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1 Of course all logit models are non-linear in the sense that the probabilities are non-linear functions of the 
latent index, which is a linear function of the explanatory variables and the estimated coefficients. We use the term
“non-linear mixed logit” to refer to mixed logit models with a latent index that is a non-linear function of these variables
and coefficients.
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The linear mixed logit model provides a valuable inferential tool, allowing unobserved

individual heterogeneity in the population to be characterized by random coefficients following

some parametric distribution. There are several advantages, however, from considering the

extension to the parametric non-linear  mixed logit model.1 First, and foremost, one can directly identify

and estimate parameters from non-linear structural models, such as coefficients that reflect risk

aversion and discounting behavior in individual choice settings. Second, one can easily include non-

linear transformations of familiar parametric families, such as the Normal, that allow theoretically

constrained and flexible characterizations of population distributions. Third, one can directly

estimate coefficients on demographic explanatory variables without having to “interact” them with

task characteristics.

We state the formal non-linear mixed logit model in section 1, consider the immediate

extension to allow flexible population distributions for the random parameters in section 2, and

offer illustrative applications in sections 3 and 4. In section 5 we explain the differences between a

parametric non-linear specification and semi-parametric and flexible-functional-form alternatives

that have been proposed long ago in the econometric literature.

1. Linear and Non-Linear Mixed Logit

For pedagogic purposes, we consider the formulation of parametric, non-linear mixed logit

models to estimate structural parameters of a decision-making model of risk attitudes. One natural

reason for this focus is that mainstream theory defines risk attitudes in terms of the non-linearity of

the utility function. Even non-mainstream utility theories typically allow for non-linearity in utility

and/or probability weighting functions, so this application is arguably canonical for the estimation

of structural parameters applied in non-linear functional forms. The methodology could just as easily

be applied to recover structural parameters in production functions. The overall objective is to be



2 It is trivial to allow J and T to vary with the individual, but for ease of notation we omit that generality.
3 The choice of the power function is purely for pedagogical reasons and to keep the exposition simple. 
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able to recover estimates of the “deep” parameters of a structural theory, not some linear reduced

form implication of that theory.

Assume a sample of N subjects making choices over J lotteries in T experimental tasks.2 In

all of the applications we consider, J=2 since the subjects are making choices over two lotteries, but

there are many designs in which the subject is asked to make choices over J>2 lotteries (e.g.,

Binswanger [1981]). In the traditional mixed logit literature one can view the individual n as deriving

random utility ) from alternative j in task t, given by

)njt = $n xnjt + gnjt (1)

where $n is a vector of coefficients specific to subject n, xnjt is a vector of observed attributes of

individual j and/or alternative j in task t, and gnjt is a random term that is assumed to be identically

and independently distributed extreme value.  We use the symbol ) for utility in (1), since we will

need to generalize to allow for non-linear utility functions, and expected utility functionals, and

prefer to think of (1) as defining a latent index rather than as utility. In our experience, this purely

semantic difference avoids some confusions about interpretation.

Specifically, for our purposes we need to extend (1) to allow for non-linear functions G

defined over $ and the values of x, such as

)njt = G($n, xnjt) + gnjt (2)

For example, x might consist of the vector of monetary prizes mk and probabilities pk, for outcome

k of K in a given lottery, and we might assume a Constant Relative Risk Aversion (CRRA) utility

function

U(mk) = mk
r (3)

where r is a parameter to be estimated.3 Under expected utility theory (EUT) the probabilities for

each outcome are those that are induced by the experimenter, so expected utility is simply the

probability weighted utility of each outcome in each lottery j:

EUj = 'k [ pk × U(mk) ] (4)



4 This approach generalizes immediately to non-EUT models in which there are more parameters, say to
account for probability weighting and loss aversion. It also generalizes to non-CRRA specifications within EUT models
that allow for more flexible specifications of risk attitudes that might vary with the level of the prizes. Each of these
extensions involves more non-linearities than our EUT example, taking us even further from the domain of linear mixed
logit.
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If we let $=r here, we will want to let G($n, xnjt) be defined as

G(rn, mnjt, pnjt) = EUj (5)

using (3) and (4), and hence let the latent index ) in (2) be evaluated.4

The extension from a linear mixed logit specification, assuming (1), to a non-linear mixed

logit specification, assuming (2), has an attractive side-benefit when it comes to identifying the

effects of demographic variables such as sex. In the usual specification with linear latent indices of

utility the effects of attribute-invariant effects drop out, and one can only consider them by

considering interactions with attributes. In effect, the non-linearity of (2) builds this interaction in at

a structural theoretical level. An appendix explains this point more formally, although it is probably

perfectly intuitive.

The intuition derives from the fact that only differences in (expected) utility matter for

choice. Thus one can re-normalize (expected) utility more or less at will, with minor mathematical

constraints, as long as the (expected) utility numbers have the same ordering. Then, as Train [2003;

p.25] notes:

The same issue affects the way that socio-demographic variables enter a model. Attributes of
the alternatives, such as the time and cost of travel on different modes, generally vary over
alternatives. However, attributes of the decision maker do not vary over alternatives. They
can only enter the model if they are specified in ways that create differences in utility over
alternatives.

If the sex of the agent affects the risk attitude, then this characteristic will affect the (expected) utility

evaluation of a given lottery, since each lottery will typically have attributes given by probabilities and

outcomes that vary across the two alternatives presented to the subject in any given choice. In effect,

the non-linear specification (2) naturally builds in the effect that characteristics have on utility

differences.

Returning to the general notation, the population density for $ is denoted f ($|2), where 2 is

a vector defining what we refer to as the hyper-parameters of the distribution of $. Thus individual
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realizations of $, such as $n, are distributed according to some density function f. For example, if f 

is a Normal density then 21 would be the mean of that density and 22 the standard deviation of that

density, and we would estimate the hyper-parameters 21 and 22. Or f could be a Uniform density and

21 would be the lower bound and 22 would be the upper bound. If $ consisted of more than two

parameters, then 2 might also include terms representing the covariance of those parameters.

Conditional on $n, the probability that the subject n chooses alternative i in task t is then

given by the conditional logit formula, modestly extended to allow our non-linear index

Lnit($n) = exp{G($n, xnit)} / 'j exp{G($n, xnjt)} (6)

The probability of the observed choices by subject n, over all tasks T, again conditional on knowing

$n, is given by

Pn($n) = (t  Lni(n,t)t($n) (7)

where i(n,t) denotes the lottery chosen by subject n in task t, following the notation of Revelt and

Train [1998]. The unconditional probability involves integrating over the distribution of $:

Pn(2) = I Pn($n) f ($|2) d $ (8)

and is therefore the weighted average of a product of logit formulas evaluated at different values of

$, with the weights given by the density f. 

We can then define the log-likelihood by

LL(2) = 'n ln Pn(2) (9)

and approximate it numerically using simulation methods, since it cannot be solved analytically.

Using the methods of Maximum Simulated Likelihood (MSL) reviewed in Train [2003; §6.6, ch.10]

and Cameron and Trivedi [2005; ch.12], we define the simulated log-likelihood by taking h=1,...,H

replications $h from the density f ($|2):

SLL(2) = 'n ln 6 'h Pn($h)/H > (10)

The core insight of MSL is to evaluate the likelihood conditional on a randomly drawn $h, do that H

times, and then simply take the unweighted average over all H likelihoods so evaluated. The average

is unweighted since each replication h is equally likely, by design. If H is “large enough,” then MSL



5 An important practical consideration with MSL is the manner in which replicates are drawn, and the size of H
that is practically needed. We employ Halton draws to provide better coverage of the density than typical uniform
number generators: see Train [2003; ch.9] for an exposition, and Drukker and Gates [2006] for the numerical
implementation we employ. All results use H=250, which is generally large in relation to the literature. Our
computational implementation generalizes the linear mixed logit program developed for Stata by Hole [2007].

6 There are reasons to be suspicious of these theorems, although that is not critical for the point being made
here. Specifically, two critical assumptions seem to connect observables and unobservables in a highly restrictive way. In
one case, the correct claim is made (p.449) that a “primitive postulate of preference theory is that tastes are established
prior to assignment of resource allocations.” But this does not justify the assumption that “consumers with similar
observed characteristics will have similar distributions of unobserved characteristics.” Then a related, second assumption
is made about attributes. Here the correct claim is that another “primitive postulate of consumer theory is that the
description of a resource allocation does not depend on consumer characteristics. Thus, consumers’ tastes and
perceptions do not enter the ‘objective’ description of a resource allocation, although they will obviously enter the
consumer’s evaluation of the allocation.” But it does not follow from this observation that “discrete alternatives that are
similar in their observed attributes will have similar distributions of unobserved attributes.” These assumptions are akin
to the identifying assumptions of “random effects” specifications, that the random effect is orthogonal to the observed
characteristics used as regressors. One other concern with these theorems is that they rest on polynomial approximations
to random utility (McFadden and Train [2000; p. 466]), and these are known to have unreliable properties in statistical
applications (e.g., White [1980; §2]). Referring to the class of approximations, including the polynomial, that are
generated by applications of Taylor’s Theorem, Gallant [1981; p. 212] notes that this “... theorem fails rather miserably as
a means of understanding the statistical behavior of parameter estimates and test statistics.”

7 To take one example, of some importance for stated choice models of recreation demand, Herriges and
Phaneuf [2002] elegantly show how one can “trick” a linear mixed logit specification into allowing for nested utility
structures. They still, however, assume that the indirect utility from alternatives within each nest is linear in attributes and
income (p.1086), consistent with a restrictive Cobb-Douglas utility specification.
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converges, under modest assumptions, to the Maximum Likelihood (ML) estimator.5

The value of this extension to non-linear mixed logit might not be obvious, because of

widespread reliance on theorems showing that the linear mixed logit specification can approximate

arbitrarily well any random-utility model (McFadden and Train [2000]; Train [2003; §6.5]).6 So, why

does one need a non-linear mixed logit specification? The reason is that these results only go in one

direction: for any specification of a latent structure, defined over “deep parameters” such as risk

preferences, they show that there exists an equivalent linear mixed logit. But they do not allow the

direct recovery of those deep parameters in the estimates from the linear mixed logit. The deep

parameters, which may be the things of interest, are buried in the estimates from the mixed logit, but

can only be identified with restrictive assumptions about functional form.7 For example, risk

attitudes can be considered using a linear specification if one assumes that utility is quadratic or that

the distribution of returns are Normal (e.g., Luenberger [1998; §9.5]); neither are palatable

assumptions in general.

Our specification has been couched in the language of estimating the structural parameters

of a model of risk attitudes, but is perfectly general. Another obvious example would be the use of
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technology or transportation choices to recover the structural parameters of production functions,

or the use of stated or revealed choices to recover the structural parameters of utility functions

defined over consumption goods. The analyst needs to fill in their own equations for our (3) and (4),

but only need in the end to define G($n, xnjt) in (5) and hence in (2).

2. Flexible Population Distributions “For Free”

In principle the mixed logit specification, whether linear or non-linear, allows a wide range of

shapes for the probability distribution used to characterize the population. In practice, one typically

sees a relatively simple set of distributions used: univariate or multivariate Normal distributions, log-

Normal distributions for coefficients known to be non-negative, uniform distributions, or triangular

distributions.

One attractive option, since we are already allowing non-linear transformations of the

population parameters, is to employ a transformation of the Normal distribution known as the

Logit-Normal (L-N) distribution. Originally proposed by Johnson [1949] as an excellent, tractable

approximation to the Beta distribution, it has been examined by Mead [1965], Aitchison and Begg

[1976; p.3], and Lesaffre, Rizopoulos and Tsonaka [2007]. One nice property of the L-N distribution

is that MSL algorithms developed for univariate or multivariate Normal distributions can be applied

directly, providing one allows non-linear transformations of the structural parameters, and that is

exactly what we are doing already to estimate structural parameters.

Figures 1 and 2 illustrate the wide array of distributional forms that are accommodated by

the L-N distribution. The bi-modal and skewed distributions that are possible are particularly

attractive. Note that these alternatives are all generated by different values of the two parameters of

the (univariate) Normal distribution, so there is no “extra cost” of this flexibility in terms of

additional parameters.

One limitation, of course, is that the Beta distribution and the L-N approximation of it, are

defined over the unit interval. For some important inferential purposes, such as estimating a



8 Obviously some constraints can be accommodated by well-known transformations, such as non-negativity
and the Log-normal. This alternative is often standard in linear mixed logit specifications (e.g., Hole [2007; p.390] and the
“ln” option). Our approach is more general, particularly for estimates constrained a priori to some finite interval.

9 The extension needed to accommodate the choice of indifference in the model is trivial. It is just a third
option in the logit model. We keep it out for the sake of simplicity.

10 Harrison and Rutström [2008; §3.8] demonstrate that the payment of three lotteries instead of one makes no
difference for estimated risk attitudes using this task and a sample drawn from the same population.
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subjective probability, this is not a concern, but in general we would like something that is more

general. In many other cases though, one would want the estimated distribution to be constrained to

lie within specific boundaries dictated by theory. Examples include non-negativity constraints to

ensure monotonicity and non-satiation in utility, or restrictions to the unit interval for probabilities

or shares. In fact, the power utility function (3) that we employ here for illustration requires that r>0

to ensure monotonicity. It is a simple matter to define the so-called “Beta4 distribution” with two

additional parameters: one to stretch out the distribution or squeeze it up, and another parameter to

shift it left or right. This flexibility makes it possible to theoretically constrain the distribution of the

structural parameter to be estimated.8

3. An Application to the Estimation of Risk Attitudes

A. Data

The data consists of N=63 subjects making T=60 choices over J=2 lottery pairs, and where

each lottery consisted of up to K=4 outcomes defined over non-negative monetary prizes. The

subject was presented a “pie display” of each lottery, and asked to pick one. Outcomes were $0, $5,

$10 and $15, and probabilities were given to subjects in c increments. We ignore expressions of

indifference, which were rare.9 Each subject was given a series of practice choices, which consisted

of 4 choices that were played out exactly as the paid choices would be, although not for any

earnings. Subjects were paid for 3 of the 60 choices, selected at random after all choices were

made.10
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B. The Specific Model

Assume a simple CRRA specification under EUT, given by (3) and (4). The parameter r

defines the risk attitudes of the subject: 0<r<1 implies risk aversion, r=1 implies risk neutrality, r>1

implies risk loving, and r<0 implies that subjects violate the assumption of non-satiation. If we

ignore observable covariates in the traditional ML estimation approach, this implies that we are

assuming homogenous preferences across subjects: the sampling error on r may, of course, reflect

the fact that risk preferences can vary across individuals, but the interpretation of the latent process

is as if there is one “representative individual” making choices across the sample.

It is common in the analysis of choice data to allow for subjects to make behavioral errors.

In effect this is a story about the latent choice process, although there are obvious, and not-so-

obvious, econometric implications (e.g., see Harrison and Rutström [2008] and Wilcox [2008] for

reviews). We illustrate the effect of this popular extension with the Fechner specification employed

by Hey and Orme [1994] and others. In this case there is a new parameter :>0 that is used to scale

the difference in EU of the two lotteries up or down, before one then applies a “link function” to

generate a predicted probability of choosing one or the other lottery. In our case the link function is

the logistic, but the Fechner correction works before that link function is applied, to transform the

latent difference in EU that the logistic function evaluates. If :=1 then there is no behavioral error;

if :<1 then the given difference in EU is increased, and the choice that was predicted when :=1 is

now even more likely; conversely, if :>1 then the given difference in EU is decreased, and the

choice that was predicted when :=1 is now less likely to occur. Indeed, as : gets larger and larger,

the predicted choice converges to indifference. This extension amounts to a change in the

specification that is captured in the non-linear G(@) function, so that we would have

G(rn, mnjt, pnjt) = EUj/: (5N)

instead of (5). The Fechner error parameter : is now a part of $n along with the deep parameter r.

We can treat the Fechner parameter as a random or non-random covariate, of course.

 



11 In an appendix, available on request, we document general software to implement the non-linear mixed logit
model in Stata.
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C. Estimates 11

Table 1 contains all estimates for the structural risk aversion parameter r of interest here. We

do not list estimates of ancillary parameters.

The MSL estimation approach allows for the parameter r to be normally distributed, to

reflect possible heterogeneity across subjects. In this instance there will still be sampling errors on

the hyper-parameters characterizing that normal distribution, the mean and standard deviation of the

population parameter r. But the possibility that the estimated standard deviation of the population

parameter r is positive, and statistically significantly positive, is what differentiates the MSL approach

from the ML approach. We initially assume that the parameter is normally distributed, and then

consider the extension to the more flexible Beta4 distribution.

If we start by constraining the standard deviation of the population parameter to zero, and

treat the Fechner parameter : as non-random, we literally replicate in Panel I of Table 1 the

estimates obtained with ordinary ML: the point estimate of the population mean r is 0.47, with a

standard error of 0.014 and a 95% confidence interval between 0.44 and 0.50. For future reference,

Panel II extends this specification to allow for one demographic covariate, whether the subject was

female, to affect the structural parameter r in a linear fashion. Hence we see a common, if not

universal, result: females are more risk averse than men, and the effect is statistically significant.

Now consider the MSL estimates. Allowing the standard deviation of the population

parameter r to be non-zero, in Panel III we estimate the mean of r to be 0.38 with a standard error

of 0.072, and we estimate the standard deviation of r to be 0.38 with a standard error of 0.06. In

Panel III we allow for unobserved heterogeneity, but do not allow for the observed heterogeneity of

the sex of the subject. Panel IV undertakes that extension, illustrating one of the side-benefits of an

explicitly non-linear mixed logit specification: the ability to study the effects of demographics

without having to interact them with choice characteristics. In this case we have an effect of the sex

of the subject on the estimated mean of the population distribution of r as well as an effect of sex on



12 As it happens, adding our “standard list” of demographic covariates, reflecting ethnicity, major and GPA
level, improves the log-likelihood of the ML specification significantly, but only results in a log-likelihood of -2382.9.

13 Although we are treating non-satiation as a given, it is apparent that one could use our approach to generate
nested hypothesis tests of that assumption.

14 We estimate the two parameters that “shift” and “stretch” the parameters of the logit-normal distribution.
The first is estimated to be -0.094 and the second is estimated to be 2.40. In our experience these values can easily be set
parametrically based on inspection of the implied population distribution, or they can be set based on what theory tells
us they should be. These parametric bounds facilitate rapid estimation, and provide excellent starting values for the final
estimation stage reported here. As it happens, the lower bound for r, -0.094, is not statistically significantly different from
0 (p-value = 0.75).
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the estimated standard deviation of the population distribution of r. Females are more risk averse on

average, but there is much more variability in the population of risk attitudes for females.

The log-likelihood of the specification in Panel III is better than for the specification in

Panel II, suggesting in this case that it is more important to control for unobserved heterogeneity

than the single observed characteristic we consider here. This need not be a general result. It is quite

possible that a longer list of observed characteristics could generate a log-likelihood than just

allowing this individual heterogeneity to be handled by the random coefficients approach.12 In

general we want to use observed characteristics as well as allow for unobserved heterogeneity.

Allowing : to be random along with r, in Panel V we estimate the mean of r to be 0.43 with

a standard error of 0.037, and we estimate the standard deviation of r to be 0.329 with a standard

error of 0.03. Allowing heterogeneity in the population Fechner parameter slightly improves the

precision of the estimates of the core structural parameter r, as one would expect. Figure 3 displays

the estimated population distribution corresponding to these estimates, and suggests that there is

considerable heterogeneity in the distribution of risk attitudes in this population. A normal

assumption in decision theory is to assume non-satiation. Figure 3 shows that the bulk of the

distribution of r is estimated to be in the positive domain, but a significant part of the distribution is

estimated to lie in the negative domain, violating local non-satiation. This is the curse of assuming a

Normal distribution of the structural parameter, which might make theoretical sense at the mean,

but clearly implies nonsense in the tails.13

Finally, Panel VI considers the extension to the Beta4 distribution.14 In this case the

estimated distribution tightens considerably. The estimates in Panel VI of Table 1 do not have much
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intuition by themselves, and can be best appreciated by inspecting Figure 4, where we also show the

implied Beta4 distribution overlaid on the Normal distribution from Figure 3 for comparison. The

lower tail of the Beta4 distribution is sharply truncated at 0, thus telling us that only a minority of the

choices show a violation of non-satiation. Formal tests of the Beta4 distribution, following

D’Agostino, Belanger,  and D’Agostino [1990], lead us to reject the hypothesis that it is a Normal

distribution at any standard level of significance.

4. An Application to the Estimation of Discount Rates

A. Data

The data are reported in detail in Andersen, Harrison, Lau and Rutström [2008]. They

consist of N=253 subjects making choices in 2003 over lotteries that paid off immediately and

delayed monetary amounts that paid off in the future. All delayed amounts had an initial delay of 30

days, and some in the paired comparison offered a larger amount for a longer delay. We again ignore

expressions of indifference, which were rare. The key design feature of these experiments is that

there are two tasks: one to identify risk attitudes, and the other to identify discount rates conditional

on some estimate of the linearity of the utility function. 

B. The Specific Model

We estimate a model that matches the specifications employed by Andersen, Harrison, Lau

and Rutström [2008], but simplifies it by removing the “dual self” components of that model. We

define the discount factor for a given horizon J to be the scalar D that equates the utility of the

income received at time t with the income received at time t+J:

U(yt) = D U(yt+J) (11)

for some utility function U(.). This general definition permits the special case, much studied in the

experimental literature, in which U(.) is linear. There is nothing in (11) that restricts us to EUT.

The discount factor for the Exponential specification is defined as
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D(t) = 1/(1+*)t (12)

for t$0, and where the discount rate d is simply

d(t) = * (13)

and we present the discount rate on an annualized basis throughout. The key feature of this model,

of course, is that the discount rate is a constant over time. It is a simple matter to consider

alternative models of discounting behavior that allow for non-constant discount rates over time, but

that is not necessary for our illustration (nor is it supported by our data, but that is another matter).

Assume that utility of income is defined by

U(M) = M(1!r)/(1!r) (14)

where M is the lottery prize and r…1 is a parameter to be estimated. For r=1 assume U(M)=ln(M) if

needed. Thus r is the coefficient of CRRA and differs in interpretation from the functional form

assumed in the earlier example: r=0 now corresponds to risk neutrality, r<0 to risk loving, and r>0

to risk aversion. Let there be two possible outcomes in a lottery. Under EUT the probabilities for

each outcome Mj, p(Mj), are those that are induced by the experimenter, so expected utility is simply

the probability weighted utility of each outcome in each lottery i plus some level of background

consumption T:

EUi = [ p(M1) × U(T+M1) ] + [ p(M2) × U(T+M2) ] (15)

The EU for each lottery pair is calculated for a candidate estimate of r, and the index

LEU = EUR ! EUL (16)

calculated, where EUL is the “left” lottery and EUR is the “right” lottery as presented to subjects.

This latent index, based on latent preferences, is then linked to observed choices using the

cumulative logistic distribution function 7(LEU). Thus the likelihood of the observed responses to the

lottery choices, conditional on the EUT and CRRA specifications being true, depends on the estimates

of r given the above statistical specification and the observed choices. Call that conditional log-

likelihood ln LRA(r; y, T), where y =1(!1) denotes the choice of the Option B (A) lottery in the risk

aversion tasks.



15 The addition of background consumption is a sufficient condition to avoid negative discount rates when the
intertemporal utility function is additively separable. 
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Assume EUT holds for choices over risky alternatives and that discounting is exponential. A

subject is indifferent between two income options Mt and Mt+J if and only if

U(T+Mt) + (1/(1+*)J) U(T) = U(T) + (1/(1+*)J) U(T+Mt+J) (17)

where U(T+Mt) is the utility of monetary outcome Mt for delivery at time t plus some measure of

background consumption T, * is the discount rate, J is the horizon for delivery of the later

monetary outcome at time t+J, and the utility function U is separable and stationary over time. The

left hand side of equation (17) is the sum of the discounted utilities of receiving the monetary

outcome Mt at time t (in addition to background consumption) and receiving nothing extra at time

t+J, and the right hand side is the sum of the discounted utilities of receiving nothing over

background consumption at time t and the outcome Mt+J (plus background consumption) at time

t+J. Thus (17) is an indifference condition and * is the discount rate that equalizes the present value

of the utility of the two monetary outcomes Mt and Mt+J, after integration with an appropriate level

of background consumption T.15

We can now write out the likelihood function for the choices that our subjects made and

jointly estimate the risk parameter r in equation (14) and the discount rate parameter * in (17). The 

discounted utility of Option A is given by

PVA = (T+MA)(1!r)/(1!r) + (1/(1+*)J) T(1!r)/(1!r) (18)

and the discounted utility of Option B is

PVB = T(1!r)/(1!r) + (1/(1+*)J) (T+MB)(1!r)/(1!r), (19)

and MA and MB are the monetary amounts in the choice tasks presented to subjects. We assume here

that the utility function is stable over time and is perceived ex ante to be stable over time.

Thus the likelihood of the discount rate responses, conditional on the EUT, CRRA and

exponential discounting specifications being true, depends on the estimates of r, * and :, given the

assumed value of T and the observed choices. The Fechner parameter : plays the same role as in

the previous example. The conditional log-likelihood for the discount rate responses can be defined
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by ln LDR(r, *, :; y, T), where y =1(!1) again denotes the choice of Option A (B), but in this case in

the discount rate tasks.

The joint likelihood of the risk aversion and discount rate responses can then be written as

ln L (r, *, :; y, T) = ln LRA + ln LDR (20)

where LRA and LDR are defined earlier. This expression can then be maximized using standard

numerical methods. The parameter T is set exogenously: using data from the household expenditure

survey at Statistics Denmark, Andersen, Harrison, Lau and Rutström [2008; p.600, Appendix D]

calculate per capita consumption of private nondurable goods on an average daily basis as being

equal to 118 kroner in 2003.

One side-benefit of writing out the log-likelihood explicitly, whether it is characterizing a

linear or non-linear relationship between structural parameters, is that full information maximum

likelihood estimation of systems such as this is straightforward. Errors in the estimation of the utility

function parameter r propagate naturally to affect inferences about the discounting parameter *. As

it happens, both the utility function and the discounting function are non-linear in these structural

parameters.

C. Estimates 

Table 2 presents estimates of the core structural parameters for the utility function and

discount rate, along with the covariance between the two. The r parameter is treated as following a

L-N distribution, and the * parameter is treated as following an L-N distribution multiplied by 0.3

(this could be called a Beta3 approximation, following the earlier discussion of the Beta4

approximation). We allow for a covariance matrix between the distribution of these parameters, and

this is estimated to be statistically significantly different from 0. Of course, the raw estimates in

Table 2, apart from making it clear exactly what is estimated, are difficult to interpret from an

economic perspective because of the L-N transformation. Figure 5 shows kernel densities of the

implied population distributions for each parameter. The utility function is clearly concave, since
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r>0. The implied discount rate population distribution is significantly skewed right, with a skewness

statistic of 0.7 (the Normal has a value of 0). The average value of * is 0.097, which is slightly lower

than the ML estimates of 0.0101 from Andersen, Harrison, Lau and Rutström [2008], although there

are other changes in model specification apart from the use of random coefficients. The median

value of * is 0.080, consistent with the right skewness apparent from Figure 5. The correlation

between r and * is estimated to be -0.13, consistent with theoretical expectations: larger values of r,

given the CRRA specification employed here, imply more concave utility functions, and Jensen’s

Inequality immediately implies lower values of * given the observed choice behavior.

The non-Normal distribution of * in Figure 5 dramatically illustrates the value of using the

L-N transformation, and one additional reason why one would want to use non-linear mixed logit

specification in order to “get the economics right.”

5. Comparison to the Literature

There is a large econometric literature on “distribution free” estimators of the binary choice

model, reviewed well in Pagan and Ullah [1999; ch.7]. Using our random utility interpretation, the

term distribution-free in this case refers the relaxation of parametric assumptions about the form of

the random error terms gnjt of (1). As is well-know, and reviewed historically by McFadden [2001],

making parametric assumptions about these error terms, such as that they are distributed as type I

extreme (or Gumbel), is the same as assuming directly that the latent index )njt is linked to the

choice probabilities by a logit function. The popular alternative parametric assumption to the logit is

of course the cumulative normal distribution. The econometric literature on distribution free

estimators relaxes these parametric assumptions. That is important, but is not the same thing as

relaxing the assumption that the deterministic part of the latent index, G($n, xnjt) in our (2), be linear.

This point is made explicitly by Pagan and Ullah [1999; p. 279], for example.

The econometric literature that relaxes the assumption that G($n, xnjt) be linear has two

strands. One allows G($n, xnjt) to be characterized with a flexible functional form, and is due to



16 Matzkin [1992] extends the non-parametric specification of G($n, xnjt) to also allow for a distribution free
specification of the error terms. This extension raises delicate issues of identification, which of course are far less severe
when one makes parametric assumptions about G($n, xnjt) and/or the error terms.

17 In context this passage also refers to parametric assumptions about the error terms, but we focus on the
point about the systematic functional form inside the latent index.

18 The agnostic approach certainly respects certain fundamental economic properties of the systematic
component of the random utility function. Matzkin [1991], for example, maintains monotonicity and concavity. Thus the
agnostic approach is not completely atheistic.
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Gallant [1981], although there have were no applications of this general approach to the binary

choice context until Chen and Randall [1997]. The other strand allows G($n, xnjt) to be characterized

non-parametrically as a monotone and concave function, and is due to Matzkin [1991].16 Although it

is possible in principle to use either of these approaches to approximate non-linear utility functions,

it is easier to write those functions out explicitly and estimate the structural parameters directly if that

is what one wants to make inferences about.

The tradition in theoretical econometrics is to avoid any such assumption about structure.

There are some good reasons for this, but also some disadvantages. In this instance, for example,

Matzkin [1992; p. 240] argues17 that

All these previously developed methods assume that [the systematic component
G($n, xnjt) in our specification] is known up to a finite dimensional parameter vector.
These assumptions are, however, almost never justified. Economic theory does not
impose any restrictions on the parametric structure of functions.

The final sentence is of course correct as a general matter, but one should not therefore assume that

economists are unwilling to write out explicit functional forms for certain purposes. So we take issue

with the phrase “almost never justified,” and can point to a myriad of literature in which such

parametric assumptions are employed as a standard and uncontroversial matter. This is not to say

that those parametric assumptions should remain untested, just to note that there are inferential

objectives for which one is willing to accept certain parametric assumptions. Estimating risk

attitudes, whether one uses EUT or non-EUT models of decision making, is one in which such

parametric assumptions are commonly used, and where the parametric forms have to be non-linear  to

draw any useful substantive inferences.

Thus our approach is to swim against the tide of the econometric literature that wants to

relax linearity of G($n, xnjt) by being as agnostic about functional form as possible.18 One reason is
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the practical inability of these agnostic approaches to deliver estimates of the structural parameters

of interest in a tractable computational procedure. When those agnostic approaches are able to

deliver those estimates we will be the first to swim with the tide instead of against it.

6. Conclusions

We develop a non-linear mixed logit specification that allows the analyst to directly estimate

the “deep structural parameters” of interest in many behavioral analyses. We illustrated by

considering the familiar case of estimating risk preferences from a sample of lottery choices, as well

as risk attitudes and discount rates from a sample of lottery choices and time-delay choices. Since

risk attitudes fundamentally entails modeling non-linearities in most behavioral theories, whether the

non-linearity is in the utility function and/or a probability weighting function, these applications are

canonical. The data we consider are generated in controlled laboratory and field experiments, to

ensure that we know all variables of interest to illustrate the approach in a clean manner, but the

broader usefulness of this approach is obvious.
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Table 1: Estimates of Structural Risk Aversion Parameter

Estimates of Fechner Parameter :, and other ancillary parameters, not shown

Parameter Point Estimate Standard Error p-value 95% Confidence Interval

I. ML Estimates with No Heterogeneity, Constrained Normal (LL= -2415.8)
rmean 0.468 0.014 <0.001 0.439 0.496
rsd 0 (constrained) 0 (constrained)

II. ML Estimates with Observable Heterogeneity, Constrained Normal (LL= -2397.9)
rmean for all 0.545 0.016 <0.001 0.514 0.578
rmean for females -0.170 0.031 <0.001 -0.231 -0.108
rsd 0 (constrained) 0 (constrained)

III. MSL Estimates with Unobserved Heterogeneity, Non-Random :, Normal (LL= -2193.5)
rmean 0.398 0.058 <0.001 0.241 0.524
rsd 0.353 0.048 <0.001 0.256 0.500

IV. MSL Estimates with Observed & Unobserved Heterogeneity, Non-Random :, Normal (LL= -2184.6)
rmean for all 0.515 0.050 <0.001 0.417 0.613
rmean for females -0.354 0.096 <0.001 -0.542 -0.167
rsd for all 0.264 0.038 <0.001 0.190 0.338
rsd for females 0.403 0.088 <0.001 0.238 0.570

V. MSL Estimates with Unobserved Heterogeneity, Random :, Bivariate Normal (LL= -2120.8)
rmean 0.430 0.037 <0.001 0.358 0.502
rsd 0.329 0.025 <0.001 0.279 0.378

VI. MSL Estimates with Unobserved Heterogeneity, Random :, Bivariate Beta4 (LL= -2119.3)
rmean 1.587 1.503 0.291 -0.242 2.934
rsd 0.493 0.578 0.162 -1.903 0.317
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Maximum likelihood estimate is .47.

Figure 4: Population Distribution for CRRA Parameter
Assuming Beta4 or Normal Distributions
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Table 2: Estimates of Structural Risk Aversion and Discounting Parameters

Estimates of Fechner Parameter : not shown

Parameter Point Estimate Standard Error p-value 95% Confidence Interval

rmean -0.377 0.061 <0.001 -0.498 -0.256
rsd 0.411 0.021 <0.001 0.370 0.453

*mean 1.020 0.069 <0.001 0.884 1.155
*sd 1.423 0.068 <0.001 1.289 1.557

Covariance -0.193 0.020 <0.001 -0.232 -0.153
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0.3 x Ë(N(1.02, 1.42))

Assuming CRRA utility and Exponential discounting

Figure 5: Random Coefficient Estimates of
Risk Attitudes and Discount Rates
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Appendix: Identification of Demographic Effects

It is well known that choice-invariant characteristics drop out of the usual linear
specifications, and that they can only be included if they are interacted with choice-varying attributes.
The use of non-linear latent indices for utility builds this sort of “interaction” in automatically, and
in a theoretically natural manner. Although this may be obvious on inspection of (1) and (2), it is
perhaps worth spelling out more formally. We use the exposition from Greene [2008; §0.3],
although the point is well known (e.g., Train [2003; §2.5.1]). Recall the notation in the text, where
individual n is viewed by the econometrician as deriving utility ) from alternative j in task t, given by

)njt = $n xnjt + gnjt (A1)
where $n is a vector of coefficients specific to subject n, xnjt is a vector of observed attributes of
individual j and/or alternative j in task t, and gnjt is a random term. Focus on just one task, so we can
drop the subscript t. Assume that the vector x is broken up into two components: a vector w that
varies with the alternative j and (possibly) with the individual n, and a vector z that does not vary
with the alternative j, but does differ across individuals. In our lottery choice setting, elements of w
include the probabilities and outcomes of lottery j, and elements of z might include the sex of the
individual.

We can then assume that the individual evaluates utility using these linear specifications, for j
0 {A, B}:

)nA = 0n wnA + (n zn + gnA (A2)
)nB = 0n wnB + (n zn + gnB (A3)

If we observe choice A then this choice reveals that
)nA  >  )nB (A4)

Hence we have
0n wnA + (n zn + gnA  >  0n wnB + (n zn + gnB (A5)

or
(0n wnA - 0n wnB) + ((n zn - (n zn) >  gnB -  gnA (A6)

and therefore
(0n wnA - 0n wnB) >  gnB -  gnA (A7)

So the vector z has dropped out completely.
When we replace the linear latent index (A1) with the non-linear index, 

)njt = G($n, xnjt) + gnjt (A1N)
we have counterparts to (A2) and (A3) as

)nA = G(0n, (n , wnA, zn) + gnA (A2N)
)nB = G(0n, (n , wnB, zn) + gnB (A3N)

Thus choice observation (A4) only implies
G(0n, (n , wnA, zn) + gnA > G(0n, (n , wnB, zn) + gnB (A5N)

as a counterpart to (A5), and 
G(0n, (n , wnA, zn) - G(0n, (n , wnB, zn) >  gnB - gnA (A6N)

as a counterpart to (A6), and the vector z simply does not drop out without more structure being
placed on G(@). For the applications we consider, and that would be natural for virtually all models
of risk attitudes, no further simplification beyond (A6N) is possible.
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