solution to the ODE is unique, the process must be B∗(·), which is a contradiction. The remaining

statements of the lemma follow from (34), (35), (36) and (37). Q.E.D.

Lemma 3

The agent’s expected utility from the contract (a∗∆t(·), b∗∆t(·), c∗∆t(·), η∗∆t(·)) converges to his expected

utility from the contract (a∗(·), b∗(·), c∗(·), η∗(·)) as ∆t −→ 0.

Proof. By (6), (43), and the analysis in the proof of Theorem 1, the agent’s expected utility from

the contract (a∗∆t(·), b∗∆t(·), c∗∆t(·), η∗∆t(·)) is

−EAg
0

{
exp

(
−λ

[
P (0) +

∫ T

0
a∗∆t(t)dt+ b∗∆t(t)dW (t)−

∫ T

0
kη∗∆t(t)

γdt

])}
(69)

=−EAg
0 exp

−λ

P (0)+
∫ T
0

(
Ω∆t(t)b

∗
∆t(t)−0.5λs2

∫ T
0 B∗

∆t(t)
2dt+ γ−β−αγ

αγ c∗∆t(t)+µPr
∆t(t)

)
dt

−0.5λσ2
0

(∫ T
0 B∗

∆t(t)dt
)2

 ,

where σ∆t(·) = σu1(u,u+∆t](t) ; µPr
∆t(t) = µu1(u,u+∆t](t) ; Ω∆t(t) = Ωu1(u,u+∆t](t).

By Lemma 2, the expression

Ω∆t(t)b
∗
∆t(t)− 0.5λs2

∫ T

0
B∗

∆t(t)
2dt− 0.5λσ2

0

(∫ T

0
B∗

∆t(t)dt

)2

+
γ − β − αγ

αγ
c∗∆t(t)

is uniformly bounded for all t and for all ∆t. It follows from (69) that it suffices to show that the set

of random variables exp
[∫ T

0 µPr
∆t(t)dt

]
is uniformly integrable. To show this, it suffices to show that

E exp

[
ξ

∫ T

0
µPr
∆t(t)dt

]
= E exp

[
ξ

T−∆t∑
u=0

µPr
u ∆t

]
< ∞

for some ξ > 1. The above follows from the fact that µPr
u is normally distributed for each u by (4)

and the fact that the optimal investment and effort are deterministic. Q.E.D.

The following lemma completes the proof of the theorem by establishing the optimality of the

contract (a∗(·), b∗(·), c∗(·), η∗(·)) in the continuous-time model.
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Lemma 4

The contract (a∗(·), b∗(·), c∗(·), η∗(·)) defined in the statement of Theorem 2 is optimal among all

incentive feasible contracts in the continuous-time model.

Proof. Suppose that the contract is sub-optimal. Let U(C) denote the expected utility to the

entrepreneur from a contract C. There exists ϵ > 0 and a feasible contract (a(·), b(·), c(·), η(·)) such
that the promised payoff to the principal at date zero is Q(0), but

U (a(·), b(·), c(·), η(·))− U (a∗(·), b∗(·), c∗(·), η∗(·)) > ϵ (70)

Define the discrete-time approximations (a∆t(·), b∆t(·), c∆t(·), η∆t(·)) of the contract (a(·), b(·), c(·), η(·))
as in (64). There exists δ > 0 such that

|U (a∆t(·), b∆t(·), c∆t(·), η∆t(·))− U (a(·), b(·), c(·), η(·))| < ϵ/2 (71)

for all ∆t < δ. By our earlier analysis of the discrete-time approximations,

U (a∗∆t(·), b∗∆t(·), c∗∆t(·), η∗∆t(·)) ≥ U (a∆t(·), b∆t(·), c∆t(·), η∆t(·)) . (72)

It follows from (70), (71) and (72) that

lim sup
∆t→0

U (a∗∆t(·), b∗∆t(·), c∗∆t(·), η∗∆t(·)) > U (a∗(·), b∗(·), c∗(·), η∗(·)) ,

which contradicts the result of Lemma 3. This completes the proof of the lemma. Q.E.D.

Proof of Theorem 3

By Propositions 1 and 2, B∗
t ∈ (0, BM ) and c(·) is strictly concave in (0, BM ). Hence, the denominator

on the right hand side of (45) is negative. It follows that the sign of dB∗
t

dt is determined by the sign

of c′(B∗
t ). By Proposition 1, c′(B∗

t ) > 0 for B∗
t < 1, c′(B∗

t ) = 0 for B∗
t = 1, and c′(B∗

t ) < 0 for

B∗
t > 1. Hence, B∗

t is increasing whenever it is less than one, constant whenever it is equal to one

and decreasing whenever it is greater than one.

The properties of B∗
t are, therefore, determined by those of B∗

T , which solves (46). Suppose

that ΩT < λs2 or Ω0 < λ(s2 + σ2
0T ) by (5). If B∗

T > 1 then ΩT − λs2B∗
T < 0 and c′(B∗

T ) < 0 by

Proposition 1. It follows that B∗
T cannot satisfy (46). Hence, B∗

T < 1.

Suppose that ΩT > λs2. If B∗
T ≤ 1 then ΩT − λs2B∗

T > 0 and c′(B∗
T ) > 0 by Proposition 1. It

follows that B∗
T cannot satisfy (46). Hence, B∗

T > 1. Finally, if ΩT = λs2., it follows from the above

arguments that B∗
T = 1 and, therefore, B∗

t = 1 for all t.

When ΩT − λs2 < 0, B∗
t are increasing and less than 1. Since σt is decreasing, by (47) b∗t are

increasing over time. When ΩT −λs2 < 0, B∗
t are decreasing and greater than 1. It follows from (47)

that b∗t decrease over time. Finally, when ΩT = λs2, B∗
t = 1 for all t so that b∗t = 1 for all t by (47).

Depending on the sign of ΩT −λs2, the agent’s total incentive intensities are either increasing and

less than one, constant and equal to one, or decreasing and greater than one. By Proposition 1, the

optimal investments are increasing when B∗
t < 1 and decreasing when B∗

t > 1. It follows that, when
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B∗
t is either less than one and increasing or greater than one and decreasing, the optimal investment

path is always increasing. If B∗
t = 1, the optimal investment path is constant.

By (33) and (36), the optimal effort is proportional to a positive power of (B∗
t )

1−α

α (1 − β
γB

∗
t ).

Since 0 < B∗
t < BM < γ

β (1−α) by Proposition 2 and Assumption 2, the derivative of this expression

with respect to B∗
t is positive. Thus, η∗t is increasing (decreasing) when B∗

t is increasing (decreasing)

and is constant when B∗
t is constant.

Proof of Theorem 4

By (5), Ωt increases with Ω0 for each t. By (46) and the implicit function theorem

∂B∗
T

∂ΩT
= λs2 − γ − β − αγ

αγ
c
′′
(B∗

T ) > 0, (73)

where the last inequality follows from the fact that B∗
T ∈ (0, BM ) by Proposition 2 and c”(B∗

T ) < 0

for B∗
T ∈ (0, BM ) by Proposition 1. Hence, B∗

T increases with ΩT and Ω0.

Suppose that the assertion of the theorem regarding the effects of the initial degree of agent

optimism on the path of total incentive intensities is false. There exist Ω1
0 > Ω2

0 and u < T such

that B∗
u(Ω

1
0) < B∗

u(Ω
2
0), where the arguments signify the dependence of the total incentive intensities

on the initial degree of agent optimism. Because B∗
T (Ω

1
0) > B∗

T (Ω
2
0), it follows from the continuity

of the total incentive intensity paths that there exists t ∈ (u, T ) such that B∗
t (Ω

1
0) = B∗

t (Ω
2
0) = B.

Consider the ODE (45) over the interval [t, T ]. Both B∗
s (Ω

1
0) and B∗

s (Ω
2
0) satisfy the ODE for s ∈ [t, T ]

along with the initial condition B∗
t (Ω

1
0) = B∗

t (Ω
2
0) = B. By the uniqueness of the solution to the

ODE and the initial condition, we must have B∗
s (Ω

1
0) = B∗

s (Ω
2
0) for s ∈ [t, T ] so that, in particular,

B∗
T (Ω

1
0) = B∗

T (Ω
2
0), which contradicts the fact that B∗

T (Ω
1
0) > B∗

T (Ω
2
0).

When B∗
t < 1 for t ∈ [0, T ], it follows from (33) and (36) that the investment and effort paths

also increase with Ω0. When B∗
t > 1 for t ∈ [0, T ], it follows from (33) that the investment at any

date declines with the total incentive intensity so that the investment path decreases with Ω0. Using

the arguments at the end of the proof of Theorem 3, the effort at any date increases with the total

incentive intensity so that the effort path increases with Ω0.

Proof of Theorem 5

By (5), ΩT decreases with the initial transient risk. It follows from (73) that

B∗
T (σ1) ≤ B∗

T (σ2). (74)

Case 1: B∗
T (σ1) ≤ 1 ≤ B∗

T (σ2)

The assertion that B∗
t (σ1) ≤ 1 ≤ B∗

t (σ2) for all t follows immediately from Theorem 3. By the

arguments in last part of the proof of Theorem 3, the agent’s effort increases with his total incentive

intensity so that η∗t (σ1) < η∗t (σ2). By Proposition 1, the optimal investment function increases with

the total incentive intensity when the latter is less than one and decreases when the latter is greater

than one. It immediately follows that c∗t (σ1) could be greater than, equal to, or less than c∗t (σ2).

Case 2: B∗
T (σ1) ≤ B∗

T (σ2) ≤ 1
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By (45),

dB∗
t

dt
|t=T =

σ2
0

s2+Tσ2
0
c
′
(B∗

T )

Kλs2 − c′′(B∗
T )

,

where K = αγ
γ−β−αγ . Since c

′
(B∗

T ) ≥ 0 when B∗
T ≤ 1, the above implies that dB∗

t

dt |t=T increases with

σ0. It follows from (74) that there exists t such that B∗
u(σ1) < B∗

u(σ2) for u ∈ [t, T ). Suppose that,

contrary to the assertion of the theorem, there exists t′ < t such that B∗
t′(σ1) > B∗

t′(σ2). By the

continuity of the total incentive intensity paths, there exists t” ∈ (t′, t) such that B∗
t”(σ1) = B∗

t”(σ2)

and B∗
u(σ1) < B∗

u(σ2) for u ∈ [t”, T ).

Now note that

dB∗
t

dt
|t=t” =

σ2
0

s2+t”σ2
0
c
′
(B∗

t”)

Kλs2 − c′′(B∗
t”)

.

The right hand side above is increasing in σ2
0 (recall, B < 1 and therefore c′(B) > 0). It follows

that there exists t̃ > t” such that B∗
t̃
(σ1) > B∗

t̃
(σ2), which is a contradiction. Because B∗

t < 1, it

follows from (33) and (36) that η∗t (σ1) < η∗t (σ2) and c∗t (σ1) < c∗t (σ2).

Case 3: 1 ≤ B∗
T (σ1) ≤ B∗

T (σ2)

It suffices to show that the total incentive intensity paths corresponding to σ1 and σ2 cross

at most once. Suppose that this is false. Since B∗
T (σ1) < B∗

T (σ2), there exist t1 < t2 such that

B∗
t1(σ1) = B∗

t1(σ2), and B∗
t2(σ1) = B∗

t2(σ2), and B∗
u(σ1) > B∗

u(σ2) for u ∈ (t1, t2). By (45),

dB∗
t (σ1)|t=t1

dt
=

σ2
1

s2+t1σ2
1
c
′
(B∗

t1(σ1))

Kλs2 − c′′(B∗
t1(σ1))

<

σ2
2

s2+t1σ2
2
c
′
(B∗

t1(σ2))

Kλs2 − c′′(B∗
t1(σ2))

=
dB∗

t (σ2)|t=t1

dt
,

where the inequality follows because σ1 > σ2, B
∗
t1(σ1) = B∗

t1(σ2) and c
′
(B∗

t1(σ1)) < 0. It follows from

the above that there exists t
′

1 > t1 such that B∗
u(σ1) < B∗

u(σ2) for u ∈ (t1, t
′

1), which contradicts the

fact that B∗
u(σ1) > B∗

u(σ2) for u ∈ (t1, t2).

The results regarding the investments and effort follows from the fact that investment decreases

with the total incentive intensity when the latter is greater than one, while the effort increases.

Proof of Theorem 6

By (5), ΩT increases with s. It follows from (46) and the implicit function theorem that B∗
T could

increase or decrease with s.

Case 1: B∗
T (s1) < B∗

T (s2).

a) Suppose B∗
T (s1) ≤ 1 ≤ B∗

T (s2). The assertions in the statement of the theorem follow using

arguments identical to those uses to establish Case 1 in the proof of Theorem 5.

b) Suppose B∗
T (s1) < B∗

T (s2) ≤ 1. It suffices to show that the total incentive intensity paths cor-

responding to s1 and s2 cross at most once. Suppose this is false. There exist t1 < t2 such that

B∗
t1(s1) = B∗

t1(s2), and B∗
t2(s1) = B∗

t2(s2), and B∗
u(s1) > B∗

u(s2) for u ∈ (t1, t2). By (45),

dB∗
t (s1)|t=t1

dt
=

σ2
0

s21+t1σ2
0
c
′
(B∗

t1(s1))

Kλs21 − c′′(B∗
t1(s1))

<

σ2
0

s22+t1σ2
0
c
′
(B∗

t1(s2))

Kλs22 − c′′(B∗
t1(s2))

=
dB∗

t (s2)|t=t1

dt
,

where the inequality follow because s1 > s2, and B∗
t1(s1) = B∗

t1(s2). It follows from the above that
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there exists t
′

1 > t1 such that B∗
u(s1) < B∗

u(s2) for u ∈ (t1, t
′

1), which contradicts the fact that

B∗
u(s1) > B∗

u(s2) for u ∈ (t1, t2).

c) Suppose 1 ≤ B∗
T (s1) < B∗

T (s2). If the assertion of the theorem is false, there exists t1 < T such

that B∗
t1(s1) = B∗

t1(s2) and B∗
u(s1) < B∗

u(s2) for u ∈ (t1, T ]. By (45),

dB∗
t (s1)|t=t1

dt
=

σ2
0

s21+t1σ2
0
c
′
(B∗

t1(s1))

Kλs21 − c′′(B∗
t1(s1))

>

σ2
0

s22+t1σ2
0
c
′
(B∗

t1(s2))

Kλs22 − c′′(B∗
t1(s2))

=
dB∗

t (s2)|t=t1

dt
,

where the inequality follows because s1 > s2 and c
′
(B∗

t1(s1)) < 0 as B∗
t1(s1) > 1. Hence, there exists

t
′

1 > t1 such that B∗
u(s1) > B∗

u(s2) for u ∈ (t1, t
′

1), which is a contradiction. The results describing

the investment and effort paths follow using arguments that are very similar to those used in the

proofs of the previous theorems and are omitted for brevity.

Case 2: B∗
T (s1) > B∗

T (s2).

a) Suppose B∗
T (s1) ≥ 1 ≥ B∗

T (s2). The assertions in the statement of the theorem follow using

arguments identical to those used to establish Case 1 in the proof of Theorem 5.

b) Suppose 1 ≥ B∗
T (s1) > B∗

T (s2). If the assertion of the theorem is false, there exists t1 < T such

that B∗
t1(s1) = B∗

t1(s2) and B∗
u(s1) > B∗

u(s2) for u ∈ (t1, T ]. By (45),

dB∗
t (s1)|t=t1

dt
=

σ2
0

s21+t1σ2
0
c
′
(B∗

t1
(s1))

Kλs21 − c′′(B∗
t1(s1))

<

σ2
0

s22+t1σ2
0
c
′
(B∗

t1
(s2))

Kλs22 − c′′(B∗
t1(s2))

=
dB∗

t (s2)|t=t1

dt
,

where the inequality follows because s1 > s2 and c
′
(B∗

t1(s1)) > 0 as B∗
t1(s1) < 1. Hence, there exists

t
′

1 > t1 such that B∗
u(s1) < B∗

u(s2) for u ∈ (t1, t
′

1), which is a contradiction.

c) Suppose 1 ≤ B∗
T (s2) < B∗

T (s1). It suffices to show that the total incentive intensity paths corre-

sponding to s1 and s2 cross at most once. Suppose that this is false. There exist t1 < t2 such that

B∗
t1(s1) = B∗

t1(s2), B
∗
t2(s1) = B∗

t2(s2), and B∗
u(s1) < B∗

u(s2) for u ∈ (t1, t2). By (45),

dB∗
t (s1)|t=t1

dt
=

σ2
0

s21+t1σ2
0
c
′
(B∗

t1(s1))

Kλs21 − c′′(B∗
t1(s1))

>

σ2
0

s22+t1σ2
0
c
′
(B∗

t1(s2))

Kλs22 − c′′(B∗
t1(s2))

=
dB∗

t (s2)|t=t1

dt
,

where the inequality follow because s1 > s2, and B∗
t1(s1) = B∗

t1(s2) and c
′
(B∗

t1(s1)) < 0. Hence,

there exists t
′

1 > t1 such that B∗
u(s1) > B∗

u(s2) for u ∈ (t1, t
′

1), which contradicts the fact that

B∗
u(s1) < B∗

u(s2) for u ∈ (t1, t2). The results describing the investment and effort paths follow using

arguments that are very similar to those used in the proofs of the previous theorems.

Proof of Proposition 5

By (33) and (36), the discretionary output in any period is proportional to a positive power of

B∗
t (1−

β
γB

∗
t )

αγ/β . The derivative of this expression is positive if and only if B∗
t < γ

β+αγ . Finally, by

Assumption 1, 1 < γ
2β+γα < γ

β+γα .
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Proof of Theorem 7

By (49), and the fact that EPr
0 [Θ] = µPr

0 ,

Ht = µPr
0 T +

∫ T

0
Φ(c∗t , η

∗
t )dt (75)

By Proposition 5, the discretionary output Φ(c∗t , η
∗
t ) increases with B∗

t if B∗
t < 1. It follows from

(75), therefore, that H0 increases with the total incentive intensity path.

Suppose the agent is exuberant and B∗
0 < γ

β+αγ . By Theorem 3, the agent’s total incentive

intensities decline over time so that B∗
t < γ

β+αγ for t ∈ [0, T ]. By Proposition 5, the discretionary

output Φ(c∗t , η
∗
t ) increases with B∗

t if B∗
t < γ

β+αγ . By (75), H0 increases with the total incentive

intensity path. If B∗
0 > γ

β+αγ , then by Theorem 3, there exists t∗ ∈ [0, T ] such that B∗
t > γ

β+αγ for

t < t∗ and B∗
t < γ

β+αγ for t > t∗. By Proposition 5, the discretionary output Φ(c∗t , η
∗
t ), therefore,

increases with B∗
t if t < t∗, and decreases with B∗

t if t > t∗ It follows from (75), therefore, that H0

could either increase or decrease with the total incentive intensity path.
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